forked from OSchip/llvm-project
6871 lines
306 KiB
C++
6871 lines
306 KiB
C++
//===-- ConvertExpr.cpp ---------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "flang/Lower/ConvertExpr.h"
|
|
#include "flang/Evaluate/fold.h"
|
|
#include "flang/Evaluate/traverse.h"
|
|
#include "flang/Lower/AbstractConverter.h"
|
|
#include "flang/Lower/Allocatable.h"
|
|
#include "flang/Lower/BuiltinModules.h"
|
|
#include "flang/Lower/CallInterface.h"
|
|
#include "flang/Lower/ComponentPath.h"
|
|
#include "flang/Lower/ConvertType.h"
|
|
#include "flang/Lower/ConvertVariable.h"
|
|
#include "flang/Lower/CustomIntrinsicCall.h"
|
|
#include "flang/Lower/DumpEvaluateExpr.h"
|
|
#include "flang/Lower/IntrinsicCall.h"
|
|
#include "flang/Lower/Mangler.h"
|
|
#include "flang/Lower/StatementContext.h"
|
|
#include "flang/Lower/SymbolMap.h"
|
|
#include "flang/Lower/Todo.h"
|
|
#include "flang/Optimizer/Builder/Character.h"
|
|
#include "flang/Optimizer/Builder/Complex.h"
|
|
#include "flang/Optimizer/Builder/Factory.h"
|
|
#include "flang/Optimizer/Builder/LowLevelIntrinsics.h"
|
|
#include "flang/Optimizer/Builder/MutableBox.h"
|
|
#include "flang/Optimizer/Builder/Runtime/Character.h"
|
|
#include "flang/Optimizer/Builder/Runtime/RTBuilder.h"
|
|
#include "flang/Optimizer/Builder/Runtime/Ragged.h"
|
|
#include "flang/Optimizer/Dialect/FIROpsSupport.h"
|
|
#include "flang/Optimizer/Support/Matcher.h"
|
|
#include "flang/Semantics/expression.h"
|
|
#include "flang/Semantics/symbol.h"
|
|
#include "flang/Semantics/tools.h"
|
|
#include "flang/Semantics/type.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#define DEBUG_TYPE "flang-lower-expr"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// The composition and structure of Fortran::evaluate::Expr is defined in
|
|
// the various header files in include/flang/Evaluate. You are referred
|
|
// there for more information on these data structures. Generally speaking,
|
|
// these data structures are a strongly typed family of abstract data types
|
|
// that, composed as trees, describe the syntax of Fortran expressions.
|
|
//
|
|
// This part of the bridge can traverse these tree structures and lower them
|
|
// to the correct FIR representation in SSA form.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static llvm::cl::opt<bool> generateArrayCoordinate(
|
|
"gen-array-coor",
|
|
llvm::cl::desc("in lowering create ArrayCoorOp instead of CoordinateOp"),
|
|
llvm::cl::init(false));
|
|
|
|
// The default attempts to balance a modest allocation size with expected user
|
|
// input to minimize bounds checks and reallocations during dynamic array
|
|
// construction. Some user codes may have very large array constructors for
|
|
// which the default can be increased.
|
|
static llvm::cl::opt<unsigned> clInitialBufferSize(
|
|
"array-constructor-initial-buffer-size",
|
|
llvm::cl::desc(
|
|
"set the incremental array construction buffer size (default=32)"),
|
|
llvm::cl::init(32u));
|
|
|
|
/// The various semantics of a program constituent (or a part thereof) as it may
|
|
/// appear in an expression.
|
|
///
|
|
/// Given the following Fortran declarations.
|
|
/// ```fortran
|
|
/// REAL :: v1, v2, v3
|
|
/// REAL, POINTER :: vp1
|
|
/// REAL :: a1(c), a2(c)
|
|
/// REAL ELEMENTAL FUNCTION f1(arg) ! array -> array
|
|
/// FUNCTION f2(arg) ! array -> array
|
|
/// vp1 => v3 ! 1
|
|
/// v1 = v2 * vp1 ! 2
|
|
/// a1 = a1 + a2 ! 3
|
|
/// a1 = f1(a2) ! 4
|
|
/// a1 = f2(a2) ! 5
|
|
/// ```
|
|
///
|
|
/// In line 1, `vp1` is a BoxAddr to copy a box value into. The box value is
|
|
/// constructed from the DataAddr of `v3`.
|
|
/// In line 2, `v1` is a DataAddr to copy a value into. The value is constructed
|
|
/// from the DataValue of `v2` and `vp1`. DataValue is implicitly a double
|
|
/// dereference in the `vp1` case.
|
|
/// In line 3, `a1` and `a2` on the rhs are RefTransparent. The `a1` on the lhs
|
|
/// is CopyInCopyOut as `a1` is replaced elementally by the additions.
|
|
/// In line 4, `a2` can be RefTransparent, ByValueArg, RefOpaque, or BoxAddr if
|
|
/// `arg` is declared as C-like pass-by-value, VALUE, INTENT(?), or ALLOCATABLE/
|
|
/// POINTER, respectively. `a1` on the lhs is CopyInCopyOut.
|
|
/// In line 5, `a2` may be DataAddr or BoxAddr assuming f2 is transformational.
|
|
/// `a1` on the lhs is again CopyInCopyOut.
|
|
enum class ConstituentSemantics {
|
|
// Scalar data reference semantics.
|
|
//
|
|
// For these let `v` be the location in memory of a variable with value `x`
|
|
DataValue, // refers to the value `x`
|
|
DataAddr, // refers to the address `v`
|
|
BoxValue, // refers to a box value containing `v`
|
|
BoxAddr, // refers to the address of a box value containing `v`
|
|
|
|
// Array data reference semantics.
|
|
//
|
|
// For these let `a` be the location in memory of a sequence of value `[xs]`.
|
|
// Let `x_i` be the `i`-th value in the sequence `[xs]`.
|
|
|
|
// Referentially transparent. Refers to the array's value, `[xs]`.
|
|
RefTransparent,
|
|
// Refers to an ephemeral address `tmp` containing value `x_i` (15.5.2.3.p7
|
|
// note 2). (Passing a copy by reference to simulate pass-by-value.)
|
|
ByValueArg,
|
|
// Refers to the merge of array value `[xs]` with another array value `[ys]`.
|
|
// This merged array value will be written into memory location `a`.
|
|
CopyInCopyOut,
|
|
// Similar to CopyInCopyOut but `a` may be a transient projection (rather than
|
|
// a whole array).
|
|
ProjectedCopyInCopyOut,
|
|
// Similar to ProjectedCopyInCopyOut, except the merge value is not assigned
|
|
// automatically by the framework. Instead, and address for `[xs]` is made
|
|
// accessible so that custom assignments to `[xs]` can be implemented.
|
|
CustomCopyInCopyOut,
|
|
// Referentially opaque. Refers to the address of `x_i`.
|
|
RefOpaque
|
|
};
|
|
|
|
/// Convert parser's INTEGER relational operators to MLIR. TODO: using
|
|
/// unordered, but we may want to cons ordered in certain situation.
|
|
static mlir::arith::CmpIPredicate
|
|
translateRelational(Fortran::common::RelationalOperator rop) {
|
|
switch (rop) {
|
|
case Fortran::common::RelationalOperator::LT:
|
|
return mlir::arith::CmpIPredicate::slt;
|
|
case Fortran::common::RelationalOperator::LE:
|
|
return mlir::arith::CmpIPredicate::sle;
|
|
case Fortran::common::RelationalOperator::EQ:
|
|
return mlir::arith::CmpIPredicate::eq;
|
|
case Fortran::common::RelationalOperator::NE:
|
|
return mlir::arith::CmpIPredicate::ne;
|
|
case Fortran::common::RelationalOperator::GT:
|
|
return mlir::arith::CmpIPredicate::sgt;
|
|
case Fortran::common::RelationalOperator::GE:
|
|
return mlir::arith::CmpIPredicate::sge;
|
|
}
|
|
llvm_unreachable("unhandled INTEGER relational operator");
|
|
}
|
|
|
|
/// Convert parser's REAL relational operators to MLIR.
|
|
/// The choice of order (O prefix) vs unorder (U prefix) follows Fortran 2018
|
|
/// requirements in the IEEE context (table 17.1 of F2018). This choice is
|
|
/// also applied in other contexts because it is easier and in line with
|
|
/// other Fortran compilers.
|
|
/// FIXME: The signaling/quiet aspect of the table 17.1 requirement is not
|
|
/// fully enforced. FIR and LLVM `fcmp` instructions do not give any guarantee
|
|
/// whether the comparison will signal or not in case of quiet NaN argument.
|
|
static mlir::arith::CmpFPredicate
|
|
translateFloatRelational(Fortran::common::RelationalOperator rop) {
|
|
switch (rop) {
|
|
case Fortran::common::RelationalOperator::LT:
|
|
return mlir::arith::CmpFPredicate::OLT;
|
|
case Fortran::common::RelationalOperator::LE:
|
|
return mlir::arith::CmpFPredicate::OLE;
|
|
case Fortran::common::RelationalOperator::EQ:
|
|
return mlir::arith::CmpFPredicate::OEQ;
|
|
case Fortran::common::RelationalOperator::NE:
|
|
return mlir::arith::CmpFPredicate::UNE;
|
|
case Fortran::common::RelationalOperator::GT:
|
|
return mlir::arith::CmpFPredicate::OGT;
|
|
case Fortran::common::RelationalOperator::GE:
|
|
return mlir::arith::CmpFPredicate::OGE;
|
|
}
|
|
llvm_unreachable("unhandled REAL relational operator");
|
|
}
|
|
|
|
static mlir::Value genActualIsPresentTest(fir::FirOpBuilder &builder,
|
|
mlir::Location loc,
|
|
fir::ExtendedValue actual) {
|
|
if (const auto *ptrOrAlloc = actual.getBoxOf<fir::MutableBoxValue>())
|
|
return fir::factory::genIsAllocatedOrAssociatedTest(builder, loc,
|
|
*ptrOrAlloc);
|
|
// Optional case (not that optional allocatable/pointer cannot be absent
|
|
// when passed to CMPLX as per 15.5.2.12 point 3 (7) and (8)). It is
|
|
// therefore possible to catch them in the `then` case above.
|
|
return builder.create<fir::IsPresentOp>(loc, builder.getI1Type(),
|
|
fir::getBase(actual));
|
|
}
|
|
|
|
/// Convert the array_load, `load`, to an extended value. If `path` is not
|
|
/// empty, then traverse through the components designated. The base value is
|
|
/// `newBase`. This does not accept an array_load with a slice operand.
|
|
static fir::ExtendedValue
|
|
arrayLoadExtValue(fir::FirOpBuilder &builder, mlir::Location loc,
|
|
fir::ArrayLoadOp load, llvm::ArrayRef<mlir::Value> path,
|
|
mlir::Value newBase, mlir::Value newLen = {}) {
|
|
// Recover the extended value from the load.
|
|
assert(!load.getSlice() && "slice is not allowed");
|
|
mlir::Type arrTy = load.getType();
|
|
if (!path.empty()) {
|
|
mlir::Type ty = fir::applyPathToType(arrTy, path);
|
|
if (!ty)
|
|
fir::emitFatalError(loc, "path does not apply to type");
|
|
if (!ty.isa<fir::SequenceType>()) {
|
|
if (fir::isa_char(ty)) {
|
|
mlir::Value len = newLen;
|
|
if (!len)
|
|
len = fir::factory::CharacterExprHelper{builder, loc}.getLength(
|
|
load.getMemref());
|
|
if (!len) {
|
|
assert(load.getTypeparams().size() == 1 &&
|
|
"length must be in array_load");
|
|
len = load.getTypeparams()[0];
|
|
}
|
|
return fir::CharBoxValue{newBase, len};
|
|
}
|
|
return newBase;
|
|
}
|
|
arrTy = ty.cast<fir::SequenceType>();
|
|
}
|
|
|
|
// Use the shape op, if there is one.
|
|
mlir::Value shapeVal = load.getShape();
|
|
if (shapeVal) {
|
|
if (!mlir::isa<fir::ShiftOp>(shapeVal.getDefiningOp())) {
|
|
mlir::Type eleTy = fir::unwrapSequenceType(arrTy);
|
|
std::vector<mlir::Value> extents = fir::factory::getExtents(shapeVal);
|
|
std::vector<mlir::Value> origins = fir::factory::getOrigins(shapeVal);
|
|
if (fir::isa_char(eleTy)) {
|
|
mlir::Value len = newLen;
|
|
if (!len)
|
|
len = fir::factory::CharacterExprHelper{builder, loc}.getLength(
|
|
load.getMemref());
|
|
if (!len) {
|
|
assert(load.getTypeparams().size() == 1 &&
|
|
"length must be in array_load");
|
|
len = load.getTypeparams()[0];
|
|
}
|
|
return fir::CharArrayBoxValue(newBase, len, extents, origins);
|
|
}
|
|
return fir::ArrayBoxValue(newBase, extents, origins);
|
|
}
|
|
if (!fir::isa_box_type(load.getMemref().getType()))
|
|
fir::emitFatalError(loc, "shift op is invalid in this context");
|
|
}
|
|
|
|
// There is no shape or the array is in a box. Extents and lower bounds must
|
|
// be read at runtime.
|
|
if (path.empty() && !shapeVal) {
|
|
fir::ExtendedValue exv =
|
|
fir::factory::readBoxValue(builder, loc, load.getMemref());
|
|
return fir::substBase(exv, newBase);
|
|
}
|
|
TODO(loc, "component is boxed, retreive its type parameters");
|
|
}
|
|
|
|
/// Place \p exv in memory if it is not already a memory reference. If
|
|
/// \p forceValueType is provided, the value is first casted to the provided
|
|
/// type before being stored (this is mainly intended for logicals whose value
|
|
/// may be `i1` but needed to be stored as Fortran logicals).
|
|
static fir::ExtendedValue
|
|
placeScalarValueInMemory(fir::FirOpBuilder &builder, mlir::Location loc,
|
|
const fir::ExtendedValue &exv,
|
|
mlir::Type storageType) {
|
|
mlir::Value valBase = fir::getBase(exv);
|
|
if (fir::conformsWithPassByRef(valBase.getType()))
|
|
return exv;
|
|
|
|
assert(!fir::hasDynamicSize(storageType) &&
|
|
"only expect statically sized scalars to be by value");
|
|
|
|
// Since `a` is not itself a valid referent, determine its value and
|
|
// create a temporary location at the beginning of the function for
|
|
// referencing.
|
|
mlir::Value val = builder.createConvert(loc, storageType, valBase);
|
|
mlir::Value temp = builder.createTemporary(
|
|
loc, storageType,
|
|
llvm::ArrayRef<mlir::NamedAttribute>{
|
|
Fortran::lower::getAdaptToByRefAttr(builder)});
|
|
builder.create<fir::StoreOp>(loc, val, temp);
|
|
return fir::substBase(exv, temp);
|
|
}
|
|
|
|
// Copy a copy of scalar \p exv in a new temporary.
|
|
static fir::ExtendedValue
|
|
createInMemoryScalarCopy(fir::FirOpBuilder &builder, mlir::Location loc,
|
|
const fir::ExtendedValue &exv) {
|
|
assert(exv.rank() == 0 && "input to scalar memory copy must be a scalar");
|
|
if (exv.getCharBox() != nullptr)
|
|
return fir::factory::CharacterExprHelper{builder, loc}.createTempFrom(exv);
|
|
if (fir::isDerivedWithLengthParameters(exv))
|
|
TODO(loc, "copy derived type with length parameters");
|
|
mlir::Type type = fir::unwrapPassByRefType(fir::getBase(exv).getType());
|
|
fir::ExtendedValue temp = builder.createTemporary(loc, type);
|
|
fir::factory::genScalarAssignment(builder, loc, temp, exv);
|
|
return temp;
|
|
}
|
|
|
|
// An expression with non-zero rank is an array expression.
|
|
template <typename A>
|
|
static bool isArray(const A &x) {
|
|
return x.Rank() != 0;
|
|
}
|
|
|
|
/// Is this a variable wrapped in parentheses?
|
|
template <typename A>
|
|
static bool isParenthesizedVariable(const A &) {
|
|
return false;
|
|
}
|
|
template <typename T>
|
|
static bool isParenthesizedVariable(const Fortran::evaluate::Expr<T> &expr) {
|
|
using ExprVariant = decltype(Fortran::evaluate::Expr<T>::u);
|
|
using Parentheses = Fortran::evaluate::Parentheses<T>;
|
|
if constexpr (Fortran::common::HasMember<Parentheses, ExprVariant>) {
|
|
if (const auto *parentheses = std::get_if<Parentheses>(&expr.u))
|
|
return Fortran::evaluate::IsVariable(parentheses->left());
|
|
return false;
|
|
} else {
|
|
return std::visit([&](const auto &x) { return isParenthesizedVariable(x); },
|
|
expr.u);
|
|
}
|
|
}
|
|
|
|
/// Generate a load of a value from an address. Beware that this will lose
|
|
/// any dynamic type information for polymorphic entities (note that unlimited
|
|
/// polymorphic cannot be loaded and must not be provided here).
|
|
static fir::ExtendedValue genLoad(fir::FirOpBuilder &builder,
|
|
mlir::Location loc,
|
|
const fir::ExtendedValue &addr) {
|
|
return addr.match(
|
|
[](const fir::CharBoxValue &box) -> fir::ExtendedValue { return box; },
|
|
[&](const fir::UnboxedValue &v) -> fir::ExtendedValue {
|
|
if (fir::unwrapRefType(fir::getBase(v).getType())
|
|
.isa<fir::RecordType>())
|
|
return v;
|
|
return builder.create<fir::LoadOp>(loc, fir::getBase(v));
|
|
},
|
|
[&](const fir::MutableBoxValue &box) -> fir::ExtendedValue {
|
|
return genLoad(builder, loc,
|
|
fir::factory::genMutableBoxRead(builder, loc, box));
|
|
},
|
|
[&](const fir::BoxValue &box) -> fir::ExtendedValue {
|
|
if (box.isUnlimitedPolymorphic())
|
|
fir::emitFatalError(
|
|
loc,
|
|
"lowering attempting to load an unlimited polymorphic entity");
|
|
return genLoad(builder, loc,
|
|
fir::factory::readBoxValue(builder, loc, box));
|
|
},
|
|
[&](const auto &) -> fir::ExtendedValue {
|
|
fir::emitFatalError(
|
|
loc, "attempting to load whole array or procedure address");
|
|
});
|
|
}
|
|
|
|
/// Create an optional dummy argument value from entity \p exv that may be
|
|
/// absent. This can only be called with numerical or logical scalar \p exv.
|
|
/// If \p exv is considered absent according to 15.5.2.12 point 1., the returned
|
|
/// value is zero (or false), otherwise it is the value of \p exv.
|
|
static fir::ExtendedValue genOptionalValue(fir::FirOpBuilder &builder,
|
|
mlir::Location loc,
|
|
const fir::ExtendedValue &exv,
|
|
mlir::Value isPresent) {
|
|
mlir::Type eleType = fir::getBaseTypeOf(exv);
|
|
assert(exv.rank() == 0 && fir::isa_trivial(eleType) &&
|
|
"must be a numerical or logical scalar");
|
|
return builder
|
|
.genIfOp(loc, {eleType}, isPresent,
|
|
/*withElseRegion=*/true)
|
|
.genThen([&]() {
|
|
mlir::Value val = fir::getBase(genLoad(builder, loc, exv));
|
|
builder.create<fir::ResultOp>(loc, val);
|
|
})
|
|
.genElse([&]() {
|
|
mlir::Value zero = fir::factory::createZeroValue(builder, loc, eleType);
|
|
builder.create<fir::ResultOp>(loc, zero);
|
|
})
|
|
.getResults()[0];
|
|
}
|
|
|
|
/// Create an optional dummy argument address from entity \p exv that may be
|
|
/// absent. If \p exv is considered absent according to 15.5.2.12 point 1., the
|
|
/// returned value is a null pointer, otherwise it is the address of \p exv.
|
|
static fir::ExtendedValue genOptionalAddr(fir::FirOpBuilder &builder,
|
|
mlir::Location loc,
|
|
const fir::ExtendedValue &exv,
|
|
mlir::Value isPresent) {
|
|
// If it is an exv pointer/allocatable, then it cannot be absent
|
|
// because it is passed to a non-pointer/non-allocatable.
|
|
if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>())
|
|
return fir::factory::genMutableBoxRead(builder, loc, *box);
|
|
// If this is not a POINTER or ALLOCATABLE, then it is already an OPTIONAL
|
|
// address and can be passed directly.
|
|
return exv;
|
|
}
|
|
|
|
/// Create an optional dummy argument address from entity \p exv that may be
|
|
/// absent. If \p exv is considered absent according to 15.5.2.12 point 1., the
|
|
/// returned value is an absent fir.box, otherwise it is a fir.box describing \p
|
|
/// exv.
|
|
static fir::ExtendedValue genOptionalBox(fir::FirOpBuilder &builder,
|
|
mlir::Location loc,
|
|
const fir::ExtendedValue &exv,
|
|
mlir::Value isPresent) {
|
|
// Non allocatable/pointer optional box -> simply forward
|
|
if (exv.getBoxOf<fir::BoxValue>())
|
|
return exv;
|
|
|
|
fir::ExtendedValue newExv = exv;
|
|
// Optional allocatable/pointer -> Cannot be absent, but need to translate
|
|
// unallocated/diassociated into absent fir.box.
|
|
if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>())
|
|
newExv = fir::factory::genMutableBoxRead(builder, loc, *box);
|
|
|
|
// createBox will not do create any invalid memory dereferences if exv is
|
|
// absent. The created fir.box will not be usable, but the SelectOp below
|
|
// ensures it won't be.
|
|
mlir::Value box = builder.createBox(loc, newExv);
|
|
mlir::Type boxType = box.getType();
|
|
auto absent = builder.create<fir::AbsentOp>(loc, boxType);
|
|
auto boxOrAbsent = builder.create<mlir::arith::SelectOp>(
|
|
loc, boxType, isPresent, box, absent);
|
|
return fir::BoxValue(boxOrAbsent);
|
|
}
|
|
|
|
/// Is this a call to an elemental procedure with at least one array argument?
|
|
static bool
|
|
isElementalProcWithArrayArgs(const Fortran::evaluate::ProcedureRef &procRef) {
|
|
if (procRef.IsElemental())
|
|
for (const std::optional<Fortran::evaluate::ActualArgument> &arg :
|
|
procRef.arguments())
|
|
if (arg && arg->Rank() != 0)
|
|
return true;
|
|
return false;
|
|
}
|
|
template <typename T>
|
|
static bool isElementalProcWithArrayArgs(const Fortran::evaluate::Expr<T> &) {
|
|
return false;
|
|
}
|
|
template <>
|
|
bool isElementalProcWithArrayArgs(const Fortran::lower::SomeExpr &x) {
|
|
if (const auto *procRef = std::get_if<Fortran::evaluate::ProcedureRef>(&x.u))
|
|
return isElementalProcWithArrayArgs(*procRef);
|
|
return false;
|
|
}
|
|
|
|
/// Some auxiliary data for processing initialization in ScalarExprLowering
|
|
/// below. This is currently used for generating dense attributed global
|
|
/// arrays.
|
|
struct InitializerData {
|
|
explicit InitializerData(bool getRawVals = false) : genRawVals{getRawVals} {}
|
|
llvm::SmallVector<mlir::Attribute> rawVals; // initialization raw values
|
|
mlir::Type rawType; // Type of elements processed for rawVals vector.
|
|
bool genRawVals; // generate the rawVals vector if set.
|
|
};
|
|
|
|
/// If \p arg is the address of a function with a denoted host-association tuple
|
|
/// argument, then return the host-associations tuple value of the current
|
|
/// procedure. Otherwise, return nullptr.
|
|
static mlir::Value
|
|
argumentHostAssocs(Fortran::lower::AbstractConverter &converter,
|
|
mlir::Value arg) {
|
|
if (auto addr = mlir::dyn_cast_or_null<fir::AddrOfOp>(arg.getDefiningOp())) {
|
|
auto &builder = converter.getFirOpBuilder();
|
|
if (auto funcOp = builder.getNamedFunction(addr.getSymbol()))
|
|
if (fir::anyFuncArgsHaveAttr(funcOp, fir::getHostAssocAttrName()))
|
|
return converter.hostAssocTupleValue();
|
|
}
|
|
return {};
|
|
}
|
|
|
|
/// \p argTy must be a tuple (pair) of boxproc and integral types. Convert the
|
|
/// \p funcAddr argument to a boxproc value, with the host-association as
|
|
/// required. Call the factory function to finish creating the tuple value.
|
|
static mlir::Value
|
|
createBoxProcCharTuple(Fortran::lower::AbstractConverter &converter,
|
|
mlir::Type argTy, mlir::Value funcAddr,
|
|
mlir::Value charLen) {
|
|
auto boxTy =
|
|
argTy.cast<mlir::TupleType>().getType(0).cast<fir::BoxProcType>();
|
|
mlir::Location loc = converter.getCurrentLocation();
|
|
auto &builder = converter.getFirOpBuilder();
|
|
auto boxProc = [&]() -> mlir::Value {
|
|
if (auto host = argumentHostAssocs(converter, funcAddr))
|
|
return builder.create<fir::EmboxProcOp>(
|
|
loc, boxTy, llvm::ArrayRef<mlir::Value>{funcAddr, host});
|
|
return builder.create<fir::EmboxProcOp>(loc, boxTy, funcAddr);
|
|
}();
|
|
return fir::factory::createCharacterProcedureTuple(builder, loc, argTy,
|
|
boxProc, charLen);
|
|
}
|
|
|
|
// Helper to get the ultimate first symbol. This works around the fact that
|
|
// symbol resolution in the front end doesn't always resolve a symbol to its
|
|
// ultimate symbol but may leave placeholder indirections for use and host
|
|
// associations.
|
|
template <typename A>
|
|
const Fortran::semantics::Symbol &getFirstSym(const A &obj) {
|
|
return obj.GetFirstSymbol().GetUltimate();
|
|
}
|
|
|
|
// Helper to get the ultimate last symbol.
|
|
template <typename A>
|
|
const Fortran::semantics::Symbol &getLastSym(const A &obj) {
|
|
return obj.GetLastSymbol().GetUltimate();
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Lowering of Fortran::evaluate::Expr<T> expressions
|
|
class ScalarExprLowering {
|
|
public:
|
|
using ExtValue = fir::ExtendedValue;
|
|
|
|
explicit ScalarExprLowering(mlir::Location loc,
|
|
Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::SymMap &symMap,
|
|
Fortran::lower::StatementContext &stmtCtx,
|
|
InitializerData *initializer = nullptr)
|
|
: location{loc}, converter{converter},
|
|
builder{converter.getFirOpBuilder()}, stmtCtx{stmtCtx}, symMap{symMap},
|
|
inInitializer{initializer} {}
|
|
|
|
ExtValue genExtAddr(const Fortran::lower::SomeExpr &expr) {
|
|
return gen(expr);
|
|
}
|
|
|
|
/// Lower `expr` to be passed as a fir.box argument. Do not create a temp
|
|
/// for the expr if it is a variable that can be described as a fir.box.
|
|
ExtValue genBoxArg(const Fortran::lower::SomeExpr &expr) {
|
|
bool saveUseBoxArg = useBoxArg;
|
|
useBoxArg = true;
|
|
ExtValue result = gen(expr);
|
|
useBoxArg = saveUseBoxArg;
|
|
return result;
|
|
}
|
|
|
|
ExtValue genExtValue(const Fortran::lower::SomeExpr &expr) {
|
|
return genval(expr);
|
|
}
|
|
|
|
/// Lower an expression that is a pointer or an allocatable to a
|
|
/// MutableBoxValue.
|
|
fir::MutableBoxValue
|
|
genMutableBoxValue(const Fortran::lower::SomeExpr &expr) {
|
|
// Pointers and allocatables can only be:
|
|
// - a simple designator "x"
|
|
// - a component designator "a%b(i,j)%x"
|
|
// - a function reference "foo()"
|
|
// - result of NULL() or NULL(MOLD) intrinsic.
|
|
// NULL() requires some context to be lowered, so it is not handled
|
|
// here and must be lowered according to the context where it appears.
|
|
ExtValue exv = std::visit(
|
|
[&](const auto &x) { return genMutableBoxValueImpl(x); }, expr.u);
|
|
const fir::MutableBoxValue *mutableBox =
|
|
exv.getBoxOf<fir::MutableBoxValue>();
|
|
if (!mutableBox)
|
|
fir::emitFatalError(getLoc(), "expr was not lowered to MutableBoxValue");
|
|
return *mutableBox;
|
|
}
|
|
|
|
template <typename T>
|
|
ExtValue genMutableBoxValueImpl(const T &) {
|
|
// NULL() case should not be handled here.
|
|
fir::emitFatalError(getLoc(), "NULL() must be lowered in its context");
|
|
}
|
|
|
|
/// A `NULL()` in a position where a mutable box is expected has the same
|
|
/// semantics as an absent optional box value.
|
|
ExtValue genMutableBoxValueImpl(const Fortran::evaluate::NullPointer &) {
|
|
mlir::Location loc = getLoc();
|
|
auto nullConst = builder.createNullConstant(loc);
|
|
auto noneTy = mlir::NoneType::get(builder.getContext());
|
|
auto polyRefTy = fir::LLVMPointerType::get(noneTy);
|
|
// MutableBoxValue will dereference the box, so create a bogus temporary for
|
|
// the `nullptr`. The LLVM optimizer will garbage collect the temp.
|
|
auto temp =
|
|
builder.createTemporary(loc, polyRefTy, /*shape=*/mlir::ValueRange{});
|
|
auto nullPtr = builder.createConvert(loc, polyRefTy, nullConst);
|
|
builder.create<fir::StoreOp>(loc, nullPtr, temp);
|
|
auto nullBoxTy = builder.getRefType(fir::BoxType::get(noneTy));
|
|
return fir::MutableBoxValue(builder.createConvert(loc, nullBoxTy, temp),
|
|
/*lenParameters=*/mlir::ValueRange{},
|
|
/*mutableProperties=*/{});
|
|
}
|
|
|
|
template <typename T>
|
|
ExtValue
|
|
genMutableBoxValueImpl(const Fortran::evaluate::FunctionRef<T> &funRef) {
|
|
return genRawProcedureRef(funRef, converter.genType(toEvExpr(funRef)));
|
|
}
|
|
|
|
template <typename T>
|
|
ExtValue
|
|
genMutableBoxValueImpl(const Fortran::evaluate::Designator<T> &designator) {
|
|
return std::visit(
|
|
Fortran::common::visitors{
|
|
[&](const Fortran::evaluate::SymbolRef &sym) -> ExtValue {
|
|
return symMap.lookupSymbol(*sym).toExtendedValue();
|
|
},
|
|
[&](const Fortran::evaluate::Component &comp) -> ExtValue {
|
|
return genComponent(comp);
|
|
},
|
|
[&](const auto &) -> ExtValue {
|
|
fir::emitFatalError(getLoc(),
|
|
"not an allocatable or pointer designator");
|
|
}},
|
|
designator.u);
|
|
}
|
|
|
|
template <typename T>
|
|
ExtValue genMutableBoxValueImpl(const Fortran::evaluate::Expr<T> &expr) {
|
|
return std::visit([&](const auto &x) { return genMutableBoxValueImpl(x); },
|
|
expr.u);
|
|
}
|
|
|
|
mlir::Location getLoc() { return location; }
|
|
|
|
template <typename A>
|
|
mlir::Value genunbox(const A &expr) {
|
|
ExtValue e = genval(expr);
|
|
if (const fir::UnboxedValue *r = e.getUnboxed())
|
|
return *r;
|
|
fir::emitFatalError(getLoc(), "unboxed expression expected");
|
|
}
|
|
|
|
/// Generate an integral constant of `value`
|
|
template <int KIND>
|
|
mlir::Value genIntegerConstant(mlir::MLIRContext *context,
|
|
std::int64_t value) {
|
|
mlir::Type type =
|
|
converter.genType(Fortran::common::TypeCategory::Integer, KIND);
|
|
return builder.createIntegerConstant(getLoc(), type, value);
|
|
}
|
|
|
|
/// Generate a logical/boolean constant of `value`
|
|
mlir::Value genBoolConstant(bool value) {
|
|
return builder.createBool(getLoc(), value);
|
|
}
|
|
|
|
/// Generate a real constant with a value `value`.
|
|
template <int KIND>
|
|
mlir::Value genRealConstant(mlir::MLIRContext *context,
|
|
const llvm::APFloat &value) {
|
|
mlir::Type fltTy = Fortran::lower::convertReal(context, KIND);
|
|
return builder.createRealConstant(getLoc(), fltTy, value);
|
|
}
|
|
|
|
template <typename OpTy>
|
|
mlir::Value createCompareOp(mlir::arith::CmpIPredicate pred,
|
|
const ExtValue &left, const ExtValue &right) {
|
|
if (const fir::UnboxedValue *lhs = left.getUnboxed())
|
|
if (const fir::UnboxedValue *rhs = right.getUnboxed())
|
|
return builder.create<OpTy>(getLoc(), pred, *lhs, *rhs);
|
|
fir::emitFatalError(getLoc(), "array compare should be handled in genarr");
|
|
}
|
|
template <typename OpTy, typename A>
|
|
mlir::Value createCompareOp(const A &ex, mlir::arith::CmpIPredicate pred) {
|
|
ExtValue left = genval(ex.left());
|
|
return createCompareOp<OpTy>(pred, left, genval(ex.right()));
|
|
}
|
|
|
|
template <typename OpTy>
|
|
mlir::Value createFltCmpOp(mlir::arith::CmpFPredicate pred,
|
|
const ExtValue &left, const ExtValue &right) {
|
|
if (const fir::UnboxedValue *lhs = left.getUnboxed())
|
|
if (const fir::UnboxedValue *rhs = right.getUnboxed())
|
|
return builder.create<OpTy>(getLoc(), pred, *lhs, *rhs);
|
|
fir::emitFatalError(getLoc(), "array compare should be handled in genarr");
|
|
}
|
|
template <typename OpTy, typename A>
|
|
mlir::Value createFltCmpOp(const A &ex, mlir::arith::CmpFPredicate pred) {
|
|
ExtValue left = genval(ex.left());
|
|
return createFltCmpOp<OpTy>(pred, left, genval(ex.right()));
|
|
}
|
|
|
|
/// Create a call to the runtime to compare two CHARACTER values.
|
|
/// Precondition: This assumes that the two values have `fir.boxchar` type.
|
|
mlir::Value createCharCompare(mlir::arith::CmpIPredicate pred,
|
|
const ExtValue &left, const ExtValue &right) {
|
|
return fir::runtime::genCharCompare(builder, getLoc(), pred, left, right);
|
|
}
|
|
|
|
template <typename A>
|
|
mlir::Value createCharCompare(const A &ex, mlir::arith::CmpIPredicate pred) {
|
|
ExtValue left = genval(ex.left());
|
|
return createCharCompare(pred, left, genval(ex.right()));
|
|
}
|
|
|
|
/// Returns a reference to a symbol or its box/boxChar descriptor if it has
|
|
/// one.
|
|
ExtValue gen(Fortran::semantics::SymbolRef sym) {
|
|
if (Fortran::lower::SymbolBox val = symMap.lookupSymbol(sym))
|
|
return val.match(
|
|
[&](const Fortran::lower::SymbolBox::PointerOrAllocatable &boxAddr) {
|
|
return fir::factory::genMutableBoxRead(builder, getLoc(), boxAddr);
|
|
},
|
|
[&val](auto &) { return val.toExtendedValue(); });
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "unknown symbol: " << sym << "\nmap: " << symMap << '\n');
|
|
fir::emitFatalError(getLoc(), "symbol is not mapped to any IR value");
|
|
}
|
|
|
|
ExtValue genLoad(const ExtValue &exv) {
|
|
return ::genLoad(builder, getLoc(), exv);
|
|
}
|
|
|
|
ExtValue genval(Fortran::semantics::SymbolRef sym) {
|
|
mlir::Location loc = getLoc();
|
|
ExtValue var = gen(sym);
|
|
if (const fir::UnboxedValue *s = var.getUnboxed())
|
|
if (fir::isReferenceLike(s->getType())) {
|
|
// A function with multiple entry points returning different types
|
|
// tags all result variables with one of the largest types to allow
|
|
// them to share the same storage. A reference to a result variable
|
|
// of one of the other types requires conversion to the actual type.
|
|
fir::UnboxedValue addr = *s;
|
|
if (Fortran::semantics::IsFunctionResult(sym)) {
|
|
mlir::Type resultType = converter.genType(*sym);
|
|
if (addr.getType() != resultType)
|
|
addr = builder.createConvert(loc, builder.getRefType(resultType),
|
|
addr);
|
|
}
|
|
return genLoad(addr);
|
|
}
|
|
return var;
|
|
}
|
|
|
|
ExtValue genval(const Fortran::evaluate::BOZLiteralConstant &) {
|
|
TODO(getLoc(), "genval BOZ");
|
|
}
|
|
|
|
/// Return indirection to function designated in ProcedureDesignator.
|
|
/// The type of the function indirection is not guaranteed to match the one
|
|
/// of the ProcedureDesignator due to Fortran implicit typing rules.
|
|
ExtValue genval(const Fortran::evaluate::ProcedureDesignator &proc) {
|
|
TODO(getLoc(), "genval ProcedureDesignator");
|
|
}
|
|
|
|
ExtValue genval(const Fortran::evaluate::NullPointer &) {
|
|
TODO(getLoc(), "genval NullPointer");
|
|
}
|
|
|
|
static bool
|
|
isDerivedTypeWithLengthParameters(const Fortran::semantics::Symbol &sym) {
|
|
if (const Fortran::semantics::DeclTypeSpec *declTy = sym.GetType())
|
|
if (const Fortran::semantics::DerivedTypeSpec *derived =
|
|
declTy->AsDerived())
|
|
return Fortran::semantics::CountLenParameters(*derived) > 0;
|
|
return false;
|
|
}
|
|
|
|
static bool isBuiltinCPtr(const Fortran::semantics::Symbol &sym) {
|
|
if (const Fortran::semantics::DeclTypeSpec *declType = sym.GetType())
|
|
if (const Fortran::semantics::DerivedTypeSpec *derived =
|
|
declType->AsDerived())
|
|
return Fortran::semantics::IsIsoCType(derived);
|
|
return false;
|
|
}
|
|
|
|
/// Lower structure constructor without a temporary. This can be used in
|
|
/// fir::GloablOp, and assumes that the structure component is a constant.
|
|
ExtValue genStructComponentInInitializer(
|
|
const Fortran::evaluate::StructureConstructor &ctor) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::Type ty = translateSomeExprToFIRType(converter, toEvExpr(ctor));
|
|
auto recTy = ty.cast<fir::RecordType>();
|
|
auto fieldTy = fir::FieldType::get(ty.getContext());
|
|
mlir::Value res = builder.create<fir::UndefOp>(loc, recTy);
|
|
|
|
for (const auto &[sym, expr] : ctor.values()) {
|
|
// Parent components need more work because they do not appear in the
|
|
// fir.rec type.
|
|
if (sym->test(Fortran::semantics::Symbol::Flag::ParentComp))
|
|
TODO(loc, "parent component in structure constructor");
|
|
|
|
llvm::StringRef name = toStringRef(sym->name());
|
|
mlir::Type componentTy = recTy.getType(name);
|
|
// FIXME: type parameters must come from the derived-type-spec
|
|
auto field = builder.create<fir::FieldIndexOp>(
|
|
loc, fieldTy, name, ty,
|
|
/*typeParams=*/mlir::ValueRange{} /*TODO*/);
|
|
|
|
if (Fortran::semantics::IsAllocatable(sym))
|
|
TODO(loc, "allocatable component in structure constructor");
|
|
|
|
if (Fortran::semantics::IsPointer(sym)) {
|
|
mlir::Value initialTarget = Fortran::lower::genInitialDataTarget(
|
|
converter, loc, componentTy, expr.value());
|
|
res = builder.create<fir::InsertValueOp>(
|
|
loc, recTy, res, initialTarget,
|
|
builder.getArrayAttr(field.getAttributes()));
|
|
continue;
|
|
}
|
|
|
|
if (isDerivedTypeWithLengthParameters(sym))
|
|
TODO(loc, "component with length parameters in structure constructor");
|
|
|
|
if (isBuiltinCPtr(sym)) {
|
|
// Builtin c_ptr and c_funptr have special handling because initial
|
|
// value are handled for them as an extension.
|
|
mlir::Value addr = fir::getBase(Fortran::lower::genExtAddrInInitializer(
|
|
converter, loc, expr.value()));
|
|
if (addr.getType() == componentTy) {
|
|
// Do nothing. The Ev::Expr was returned as a value that can be
|
|
// inserted directly to the component without an intermediary.
|
|
} else {
|
|
// The Ev::Expr returned is an initializer that is a pointer (e.g.,
|
|
// null) that must be inserted into an intermediate cptr record
|
|
// value's address field, which ought to be an intptr_t on the target.
|
|
assert((fir::isa_ref_type(addr.getType()) ||
|
|
addr.getType().isa<mlir::FunctionType>()) &&
|
|
"expect reference type for address field");
|
|
assert(fir::isa_derived(componentTy) &&
|
|
"expect C_PTR, C_FUNPTR to be a record");
|
|
auto cPtrRecTy = componentTy.cast<fir::RecordType>();
|
|
llvm::StringRef addrFieldName =
|
|
Fortran::lower::builtin::cptrFieldName;
|
|
mlir::Type addrFieldTy = cPtrRecTy.getType(addrFieldName);
|
|
auto addrField = builder.create<fir::FieldIndexOp>(
|
|
loc, fieldTy, addrFieldName, componentTy,
|
|
/*typeParams=*/mlir::ValueRange{});
|
|
mlir::Value castAddr = builder.createConvert(loc, addrFieldTy, addr);
|
|
auto undef = builder.create<fir::UndefOp>(loc, componentTy);
|
|
addr = builder.create<fir::InsertValueOp>(
|
|
loc, componentTy, undef, castAddr,
|
|
builder.getArrayAttr(addrField.getAttributes()));
|
|
}
|
|
res = builder.create<fir::InsertValueOp>(
|
|
loc, recTy, res, addr, builder.getArrayAttr(field.getAttributes()));
|
|
continue;
|
|
}
|
|
|
|
mlir::Value val = fir::getBase(genval(expr.value()));
|
|
assert(!fir::isa_ref_type(val.getType()) && "expecting a constant value");
|
|
mlir::Value castVal = builder.createConvert(loc, componentTy, val);
|
|
res = builder.create<fir::InsertValueOp>(
|
|
loc, recTy, res, castVal,
|
|
builder.getArrayAttr(field.getAttributes()));
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/// A structure constructor is lowered two ways. In an initializer context,
|
|
/// the entire structure must be constant, so the aggregate value is
|
|
/// constructed inline. This allows it to be the body of a GlobalOp.
|
|
/// Otherwise, the structure constructor is in an expression. In that case, a
|
|
/// temporary object is constructed in the stack frame of the procedure.
|
|
ExtValue genval(const Fortran::evaluate::StructureConstructor &ctor) {
|
|
if (inInitializer)
|
|
return genStructComponentInInitializer(ctor);
|
|
mlir::Location loc = getLoc();
|
|
mlir::Type ty = translateSomeExprToFIRType(converter, toEvExpr(ctor));
|
|
auto recTy = ty.cast<fir::RecordType>();
|
|
auto fieldTy = fir::FieldType::get(ty.getContext());
|
|
mlir::Value res = builder.createTemporary(loc, recTy);
|
|
|
|
for (const auto &value : ctor.values()) {
|
|
const Fortran::semantics::Symbol &sym = *value.first;
|
|
const Fortran::lower::SomeExpr &expr = value.second.value();
|
|
// Parent components need more work because they do not appear in the
|
|
// fir.rec type.
|
|
if (sym.test(Fortran::semantics::Symbol::Flag::ParentComp))
|
|
TODO(loc, "parent component in structure constructor");
|
|
|
|
if (isDerivedTypeWithLengthParameters(sym))
|
|
TODO(loc, "component with length parameters in structure constructor");
|
|
|
|
llvm::StringRef name = toStringRef(sym.name());
|
|
// FIXME: type parameters must come from the derived-type-spec
|
|
mlir::Value field = builder.create<fir::FieldIndexOp>(
|
|
loc, fieldTy, name, ty,
|
|
/*typeParams=*/mlir::ValueRange{} /*TODO*/);
|
|
mlir::Type coorTy = builder.getRefType(recTy.getType(name));
|
|
auto coor = builder.create<fir::CoordinateOp>(loc, coorTy,
|
|
fir::getBase(res), field);
|
|
ExtValue to = fir::factory::componentToExtendedValue(builder, loc, coor);
|
|
to.match(
|
|
[&](const fir::UnboxedValue &toPtr) {
|
|
ExtValue value = genval(expr);
|
|
fir::factory::genScalarAssignment(builder, loc, to, value);
|
|
},
|
|
[&](const fir::CharBoxValue &) {
|
|
ExtValue value = genval(expr);
|
|
fir::factory::genScalarAssignment(builder, loc, to, value);
|
|
},
|
|
[&](const fir::ArrayBoxValue &) {
|
|
Fortran::lower::createSomeArrayAssignment(converter, to, expr,
|
|
symMap, stmtCtx);
|
|
},
|
|
[&](const fir::CharArrayBoxValue &) {
|
|
Fortran::lower::createSomeArrayAssignment(converter, to, expr,
|
|
symMap, stmtCtx);
|
|
},
|
|
[&](const fir::BoxValue &toBox) {
|
|
fir::emitFatalError(loc, "derived type components must not be "
|
|
"represented by fir::BoxValue");
|
|
},
|
|
[&](const fir::MutableBoxValue &toBox) {
|
|
if (toBox.isPointer()) {
|
|
Fortran::lower::associateMutableBox(
|
|
converter, loc, toBox, expr, /*lbounds=*/llvm::None, stmtCtx);
|
|
return;
|
|
}
|
|
// For allocatable components, a deep copy is needed.
|
|
TODO(loc, "allocatable components in derived type assignment");
|
|
},
|
|
[&](const fir::ProcBoxValue &toBox) {
|
|
TODO(loc, "procedure pointer component in derived type assignment");
|
|
});
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/// Lowering of an <i>ac-do-variable</i>, which is not a Symbol.
|
|
ExtValue genval(const Fortran::evaluate::ImpliedDoIndex &var) {
|
|
return converter.impliedDoBinding(toStringRef(var.name));
|
|
}
|
|
|
|
ExtValue genval(const Fortran::evaluate::DescriptorInquiry &desc) {
|
|
ExtValue exv = desc.base().IsSymbol() ? gen(getLastSym(desc.base()))
|
|
: gen(desc.base().GetComponent());
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
mlir::Location loc = getLoc();
|
|
auto castResult = [&](mlir::Value v) {
|
|
using ResTy = Fortran::evaluate::DescriptorInquiry::Result;
|
|
return builder.createConvert(
|
|
loc, converter.genType(ResTy::category, ResTy::kind), v);
|
|
};
|
|
switch (desc.field()) {
|
|
case Fortran::evaluate::DescriptorInquiry::Field::Len:
|
|
return castResult(fir::factory::readCharLen(builder, loc, exv));
|
|
case Fortran::evaluate::DescriptorInquiry::Field::LowerBound:
|
|
return castResult(fir::factory::readLowerBound(
|
|
builder, loc, exv, desc.dimension(),
|
|
builder.createIntegerConstant(loc, idxTy, 1)));
|
|
case Fortran::evaluate::DescriptorInquiry::Field::Extent:
|
|
return castResult(
|
|
fir::factory::readExtent(builder, loc, exv, desc.dimension()));
|
|
case Fortran::evaluate::DescriptorInquiry::Field::Rank:
|
|
TODO(loc, "rank inquiry on assumed rank");
|
|
case Fortran::evaluate::DescriptorInquiry::Field::Stride:
|
|
// So far the front end does not generate this inquiry.
|
|
TODO(loc, "Stride inquiry");
|
|
}
|
|
llvm_unreachable("unknown descriptor inquiry");
|
|
}
|
|
|
|
ExtValue genval(const Fortran::evaluate::TypeParamInquiry &) {
|
|
TODO(getLoc(), "genval TypeParamInquiry");
|
|
}
|
|
|
|
template <int KIND>
|
|
ExtValue genval(const Fortran::evaluate::ComplexComponent<KIND> &part) {
|
|
TODO(getLoc(), "genval ComplexComponent");
|
|
}
|
|
|
|
template <int KIND>
|
|
ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
|
|
Fortran::common::TypeCategory::Integer, KIND>> &op) {
|
|
mlir::Value input = genunbox(op.left());
|
|
// Like LLVM, integer negation is the binary op "0 - value"
|
|
mlir::Value zero = genIntegerConstant<KIND>(builder.getContext(), 0);
|
|
return builder.create<mlir::arith::SubIOp>(getLoc(), zero, input);
|
|
}
|
|
|
|
template <int KIND>
|
|
ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
|
|
Fortran::common::TypeCategory::Real, KIND>> &op) {
|
|
return builder.create<mlir::arith::NegFOp>(getLoc(), genunbox(op.left()));
|
|
}
|
|
template <int KIND>
|
|
ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
|
|
Fortran::common::TypeCategory::Complex, KIND>> &op) {
|
|
return builder.create<fir::NegcOp>(getLoc(), genunbox(op.left()));
|
|
}
|
|
|
|
template <typename OpTy>
|
|
mlir::Value createBinaryOp(const ExtValue &left, const ExtValue &right) {
|
|
assert(fir::isUnboxedValue(left) && fir::isUnboxedValue(right));
|
|
mlir::Value lhs = fir::getBase(left);
|
|
mlir::Value rhs = fir::getBase(right);
|
|
assert(lhs.getType() == rhs.getType() && "types must be the same");
|
|
return builder.create<OpTy>(getLoc(), lhs, rhs);
|
|
}
|
|
|
|
template <typename OpTy, typename A>
|
|
mlir::Value createBinaryOp(const A &ex) {
|
|
ExtValue left = genval(ex.left());
|
|
return createBinaryOp<OpTy>(left, genval(ex.right()));
|
|
}
|
|
|
|
#undef GENBIN
|
|
#define GENBIN(GenBinEvOp, GenBinTyCat, GenBinFirOp) \
|
|
template <int KIND> \
|
|
ExtValue genval(const Fortran::evaluate::GenBinEvOp<Fortran::evaluate::Type< \
|
|
Fortran::common::TypeCategory::GenBinTyCat, KIND>> &x) { \
|
|
return createBinaryOp<GenBinFirOp>(x); \
|
|
}
|
|
|
|
GENBIN(Add, Integer, mlir::arith::AddIOp)
|
|
GENBIN(Add, Real, mlir::arith::AddFOp)
|
|
GENBIN(Add, Complex, fir::AddcOp)
|
|
GENBIN(Subtract, Integer, mlir::arith::SubIOp)
|
|
GENBIN(Subtract, Real, mlir::arith::SubFOp)
|
|
GENBIN(Subtract, Complex, fir::SubcOp)
|
|
GENBIN(Multiply, Integer, mlir::arith::MulIOp)
|
|
GENBIN(Multiply, Real, mlir::arith::MulFOp)
|
|
GENBIN(Multiply, Complex, fir::MulcOp)
|
|
GENBIN(Divide, Integer, mlir::arith::DivSIOp)
|
|
GENBIN(Divide, Real, mlir::arith::DivFOp)
|
|
GENBIN(Divide, Complex, fir::DivcOp)
|
|
|
|
template <Fortran::common::TypeCategory TC, int KIND>
|
|
ExtValue genval(
|
|
const Fortran::evaluate::Power<Fortran::evaluate::Type<TC, KIND>> &op) {
|
|
mlir::Type ty = converter.genType(TC, KIND);
|
|
mlir::Value lhs = genunbox(op.left());
|
|
mlir::Value rhs = genunbox(op.right());
|
|
return Fortran::lower::genPow(builder, getLoc(), ty, lhs, rhs);
|
|
}
|
|
|
|
template <Fortran::common::TypeCategory TC, int KIND>
|
|
ExtValue genval(
|
|
const Fortran::evaluate::RealToIntPower<Fortran::evaluate::Type<TC, KIND>>
|
|
&op) {
|
|
mlir::Type ty = converter.genType(TC, KIND);
|
|
mlir::Value lhs = genunbox(op.left());
|
|
mlir::Value rhs = genunbox(op.right());
|
|
return Fortran::lower::genPow(builder, getLoc(), ty, lhs, rhs);
|
|
}
|
|
|
|
template <int KIND>
|
|
ExtValue genval(const Fortran::evaluate::ComplexConstructor<KIND> &op) {
|
|
mlir::Value realPartValue = genunbox(op.left());
|
|
return fir::factory::Complex{builder, getLoc()}.createComplex(
|
|
KIND, realPartValue, genunbox(op.right()));
|
|
}
|
|
|
|
template <int KIND>
|
|
ExtValue genval(const Fortran::evaluate::Concat<KIND> &op) {
|
|
ExtValue lhs = genval(op.left());
|
|
ExtValue rhs = genval(op.right());
|
|
const fir::CharBoxValue *lhsChar = lhs.getCharBox();
|
|
const fir::CharBoxValue *rhsChar = rhs.getCharBox();
|
|
if (lhsChar && rhsChar)
|
|
return fir::factory::CharacterExprHelper{builder, getLoc()}
|
|
.createConcatenate(*lhsChar, *rhsChar);
|
|
TODO(getLoc(), "character array concatenate");
|
|
}
|
|
|
|
/// MIN and MAX operations
|
|
template <Fortran::common::TypeCategory TC, int KIND>
|
|
ExtValue
|
|
genval(const Fortran::evaluate::Extremum<Fortran::evaluate::Type<TC, KIND>>
|
|
&op) {
|
|
TODO(getLoc(), "genval Extremum<TC, KIND>");
|
|
}
|
|
|
|
// Change the dynamic length information without actually changing the
|
|
// underlying character storage.
|
|
fir::ExtendedValue
|
|
replaceScalarCharacterLength(const fir::ExtendedValue &scalarChar,
|
|
mlir::Value newLenValue) {
|
|
mlir::Location loc = getLoc();
|
|
const fir::CharBoxValue *charBox = scalarChar.getCharBox();
|
|
if (!charBox)
|
|
fir::emitFatalError(loc, "expected scalar character");
|
|
mlir::Value charAddr = charBox->getAddr();
|
|
auto charType =
|
|
fir::unwrapPassByRefType(charAddr.getType()).cast<fir::CharacterType>();
|
|
if (charType.hasConstantLen()) {
|
|
// Erase previous constant length from the base type.
|
|
fir::CharacterType::LenType newLen = fir::CharacterType::unknownLen();
|
|
mlir::Type newCharTy = fir::CharacterType::get(
|
|
builder.getContext(), charType.getFKind(), newLen);
|
|
mlir::Type newType = fir::ReferenceType::get(newCharTy);
|
|
charAddr = builder.createConvert(loc, newType, charAddr);
|
|
return fir::CharBoxValue{charAddr, newLenValue};
|
|
}
|
|
return fir::CharBoxValue{charAddr, newLenValue};
|
|
}
|
|
|
|
template <int KIND>
|
|
ExtValue genval(const Fortran::evaluate::SetLength<KIND> &x) {
|
|
TODO(getLoc(), "genval SetLength<KIND>");
|
|
}
|
|
|
|
template <int KIND>
|
|
ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
|
|
Fortran::common::TypeCategory::Integer, KIND>> &op) {
|
|
return createCompareOp<mlir::arith::CmpIOp>(op,
|
|
translateRelational(op.opr));
|
|
}
|
|
template <int KIND>
|
|
ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
|
|
Fortran::common::TypeCategory::Real, KIND>> &op) {
|
|
return createFltCmpOp<mlir::arith::CmpFOp>(
|
|
op, translateFloatRelational(op.opr));
|
|
}
|
|
template <int KIND>
|
|
ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
|
|
Fortran::common::TypeCategory::Complex, KIND>> &op) {
|
|
TODO(getLoc(), "genval complex comparison");
|
|
}
|
|
template <int KIND>
|
|
ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
|
|
Fortran::common::TypeCategory::Character, KIND>> &op) {
|
|
return createCharCompare(op, translateRelational(op.opr));
|
|
}
|
|
|
|
ExtValue
|
|
genval(const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &op) {
|
|
return std::visit([&](const auto &x) { return genval(x); }, op.u);
|
|
}
|
|
|
|
template <Fortran::common::TypeCategory TC1, int KIND,
|
|
Fortran::common::TypeCategory TC2>
|
|
ExtValue
|
|
genval(const Fortran::evaluate::Convert<Fortran::evaluate::Type<TC1, KIND>,
|
|
TC2> &convert) {
|
|
mlir::Type ty = converter.genType(TC1, KIND);
|
|
mlir::Value operand = genunbox(convert.left());
|
|
return builder.convertWithSemantics(getLoc(), ty, operand);
|
|
}
|
|
|
|
template <typename A>
|
|
ExtValue genval(const Fortran::evaluate::Parentheses<A> &op) {
|
|
TODO(getLoc(), "genval parentheses<A>");
|
|
}
|
|
|
|
template <int KIND>
|
|
ExtValue genval(const Fortran::evaluate::Not<KIND> &op) {
|
|
mlir::Value logical = genunbox(op.left());
|
|
mlir::Value one = genBoolConstant(true);
|
|
mlir::Value val =
|
|
builder.createConvert(getLoc(), builder.getI1Type(), logical);
|
|
return builder.create<mlir::arith::XOrIOp>(getLoc(), val, one);
|
|
}
|
|
|
|
template <int KIND>
|
|
ExtValue genval(const Fortran::evaluate::LogicalOperation<KIND> &op) {
|
|
mlir::IntegerType i1Type = builder.getI1Type();
|
|
mlir::Value slhs = genunbox(op.left());
|
|
mlir::Value srhs = genunbox(op.right());
|
|
mlir::Value lhs = builder.createConvert(getLoc(), i1Type, slhs);
|
|
mlir::Value rhs = builder.createConvert(getLoc(), i1Type, srhs);
|
|
switch (op.logicalOperator) {
|
|
case Fortran::evaluate::LogicalOperator::And:
|
|
return createBinaryOp<mlir::arith::AndIOp>(lhs, rhs);
|
|
case Fortran::evaluate::LogicalOperator::Or:
|
|
return createBinaryOp<mlir::arith::OrIOp>(lhs, rhs);
|
|
case Fortran::evaluate::LogicalOperator::Eqv:
|
|
return createCompareOp<mlir::arith::CmpIOp>(
|
|
mlir::arith::CmpIPredicate::eq, lhs, rhs);
|
|
case Fortran::evaluate::LogicalOperator::Neqv:
|
|
return createCompareOp<mlir::arith::CmpIOp>(
|
|
mlir::arith::CmpIPredicate::ne, lhs, rhs);
|
|
case Fortran::evaluate::LogicalOperator::Not:
|
|
// lib/evaluate expression for .NOT. is Fortran::evaluate::Not<KIND>.
|
|
llvm_unreachable(".NOT. is not a binary operator");
|
|
}
|
|
llvm_unreachable("unhandled logical operation");
|
|
}
|
|
|
|
/// Convert a scalar literal constant to IR.
|
|
template <Fortran::common::TypeCategory TC, int KIND>
|
|
ExtValue genScalarLit(
|
|
const Fortran::evaluate::Scalar<Fortran::evaluate::Type<TC, KIND>>
|
|
&value) {
|
|
if constexpr (TC == Fortran::common::TypeCategory::Integer) {
|
|
return genIntegerConstant<KIND>(builder.getContext(), value.ToInt64());
|
|
} else if constexpr (TC == Fortran::common::TypeCategory::Logical) {
|
|
return genBoolConstant(value.IsTrue());
|
|
} else if constexpr (TC == Fortran::common::TypeCategory::Real) {
|
|
std::string str = value.DumpHexadecimal();
|
|
if constexpr (KIND == 2) {
|
|
llvm::APFloat floatVal{llvm::APFloatBase::IEEEhalf(), str};
|
|
return genRealConstant<KIND>(builder.getContext(), floatVal);
|
|
} else if constexpr (KIND == 3) {
|
|
llvm::APFloat floatVal{llvm::APFloatBase::BFloat(), str};
|
|
return genRealConstant<KIND>(builder.getContext(), floatVal);
|
|
} else if constexpr (KIND == 4) {
|
|
llvm::APFloat floatVal{llvm::APFloatBase::IEEEsingle(), str};
|
|
return genRealConstant<KIND>(builder.getContext(), floatVal);
|
|
} else if constexpr (KIND == 10) {
|
|
llvm::APFloat floatVal{llvm::APFloatBase::x87DoubleExtended(), str};
|
|
return genRealConstant<KIND>(builder.getContext(), floatVal);
|
|
} else if constexpr (KIND == 16) {
|
|
llvm::APFloat floatVal{llvm::APFloatBase::IEEEquad(), str};
|
|
return genRealConstant<KIND>(builder.getContext(), floatVal);
|
|
} else {
|
|
// convert everything else to double
|
|
llvm::APFloat floatVal{llvm::APFloatBase::IEEEdouble(), str};
|
|
return genRealConstant<KIND>(builder.getContext(), floatVal);
|
|
}
|
|
} else if constexpr (TC == Fortran::common::TypeCategory::Complex) {
|
|
using TR =
|
|
Fortran::evaluate::Type<Fortran::common::TypeCategory::Real, KIND>;
|
|
Fortran::evaluate::ComplexConstructor<KIND> ctor(
|
|
Fortran::evaluate::Expr<TR>{
|
|
Fortran::evaluate::Constant<TR>{value.REAL()}},
|
|
Fortran::evaluate::Expr<TR>{
|
|
Fortran::evaluate::Constant<TR>{value.AIMAG()}});
|
|
return genunbox(ctor);
|
|
} else /*constexpr*/ {
|
|
llvm_unreachable("unhandled constant");
|
|
}
|
|
}
|
|
|
|
/// Generate a raw literal value and store it in the rawVals vector.
|
|
template <Fortran::common::TypeCategory TC, int KIND>
|
|
void
|
|
genRawLit(const Fortran::evaluate::Scalar<Fortran::evaluate::Type<TC, KIND>>
|
|
&value) {
|
|
mlir::Attribute val;
|
|
assert(inInitializer != nullptr);
|
|
if constexpr (TC == Fortran::common::TypeCategory::Integer) {
|
|
inInitializer->rawType = converter.genType(TC, KIND);
|
|
val = builder.getIntegerAttr(inInitializer->rawType, value.ToInt64());
|
|
} else if constexpr (TC == Fortran::common::TypeCategory::Logical) {
|
|
inInitializer->rawType =
|
|
converter.genType(Fortran::common::TypeCategory::Integer, KIND);
|
|
val = builder.getIntegerAttr(inInitializer->rawType, value.IsTrue());
|
|
} else if constexpr (TC == Fortran::common::TypeCategory::Real) {
|
|
std::string str = value.DumpHexadecimal();
|
|
inInitializer->rawType = converter.genType(TC, KIND);
|
|
llvm::APFloat floatVal{builder.getKindMap().getFloatSemantics(KIND), str};
|
|
val = builder.getFloatAttr(inInitializer->rawType, floatVal);
|
|
} else if constexpr (TC == Fortran::common::TypeCategory::Complex) {
|
|
std::string strReal = value.REAL().DumpHexadecimal();
|
|
std::string strImg = value.AIMAG().DumpHexadecimal();
|
|
inInitializer->rawType = converter.genType(TC, KIND);
|
|
llvm::APFloat realVal{builder.getKindMap().getFloatSemantics(KIND),
|
|
strReal};
|
|
val = builder.getFloatAttr(inInitializer->rawType, realVal);
|
|
inInitializer->rawVals.push_back(val);
|
|
llvm::APFloat imgVal{builder.getKindMap().getFloatSemantics(KIND),
|
|
strImg};
|
|
val = builder.getFloatAttr(inInitializer->rawType, imgVal);
|
|
}
|
|
inInitializer->rawVals.push_back(val);
|
|
}
|
|
|
|
/// Convert a scalar literal CHARACTER to IR.
|
|
template <int KIND>
|
|
ExtValue
|
|
genScalarLit(const Fortran::evaluate::Scalar<Fortran::evaluate::Type<
|
|
Fortran::common::TypeCategory::Character, KIND>> &value,
|
|
int64_t len) {
|
|
using ET = typename std::decay_t<decltype(value)>::value_type;
|
|
if constexpr (KIND == 1) {
|
|
assert(value.size() == static_cast<std::uint64_t>(len));
|
|
// Outline character constant in ro data if it is not in an initializer.
|
|
if (!inInitializer)
|
|
return fir::factory::createStringLiteral(builder, getLoc(), value);
|
|
// When in an initializer context, construct the literal op itself and do
|
|
// not construct another constant object in rodata.
|
|
fir::StringLitOp stringLit = builder.createStringLitOp(getLoc(), value);
|
|
mlir::Value lenp = builder.createIntegerConstant(
|
|
getLoc(), builder.getCharacterLengthType(), len);
|
|
return fir::CharBoxValue{stringLit.getResult(), lenp};
|
|
}
|
|
fir::CharacterType type =
|
|
fir::CharacterType::get(builder.getContext(), KIND, len);
|
|
auto consLit = [&]() -> fir::StringLitOp {
|
|
mlir::MLIRContext *context = builder.getContext();
|
|
std::int64_t size = static_cast<std::int64_t>(value.size());
|
|
mlir::ShapedType shape = mlir::RankedTensorType::get(
|
|
llvm::ArrayRef<std::int64_t>{size},
|
|
mlir::IntegerType::get(builder.getContext(), sizeof(ET) * 8));
|
|
auto denseAttr = mlir::DenseElementsAttr::get(
|
|
shape, llvm::ArrayRef<ET>{value.data(), value.size()});
|
|
auto denseTag = mlir::StringAttr::get(context, fir::StringLitOp::xlist());
|
|
mlir::NamedAttribute dataAttr(denseTag, denseAttr);
|
|
auto sizeTag = mlir::StringAttr::get(context, fir::StringLitOp::size());
|
|
mlir::NamedAttribute sizeAttr(sizeTag, builder.getI64IntegerAttr(len));
|
|
llvm::SmallVector<mlir::NamedAttribute> attrs = {dataAttr, sizeAttr};
|
|
return builder.create<fir::StringLitOp>(
|
|
getLoc(), llvm::ArrayRef<mlir::Type>{type}, llvm::None, attrs);
|
|
};
|
|
|
|
mlir::Value lenp = builder.createIntegerConstant(
|
|
getLoc(), builder.getCharacterLengthType(), len);
|
|
// When in an initializer context, construct the literal op itself and do
|
|
// not construct another constant object in rodata.
|
|
if (inInitializer)
|
|
return fir::CharBoxValue{consLit().getResult(), lenp};
|
|
|
|
// Otherwise, the string is in a plain old expression so "outline" the value
|
|
// by hashconsing it to a constant literal object.
|
|
|
|
std::string globalName =
|
|
fir::factory::uniqueCGIdent("cl", (const char *)value.c_str());
|
|
fir::GlobalOp global = builder.getNamedGlobal(globalName);
|
|
if (!global)
|
|
global = builder.createGlobalConstant(
|
|
getLoc(), type, globalName,
|
|
[&](fir::FirOpBuilder &builder) {
|
|
fir::StringLitOp str = consLit();
|
|
builder.create<fir::HasValueOp>(getLoc(), str);
|
|
},
|
|
builder.createLinkOnceLinkage());
|
|
auto addr = builder.create<fir::AddrOfOp>(getLoc(), global.resultType(),
|
|
global.getSymbol());
|
|
return fir::CharBoxValue{addr, lenp};
|
|
}
|
|
|
|
template <Fortran::common::TypeCategory TC, int KIND>
|
|
ExtValue genArrayLit(
|
|
const Fortran::evaluate::Constant<Fortran::evaluate::Type<TC, KIND>>
|
|
&con) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
Fortran::evaluate::ConstantSubscript size =
|
|
Fortran::evaluate::GetSize(con.shape());
|
|
fir::SequenceType::Shape shape(con.shape().begin(), con.shape().end());
|
|
mlir::Type eleTy;
|
|
if constexpr (TC == Fortran::common::TypeCategory::Character)
|
|
eleTy = converter.genType(TC, KIND, {con.LEN()});
|
|
else
|
|
eleTy = converter.genType(TC, KIND);
|
|
auto arrayTy = fir::SequenceType::get(shape, eleTy);
|
|
mlir::Value array;
|
|
llvm::SmallVector<mlir::Value> lbounds;
|
|
llvm::SmallVector<mlir::Value> extents;
|
|
if (!inInitializer || !inInitializer->genRawVals) {
|
|
array = builder.create<fir::UndefOp>(loc, arrayTy);
|
|
for (auto [lb, extent] : llvm::zip(con.lbounds(), shape)) {
|
|
lbounds.push_back(builder.createIntegerConstant(loc, idxTy, lb - 1));
|
|
extents.push_back(builder.createIntegerConstant(loc, idxTy, extent));
|
|
}
|
|
}
|
|
if (size == 0) {
|
|
if constexpr (TC == Fortran::common::TypeCategory::Character) {
|
|
mlir::Value len = builder.createIntegerConstant(loc, idxTy, con.LEN());
|
|
return fir::CharArrayBoxValue{array, len, extents, lbounds};
|
|
} else {
|
|
return fir::ArrayBoxValue{array, extents, lbounds};
|
|
}
|
|
}
|
|
Fortran::evaluate::ConstantSubscripts subscripts = con.lbounds();
|
|
auto createIdx = [&]() {
|
|
llvm::SmallVector<mlir::Attribute> idx;
|
|
for (size_t i = 0; i < subscripts.size(); ++i)
|
|
idx.push_back(
|
|
builder.getIntegerAttr(idxTy, subscripts[i] - con.lbounds()[i]));
|
|
return idx;
|
|
};
|
|
if constexpr (TC == Fortran::common::TypeCategory::Character) {
|
|
assert(array && "array must not be nullptr");
|
|
do {
|
|
mlir::Value elementVal =
|
|
fir::getBase(genScalarLit<KIND>(con.At(subscripts), con.LEN()));
|
|
array = builder.create<fir::InsertValueOp>(
|
|
loc, arrayTy, array, elementVal, builder.getArrayAttr(createIdx()));
|
|
} while (con.IncrementSubscripts(subscripts));
|
|
mlir::Value len = builder.createIntegerConstant(loc, idxTy, con.LEN());
|
|
return fir::CharArrayBoxValue{array, len, extents, lbounds};
|
|
} else {
|
|
llvm::SmallVector<mlir::Attribute> rangeStartIdx;
|
|
uint64_t rangeSize = 0;
|
|
do {
|
|
if (inInitializer && inInitializer->genRawVals) {
|
|
genRawLit<TC, KIND>(con.At(subscripts));
|
|
continue;
|
|
}
|
|
auto getElementVal = [&]() {
|
|
return builder.createConvert(
|
|
loc, eleTy,
|
|
fir::getBase(genScalarLit<TC, KIND>(con.At(subscripts))));
|
|
};
|
|
Fortran::evaluate::ConstantSubscripts nextSubscripts = subscripts;
|
|
bool nextIsSame = con.IncrementSubscripts(nextSubscripts) &&
|
|
con.At(subscripts) == con.At(nextSubscripts);
|
|
if (!rangeSize && !nextIsSame) { // single (non-range) value
|
|
array = builder.create<fir::InsertValueOp>(
|
|
loc, arrayTy, array, getElementVal(),
|
|
builder.getArrayAttr(createIdx()));
|
|
} else if (!rangeSize) { // start a range
|
|
rangeStartIdx = createIdx();
|
|
rangeSize = 1;
|
|
} else if (nextIsSame) { // expand a range
|
|
++rangeSize;
|
|
} else { // end a range
|
|
llvm::SmallVector<int64_t> rangeBounds;
|
|
llvm::SmallVector<mlir::Attribute> idx = createIdx();
|
|
for (size_t i = 0; i < idx.size(); ++i) {
|
|
rangeBounds.push_back(rangeStartIdx[i]
|
|
.cast<mlir::IntegerAttr>()
|
|
.getValue()
|
|
.getSExtValue());
|
|
rangeBounds.push_back(
|
|
idx[i].cast<mlir::IntegerAttr>().getValue().getSExtValue());
|
|
}
|
|
array = builder.create<fir::InsertOnRangeOp>(
|
|
loc, arrayTy, array, getElementVal(),
|
|
builder.getIndexVectorAttr(rangeBounds));
|
|
rangeSize = 0;
|
|
}
|
|
} while (con.IncrementSubscripts(subscripts));
|
|
return fir::ArrayBoxValue{array, extents, lbounds};
|
|
}
|
|
}
|
|
|
|
fir::ExtendedValue genArrayLit(
|
|
const Fortran::evaluate::Constant<Fortran::evaluate::SomeDerived> &con) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
Fortran::evaluate::ConstantSubscript size =
|
|
Fortran::evaluate::GetSize(con.shape());
|
|
fir::SequenceType::Shape shape(con.shape().begin(), con.shape().end());
|
|
mlir::Type eleTy = converter.genType(con.GetType().GetDerivedTypeSpec());
|
|
auto arrayTy = fir::SequenceType::get(shape, eleTy);
|
|
mlir::Value array = builder.create<fir::UndefOp>(loc, arrayTy);
|
|
llvm::SmallVector<mlir::Value> lbounds;
|
|
llvm::SmallVector<mlir::Value> extents;
|
|
for (auto [lb, extent] : llvm::zip(con.lbounds(), con.shape())) {
|
|
lbounds.push_back(builder.createIntegerConstant(loc, idxTy, lb - 1));
|
|
extents.push_back(builder.createIntegerConstant(loc, idxTy, extent));
|
|
}
|
|
if (size == 0)
|
|
return fir::ArrayBoxValue{array, extents, lbounds};
|
|
Fortran::evaluate::ConstantSubscripts subscripts = con.lbounds();
|
|
do {
|
|
mlir::Value derivedVal = fir::getBase(genval(con.At(subscripts)));
|
|
llvm::SmallVector<mlir::Attribute> idx;
|
|
for (auto [dim, lb] : llvm::zip(subscripts, con.lbounds()))
|
|
idx.push_back(builder.getIntegerAttr(idxTy, dim - lb));
|
|
array = builder.create<fir::InsertValueOp>(
|
|
loc, arrayTy, array, derivedVal, builder.getArrayAttr(idx));
|
|
} while (con.IncrementSubscripts(subscripts));
|
|
return fir::ArrayBoxValue{array, extents, lbounds};
|
|
}
|
|
|
|
template <Fortran::common::TypeCategory TC, int KIND>
|
|
ExtValue
|
|
genval(const Fortran::evaluate::Constant<Fortran::evaluate::Type<TC, KIND>>
|
|
&con) {
|
|
if (con.Rank() > 0)
|
|
return genArrayLit(con);
|
|
std::optional<Fortran::evaluate::Scalar<Fortran::evaluate::Type<TC, KIND>>>
|
|
opt = con.GetScalarValue();
|
|
assert(opt.has_value() && "constant has no value");
|
|
if constexpr (TC == Fortran::common::TypeCategory::Character) {
|
|
return genScalarLit<KIND>(opt.value(), con.LEN());
|
|
} else {
|
|
return genScalarLit<TC, KIND>(opt.value());
|
|
}
|
|
}
|
|
|
|
fir::ExtendedValue genval(
|
|
const Fortran::evaluate::Constant<Fortran::evaluate::SomeDerived> &con) {
|
|
if (con.Rank() > 0)
|
|
return genArrayLit(con);
|
|
if (auto ctor = con.GetScalarValue())
|
|
return genval(ctor.value());
|
|
fir::emitFatalError(getLoc(),
|
|
"constant of derived type has no constructor");
|
|
}
|
|
|
|
template <typename A>
|
|
ExtValue genval(const Fortran::evaluate::ArrayConstructor<A> &) {
|
|
TODO(getLoc(), "genval ArrayConstructor<A>");
|
|
}
|
|
|
|
ExtValue gen(const Fortran::evaluate::ComplexPart &x) {
|
|
TODO(getLoc(), "gen ComplexPart");
|
|
}
|
|
ExtValue genval(const Fortran::evaluate::ComplexPart &x) {
|
|
TODO(getLoc(), "genval ComplexPart");
|
|
}
|
|
|
|
/// Reference to a substring.
|
|
ExtValue gen(const Fortran::evaluate::Substring &s) {
|
|
// Get base string
|
|
auto baseString = std::visit(
|
|
Fortran::common::visitors{
|
|
[&](const Fortran::evaluate::DataRef &x) { return gen(x); },
|
|
[&](const Fortran::evaluate::StaticDataObject::Pointer &p)
|
|
-> ExtValue {
|
|
if (std::optional<std::string> str = p->AsString())
|
|
return fir::factory::createStringLiteral(builder, getLoc(),
|
|
*str);
|
|
// TODO: convert StaticDataObject to Constant<T> and use normal
|
|
// constant path. Beware that StaticDataObject data() takes into
|
|
// account build machine endianness.
|
|
TODO(getLoc(),
|
|
"StaticDataObject::Pointer substring with kind > 1");
|
|
},
|
|
},
|
|
s.parent());
|
|
llvm::SmallVector<mlir::Value> bounds;
|
|
mlir::Value lower = genunbox(s.lower());
|
|
bounds.push_back(lower);
|
|
if (Fortran::evaluate::MaybeExtentExpr upperBound = s.upper()) {
|
|
mlir::Value upper = genunbox(*upperBound);
|
|
bounds.push_back(upper);
|
|
}
|
|
fir::factory::CharacterExprHelper charHelper{builder, getLoc()};
|
|
return baseString.match(
|
|
[&](const fir::CharBoxValue &x) -> ExtValue {
|
|
return charHelper.createSubstring(x, bounds);
|
|
},
|
|
[&](const fir::CharArrayBoxValue &) -> ExtValue {
|
|
fir::emitFatalError(
|
|
getLoc(),
|
|
"array substring should be handled in array expression");
|
|
},
|
|
[&](const auto &) -> ExtValue {
|
|
fir::emitFatalError(getLoc(), "substring base is not a CharBox");
|
|
});
|
|
}
|
|
|
|
/// The value of a substring.
|
|
ExtValue genval(const Fortran::evaluate::Substring &ss) {
|
|
// FIXME: why is the value of a substring being lowered the same as the
|
|
// address of a substring?
|
|
return gen(ss);
|
|
}
|
|
|
|
ExtValue genval(const Fortran::evaluate::Subscript &subs) {
|
|
if (auto *s = std::get_if<Fortran::evaluate::IndirectSubscriptIntegerExpr>(
|
|
&subs.u)) {
|
|
if (s->value().Rank() > 0)
|
|
fir::emitFatalError(getLoc(), "vector subscript is not scalar");
|
|
return {genval(s->value())};
|
|
}
|
|
fir::emitFatalError(getLoc(), "subscript triple notation is not scalar");
|
|
}
|
|
|
|
ExtValue genSubscript(const Fortran::evaluate::Subscript &subs) {
|
|
return genval(subs);
|
|
}
|
|
|
|
ExtValue gen(const Fortran::evaluate::DataRef &dref) {
|
|
return std::visit([&](const auto &x) { return gen(x); }, dref.u);
|
|
}
|
|
ExtValue genval(const Fortran::evaluate::DataRef &dref) {
|
|
return std::visit([&](const auto &x) { return genval(x); }, dref.u);
|
|
}
|
|
|
|
// Helper function to turn the Component structure into a list of nested
|
|
// components, ordered from largest/leftmost to smallest/rightmost:
|
|
// - where only the smallest/rightmost item may be allocatable or a pointer
|
|
// (nested allocatable/pointer components require nested coordinate_of ops)
|
|
// - that does not contain any parent components
|
|
// (the front end places parent components directly in the object)
|
|
// Return the object used as the base coordinate for the component chain.
|
|
static Fortran::evaluate::DataRef const *
|
|
reverseComponents(const Fortran::evaluate::Component &cmpt,
|
|
std::list<const Fortran::evaluate::Component *> &list) {
|
|
if (!cmpt.GetLastSymbol().test(
|
|
Fortran::semantics::Symbol::Flag::ParentComp))
|
|
list.push_front(&cmpt);
|
|
return std::visit(
|
|
Fortran::common::visitors{
|
|
[&](const Fortran::evaluate::Component &x) {
|
|
if (Fortran::semantics::IsAllocatableOrPointer(x.GetLastSymbol()))
|
|
return &cmpt.base();
|
|
return reverseComponents(x, list);
|
|
},
|
|
[&](auto &) { return &cmpt.base(); },
|
|
},
|
|
cmpt.base().u);
|
|
}
|
|
|
|
// Return the coordinate of the component reference
|
|
ExtValue genComponent(const Fortran::evaluate::Component &cmpt) {
|
|
std::list<const Fortran::evaluate::Component *> list;
|
|
const Fortran::evaluate::DataRef *base = reverseComponents(cmpt, list);
|
|
llvm::SmallVector<mlir::Value> coorArgs;
|
|
ExtValue obj = gen(*base);
|
|
mlir::Type ty = fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(obj).getType());
|
|
mlir::Location loc = getLoc();
|
|
auto fldTy = fir::FieldType::get(&converter.getMLIRContext());
|
|
// FIXME: need to thread the LEN type parameters here.
|
|
for (const Fortran::evaluate::Component *field : list) {
|
|
auto recTy = ty.cast<fir::RecordType>();
|
|
const Fortran::semantics::Symbol &sym = field->GetLastSymbol();
|
|
llvm::StringRef name = toStringRef(sym.name());
|
|
coorArgs.push_back(builder.create<fir::FieldIndexOp>(
|
|
loc, fldTy, name, recTy, fir::getTypeParams(obj)));
|
|
ty = recTy.getType(name);
|
|
}
|
|
ty = builder.getRefType(ty);
|
|
return fir::factory::componentToExtendedValue(
|
|
builder, loc,
|
|
builder.create<fir::CoordinateOp>(loc, ty, fir::getBase(obj),
|
|
coorArgs));
|
|
}
|
|
|
|
ExtValue gen(const Fortran::evaluate::Component &cmpt) {
|
|
// Components may be pointer or allocatable. In the gen() path, the mutable
|
|
// aspect is lost to simplify handling on the client side. To retain the
|
|
// mutable aspect, genMutableBoxValue should be used.
|
|
return genComponent(cmpt).match(
|
|
[&](const fir::MutableBoxValue &mutableBox) {
|
|
return fir::factory::genMutableBoxRead(builder, getLoc(), mutableBox);
|
|
},
|
|
[](auto &box) -> ExtValue { return box; });
|
|
}
|
|
|
|
ExtValue genval(const Fortran::evaluate::Component &cmpt) {
|
|
return genLoad(gen(cmpt));
|
|
}
|
|
|
|
ExtValue genval(const Fortran::semantics::Bound &bound) {
|
|
TODO(getLoc(), "genval Bound");
|
|
}
|
|
|
|
/// Return lower bounds of \p box in dimension \p dim. The returned value
|
|
/// has type \ty.
|
|
mlir::Value getLBound(const ExtValue &box, unsigned dim, mlir::Type ty) {
|
|
assert(box.rank() > 0 && "must be an array");
|
|
mlir::Location loc = getLoc();
|
|
mlir::Value one = builder.createIntegerConstant(loc, ty, 1);
|
|
mlir::Value lb = fir::factory::readLowerBound(builder, loc, box, dim, one);
|
|
return builder.createConvert(loc, ty, lb);
|
|
}
|
|
|
|
static bool isSlice(const Fortran::evaluate::ArrayRef &aref) {
|
|
for (const Fortran::evaluate::Subscript &sub : aref.subscript())
|
|
if (std::holds_alternative<Fortran::evaluate::Triplet>(sub.u))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// Lower an ArrayRef to a fir.coordinate_of given its lowered base.
|
|
ExtValue genCoordinateOp(const ExtValue &array,
|
|
const Fortran::evaluate::ArrayRef &aref) {
|
|
mlir::Location loc = getLoc();
|
|
// References to array of rank > 1 with non constant shape that are not
|
|
// fir.box must be collapsed into an offset computation in lowering already.
|
|
// The same is needed with dynamic length character arrays of all ranks.
|
|
mlir::Type baseType =
|
|
fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(array).getType());
|
|
if ((array.rank() > 1 && fir::hasDynamicSize(baseType)) ||
|
|
fir::characterWithDynamicLen(fir::unwrapSequenceType(baseType)))
|
|
if (!array.getBoxOf<fir::BoxValue>())
|
|
return genOffsetAndCoordinateOp(array, aref);
|
|
// Generate a fir.coordinate_of with zero based array indexes.
|
|
llvm::SmallVector<mlir::Value> args;
|
|
for (const auto &subsc : llvm::enumerate(aref.subscript())) {
|
|
ExtValue subVal = genSubscript(subsc.value());
|
|
assert(fir::isUnboxedValue(subVal) && "subscript must be simple scalar");
|
|
mlir::Value val = fir::getBase(subVal);
|
|
mlir::Type ty = val.getType();
|
|
mlir::Value lb = getLBound(array, subsc.index(), ty);
|
|
args.push_back(builder.create<mlir::arith::SubIOp>(loc, ty, val, lb));
|
|
}
|
|
|
|
mlir::Value base = fir::getBase(array);
|
|
auto seqTy =
|
|
fir::dyn_cast_ptrOrBoxEleTy(base.getType()).cast<fir::SequenceType>();
|
|
assert(args.size() == seqTy.getDimension());
|
|
mlir::Type ty = builder.getRefType(seqTy.getEleTy());
|
|
auto addr = builder.create<fir::CoordinateOp>(loc, ty, base, args);
|
|
return fir::factory::arrayElementToExtendedValue(builder, loc, array, addr);
|
|
}
|
|
|
|
/// Lower an ArrayRef to a fir.coordinate_of using an element offset instead
|
|
/// of array indexes.
|
|
/// This generates offset computation from the indexes and length parameters,
|
|
/// and use the offset to access the element with a fir.coordinate_of. This
|
|
/// must only be used if it is not possible to generate a normal
|
|
/// fir.coordinate_of using array indexes (i.e. when the shape information is
|
|
/// unavailable in the IR).
|
|
ExtValue genOffsetAndCoordinateOp(const ExtValue &array,
|
|
const Fortran::evaluate::ArrayRef &aref) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::Value addr = fir::getBase(array);
|
|
mlir::Type arrTy = fir::dyn_cast_ptrEleTy(addr.getType());
|
|
auto eleTy = arrTy.cast<fir::SequenceType>().getEleTy();
|
|
mlir::Type seqTy = builder.getRefType(builder.getVarLenSeqTy(eleTy));
|
|
mlir::Type refTy = builder.getRefType(eleTy);
|
|
mlir::Value base = builder.createConvert(loc, seqTy, addr);
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
|
|
mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0);
|
|
auto getLB = [&](const auto &arr, unsigned dim) -> mlir::Value {
|
|
return arr.getLBounds().empty() ? one : arr.getLBounds()[dim];
|
|
};
|
|
auto genFullDim = [&](const auto &arr, mlir::Value delta) -> mlir::Value {
|
|
mlir::Value total = zero;
|
|
assert(arr.getExtents().size() == aref.subscript().size());
|
|
delta = builder.createConvert(loc, idxTy, delta);
|
|
unsigned dim = 0;
|
|
for (auto [ext, sub] : llvm::zip(arr.getExtents(), aref.subscript())) {
|
|
ExtValue subVal = genSubscript(sub);
|
|
assert(fir::isUnboxedValue(subVal));
|
|
mlir::Value val =
|
|
builder.createConvert(loc, idxTy, fir::getBase(subVal));
|
|
mlir::Value lb = builder.createConvert(loc, idxTy, getLB(arr, dim));
|
|
mlir::Value diff = builder.create<mlir::arith::SubIOp>(loc, val, lb);
|
|
mlir::Value prod =
|
|
builder.create<mlir::arith::MulIOp>(loc, delta, diff);
|
|
total = builder.create<mlir::arith::AddIOp>(loc, prod, total);
|
|
if (ext)
|
|
delta = builder.create<mlir::arith::MulIOp>(loc, delta, ext);
|
|
++dim;
|
|
}
|
|
mlir::Type origRefTy = refTy;
|
|
if (fir::factory::CharacterExprHelper::isCharacterScalar(refTy)) {
|
|
fir::CharacterType chTy =
|
|
fir::factory::CharacterExprHelper::getCharacterType(refTy);
|
|
if (fir::characterWithDynamicLen(chTy)) {
|
|
mlir::MLIRContext *ctx = builder.getContext();
|
|
fir::KindTy kind =
|
|
fir::factory::CharacterExprHelper::getCharacterKind(chTy);
|
|
fir::CharacterType singleTy =
|
|
fir::CharacterType::getSingleton(ctx, kind);
|
|
refTy = builder.getRefType(singleTy);
|
|
mlir::Type seqRefTy =
|
|
builder.getRefType(builder.getVarLenSeqTy(singleTy));
|
|
base = builder.createConvert(loc, seqRefTy, base);
|
|
}
|
|
}
|
|
auto coor = builder.create<fir::CoordinateOp>(
|
|
loc, refTy, base, llvm::ArrayRef<mlir::Value>{total});
|
|
// Convert to expected, original type after address arithmetic.
|
|
return builder.createConvert(loc, origRefTy, coor);
|
|
};
|
|
return array.match(
|
|
[&](const fir::ArrayBoxValue &arr) -> ExtValue {
|
|
// FIXME: this check can be removed when slicing is implemented
|
|
if (isSlice(aref))
|
|
fir::emitFatalError(
|
|
getLoc(),
|
|
"slice should be handled in array expression context");
|
|
return genFullDim(arr, one);
|
|
},
|
|
[&](const fir::CharArrayBoxValue &arr) -> ExtValue {
|
|
mlir::Value delta = arr.getLen();
|
|
// If the length is known in the type, fir.coordinate_of will
|
|
// already take the length into account.
|
|
if (fir::factory::CharacterExprHelper::hasConstantLengthInType(arr))
|
|
delta = one;
|
|
return fir::CharBoxValue(genFullDim(arr, delta), arr.getLen());
|
|
},
|
|
[&](const fir::BoxValue &arr) -> ExtValue {
|
|
// CoordinateOp for BoxValue is not generated here. The dimensions
|
|
// must be kept in the fir.coordinate_op so that potential fir.box
|
|
// strides can be applied by codegen.
|
|
fir::emitFatalError(
|
|
loc, "internal: BoxValue in dim-collapsed fir.coordinate_of");
|
|
},
|
|
[&](const auto &) -> ExtValue {
|
|
fir::emitFatalError(loc, "internal: array lowering failed");
|
|
});
|
|
}
|
|
|
|
/// Lower an ArrayRef to a fir.array_coor.
|
|
ExtValue genArrayCoorOp(const ExtValue &exv,
|
|
const Fortran::evaluate::ArrayRef &aref) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::Value addr = fir::getBase(exv);
|
|
mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(addr.getType());
|
|
mlir::Type eleTy = arrTy.cast<fir::SequenceType>().getEleTy();
|
|
mlir::Type refTy = builder.getRefType(eleTy);
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
llvm::SmallVector<mlir::Value> arrayCoorArgs;
|
|
// The ArrayRef is expected to be scalar here, arrays are handled in array
|
|
// expression lowering. So no vector subscript or triplet is expected here.
|
|
for (const auto &sub : aref.subscript()) {
|
|
ExtValue subVal = genSubscript(sub);
|
|
assert(fir::isUnboxedValue(subVal));
|
|
arrayCoorArgs.push_back(
|
|
builder.createConvert(loc, idxTy, fir::getBase(subVal)));
|
|
}
|
|
mlir::Value shape = builder.createShape(loc, exv);
|
|
mlir::Value elementAddr = builder.create<fir::ArrayCoorOp>(
|
|
loc, refTy, addr, shape, /*slice=*/mlir::Value{}, arrayCoorArgs,
|
|
fir::getTypeParams(exv));
|
|
return fir::factory::arrayElementToExtendedValue(builder, loc, exv,
|
|
elementAddr);
|
|
}
|
|
|
|
/// Return the coordinate of the array reference.
|
|
ExtValue gen(const Fortran::evaluate::ArrayRef &aref) {
|
|
ExtValue base = aref.base().IsSymbol() ? gen(getFirstSym(aref.base()))
|
|
: gen(aref.base().GetComponent());
|
|
// Check for command-line override to use array_coor op.
|
|
if (generateArrayCoordinate)
|
|
return genArrayCoorOp(base, aref);
|
|
// Otherwise, use coordinate_of op.
|
|
return genCoordinateOp(base, aref);
|
|
}
|
|
|
|
ExtValue genval(const Fortran::evaluate::ArrayRef &aref) {
|
|
return genLoad(gen(aref));
|
|
}
|
|
|
|
ExtValue gen(const Fortran::evaluate::CoarrayRef &coref) {
|
|
TODO(getLoc(), "gen CoarrayRef");
|
|
}
|
|
ExtValue genval(const Fortran::evaluate::CoarrayRef &coref) {
|
|
TODO(getLoc(), "genval CoarrayRef");
|
|
}
|
|
|
|
template <typename A>
|
|
ExtValue gen(const Fortran::evaluate::Designator<A> &des) {
|
|
return std::visit([&](const auto &x) { return gen(x); }, des.u);
|
|
}
|
|
template <typename A>
|
|
ExtValue genval(const Fortran::evaluate::Designator<A> &des) {
|
|
return std::visit([&](const auto &x) { return genval(x); }, des.u);
|
|
}
|
|
|
|
mlir::Type genType(const Fortran::evaluate::DynamicType &dt) {
|
|
if (dt.category() != Fortran::common::TypeCategory::Derived)
|
|
return converter.genType(dt.category(), dt.kind());
|
|
return converter.genType(dt.GetDerivedTypeSpec());
|
|
}
|
|
|
|
/// Lower a function reference
|
|
template <typename A>
|
|
ExtValue genFunctionRef(const Fortran::evaluate::FunctionRef<A> &funcRef) {
|
|
if (!funcRef.GetType().has_value())
|
|
fir::emitFatalError(getLoc(), "internal: a function must have a type");
|
|
mlir::Type resTy = genType(*funcRef.GetType());
|
|
return genProcedureRef(funcRef, {resTy});
|
|
}
|
|
|
|
/// Lower function call `funcRef` and return a reference to the resultant
|
|
/// value. This is required for lowering expressions such as `f1(f2(v))`.
|
|
template <typename A>
|
|
ExtValue gen(const Fortran::evaluate::FunctionRef<A> &funcRef) {
|
|
ExtValue retVal = genFunctionRef(funcRef);
|
|
mlir::Value retValBase = fir::getBase(retVal);
|
|
if (fir::conformsWithPassByRef(retValBase.getType()))
|
|
return retVal;
|
|
auto mem = builder.create<fir::AllocaOp>(getLoc(), retValBase.getType());
|
|
builder.create<fir::StoreOp>(getLoc(), retValBase, mem);
|
|
return fir::substBase(retVal, mem.getResult());
|
|
}
|
|
|
|
/// helper to detect statement functions
|
|
static bool
|
|
isStatementFunctionCall(const Fortran::evaluate::ProcedureRef &procRef) {
|
|
if (const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol())
|
|
if (const auto *details =
|
|
symbol->detailsIf<Fortran::semantics::SubprogramDetails>())
|
|
return details->stmtFunction().has_value();
|
|
return false;
|
|
}
|
|
/// Generate Statement function calls
|
|
ExtValue genStmtFunctionRef(const Fortran::evaluate::ProcedureRef &procRef) {
|
|
const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol();
|
|
assert(symbol && "expected symbol in ProcedureRef of statement functions");
|
|
const auto &details = symbol->get<Fortran::semantics::SubprogramDetails>();
|
|
|
|
// Statement functions have their own scope, we just need to associate
|
|
// the dummy symbols to argument expressions. They are no
|
|
// optional/alternate return arguments. Statement functions cannot be
|
|
// recursive (directly or indirectly) so it is safe to add dummy symbols to
|
|
// the local map here.
|
|
symMap.pushScope();
|
|
for (auto [arg, bind] :
|
|
llvm::zip(details.dummyArgs(), procRef.arguments())) {
|
|
assert(arg && "alternate return in statement function");
|
|
assert(bind && "optional argument in statement function");
|
|
const auto *expr = bind->UnwrapExpr();
|
|
// TODO: assumed type in statement function, that surprisingly seems
|
|
// allowed, probably because nobody thought of restricting this usage.
|
|
// gfortran/ifort compiles this.
|
|
assert(expr && "assumed type used as statement function argument");
|
|
// As per Fortran 2018 C1580, statement function arguments can only be
|
|
// scalars, so just pass the box with the address. The only care is to
|
|
// to use the dummy character explicit length if any instead of the
|
|
// actual argument length (that can be bigger).
|
|
if (const Fortran::semantics::DeclTypeSpec *type = arg->GetType())
|
|
if (type->category() == Fortran::semantics::DeclTypeSpec::Character)
|
|
if (const Fortran::semantics::MaybeIntExpr &lenExpr =
|
|
type->characterTypeSpec().length().GetExplicit()) {
|
|
mlir::Value len = fir::getBase(genval(*lenExpr));
|
|
// F2018 7.4.4.2 point 5.
|
|
len = Fortran::lower::genMaxWithZero(builder, getLoc(), len);
|
|
symMap.addSymbol(*arg,
|
|
replaceScalarCharacterLength(gen(*expr), len));
|
|
continue;
|
|
}
|
|
symMap.addSymbol(*arg, gen(*expr));
|
|
}
|
|
|
|
// Explicitly map statement function host associated symbols to their
|
|
// parent scope lowered symbol box.
|
|
for (const Fortran::semantics::SymbolRef &sym :
|
|
Fortran::evaluate::CollectSymbols(*details.stmtFunction()))
|
|
if (const auto *details =
|
|
sym->detailsIf<Fortran::semantics::HostAssocDetails>())
|
|
if (!symMap.lookupSymbol(*sym))
|
|
symMap.addSymbol(*sym, gen(details->symbol()));
|
|
|
|
ExtValue result = genval(details.stmtFunction().value());
|
|
LLVM_DEBUG(llvm::dbgs() << "stmt-function: " << result << '\n');
|
|
symMap.popScope();
|
|
return result;
|
|
}
|
|
|
|
/// Helper to package a Value and its properties into an ExtendedValue.
|
|
static ExtValue toExtendedValue(mlir::Location loc, mlir::Value base,
|
|
llvm::ArrayRef<mlir::Value> extents,
|
|
llvm::ArrayRef<mlir::Value> lengths) {
|
|
mlir::Type type = base.getType();
|
|
if (type.isa<fir::BoxType>())
|
|
return fir::BoxValue(base, /*lbounds=*/{}, lengths, extents);
|
|
type = fir::unwrapRefType(type);
|
|
if (type.isa<fir::BoxType>())
|
|
return fir::MutableBoxValue(base, lengths, /*mutableProperties*/ {});
|
|
if (auto seqTy = type.dyn_cast<fir::SequenceType>()) {
|
|
if (seqTy.getDimension() != extents.size())
|
|
fir::emitFatalError(loc, "incorrect number of extents for array");
|
|
if (seqTy.getEleTy().isa<fir::CharacterType>()) {
|
|
if (lengths.empty())
|
|
fir::emitFatalError(loc, "missing length for character");
|
|
assert(lengths.size() == 1);
|
|
return fir::CharArrayBoxValue(base, lengths[0], extents);
|
|
}
|
|
return fir::ArrayBoxValue(base, extents);
|
|
}
|
|
if (type.isa<fir::CharacterType>()) {
|
|
if (lengths.empty())
|
|
fir::emitFatalError(loc, "missing length for character");
|
|
assert(lengths.size() == 1);
|
|
return fir::CharBoxValue(base, lengths[0]);
|
|
}
|
|
return base;
|
|
}
|
|
|
|
// Find the argument that corresponds to the host associations.
|
|
// Verify some assumptions about how the signature was built here.
|
|
[[maybe_unused]] static unsigned findHostAssocTuplePos(mlir::FuncOp fn) {
|
|
// Scan the argument list from last to first as the host associations are
|
|
// appended for now.
|
|
for (unsigned i = fn.getNumArguments(); i > 0; --i)
|
|
if (fn.getArgAttr(i - 1, fir::getHostAssocAttrName())) {
|
|
// Host assoc tuple must be last argument (for now).
|
|
assert(i == fn.getNumArguments() && "tuple must be last");
|
|
return i - 1;
|
|
}
|
|
llvm_unreachable("anyFuncArgsHaveAttr failed");
|
|
}
|
|
|
|
/// Create a contiguous temporary array with the same shape,
|
|
/// length parameters and type as mold. It is up to the caller to deallocate
|
|
/// the temporary.
|
|
ExtValue genArrayTempFromMold(const ExtValue &mold,
|
|
llvm::StringRef tempName) {
|
|
mlir::Type type = fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(mold).getType());
|
|
assert(type && "expected descriptor or memory type");
|
|
mlir::Location loc = getLoc();
|
|
llvm::SmallVector<mlir::Value> extents =
|
|
fir::factory::getExtents(builder, loc, mold);
|
|
llvm::SmallVector<mlir::Value> allocMemTypeParams =
|
|
fir::getTypeParams(mold);
|
|
mlir::Value charLen;
|
|
mlir::Type elementType = fir::unwrapSequenceType(type);
|
|
if (auto charType = elementType.dyn_cast<fir::CharacterType>()) {
|
|
charLen = allocMemTypeParams.empty()
|
|
? fir::factory::readCharLen(builder, loc, mold)
|
|
: allocMemTypeParams[0];
|
|
if (charType.hasDynamicLen() && allocMemTypeParams.empty())
|
|
allocMemTypeParams.push_back(charLen);
|
|
} else if (fir::hasDynamicSize(elementType)) {
|
|
TODO(loc, "Creating temporary for derived type with length parameters");
|
|
}
|
|
|
|
mlir::Value temp = builder.create<fir::AllocMemOp>(
|
|
loc, type, tempName, allocMemTypeParams, extents);
|
|
if (fir::unwrapSequenceType(type).isa<fir::CharacterType>())
|
|
return fir::CharArrayBoxValue{temp, charLen, extents};
|
|
return fir::ArrayBoxValue{temp, extents};
|
|
}
|
|
|
|
/// Copy \p source array into \p dest array. Both arrays must be
|
|
/// conforming, but neither array must be contiguous.
|
|
void genArrayCopy(ExtValue dest, ExtValue source) {
|
|
return createSomeArrayAssignment(converter, dest, source, symMap, stmtCtx);
|
|
}
|
|
|
|
/// Lower a non-elemental procedure reference and read allocatable and pointer
|
|
/// results into normal values.
|
|
ExtValue genProcedureRef(const Fortran::evaluate::ProcedureRef &procRef,
|
|
llvm::Optional<mlir::Type> resultType) {
|
|
ExtValue res = genRawProcedureRef(procRef, resultType);
|
|
// In most contexts, pointers and allocatable do not appear as allocatable
|
|
// or pointer variable on the caller side (see 8.5.3 note 1 for
|
|
// allocatables). The few context where this can happen must call
|
|
// genRawProcedureRef directly.
|
|
if (const auto *box = res.getBoxOf<fir::MutableBoxValue>())
|
|
return fir::factory::genMutableBoxRead(builder, getLoc(), *box);
|
|
return res;
|
|
}
|
|
|
|
/// Given a call site for which the arguments were already lowered, generate
|
|
/// the call and return the result. This function deals with explicit result
|
|
/// allocation and lowering if needed. It also deals with passing the host
|
|
/// link to internal procedures.
|
|
ExtValue genCallOpAndResult(Fortran::lower::CallerInterface &caller,
|
|
mlir::FunctionType callSiteType,
|
|
llvm::Optional<mlir::Type> resultType) {
|
|
mlir::Location loc = getLoc();
|
|
using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
|
|
// Handle cases where caller must allocate the result or a fir.box for it.
|
|
bool mustPopSymMap = false;
|
|
if (caller.mustMapInterfaceSymbols()) {
|
|
symMap.pushScope();
|
|
mustPopSymMap = true;
|
|
Fortran::lower::mapCallInterfaceSymbols(converter, caller, symMap);
|
|
}
|
|
// If this is an indirect call, retrieve the function address. Also retrieve
|
|
// the result length if this is a character function (note that this length
|
|
// will be used only if there is no explicit length in the local interface).
|
|
mlir::Value funcPointer;
|
|
mlir::Value charFuncPointerLength;
|
|
if (const Fortran::semantics::Symbol *sym =
|
|
caller.getIfIndirectCallSymbol()) {
|
|
funcPointer = symMap.lookupSymbol(*sym).getAddr();
|
|
if (!funcPointer)
|
|
fir::emitFatalError(loc, "failed to find indirect call symbol address");
|
|
if (fir::isCharacterProcedureTuple(funcPointer.getType(),
|
|
/*acceptRawFunc=*/false))
|
|
std::tie(funcPointer, charFuncPointerLength) =
|
|
fir::factory::extractCharacterProcedureTuple(builder, loc,
|
|
funcPointer);
|
|
}
|
|
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
auto lowerSpecExpr = [&](const auto &expr) -> mlir::Value {
|
|
return builder.createConvert(
|
|
loc, idxTy, fir::getBase(converter.genExprValue(expr, stmtCtx)));
|
|
};
|
|
llvm::SmallVector<mlir::Value> resultLengths;
|
|
auto allocatedResult = [&]() -> llvm::Optional<ExtValue> {
|
|
llvm::SmallVector<mlir::Value> extents;
|
|
llvm::SmallVector<mlir::Value> lengths;
|
|
if (!caller.callerAllocateResult())
|
|
return {};
|
|
mlir::Type type = caller.getResultStorageType();
|
|
if (type.isa<fir::SequenceType>())
|
|
caller.walkResultExtents([&](const Fortran::lower::SomeExpr &e) {
|
|
extents.emplace_back(lowerSpecExpr(e));
|
|
});
|
|
caller.walkResultLengths([&](const Fortran::lower::SomeExpr &e) {
|
|
lengths.emplace_back(lowerSpecExpr(e));
|
|
});
|
|
|
|
// Result length parameters should not be provided to box storage
|
|
// allocation and save_results, but they are still useful information to
|
|
// keep in the ExtendedValue if non-deferred.
|
|
if (!type.isa<fir::BoxType>()) {
|
|
if (fir::isa_char(fir::unwrapSequenceType(type)) && lengths.empty()) {
|
|
// Calling an assumed length function. This is only possible if this
|
|
// is a call to a character dummy procedure.
|
|
if (!charFuncPointerLength)
|
|
fir::emitFatalError(loc, "failed to retrieve character function "
|
|
"length while calling it");
|
|
lengths.push_back(charFuncPointerLength);
|
|
}
|
|
resultLengths = lengths;
|
|
}
|
|
|
|
if (!extents.empty() || !lengths.empty()) {
|
|
auto *bldr = &converter.getFirOpBuilder();
|
|
auto stackSaveFn = fir::factory::getLlvmStackSave(builder);
|
|
auto stackSaveSymbol = bldr->getSymbolRefAttr(stackSaveFn.getName());
|
|
mlir::Value sp =
|
|
bldr->create<fir::CallOp>(
|
|
loc, stackSaveFn.getFunctionType().getResults(),
|
|
stackSaveSymbol, mlir::ValueRange{})
|
|
.getResult(0);
|
|
stmtCtx.attachCleanup([bldr, loc, sp]() {
|
|
auto stackRestoreFn = fir::factory::getLlvmStackRestore(*bldr);
|
|
auto stackRestoreSymbol =
|
|
bldr->getSymbolRefAttr(stackRestoreFn.getName());
|
|
bldr->create<fir::CallOp>(
|
|
loc, stackRestoreFn.getFunctionType().getResults(),
|
|
stackRestoreSymbol, mlir::ValueRange{sp});
|
|
});
|
|
}
|
|
mlir::Value temp =
|
|
builder.createTemporary(loc, type, ".result", extents, resultLengths);
|
|
return toExtendedValue(loc, temp, extents, lengths);
|
|
}();
|
|
|
|
if (mustPopSymMap)
|
|
symMap.popScope();
|
|
|
|
// Place allocated result or prepare the fir.save_result arguments.
|
|
mlir::Value arrayResultShape;
|
|
if (allocatedResult) {
|
|
if (std::optional<Fortran::lower::CallInterface<
|
|
Fortran::lower::CallerInterface>::PassedEntity>
|
|
resultArg = caller.getPassedResult()) {
|
|
if (resultArg->passBy == PassBy::AddressAndLength)
|
|
caller.placeAddressAndLengthInput(*resultArg,
|
|
fir::getBase(*allocatedResult),
|
|
fir::getLen(*allocatedResult));
|
|
else if (resultArg->passBy == PassBy::BaseAddress)
|
|
caller.placeInput(*resultArg, fir::getBase(*allocatedResult));
|
|
else
|
|
fir::emitFatalError(
|
|
loc, "only expect character scalar result to be passed by ref");
|
|
} else {
|
|
assert(caller.mustSaveResult());
|
|
arrayResultShape = allocatedResult->match(
|
|
[&](const fir::CharArrayBoxValue &) {
|
|
return builder.createShape(loc, *allocatedResult);
|
|
},
|
|
[&](const fir::ArrayBoxValue &) {
|
|
return builder.createShape(loc, *allocatedResult);
|
|
},
|
|
[&](const auto &) { return mlir::Value{}; });
|
|
}
|
|
}
|
|
|
|
// In older Fortran, procedure argument types are inferred. This may lead
|
|
// different view of what the function signature is in different locations.
|
|
// Casts are inserted as needed below to accommodate this.
|
|
|
|
// The mlir::FuncOp type prevails, unless it has a different number of
|
|
// arguments which can happen in legal program if it was passed as a dummy
|
|
// procedure argument earlier with no further type information.
|
|
mlir::SymbolRefAttr funcSymbolAttr;
|
|
bool addHostAssociations = false;
|
|
if (!funcPointer) {
|
|
mlir::FunctionType funcOpType = caller.getFuncOp().getFunctionType();
|
|
mlir::SymbolRefAttr symbolAttr =
|
|
builder.getSymbolRefAttr(caller.getMangledName());
|
|
if (callSiteType.getNumResults() == funcOpType.getNumResults() &&
|
|
callSiteType.getNumInputs() + 1 == funcOpType.getNumInputs() &&
|
|
fir::anyFuncArgsHaveAttr(caller.getFuncOp(),
|
|
fir::getHostAssocAttrName())) {
|
|
// The number of arguments is off by one, and we're lowering a function
|
|
// with host associations. Modify call to include host associations
|
|
// argument by appending the value at the end of the operands.
|
|
assert(funcOpType.getInput(findHostAssocTuplePos(caller.getFuncOp())) ==
|
|
converter.hostAssocTupleValue().getType());
|
|
addHostAssociations = true;
|
|
}
|
|
if (!addHostAssociations &&
|
|
(callSiteType.getNumResults() != funcOpType.getNumResults() ||
|
|
callSiteType.getNumInputs() != funcOpType.getNumInputs())) {
|
|
// Deal with argument number mismatch by making a function pointer so
|
|
// that function type cast can be inserted. Do not emit a warning here
|
|
// because this can happen in legal program if the function is not
|
|
// defined here and it was first passed as an argument without any more
|
|
// information.
|
|
funcPointer =
|
|
builder.create<fir::AddrOfOp>(loc, funcOpType, symbolAttr);
|
|
} else if (callSiteType.getResults() != funcOpType.getResults()) {
|
|
// Implicit interface result type mismatch are not standard Fortran, but
|
|
// some compilers are not complaining about it. The front end is not
|
|
// protecting lowering from this currently. Support this with a
|
|
// discouraging warning.
|
|
LLVM_DEBUG(mlir::emitWarning(
|
|
loc, "a return type mismatch is not standard compliant and may "
|
|
"lead to undefined behavior."));
|
|
// Cast the actual function to the current caller implicit type because
|
|
// that is the behavior we would get if we could not see the definition.
|
|
funcPointer =
|
|
builder.create<fir::AddrOfOp>(loc, funcOpType, symbolAttr);
|
|
} else {
|
|
funcSymbolAttr = symbolAttr;
|
|
}
|
|
}
|
|
|
|
mlir::FunctionType funcType =
|
|
funcPointer ? callSiteType : caller.getFuncOp().getFunctionType();
|
|
llvm::SmallVector<mlir::Value> operands;
|
|
// First operand of indirect call is the function pointer. Cast it to
|
|
// required function type for the call to handle procedures that have a
|
|
// compatible interface in Fortran, but that have different signatures in
|
|
// FIR.
|
|
if (funcPointer) {
|
|
operands.push_back(
|
|
funcPointer.getType().isa<fir::BoxProcType>()
|
|
? builder.create<fir::BoxAddrOp>(loc, funcType, funcPointer)
|
|
: builder.createConvert(loc, funcType, funcPointer));
|
|
}
|
|
|
|
// Deal with potential mismatches in arguments types. Passing an array to a
|
|
// scalar argument should for instance be tolerated here.
|
|
bool callingImplicitInterface = caller.canBeCalledViaImplicitInterface();
|
|
for (auto [fst, snd] :
|
|
llvm::zip(caller.getInputs(), funcType.getInputs())) {
|
|
// When passing arguments to a procedure that can be called an implicit
|
|
// interface, allow character actual arguments to be passed to dummy
|
|
// arguments of any type and vice versa
|
|
mlir::Value cast;
|
|
auto *context = builder.getContext();
|
|
if (snd.isa<fir::BoxProcType>() &&
|
|
fst.getType().isa<mlir::FunctionType>()) {
|
|
auto funcTy = mlir::FunctionType::get(context, llvm::None, llvm::None);
|
|
auto boxProcTy = builder.getBoxProcType(funcTy);
|
|
if (mlir::Value host = argumentHostAssocs(converter, fst)) {
|
|
cast = builder.create<fir::EmboxProcOp>(
|
|
loc, boxProcTy, llvm::ArrayRef<mlir::Value>{fst, host});
|
|
} else {
|
|
cast = builder.create<fir::EmboxProcOp>(loc, boxProcTy, fst);
|
|
}
|
|
} else {
|
|
cast = builder.convertWithSemantics(loc, snd, fst,
|
|
callingImplicitInterface);
|
|
}
|
|
operands.push_back(cast);
|
|
}
|
|
|
|
// Add host associations as necessary.
|
|
if (addHostAssociations)
|
|
operands.push_back(converter.hostAssocTupleValue());
|
|
|
|
auto call = builder.create<fir::CallOp>(loc, funcType.getResults(),
|
|
funcSymbolAttr, operands);
|
|
|
|
if (caller.mustSaveResult())
|
|
builder.create<fir::SaveResultOp>(
|
|
loc, call.getResult(0), fir::getBase(allocatedResult.getValue()),
|
|
arrayResultShape, resultLengths);
|
|
|
|
if (allocatedResult) {
|
|
allocatedResult->match(
|
|
[&](const fir::MutableBoxValue &box) {
|
|
if (box.isAllocatable()) {
|
|
// 9.7.3.2 point 4. Finalize allocatables.
|
|
fir::FirOpBuilder *bldr = &converter.getFirOpBuilder();
|
|
stmtCtx.attachCleanup([bldr, loc, box]() {
|
|
fir::factory::genFinalization(*bldr, loc, box);
|
|
});
|
|
}
|
|
},
|
|
[](const auto &) {});
|
|
return *allocatedResult;
|
|
}
|
|
|
|
if (!resultType.hasValue())
|
|
return mlir::Value{}; // subroutine call
|
|
// For now, Fortran return values are implemented with a single MLIR
|
|
// function return value.
|
|
assert(call.getNumResults() == 1 &&
|
|
"Expected exactly one result in FUNCTION call");
|
|
return call.getResult(0);
|
|
}
|
|
|
|
/// Like genExtAddr, but ensure the address returned is a temporary even if \p
|
|
/// expr is variable inside parentheses.
|
|
ExtValue genTempExtAddr(const Fortran::lower::SomeExpr &expr) {
|
|
// In general, genExtAddr might not create a temp for variable inside
|
|
// parentheses to avoid creating array temporary in sub-expressions. It only
|
|
// ensures the sub-expression is not re-associated with other parts of the
|
|
// expression. In the call semantics, there is a difference between expr and
|
|
// variable (see R1524). For expressions, a variable storage must not be
|
|
// argument associated since it could be modified inside the call, or the
|
|
// variable could also be modified by other means during the call.
|
|
if (!isParenthesizedVariable(expr))
|
|
return genExtAddr(expr);
|
|
mlir::Location loc = getLoc();
|
|
if (expr.Rank() > 0)
|
|
TODO(loc, "genTempExtAddr array");
|
|
return genExtValue(expr).match(
|
|
[&](const fir::CharBoxValue &boxChar) -> ExtValue {
|
|
TODO(loc, "genTempExtAddr CharBoxValue");
|
|
},
|
|
[&](const fir::UnboxedValue &v) -> ExtValue {
|
|
mlir::Type type = v.getType();
|
|
mlir::Value value = v;
|
|
if (fir::isa_ref_type(type))
|
|
value = builder.create<fir::LoadOp>(loc, value);
|
|
mlir::Value temp = builder.createTemporary(loc, value.getType());
|
|
builder.create<fir::StoreOp>(loc, value, temp);
|
|
return temp;
|
|
},
|
|
[&](const fir::BoxValue &x) -> ExtValue {
|
|
// Derived type scalar that may be polymorphic.
|
|
assert(!x.hasRank() && x.isDerived());
|
|
if (x.isDerivedWithLengthParameters())
|
|
fir::emitFatalError(
|
|
loc, "making temps for derived type with length parameters");
|
|
// TODO: polymorphic aspects should be kept but for now the temp
|
|
// created always has the declared type.
|
|
mlir::Value var =
|
|
fir::getBase(fir::factory::readBoxValue(builder, loc, x));
|
|
auto value = builder.create<fir::LoadOp>(loc, var);
|
|
mlir::Value temp = builder.createTemporary(loc, value.getType());
|
|
builder.create<fir::StoreOp>(loc, value, temp);
|
|
return temp;
|
|
},
|
|
[&](const auto &) -> ExtValue {
|
|
fir::emitFatalError(loc, "expr is not a scalar value");
|
|
});
|
|
}
|
|
|
|
/// Helper structure to track potential copy-in of non contiguous variable
|
|
/// argument into a contiguous temp. It is used to deallocate the temp that
|
|
/// may have been created as well as to the copy-out from the temp to the
|
|
/// variable after the call.
|
|
struct CopyOutPair {
|
|
ExtValue var;
|
|
ExtValue temp;
|
|
// Flag to indicate if the argument may have been modified by the
|
|
// callee, in which case it must be copied-out to the variable.
|
|
bool argMayBeModifiedByCall;
|
|
// Optional boolean value that, if present and false, prevents
|
|
// the copy-out and temp deallocation.
|
|
llvm::Optional<mlir::Value> restrictCopyAndFreeAtRuntime;
|
|
};
|
|
using CopyOutPairs = llvm::SmallVector<CopyOutPair, 4>;
|
|
|
|
/// Helper to read any fir::BoxValue into other fir::ExtendedValue categories
|
|
/// not based on fir.box.
|
|
/// This will lose any non contiguous stride information and dynamic type and
|
|
/// should only be called if \p exv is known to be contiguous or if its base
|
|
/// address will be replaced by a contiguous one. If \p exv is not a
|
|
/// fir::BoxValue, this is a no-op.
|
|
ExtValue readIfBoxValue(const ExtValue &exv) {
|
|
if (const auto *box = exv.getBoxOf<fir::BoxValue>())
|
|
return fir::factory::readBoxValue(builder, getLoc(), *box);
|
|
return exv;
|
|
}
|
|
|
|
/// Generate a contiguous temp to pass \p actualArg as argument \p arg. The
|
|
/// creation of the temp and copy-in can be made conditional at runtime by
|
|
/// providing a runtime boolean flag \p restrictCopyAtRuntime (in which case
|
|
/// the temp and copy will only be made if the value is true at runtime).
|
|
ExtValue genCopyIn(const ExtValue &actualArg,
|
|
const Fortran::lower::CallerInterface::PassedEntity &arg,
|
|
CopyOutPairs ©OutPairs,
|
|
llvm::Optional<mlir::Value> restrictCopyAtRuntime) {
|
|
if (!restrictCopyAtRuntime) {
|
|
ExtValue temp = genArrayTempFromMold(actualArg, ".copyinout");
|
|
if (arg.mayBeReadByCall())
|
|
genArrayCopy(temp, actualArg);
|
|
copyOutPairs.emplace_back(CopyOutPair{
|
|
actualArg, temp, arg.mayBeModifiedByCall(), restrictCopyAtRuntime});
|
|
return temp;
|
|
}
|
|
// Otherwise, need to be careful to only copy-in if allowed at runtime.
|
|
mlir::Location loc = getLoc();
|
|
auto addrType = fir::HeapType::get(
|
|
fir::unwrapPassByRefType(fir::getBase(actualArg).getType()));
|
|
mlir::Value addr =
|
|
builder
|
|
.genIfOp(loc, {addrType}, *restrictCopyAtRuntime,
|
|
/*withElseRegion=*/true)
|
|
.genThen([&]() {
|
|
auto temp = genArrayTempFromMold(actualArg, ".copyinout");
|
|
if (arg.mayBeReadByCall())
|
|
genArrayCopy(temp, actualArg);
|
|
builder.create<fir::ResultOp>(loc, fir::getBase(temp));
|
|
})
|
|
.genElse([&]() {
|
|
auto nullPtr = builder.createNullConstant(loc, addrType);
|
|
builder.create<fir::ResultOp>(loc, nullPtr);
|
|
})
|
|
.getResults()[0];
|
|
// Associate the temp address with actualArg lengths and extents.
|
|
fir::ExtendedValue temp = fir::substBase(readIfBoxValue(actualArg), addr);
|
|
copyOutPairs.emplace_back(CopyOutPair{
|
|
actualArg, temp, arg.mayBeModifiedByCall(), restrictCopyAtRuntime});
|
|
return temp;
|
|
}
|
|
|
|
/// Generate copy-out if needed and free the temporary for an argument that
|
|
/// has been copied-in into a contiguous temp.
|
|
void genCopyOut(const CopyOutPair ©OutPair) {
|
|
mlir::Location loc = getLoc();
|
|
if (!copyOutPair.restrictCopyAndFreeAtRuntime) {
|
|
if (copyOutPair.argMayBeModifiedByCall)
|
|
genArrayCopy(copyOutPair.var, copyOutPair.temp);
|
|
builder.create<fir::FreeMemOp>(loc, fir::getBase(copyOutPair.temp));
|
|
return;
|
|
}
|
|
builder.genIfThen(loc, *copyOutPair.restrictCopyAndFreeAtRuntime)
|
|
.genThen([&]() {
|
|
if (copyOutPair.argMayBeModifiedByCall)
|
|
genArrayCopy(copyOutPair.var, copyOutPair.temp);
|
|
builder.create<fir::FreeMemOp>(loc, fir::getBase(copyOutPair.temp));
|
|
})
|
|
.end();
|
|
}
|
|
|
|
/// Lower a non-elemental procedure reference.
|
|
ExtValue genRawProcedureRef(const Fortran::evaluate::ProcedureRef &procRef,
|
|
llvm::Optional<mlir::Type> resultType) {
|
|
mlir::Location loc = getLoc();
|
|
if (isElementalProcWithArrayArgs(procRef))
|
|
fir::emitFatalError(loc, "trying to lower elemental procedure with array "
|
|
"arguments as normal procedure");
|
|
if (const Fortran::evaluate::SpecificIntrinsic *intrinsic =
|
|
procRef.proc().GetSpecificIntrinsic())
|
|
return genIntrinsicRef(procRef, *intrinsic, resultType);
|
|
|
|
if (isStatementFunctionCall(procRef))
|
|
return genStmtFunctionRef(procRef);
|
|
|
|
Fortran::lower::CallerInterface caller(procRef, converter);
|
|
using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
|
|
|
|
llvm::SmallVector<fir::MutableBoxValue> mutableModifiedByCall;
|
|
// List of <var, temp> where temp must be copied into var after the call.
|
|
CopyOutPairs copyOutPairs;
|
|
|
|
mlir::FunctionType callSiteType = caller.genFunctionType();
|
|
|
|
// Lower the actual arguments and map the lowered values to the dummy
|
|
// arguments.
|
|
for (const Fortran::lower::CallInterface<
|
|
Fortran::lower::CallerInterface>::PassedEntity &arg :
|
|
caller.getPassedArguments()) {
|
|
const auto *actual = arg.entity;
|
|
mlir::Type argTy = callSiteType.getInput(arg.firArgument);
|
|
if (!actual) {
|
|
// Optional dummy argument for which there is no actual argument.
|
|
caller.placeInput(arg, builder.create<fir::AbsentOp>(loc, argTy));
|
|
continue;
|
|
}
|
|
const auto *expr = actual->UnwrapExpr();
|
|
if (!expr)
|
|
TODO(loc, "assumed type actual argument lowering");
|
|
|
|
if (arg.passBy == PassBy::Value) {
|
|
ExtValue argVal = genval(*expr);
|
|
if (!fir::isUnboxedValue(argVal))
|
|
fir::emitFatalError(
|
|
loc, "internal error: passing non trivial value by value");
|
|
caller.placeInput(arg, fir::getBase(argVal));
|
|
continue;
|
|
}
|
|
|
|
if (arg.passBy == PassBy::MutableBox) {
|
|
if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(
|
|
*expr)) {
|
|
// If expr is NULL(), the mutableBox created must be a deallocated
|
|
// pointer with the dummy argument characteristics (see table 16.5
|
|
// in Fortran 2018 standard).
|
|
// No length parameters are set for the created box because any non
|
|
// deferred type parameters of the dummy will be evaluated on the
|
|
// callee side, and it is illegal to use NULL without a MOLD if any
|
|
// dummy length parameters are assumed.
|
|
mlir::Type boxTy = fir::dyn_cast_ptrEleTy(argTy);
|
|
assert(boxTy && boxTy.isa<fir::BoxType>() &&
|
|
"must be a fir.box type");
|
|
mlir::Value boxStorage = builder.createTemporary(loc, boxTy);
|
|
mlir::Value nullBox = fir::factory::createUnallocatedBox(
|
|
builder, loc, boxTy, /*nonDeferredParams=*/{});
|
|
builder.create<fir::StoreOp>(loc, nullBox, boxStorage);
|
|
caller.placeInput(arg, boxStorage);
|
|
continue;
|
|
}
|
|
fir::MutableBoxValue mutableBox = genMutableBoxValue(*expr);
|
|
mlir::Value irBox =
|
|
fir::factory::getMutableIRBox(builder, loc, mutableBox);
|
|
caller.placeInput(arg, irBox);
|
|
if (arg.mayBeModifiedByCall())
|
|
mutableModifiedByCall.emplace_back(std::move(mutableBox));
|
|
continue;
|
|
}
|
|
const bool actualArgIsVariable = Fortran::evaluate::IsVariable(*expr);
|
|
if (arg.passBy == PassBy::BaseAddressValueAttribute) {
|
|
mlir::Value temp;
|
|
if (isArray(*expr)) {
|
|
auto val = genBoxArg(*expr);
|
|
if (!actualArgIsVariable)
|
|
temp = getBase(val);
|
|
else {
|
|
ExtValue copy = genArrayTempFromMold(val, ".copy");
|
|
genArrayCopy(copy, val);
|
|
temp = fir::getBase(copy);
|
|
}
|
|
} else {
|
|
mlir::Value val = fir::getBase(genval(*expr));
|
|
temp = builder.createTemporary(
|
|
loc, val.getType(),
|
|
llvm::ArrayRef<mlir::NamedAttribute>{
|
|
Fortran::lower::getAdaptToByRefAttr(builder)});
|
|
builder.create<fir::StoreOp>(loc, val, temp);
|
|
}
|
|
caller.placeInput(arg, temp);
|
|
continue;
|
|
}
|
|
if (arg.passBy == PassBy::BaseAddress || arg.passBy == PassBy::BoxChar) {
|
|
const bool actualIsSimplyContiguous =
|
|
!actualArgIsVariable || Fortran::evaluate::IsSimplyContiguous(
|
|
*expr, converter.getFoldingContext());
|
|
auto argAddr = [&]() -> ExtValue {
|
|
ExtValue baseAddr;
|
|
if (actualArgIsVariable && arg.isOptional()) {
|
|
if (Fortran::evaluate::IsAllocatableOrPointerObject(
|
|
*expr, converter.getFoldingContext())) {
|
|
// Fortran 2018 15.5.2.12 point 1: If unallocated/disassociated,
|
|
// it is as if the argument was absent. The main care here is to
|
|
// not do a copy-in/copy-out because the temp address, even though
|
|
// pointing to a null size storage, would not be a nullptr and
|
|
// therefore the argument would not be considered absent on the
|
|
// callee side. Note: if wholeSymbol is optional, it cannot be
|
|
// absent as per 15.5.2.12 point 7. and 8. We rely on this to
|
|
// un-conditionally read the allocatable/pointer descriptor here.
|
|
if (actualIsSimplyContiguous)
|
|
return genBoxArg(*expr);
|
|
fir::MutableBoxValue mutableBox = genMutableBoxValue(*expr);
|
|
mlir::Value isAssociated =
|
|
fir::factory::genIsAllocatedOrAssociatedTest(builder, loc,
|
|
mutableBox);
|
|
fir::ExtendedValue actualExv =
|
|
fir::factory::genMutableBoxRead(builder, loc, mutableBox);
|
|
return genCopyIn(actualExv, arg, copyOutPairs, isAssociated);
|
|
}
|
|
if (const Fortran::semantics::Symbol *wholeSymbol =
|
|
Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(
|
|
*expr))
|
|
if (Fortran::semantics::IsOptional(*wholeSymbol)) {
|
|
ExtValue actualArg = gen(*expr);
|
|
mlir::Value actualArgBase = fir::getBase(actualArg);
|
|
if (!actualArgBase.getType().isa<fir::BoxType>())
|
|
return actualArg;
|
|
// Do not read wholeSymbol descriptor that may be a nullptr in
|
|
// case wholeSymbol is absent.
|
|
// Absent descriptor cannot be read. To avoid any issue in
|
|
// copy-in/copy-out, and when retrieving the address/length
|
|
// create an descriptor pointing to a null address here if the
|
|
// fir.box is absent.
|
|
mlir::Value isPresent = builder.create<fir::IsPresentOp>(
|
|
loc, builder.getI1Type(), actualArgBase);
|
|
mlir::Type boxType = actualArgBase.getType();
|
|
mlir::Value emptyBox = fir::factory::createUnallocatedBox(
|
|
builder, loc, boxType, llvm::None);
|
|
auto safeToReadBox = builder.create<mlir::arith::SelectOp>(
|
|
loc, isPresent, actualArgBase, emptyBox);
|
|
fir::ExtendedValue safeToReadExv =
|
|
fir::substBase(actualArg, safeToReadBox);
|
|
if (actualIsSimplyContiguous)
|
|
return safeToReadExv;
|
|
return genCopyIn(safeToReadExv, arg, copyOutPairs, isPresent);
|
|
}
|
|
// Fall through: The actual argument can safely be
|
|
// copied-in/copied-out without any care if needed.
|
|
}
|
|
if (actualArgIsVariable && expr->Rank() > 0) {
|
|
ExtValue box = genBoxArg(*expr);
|
|
if (!actualIsSimplyContiguous)
|
|
return genCopyIn(box, arg, copyOutPairs,
|
|
/*restrictCopyAtRuntime=*/llvm::None);
|
|
// Contiguous: just use the box we created above!
|
|
// This gets "unboxed" below, if needed.
|
|
return box;
|
|
}
|
|
// Actual argument is a non optional/non pointer/non allocatable
|
|
// scalar.
|
|
if (actualArgIsVariable)
|
|
return genExtAddr(*expr);
|
|
// Actual argument is not a variable. Make sure a variable address is
|
|
// not passed.
|
|
return genTempExtAddr(*expr);
|
|
}();
|
|
// Scalar and contiguous expressions may be lowered to a fir.box,
|
|
// either to account for potential polymorphism, or because lowering
|
|
// did not account for some contiguity hints.
|
|
// Here, polymorphism does not matter (an entity of the declared type
|
|
// is passed, not one of the dynamic type), and the expr is known to
|
|
// be simply contiguous, so it is safe to unbox it and pass the
|
|
// address without making a copy.
|
|
argAddr = readIfBoxValue(argAddr);
|
|
|
|
if (arg.passBy == PassBy::BaseAddress) {
|
|
caller.placeInput(arg, fir::getBase(argAddr));
|
|
} else {
|
|
assert(arg.passBy == PassBy::BoxChar);
|
|
auto helper = fir::factory::CharacterExprHelper{builder, loc};
|
|
auto boxChar = argAddr.match(
|
|
[&](const fir::CharBoxValue &x) { return helper.createEmbox(x); },
|
|
[&](const fir::CharArrayBoxValue &x) {
|
|
return helper.createEmbox(x);
|
|
},
|
|
[&](const auto &x) -> mlir::Value {
|
|
// Fortran allows an actual argument of a completely different
|
|
// type to be passed to a procedure expecting a CHARACTER in the
|
|
// dummy argument position. When this happens, the data pointer
|
|
// argument is simply assumed to point to CHARACTER data and the
|
|
// LEN argument used is garbage. Simulate this behavior by
|
|
// free-casting the base address to be a !fir.char reference and
|
|
// setting the LEN argument to undefined. What could go wrong?
|
|
auto dataPtr = fir::getBase(x);
|
|
assert(!dataPtr.getType().template isa<fir::BoxType>());
|
|
return builder.convertWithSemantics(
|
|
loc, argTy, dataPtr,
|
|
/*allowCharacterConversion=*/true);
|
|
});
|
|
caller.placeInput(arg, boxChar);
|
|
}
|
|
} else if (arg.passBy == PassBy::Box) {
|
|
// Before lowering to an address, handle the allocatable/pointer actual
|
|
// argument to optional fir.box dummy. It is legal to pass
|
|
// unallocated/disassociated entity to an optional. In this case, an
|
|
// absent fir.box must be created instead of a fir.box with a null value
|
|
// (Fortran 2018 15.5.2.12 point 1).
|
|
if (arg.isOptional() && Fortran::evaluate::IsAllocatableOrPointerObject(
|
|
*expr, converter.getFoldingContext())) {
|
|
// Note that passing an absent allocatable to a non-allocatable
|
|
// optional dummy argument is illegal (15.5.2.12 point 3 (8)). So
|
|
// nothing has to be done to generate an absent argument in this case,
|
|
// and it is OK to unconditionally read the mutable box here.
|
|
fir::MutableBoxValue mutableBox = genMutableBoxValue(*expr);
|
|
mlir::Value isAllocated =
|
|
fir::factory::genIsAllocatedOrAssociatedTest(builder, loc,
|
|
mutableBox);
|
|
auto absent = builder.create<fir::AbsentOp>(loc, argTy);
|
|
/// For now, assume it is not OK to pass the allocatable/pointer
|
|
/// descriptor to a non pointer/allocatable dummy. That is a strict
|
|
/// interpretation of 18.3.6 point 4 that stipulates the descriptor
|
|
/// has the dummy attributes in BIND(C) contexts.
|
|
mlir::Value box = builder.createBox(
|
|
loc, fir::factory::genMutableBoxRead(builder, loc, mutableBox));
|
|
// Need the box types to be exactly similar for the selectOp.
|
|
mlir::Value convertedBox = builder.createConvert(loc, argTy, box);
|
|
caller.placeInput(arg, builder.create<mlir::arith::SelectOp>(
|
|
loc, isAllocated, convertedBox, absent));
|
|
} else {
|
|
// Make sure a variable address is only passed if the expression is
|
|
// actually a variable.
|
|
mlir::Value box =
|
|
actualArgIsVariable
|
|
? builder.createBox(loc, genBoxArg(*expr))
|
|
: builder.createBox(getLoc(), genTempExtAddr(*expr));
|
|
caller.placeInput(arg, box);
|
|
}
|
|
} else if (arg.passBy == PassBy::AddressAndLength) {
|
|
ExtValue argRef = genExtAddr(*expr);
|
|
caller.placeAddressAndLengthInput(arg, fir::getBase(argRef),
|
|
fir::getLen(argRef));
|
|
} else if (arg.passBy == PassBy::CharProcTuple) {
|
|
ExtValue argRef = genExtAddr(*expr);
|
|
mlir::Value tuple = createBoxProcCharTuple(
|
|
converter, argTy, fir::getBase(argRef), fir::getLen(argRef));
|
|
caller.placeInput(arg, tuple);
|
|
} else {
|
|
TODO(loc, "pass by value in non elemental function call");
|
|
}
|
|
}
|
|
|
|
ExtValue result = genCallOpAndResult(caller, callSiteType, resultType);
|
|
|
|
// Sync pointers and allocatables that may have been modified during the
|
|
// call.
|
|
for (const auto &mutableBox : mutableModifiedByCall)
|
|
fir::factory::syncMutableBoxFromIRBox(builder, loc, mutableBox);
|
|
// Handle case where result was passed as argument
|
|
|
|
// Copy-out temps that were created for non contiguous variable arguments if
|
|
// needed.
|
|
for (const auto ©OutPair : copyOutPairs)
|
|
genCopyOut(copyOutPair);
|
|
|
|
return result;
|
|
}
|
|
|
|
template <typename A>
|
|
ExtValue genval(const Fortran::evaluate::FunctionRef<A> &funcRef) {
|
|
ExtValue result = genFunctionRef(funcRef);
|
|
if (result.rank() == 0 && fir::isa_ref_type(fir::getBase(result).getType()))
|
|
return genLoad(result);
|
|
return result;
|
|
}
|
|
|
|
ExtValue genval(const Fortran::evaluate::ProcedureRef &procRef) {
|
|
llvm::Optional<mlir::Type> resTy;
|
|
if (procRef.hasAlternateReturns())
|
|
resTy = builder.getIndexType();
|
|
return genProcedureRef(procRef, resTy);
|
|
}
|
|
|
|
/// Helper to lower intrinsic arguments for inquiry intrinsic.
|
|
ExtValue
|
|
lowerIntrinsicArgumentAsInquired(const Fortran::lower::SomeExpr &expr) {
|
|
if (Fortran::evaluate::IsAllocatableOrPointerObject(
|
|
expr, converter.getFoldingContext()))
|
|
return genMutableBoxValue(expr);
|
|
return gen(expr);
|
|
}
|
|
|
|
/// Helper to lower intrinsic arguments to a fir::BoxValue.
|
|
/// It preserves all the non default lower bounds/non deferred length
|
|
/// parameter information.
|
|
ExtValue lowerIntrinsicArgumentAsBox(const Fortran::lower::SomeExpr &expr) {
|
|
mlir::Location loc = getLoc();
|
|
ExtValue exv = genBoxArg(expr);
|
|
mlir::Value box = builder.createBox(loc, exv);
|
|
return fir::BoxValue(
|
|
box, fir::factory::getNonDefaultLowerBounds(builder, loc, exv),
|
|
fir::factory::getNonDeferredLengthParams(exv));
|
|
}
|
|
|
|
/// Generate a call to an intrinsic function.
|
|
ExtValue
|
|
genIntrinsicRef(const Fortran::evaluate::ProcedureRef &procRef,
|
|
const Fortran::evaluate::SpecificIntrinsic &intrinsic,
|
|
llvm::Optional<mlir::Type> resultType) {
|
|
llvm::SmallVector<ExtValue> operands;
|
|
|
|
llvm::StringRef name = intrinsic.name;
|
|
mlir::Location loc = getLoc();
|
|
if (Fortran::lower::intrinsicRequiresCustomOptionalHandling(
|
|
procRef, intrinsic, converter)) {
|
|
using ExvAndPresence = std::pair<ExtValue, llvm::Optional<mlir::Value>>;
|
|
llvm::SmallVector<ExvAndPresence, 4> operands;
|
|
auto prepareOptionalArg = [&](const Fortran::lower::SomeExpr &expr) {
|
|
ExtValue optionalArg = lowerIntrinsicArgumentAsInquired(expr);
|
|
mlir::Value isPresent =
|
|
genActualIsPresentTest(builder, loc, optionalArg);
|
|
operands.emplace_back(optionalArg, isPresent);
|
|
};
|
|
auto prepareOtherArg = [&](const Fortran::lower::SomeExpr &expr) {
|
|
operands.emplace_back(genval(expr), llvm::None);
|
|
};
|
|
Fortran::lower::prepareCustomIntrinsicArgument(
|
|
procRef, intrinsic, resultType, prepareOptionalArg, prepareOtherArg,
|
|
converter);
|
|
|
|
auto getArgument = [&](std::size_t i) -> ExtValue {
|
|
if (fir::conformsWithPassByRef(
|
|
fir::getBase(operands[i].first).getType()))
|
|
return genLoad(operands[i].first);
|
|
return operands[i].first;
|
|
};
|
|
auto isPresent = [&](std::size_t i) -> llvm::Optional<mlir::Value> {
|
|
return operands[i].second;
|
|
};
|
|
return Fortran::lower::lowerCustomIntrinsic(
|
|
builder, loc, name, resultType, isPresent, getArgument,
|
|
operands.size(), stmtCtx);
|
|
}
|
|
|
|
const Fortran::lower::IntrinsicArgumentLoweringRules *argLowering =
|
|
Fortran::lower::getIntrinsicArgumentLowering(name);
|
|
for (const auto &[arg, dummy] :
|
|
llvm::zip(procRef.arguments(),
|
|
intrinsic.characteristics.value().dummyArguments)) {
|
|
auto *expr = Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(arg);
|
|
if (!expr) {
|
|
// Absent optional.
|
|
operands.emplace_back(Fortran::lower::getAbsentIntrinsicArgument());
|
|
continue;
|
|
}
|
|
if (!argLowering) {
|
|
// No argument lowering instruction, lower by value.
|
|
operands.emplace_back(genval(*expr));
|
|
continue;
|
|
}
|
|
// Ad-hoc argument lowering handling.
|
|
Fortran::lower::ArgLoweringRule argRules =
|
|
Fortran::lower::lowerIntrinsicArgumentAs(loc, *argLowering,
|
|
dummy.name);
|
|
if (argRules.handleDynamicOptional &&
|
|
Fortran::evaluate::MayBePassedAsAbsentOptional(
|
|
*expr, converter.getFoldingContext())) {
|
|
ExtValue optional = lowerIntrinsicArgumentAsInquired(*expr);
|
|
mlir::Value isPresent = genActualIsPresentTest(builder, loc, optional);
|
|
switch (argRules.lowerAs) {
|
|
case Fortran::lower::LowerIntrinsicArgAs::Value:
|
|
operands.emplace_back(
|
|
genOptionalValue(builder, loc, optional, isPresent));
|
|
continue;
|
|
case Fortran::lower::LowerIntrinsicArgAs::Addr:
|
|
operands.emplace_back(
|
|
genOptionalAddr(builder, loc, optional, isPresent));
|
|
continue;
|
|
case Fortran::lower::LowerIntrinsicArgAs::Box:
|
|
operands.emplace_back(
|
|
genOptionalBox(builder, loc, optional, isPresent));
|
|
continue;
|
|
case Fortran::lower::LowerIntrinsicArgAs::Inquired:
|
|
operands.emplace_back(optional);
|
|
continue;
|
|
}
|
|
llvm_unreachable("bad switch");
|
|
}
|
|
switch (argRules.lowerAs) {
|
|
case Fortran::lower::LowerIntrinsicArgAs::Value:
|
|
operands.emplace_back(genval(*expr));
|
|
continue;
|
|
case Fortran::lower::LowerIntrinsicArgAs::Addr:
|
|
operands.emplace_back(gen(*expr));
|
|
continue;
|
|
case Fortran::lower::LowerIntrinsicArgAs::Box:
|
|
operands.emplace_back(lowerIntrinsicArgumentAsBox(*expr));
|
|
continue;
|
|
case Fortran::lower::LowerIntrinsicArgAs::Inquired:
|
|
operands.emplace_back(lowerIntrinsicArgumentAsInquired(*expr));
|
|
continue;
|
|
}
|
|
llvm_unreachable("bad switch");
|
|
}
|
|
// Let the intrinsic library lower the intrinsic procedure call
|
|
return Fortran::lower::genIntrinsicCall(builder, getLoc(), name, resultType,
|
|
operands, stmtCtx);
|
|
}
|
|
|
|
template <typename A>
|
|
bool isScalar(const A &x) {
|
|
return x.Rank() == 0;
|
|
}
|
|
|
|
/// Helper to detect Transformational function reference.
|
|
template <typename T>
|
|
bool isTransformationalRef(const T &) {
|
|
return false;
|
|
}
|
|
template <typename T>
|
|
bool isTransformationalRef(const Fortran::evaluate::FunctionRef<T> &funcRef) {
|
|
return !funcRef.IsElemental() && funcRef.Rank();
|
|
}
|
|
template <typename T>
|
|
bool isTransformationalRef(Fortran::evaluate::Expr<T> expr) {
|
|
return std::visit([&](const auto &e) { return isTransformationalRef(e); },
|
|
expr.u);
|
|
}
|
|
|
|
template <typename A>
|
|
ExtValue asArray(const A &x) {
|
|
return Fortran::lower::createSomeArrayTempValue(converter, toEvExpr(x),
|
|
symMap, stmtCtx);
|
|
}
|
|
|
|
/// Lower an array value as an argument. This argument can be passed as a box
|
|
/// value, so it may be possible to avoid making a temporary.
|
|
template <typename A>
|
|
ExtValue asArrayArg(const Fortran::evaluate::Expr<A> &x) {
|
|
return std::visit([&](const auto &e) { return asArrayArg(e, x); }, x.u);
|
|
}
|
|
template <typename A, typename B>
|
|
ExtValue asArrayArg(const Fortran::evaluate::Expr<A> &x, const B &y) {
|
|
return std::visit([&](const auto &e) { return asArrayArg(e, y); }, x.u);
|
|
}
|
|
template <typename A, typename B>
|
|
ExtValue asArrayArg(const Fortran::evaluate::Designator<A> &, const B &x) {
|
|
// Designator is being passed as an argument to a procedure. Lower the
|
|
// expression to a boxed value.
|
|
auto someExpr = toEvExpr(x);
|
|
return Fortran::lower::createBoxValue(getLoc(), converter, someExpr, symMap,
|
|
stmtCtx);
|
|
}
|
|
template <typename A, typename B>
|
|
ExtValue asArrayArg(const A &, const B &x) {
|
|
// If the expression to pass as an argument is not a designator, then create
|
|
// an array temp.
|
|
return asArray(x);
|
|
}
|
|
|
|
template <typename A>
|
|
ExtValue gen(const Fortran::evaluate::Expr<A> &x) {
|
|
// Whole array symbols or components, and results of transformational
|
|
// functions already have a storage and the scalar expression lowering path
|
|
// is used to not create a new temporary storage.
|
|
if (isScalar(x) ||
|
|
Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(x) ||
|
|
isTransformationalRef(x))
|
|
return std::visit([&](const auto &e) { return genref(e); }, x.u);
|
|
if (useBoxArg)
|
|
return asArrayArg(x);
|
|
return asArray(x);
|
|
}
|
|
template <typename A>
|
|
ExtValue genval(const Fortran::evaluate::Expr<A> &x) {
|
|
if (isScalar(x) || Fortran::evaluate::UnwrapWholeSymbolDataRef(x) ||
|
|
inInitializer)
|
|
return std::visit([&](const auto &e) { return genval(e); }, x.u);
|
|
return asArray(x);
|
|
}
|
|
|
|
template <int KIND>
|
|
ExtValue genval(const Fortran::evaluate::Expr<Fortran::evaluate::Type<
|
|
Fortran::common::TypeCategory::Logical, KIND>> &exp) {
|
|
return std::visit([&](const auto &e) { return genval(e); }, exp.u);
|
|
}
|
|
|
|
using RefSet =
|
|
std::tuple<Fortran::evaluate::ComplexPart, Fortran::evaluate::Substring,
|
|
Fortran::evaluate::DataRef, Fortran::evaluate::Component,
|
|
Fortran::evaluate::ArrayRef, Fortran::evaluate::CoarrayRef,
|
|
Fortran::semantics::SymbolRef>;
|
|
template <typename A>
|
|
static constexpr bool inRefSet = Fortran::common::HasMember<A, RefSet>;
|
|
|
|
template <typename A, typename = std::enable_if_t<inRefSet<A>>>
|
|
ExtValue genref(const A &a) {
|
|
return gen(a);
|
|
}
|
|
template <typename A>
|
|
ExtValue genref(const A &a) {
|
|
if (inInitializer) {
|
|
// Initialization expressions can never allocate memory.
|
|
return genval(a);
|
|
}
|
|
mlir::Type storageType = converter.genType(toEvExpr(a));
|
|
return placeScalarValueInMemory(builder, getLoc(), genval(a), storageType);
|
|
}
|
|
|
|
template <typename A, template <typename> typename T,
|
|
typename B = std::decay_t<T<A>>,
|
|
std::enable_if_t<
|
|
std::is_same_v<B, Fortran::evaluate::Expr<A>> ||
|
|
std::is_same_v<B, Fortran::evaluate::Designator<A>> ||
|
|
std::is_same_v<B, Fortran::evaluate::FunctionRef<A>>,
|
|
bool> = true>
|
|
ExtValue genref(const T<A> &x) {
|
|
return gen(x);
|
|
}
|
|
|
|
private:
|
|
mlir::Location location;
|
|
Fortran::lower::AbstractConverter &converter;
|
|
fir::FirOpBuilder &builder;
|
|
Fortran::lower::StatementContext &stmtCtx;
|
|
Fortran::lower::SymMap &symMap;
|
|
InitializerData *inInitializer = nullptr;
|
|
bool useBoxArg = false; // expression lowered as argument
|
|
};
|
|
} // namespace
|
|
|
|
// Helper for changing the semantics in a given context. Preserves the current
|
|
// semantics which is resumed when the "push" goes out of scope.
|
|
#define PushSemantics(PushVal) \
|
|
[[maybe_unused]] auto pushSemanticsLocalVariable##__LINE__ = \
|
|
Fortran::common::ScopedSet(semant, PushVal);
|
|
|
|
static bool isAdjustedArrayElementType(mlir::Type t) {
|
|
return fir::isa_char(t) || fir::isa_derived(t) || t.isa<fir::SequenceType>();
|
|
}
|
|
static bool elementTypeWasAdjusted(mlir::Type t) {
|
|
if (auto ty = t.dyn_cast<fir::ReferenceType>())
|
|
return isAdjustedArrayElementType(ty.getEleTy());
|
|
return false;
|
|
}
|
|
|
|
/// Build an ExtendedValue from a fir.array<?x...?xT> without actually setting
|
|
/// the actual extents and lengths. This is only to allow their propagation as
|
|
/// ExtendedValue without triggering verifier failures when propagating
|
|
/// character/arrays as unboxed values. Only the base of the resulting
|
|
/// ExtendedValue should be used, it is undefined to use the length or extents
|
|
/// of the extended value returned,
|
|
inline static fir::ExtendedValue
|
|
convertToArrayBoxValue(mlir::Location loc, fir::FirOpBuilder &builder,
|
|
mlir::Value val, mlir::Value len) {
|
|
mlir::Type ty = fir::unwrapRefType(val.getType());
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
auto seqTy = ty.cast<fir::SequenceType>();
|
|
auto undef = builder.create<fir::UndefOp>(loc, idxTy);
|
|
llvm::SmallVector<mlir::Value> extents(seqTy.getDimension(), undef);
|
|
if (fir::isa_char(seqTy.getEleTy()))
|
|
return fir::CharArrayBoxValue(val, len ? len : undef, extents);
|
|
return fir::ArrayBoxValue(val, extents);
|
|
}
|
|
|
|
/// Helper to generate calls to scalar user defined assignment procedures.
|
|
static void genScalarUserDefinedAssignmentCall(fir::FirOpBuilder &builder,
|
|
mlir::Location loc,
|
|
mlir::FuncOp func,
|
|
const fir::ExtendedValue &lhs,
|
|
const fir::ExtendedValue &rhs) {
|
|
auto prepareUserDefinedArg =
|
|
[](fir::FirOpBuilder &builder, mlir::Location loc,
|
|
const fir::ExtendedValue &value, mlir::Type argType) -> mlir::Value {
|
|
if (argType.isa<fir::BoxCharType>()) {
|
|
const fir::CharBoxValue *charBox = value.getCharBox();
|
|
assert(charBox && "argument type mismatch in elemental user assignment");
|
|
return fir::factory::CharacterExprHelper{builder, loc}.createEmbox(
|
|
*charBox);
|
|
}
|
|
if (argType.isa<fir::BoxType>()) {
|
|
mlir::Value box = builder.createBox(loc, value);
|
|
return builder.createConvert(loc, argType, box);
|
|
}
|
|
// Simple pass by address.
|
|
mlir::Type argBaseType = fir::unwrapRefType(argType);
|
|
assert(!fir::hasDynamicSize(argBaseType));
|
|
mlir::Value from = fir::getBase(value);
|
|
if (argBaseType != fir::unwrapRefType(from.getType())) {
|
|
// With logicals, it is possible that from is i1 here.
|
|
if (fir::isa_ref_type(from.getType()))
|
|
from = builder.create<fir::LoadOp>(loc, from);
|
|
from = builder.createConvert(loc, argBaseType, from);
|
|
}
|
|
if (!fir::isa_ref_type(from.getType())) {
|
|
mlir::Value temp = builder.createTemporary(loc, argBaseType);
|
|
builder.create<fir::StoreOp>(loc, from, temp);
|
|
from = temp;
|
|
}
|
|
return builder.createConvert(loc, argType, from);
|
|
};
|
|
assert(func.getNumArguments() == 2);
|
|
mlir::Type lhsType = func.getFunctionType().getInput(0);
|
|
mlir::Type rhsType = func.getFunctionType().getInput(1);
|
|
mlir::Value lhsArg = prepareUserDefinedArg(builder, loc, lhs, lhsType);
|
|
mlir::Value rhsArg = prepareUserDefinedArg(builder, loc, rhs, rhsType);
|
|
builder.create<fir::CallOp>(loc, func, mlir::ValueRange{lhsArg, rhsArg});
|
|
}
|
|
|
|
/// Convert the result of a fir.array_modify to an ExtendedValue given the
|
|
/// related fir.array_load.
|
|
static fir::ExtendedValue arrayModifyToExv(fir::FirOpBuilder &builder,
|
|
mlir::Location loc,
|
|
fir::ArrayLoadOp load,
|
|
mlir::Value elementAddr) {
|
|
mlir::Type eleTy = fir::unwrapPassByRefType(elementAddr.getType());
|
|
if (fir::isa_char(eleTy)) {
|
|
auto len = fir::factory::CharacterExprHelper{builder, loc}.getLength(
|
|
load.getMemref());
|
|
if (!len) {
|
|
assert(load.getTypeparams().size() == 1 &&
|
|
"length must be in array_load");
|
|
len = load.getTypeparams()[0];
|
|
}
|
|
return fir::CharBoxValue{elementAddr, len};
|
|
}
|
|
return elementAddr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Lowering of scalar expressions in an explicit iteration space context.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Shared code for creating a copy of a derived type element. This function is
|
|
// called from a continuation.
|
|
inline static fir::ArrayAmendOp
|
|
createDerivedArrayAmend(mlir::Location loc, fir::ArrayLoadOp destLoad,
|
|
fir::FirOpBuilder &builder, fir::ArrayAccessOp destAcc,
|
|
const fir::ExtendedValue &elementExv, mlir::Type eleTy,
|
|
mlir::Value innerArg) {
|
|
if (destLoad.getTypeparams().empty()) {
|
|
fir::factory::genRecordAssignment(builder, loc, destAcc, elementExv);
|
|
} else {
|
|
auto boxTy = fir::BoxType::get(eleTy);
|
|
auto toBox = builder.create<fir::EmboxOp>(loc, boxTy, destAcc.getResult(),
|
|
mlir::Value{}, mlir::Value{},
|
|
destLoad.getTypeparams());
|
|
auto fromBox = builder.create<fir::EmboxOp>(
|
|
loc, boxTy, fir::getBase(elementExv), mlir::Value{}, mlir::Value{},
|
|
destLoad.getTypeparams());
|
|
fir::factory::genRecordAssignment(builder, loc, fir::BoxValue(toBox),
|
|
fir::BoxValue(fromBox));
|
|
}
|
|
return builder.create<fir::ArrayAmendOp>(loc, innerArg.getType(), innerArg,
|
|
destAcc);
|
|
}
|
|
|
|
inline static fir::ArrayAmendOp
|
|
createCharArrayAmend(mlir::Location loc, fir::FirOpBuilder &builder,
|
|
fir::ArrayAccessOp dstOp, mlir::Value &dstLen,
|
|
const fir::ExtendedValue &srcExv, mlir::Value innerArg,
|
|
llvm::ArrayRef<mlir::Value> bounds) {
|
|
fir::CharBoxValue dstChar(dstOp, dstLen);
|
|
fir::factory::CharacterExprHelper helper{builder, loc};
|
|
if (!bounds.empty()) {
|
|
dstChar = helper.createSubstring(dstChar, bounds);
|
|
fir::factory::genCharacterCopy(fir::getBase(srcExv), fir::getLen(srcExv),
|
|
dstChar.getAddr(), dstChar.getLen(), builder,
|
|
loc);
|
|
// Update the LEN to the substring's LEN.
|
|
dstLen = dstChar.getLen();
|
|
}
|
|
// For a CHARACTER, we generate the element assignment loops inline.
|
|
helper.createAssign(fir::ExtendedValue{dstChar}, srcExv);
|
|
// Mark this array element as amended.
|
|
mlir::Type ty = innerArg.getType();
|
|
auto amend = builder.create<fir::ArrayAmendOp>(loc, ty, innerArg, dstOp);
|
|
return amend;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Lowering of array expressions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class ArrayExprLowering {
|
|
using ExtValue = fir::ExtendedValue;
|
|
|
|
/// Structure to keep track of lowered array operands in the
|
|
/// array expression. Useful to later deduce the shape of the
|
|
/// array expression.
|
|
struct ArrayOperand {
|
|
/// Array base (can be a fir.box).
|
|
mlir::Value memref;
|
|
/// ShapeOp, ShapeShiftOp or ShiftOp
|
|
mlir::Value shape;
|
|
/// SliceOp
|
|
mlir::Value slice;
|
|
/// Can this operand be absent ?
|
|
bool mayBeAbsent = false;
|
|
};
|
|
|
|
using ImplicitSubscripts = Fortran::lower::details::ImplicitSubscripts;
|
|
using PathComponent = Fortran::lower::PathComponent;
|
|
|
|
/// Active iteration space.
|
|
using IterationSpace = Fortran::lower::IterationSpace;
|
|
using IterSpace = const Fortran::lower::IterationSpace &;
|
|
|
|
/// Current continuation. Function that will generate IR for a single
|
|
/// iteration of the pending iterative loop structure.
|
|
using CC = Fortran::lower::GenerateElementalArrayFunc;
|
|
|
|
/// Projection continuation. Function that will project one iteration space
|
|
/// into another.
|
|
using PC = std::function<IterationSpace(IterSpace)>;
|
|
using ArrayBaseTy =
|
|
std::variant<std::monostate, const Fortran::evaluate::ArrayRef *,
|
|
const Fortran::evaluate::DataRef *>;
|
|
using ComponentPath = Fortran::lower::ComponentPath;
|
|
|
|
public:
|
|
//===--------------------------------------------------------------------===//
|
|
// Regular array assignment
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Entry point for array assignments. Both the left-hand and right-hand sides
|
|
/// can either be ExtendedValue or evaluate::Expr.
|
|
template <typename TL, typename TR>
|
|
static void lowerArrayAssignment(Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::SymMap &symMap,
|
|
Fortran::lower::StatementContext &stmtCtx,
|
|
const TL &lhs, const TR &rhs) {
|
|
ArrayExprLowering ael{converter, stmtCtx, symMap,
|
|
ConstituentSemantics::CopyInCopyOut};
|
|
ael.lowerArrayAssignment(lhs, rhs);
|
|
}
|
|
|
|
template <typename TL, typename TR>
|
|
void lowerArrayAssignment(const TL &lhs, const TR &rhs) {
|
|
mlir::Location loc = getLoc();
|
|
/// Here the target subspace is not necessarily contiguous. The ArrayUpdate
|
|
/// continuation is implicitly returned in `ccStoreToDest` and the ArrayLoad
|
|
/// in `destination`.
|
|
PushSemantics(ConstituentSemantics::ProjectedCopyInCopyOut);
|
|
ccStoreToDest = genarr(lhs);
|
|
determineShapeOfDest(lhs);
|
|
semant = ConstituentSemantics::RefTransparent;
|
|
ExtValue exv = lowerArrayExpression(rhs);
|
|
if (explicitSpaceIsActive()) {
|
|
explicitSpace->finalizeContext();
|
|
builder.create<fir::ResultOp>(loc, fir::getBase(exv));
|
|
} else {
|
|
builder.create<fir::ArrayMergeStoreOp>(
|
|
loc, destination, fir::getBase(exv), destination.getMemref(),
|
|
destination.getSlice(), destination.getTypeparams());
|
|
}
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// WHERE array assignment, FORALL assignment, and FORALL+WHERE array
|
|
// assignment
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Entry point for array assignment when the iteration space is explicitly
|
|
/// defined (Fortran's FORALL) with or without masks, and/or the implied
|
|
/// iteration space involves masks (Fortran's WHERE). Both contexts (explicit
|
|
/// space and implicit space with masks) may be present.
|
|
static void lowerAnyMaskedArrayAssignment(
|
|
Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
|
|
const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
|
|
Fortran::lower::ExplicitIterSpace &explicitSpace,
|
|
Fortran::lower::ImplicitIterSpace &implicitSpace) {
|
|
if (explicitSpace.isActive() && lhs.Rank() == 0) {
|
|
// Scalar assignment expression in a FORALL context.
|
|
ArrayExprLowering ael(converter, stmtCtx, symMap,
|
|
ConstituentSemantics::RefTransparent,
|
|
&explicitSpace, &implicitSpace);
|
|
ael.lowerScalarAssignment(lhs, rhs);
|
|
return;
|
|
}
|
|
// Array assignment expression in a FORALL and/or WHERE context.
|
|
ArrayExprLowering ael(converter, stmtCtx, symMap,
|
|
ConstituentSemantics::CopyInCopyOut, &explicitSpace,
|
|
&implicitSpace);
|
|
ael.lowerArrayAssignment(lhs, rhs);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Array assignment to allocatable array
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Entry point for assignment to allocatable array.
|
|
static void lowerAllocatableArrayAssignment(
|
|
Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
|
|
const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
|
|
Fortran::lower::ExplicitIterSpace &explicitSpace,
|
|
Fortran::lower::ImplicitIterSpace &implicitSpace) {
|
|
ArrayExprLowering ael(converter, stmtCtx, symMap,
|
|
ConstituentSemantics::CopyInCopyOut, &explicitSpace,
|
|
&implicitSpace);
|
|
ael.lowerAllocatableArrayAssignment(lhs, rhs);
|
|
}
|
|
|
|
/// Assignment to allocatable array.
|
|
///
|
|
/// The semantics are reverse that of a "regular" array assignment. The rhs
|
|
/// defines the iteration space of the computation and the lhs is
|
|
/// resized/reallocated to fit if necessary.
|
|
void lowerAllocatableArrayAssignment(const Fortran::lower::SomeExpr &lhs,
|
|
const Fortran::lower::SomeExpr &rhs) {
|
|
// With assignment to allocatable, we want to lower the rhs first and use
|
|
// its shape to determine if we need to reallocate, etc.
|
|
mlir::Location loc = getLoc();
|
|
// FIXME: If the lhs is in an explicit iteration space, the assignment may
|
|
// be to an array of allocatable arrays rather than a single allocatable
|
|
// array.
|
|
fir::MutableBoxValue mutableBox =
|
|
createMutableBox(loc, converter, lhs, symMap);
|
|
mlir::Type resultTy = converter.genType(rhs);
|
|
if (rhs.Rank() > 0)
|
|
determineShapeOfDest(rhs);
|
|
auto rhsCC = [&]() {
|
|
PushSemantics(ConstituentSemantics::RefTransparent);
|
|
return genarr(rhs);
|
|
}();
|
|
|
|
llvm::SmallVector<mlir::Value> lengthParams;
|
|
// Currently no safe way to gather length from rhs (at least for
|
|
// character, it cannot be taken from array_loads since it may be
|
|
// changed by concatenations).
|
|
if ((mutableBox.isCharacter() && !mutableBox.hasNonDeferredLenParams()) ||
|
|
mutableBox.isDerivedWithLengthParameters())
|
|
TODO(loc, "gather rhs length parameters in assignment to allocatable");
|
|
|
|
// The allocatable must take lower bounds from the expr if it is
|
|
// reallocated and the right hand side is not a scalar.
|
|
const bool takeLboundsIfRealloc = rhs.Rank() > 0;
|
|
llvm::SmallVector<mlir::Value> lbounds;
|
|
// When the reallocated LHS takes its lower bounds from the RHS,
|
|
// they will be non default only if the RHS is a whole array
|
|
// variable. Otherwise, lbounds is left empty and default lower bounds
|
|
// will be used.
|
|
if (takeLboundsIfRealloc &&
|
|
Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(rhs)) {
|
|
assert(arrayOperands.size() == 1 &&
|
|
"lbounds can only come from one array");
|
|
std::vector<mlir::Value> lbs =
|
|
fir::factory::getOrigins(arrayOperands[0].shape);
|
|
lbounds.append(lbs.begin(), lbs.end());
|
|
}
|
|
fir::factory::MutableBoxReallocation realloc =
|
|
fir::factory::genReallocIfNeeded(builder, loc, mutableBox, destShape,
|
|
lengthParams);
|
|
// Create ArrayLoad for the mutable box and save it into `destination`.
|
|
PushSemantics(ConstituentSemantics::ProjectedCopyInCopyOut);
|
|
ccStoreToDest = genarr(realloc.newValue);
|
|
// If the rhs is scalar, get shape from the allocatable ArrayLoad.
|
|
if (destShape.empty())
|
|
destShape = getShape(destination);
|
|
// Finish lowering the loop nest.
|
|
assert(destination && "destination must have been set");
|
|
ExtValue exv = lowerArrayExpression(rhsCC, resultTy);
|
|
if (explicitSpaceIsActive()) {
|
|
explicitSpace->finalizeContext();
|
|
builder.create<fir::ResultOp>(loc, fir::getBase(exv));
|
|
} else {
|
|
builder.create<fir::ArrayMergeStoreOp>(
|
|
loc, destination, fir::getBase(exv), destination.getMemref(),
|
|
destination.getSlice(), destination.getTypeparams());
|
|
}
|
|
fir::factory::finalizeRealloc(builder, loc, mutableBox, lbounds,
|
|
takeLboundsIfRealloc, realloc);
|
|
}
|
|
|
|
/// Entry point for when an array expression appears in a context where the
|
|
/// result must be boxed. (BoxValue semantics.)
|
|
static ExtValue
|
|
lowerBoxedArrayExpression(Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::SymMap &symMap,
|
|
Fortran::lower::StatementContext &stmtCtx,
|
|
const Fortran::lower::SomeExpr &expr) {
|
|
ArrayExprLowering ael{converter, stmtCtx, symMap,
|
|
ConstituentSemantics::BoxValue};
|
|
return ael.lowerBoxedArrayExpr(expr);
|
|
}
|
|
|
|
ExtValue lowerBoxedArrayExpr(const Fortran::lower::SomeExpr &exp) {
|
|
return std::visit(
|
|
[&](const auto &e) {
|
|
auto f = genarr(e);
|
|
ExtValue exv = f(IterationSpace{});
|
|
if (fir::getBase(exv).getType().template isa<fir::BoxType>())
|
|
return exv;
|
|
fir::emitFatalError(getLoc(), "array must be emboxed");
|
|
},
|
|
exp.u);
|
|
}
|
|
|
|
/// Entry point into lowering an expression with rank. This entry point is for
|
|
/// lowering a rhs expression, for example. (RefTransparent semantics.)
|
|
static ExtValue
|
|
lowerNewArrayExpression(Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::SymMap &symMap,
|
|
Fortran::lower::StatementContext &stmtCtx,
|
|
const Fortran::lower::SomeExpr &expr) {
|
|
ArrayExprLowering ael{converter, stmtCtx, symMap};
|
|
ael.determineShapeOfDest(expr);
|
|
ExtValue loopRes = ael.lowerArrayExpression(expr);
|
|
fir::ArrayLoadOp dest = ael.destination;
|
|
mlir::Value tempRes = dest.getMemref();
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
mlir::Location loc = converter.getCurrentLocation();
|
|
builder.create<fir::ArrayMergeStoreOp>(loc, dest, fir::getBase(loopRes),
|
|
tempRes, dest.getSlice(),
|
|
dest.getTypeparams());
|
|
|
|
auto arrTy =
|
|
fir::dyn_cast_ptrEleTy(tempRes.getType()).cast<fir::SequenceType>();
|
|
if (auto charTy =
|
|
arrTy.getEleTy().template dyn_cast<fir::CharacterType>()) {
|
|
if (fir::characterWithDynamicLen(charTy))
|
|
TODO(loc, "CHARACTER does not have constant LEN");
|
|
mlir::Value len = builder.createIntegerConstant(
|
|
loc, builder.getCharacterLengthType(), charTy.getLen());
|
|
return fir::CharArrayBoxValue(tempRes, len, dest.getExtents());
|
|
}
|
|
return fir::ArrayBoxValue(tempRes, dest.getExtents());
|
|
}
|
|
|
|
static void lowerLazyArrayExpression(
|
|
Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
|
|
const Fortran::lower::SomeExpr &expr, mlir::Value raggedHeader) {
|
|
ArrayExprLowering ael(converter, stmtCtx, symMap);
|
|
ael.lowerLazyArrayExpression(expr, raggedHeader);
|
|
}
|
|
|
|
/// Lower the expression \p expr into a buffer that is created on demand. The
|
|
/// variable containing the pointer to the buffer is \p var and the variable
|
|
/// containing the shape of the buffer is \p shapeBuffer.
|
|
void lowerLazyArrayExpression(const Fortran::lower::SomeExpr &expr,
|
|
mlir::Value header) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::TupleType hdrTy = fir::factory::getRaggedArrayHeaderType(builder);
|
|
mlir::IntegerType i32Ty = builder.getIntegerType(32);
|
|
|
|
// Once the loop extents have been computed, which may require being inside
|
|
// some explicit loops, lazily allocate the expression on the heap. The
|
|
// following continuation creates the buffer as needed.
|
|
ccPrelude = [=](llvm::ArrayRef<mlir::Value> shape) {
|
|
mlir::IntegerType i64Ty = builder.getIntegerType(64);
|
|
mlir::Value byteSize = builder.createIntegerConstant(loc, i64Ty, 1);
|
|
fir::runtime::genRaggedArrayAllocate(
|
|
loc, builder, header, /*asHeaders=*/false, byteSize, shape);
|
|
};
|
|
|
|
// Create a dummy array_load before the loop. We're storing to a lazy
|
|
// temporary, so there will be no conflict and no copy-in. TODO: skip this
|
|
// as there isn't any necessity for it.
|
|
ccLoadDest = [=](llvm::ArrayRef<mlir::Value> shape) -> fir::ArrayLoadOp {
|
|
mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1);
|
|
auto var = builder.create<fir::CoordinateOp>(
|
|
loc, builder.getRefType(hdrTy.getType(1)), header, one);
|
|
auto load = builder.create<fir::LoadOp>(loc, var);
|
|
mlir::Type eleTy =
|
|
fir::unwrapSequenceType(fir::unwrapRefType(load.getType()));
|
|
auto seqTy = fir::SequenceType::get(eleTy, shape.size());
|
|
mlir::Value castTo =
|
|
builder.createConvert(loc, fir::HeapType::get(seqTy), load);
|
|
mlir::Value shapeOp = builder.genShape(loc, shape);
|
|
return builder.create<fir::ArrayLoadOp>(
|
|
loc, seqTy, castTo, shapeOp, /*slice=*/mlir::Value{}, llvm::None);
|
|
};
|
|
// Custom lowering of the element store to deal with the extra indirection
|
|
// to the lazy allocated buffer.
|
|
ccStoreToDest = [=](IterSpace iters) {
|
|
mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1);
|
|
auto var = builder.create<fir::CoordinateOp>(
|
|
loc, builder.getRefType(hdrTy.getType(1)), header, one);
|
|
auto load = builder.create<fir::LoadOp>(loc, var);
|
|
mlir::Type eleTy =
|
|
fir::unwrapSequenceType(fir::unwrapRefType(load.getType()));
|
|
auto seqTy = fir::SequenceType::get(eleTy, iters.iterVec().size());
|
|
auto toTy = fir::HeapType::get(seqTy);
|
|
mlir::Value castTo = builder.createConvert(loc, toTy, load);
|
|
mlir::Value shape = builder.genShape(loc, genIterationShape());
|
|
llvm::SmallVector<mlir::Value> indices = fir::factory::originateIndices(
|
|
loc, builder, castTo.getType(), shape, iters.iterVec());
|
|
auto eleAddr = builder.create<fir::ArrayCoorOp>(
|
|
loc, builder.getRefType(eleTy), castTo, shape,
|
|
/*slice=*/mlir::Value{}, indices, destination.getTypeparams());
|
|
mlir::Value eleVal =
|
|
builder.createConvert(loc, eleTy, iters.getElement());
|
|
builder.create<fir::StoreOp>(loc, eleVal, eleAddr);
|
|
return iters.innerArgument();
|
|
};
|
|
|
|
// Lower the array expression now. Clean-up any temps that may have
|
|
// been generated when lowering `expr` right after the lowered value
|
|
// was stored to the ragged array temporary. The local temps will not
|
|
// be needed afterwards.
|
|
stmtCtx.pushScope();
|
|
[[maybe_unused]] ExtValue loopRes = lowerArrayExpression(expr);
|
|
stmtCtx.finalize(/*popScope=*/true);
|
|
assert(fir::getBase(loopRes));
|
|
}
|
|
|
|
static void
|
|
lowerElementalUserAssignment(Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::SymMap &symMap,
|
|
Fortran::lower::StatementContext &stmtCtx,
|
|
Fortran::lower::ExplicitIterSpace &explicitSpace,
|
|
Fortran::lower::ImplicitIterSpace &implicitSpace,
|
|
const Fortran::evaluate::ProcedureRef &procRef) {
|
|
ArrayExprLowering ael(converter, stmtCtx, symMap,
|
|
ConstituentSemantics::CustomCopyInCopyOut,
|
|
&explicitSpace, &implicitSpace);
|
|
assert(procRef.arguments().size() == 2);
|
|
const auto *lhs = procRef.arguments()[0].value().UnwrapExpr();
|
|
const auto *rhs = procRef.arguments()[1].value().UnwrapExpr();
|
|
assert(lhs && rhs &&
|
|
"user defined assignment arguments must be expressions");
|
|
mlir::FuncOp func =
|
|
Fortran::lower::CallerInterface(procRef, converter).getFuncOp();
|
|
ael.lowerElementalUserAssignment(func, *lhs, *rhs);
|
|
}
|
|
|
|
void lowerElementalUserAssignment(mlir::FuncOp userAssignment,
|
|
const Fortran::lower::SomeExpr &lhs,
|
|
const Fortran::lower::SomeExpr &rhs) {
|
|
mlir::Location loc = getLoc();
|
|
PushSemantics(ConstituentSemantics::CustomCopyInCopyOut);
|
|
auto genArrayModify = genarr(lhs);
|
|
ccStoreToDest = [=](IterSpace iters) -> ExtValue {
|
|
auto modifiedArray = genArrayModify(iters);
|
|
auto arrayModify = mlir::dyn_cast_or_null<fir::ArrayModifyOp>(
|
|
fir::getBase(modifiedArray).getDefiningOp());
|
|
assert(arrayModify && "must be created by ArrayModifyOp");
|
|
fir::ExtendedValue lhs =
|
|
arrayModifyToExv(builder, loc, destination, arrayModify.getResult(0));
|
|
genScalarUserDefinedAssignmentCall(builder, loc, userAssignment, lhs,
|
|
iters.elementExv());
|
|
return modifiedArray;
|
|
};
|
|
determineShapeOfDest(lhs);
|
|
semant = ConstituentSemantics::RefTransparent;
|
|
auto exv = lowerArrayExpression(rhs);
|
|
if (explicitSpaceIsActive()) {
|
|
explicitSpace->finalizeContext();
|
|
builder.create<fir::ResultOp>(loc, fir::getBase(exv));
|
|
} else {
|
|
builder.create<fir::ArrayMergeStoreOp>(
|
|
loc, destination, fir::getBase(exv), destination.getMemref(),
|
|
destination.getSlice(), destination.getTypeparams());
|
|
}
|
|
}
|
|
|
|
/// Lower an elemental subroutine call with at least one array argument.
|
|
/// An elemental subroutine is an exception and does not have copy-in/copy-out
|
|
/// semantics. See 15.8.3.
|
|
/// Do NOT use this for user defined assignments.
|
|
static void
|
|
lowerElementalSubroutine(Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::SymMap &symMap,
|
|
Fortran::lower::StatementContext &stmtCtx,
|
|
const Fortran::lower::SomeExpr &call) {
|
|
ArrayExprLowering ael(converter, stmtCtx, symMap,
|
|
ConstituentSemantics::RefTransparent);
|
|
ael.lowerElementalSubroutine(call);
|
|
}
|
|
|
|
// TODO: See the comment in genarr(const Fortran::lower::Parentheses<T>&).
|
|
// This is skipping generation of copy-in/copy-out code for analysis that is
|
|
// required when arguments are in parentheses.
|
|
void lowerElementalSubroutine(const Fortran::lower::SomeExpr &call) {
|
|
auto f = genarr(call);
|
|
llvm::SmallVector<mlir::Value> shape = genIterationShape();
|
|
auto [iterSpace, insPt] = genImplicitLoops(shape, /*innerArg=*/{});
|
|
f(iterSpace);
|
|
finalizeElementCtx();
|
|
builder.restoreInsertionPoint(insPt);
|
|
}
|
|
|
|
template <typename A, typename B>
|
|
ExtValue lowerScalarAssignment(const A &lhs, const B &rhs) {
|
|
// 1) Lower the rhs expression with array_fetch op(s).
|
|
IterationSpace iters;
|
|
iters.setElement(genarr(rhs)(iters));
|
|
fir::ExtendedValue elementalExv = iters.elementExv();
|
|
// 2) Lower the lhs expression to an array_update.
|
|
semant = ConstituentSemantics::ProjectedCopyInCopyOut;
|
|
auto lexv = genarr(lhs)(iters);
|
|
// 3) Finalize the inner context.
|
|
explicitSpace->finalizeContext();
|
|
// 4) Thread the array value updated forward. Note: the lhs might be
|
|
// ill-formed (performing scalar assignment in an array context),
|
|
// in which case there is no array to thread.
|
|
auto createResult = [&](auto op) {
|
|
mlir::Value oldInnerArg = op.getSequence();
|
|
std::size_t offset = explicitSpace->argPosition(oldInnerArg);
|
|
explicitSpace->setInnerArg(offset, fir::getBase(lexv));
|
|
builder.create<fir::ResultOp>(getLoc(), fir::getBase(lexv));
|
|
};
|
|
if (auto updateOp = mlir::dyn_cast<fir::ArrayUpdateOp>(
|
|
fir::getBase(lexv).getDefiningOp()))
|
|
createResult(updateOp);
|
|
else if (auto amend = mlir::dyn_cast<fir::ArrayAmendOp>(
|
|
fir::getBase(lexv).getDefiningOp()))
|
|
createResult(amend);
|
|
else if (auto modifyOp = mlir::dyn_cast<fir::ArrayModifyOp>(
|
|
fir::getBase(lexv).getDefiningOp()))
|
|
createResult(modifyOp);
|
|
return lexv;
|
|
}
|
|
|
|
static ExtValue lowerScalarUserAssignment(
|
|
Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
|
|
Fortran::lower::ExplicitIterSpace &explicitIterSpace,
|
|
mlir::FuncOp userAssignmentFunction, const Fortran::lower::SomeExpr &lhs,
|
|
const Fortran::lower::SomeExpr &rhs) {
|
|
Fortran::lower::ImplicitIterSpace implicit;
|
|
ArrayExprLowering ael(converter, stmtCtx, symMap,
|
|
ConstituentSemantics::RefTransparent,
|
|
&explicitIterSpace, &implicit);
|
|
return ael.lowerScalarUserAssignment(userAssignmentFunction, lhs, rhs);
|
|
}
|
|
|
|
ExtValue lowerScalarUserAssignment(mlir::FuncOp userAssignment,
|
|
const Fortran::lower::SomeExpr &lhs,
|
|
const Fortran::lower::SomeExpr &rhs) {
|
|
mlir::Location loc = getLoc();
|
|
if (rhs.Rank() > 0)
|
|
TODO(loc, "user-defined elemental assigment from expression with rank");
|
|
// 1) Lower the rhs expression with array_fetch op(s).
|
|
IterationSpace iters;
|
|
iters.setElement(genarr(rhs)(iters));
|
|
fir::ExtendedValue elementalExv = iters.elementExv();
|
|
// 2) Lower the lhs expression to an array_modify.
|
|
semant = ConstituentSemantics::CustomCopyInCopyOut;
|
|
auto lexv = genarr(lhs)(iters);
|
|
bool isIllFormedLHS = false;
|
|
// 3) Insert the call
|
|
if (auto modifyOp = mlir::dyn_cast<fir::ArrayModifyOp>(
|
|
fir::getBase(lexv).getDefiningOp())) {
|
|
mlir::Value oldInnerArg = modifyOp.getSequence();
|
|
std::size_t offset = explicitSpace->argPosition(oldInnerArg);
|
|
explicitSpace->setInnerArg(offset, fir::getBase(lexv));
|
|
fir::ExtendedValue exv = arrayModifyToExv(
|
|
builder, loc, explicitSpace->getLhsLoad(0).getValue(),
|
|
modifyOp.getResult(0));
|
|
genScalarUserDefinedAssignmentCall(builder, loc, userAssignment, exv,
|
|
elementalExv);
|
|
} else {
|
|
// LHS is ill formed, it is a scalar with no references to FORALL
|
|
// subscripts, so there is actually no array assignment here. The user
|
|
// code is probably bad, but still insert user assignment call since it
|
|
// was not rejected by semantics (a warning was emitted).
|
|
isIllFormedLHS = true;
|
|
genScalarUserDefinedAssignmentCall(builder, getLoc(), userAssignment,
|
|
lexv, elementalExv);
|
|
}
|
|
// 4) Finalize the inner context.
|
|
explicitSpace->finalizeContext();
|
|
// 5). Thread the array value updated forward.
|
|
if (!isIllFormedLHS)
|
|
builder.create<fir::ResultOp>(getLoc(), fir::getBase(lexv));
|
|
return lexv;
|
|
}
|
|
|
|
bool explicitSpaceIsActive() const {
|
|
return explicitSpace && explicitSpace->isActive();
|
|
}
|
|
|
|
bool implicitSpaceHasMasks() const {
|
|
return implicitSpace && !implicitSpace->empty();
|
|
}
|
|
|
|
CC genMaskAccess(mlir::Value tmp, mlir::Value shape) {
|
|
mlir::Location loc = getLoc();
|
|
return [=, builder = &converter.getFirOpBuilder()](IterSpace iters) {
|
|
mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(tmp.getType());
|
|
auto eleTy = arrTy.cast<fir::SequenceType>().getEleTy();
|
|
mlir::Type eleRefTy = builder->getRefType(eleTy);
|
|
mlir::IntegerType i1Ty = builder->getI1Type();
|
|
// Adjust indices for any shift of the origin of the array.
|
|
llvm::SmallVector<mlir::Value> indices = fir::factory::originateIndices(
|
|
loc, *builder, tmp.getType(), shape, iters.iterVec());
|
|
auto addr = builder->create<fir::ArrayCoorOp>(
|
|
loc, eleRefTy, tmp, shape, /*slice=*/mlir::Value{}, indices,
|
|
/*typeParams=*/llvm::None);
|
|
auto load = builder->create<fir::LoadOp>(loc, addr);
|
|
return builder->createConvert(loc, i1Ty, load);
|
|
};
|
|
}
|
|
|
|
/// Construct the incremental instantiations of the ragged array structure.
|
|
/// Rebind the lazy buffer variable, etc. as we go.
|
|
template <bool withAllocation = false>
|
|
mlir::Value prepareRaggedArrays(Fortran::lower::FrontEndExpr expr) {
|
|
assert(explicitSpaceIsActive());
|
|
mlir::Location loc = getLoc();
|
|
mlir::TupleType raggedTy = fir::factory::getRaggedArrayHeaderType(builder);
|
|
llvm::SmallVector<llvm::SmallVector<fir::DoLoopOp>> loopStack =
|
|
explicitSpace->getLoopStack();
|
|
const std::size_t depth = loopStack.size();
|
|
mlir::IntegerType i64Ty = builder.getIntegerType(64);
|
|
[[maybe_unused]] mlir::Value byteSize =
|
|
builder.createIntegerConstant(loc, i64Ty, 1);
|
|
mlir::Value header = implicitSpace->lookupMaskHeader(expr);
|
|
for (std::remove_const_t<decltype(depth)> i = 0; i < depth; ++i) {
|
|
auto insPt = builder.saveInsertionPoint();
|
|
if (i < depth - 1)
|
|
builder.setInsertionPoint(loopStack[i + 1][0]);
|
|
|
|
// Compute and gather the extents.
|
|
llvm::SmallVector<mlir::Value> extents;
|
|
for (auto doLoop : loopStack[i])
|
|
extents.push_back(builder.genExtentFromTriplet(
|
|
loc, doLoop.getLowerBound(), doLoop.getUpperBound(),
|
|
doLoop.getStep(), i64Ty));
|
|
if constexpr (withAllocation) {
|
|
fir::runtime::genRaggedArrayAllocate(
|
|
loc, builder, header, /*asHeader=*/true, byteSize, extents);
|
|
}
|
|
|
|
// Compute the dynamic position into the header.
|
|
llvm::SmallVector<mlir::Value> offsets;
|
|
for (auto doLoop : loopStack[i]) {
|
|
auto m = builder.create<mlir::arith::SubIOp>(
|
|
loc, doLoop.getInductionVar(), doLoop.getLowerBound());
|
|
auto n = builder.create<mlir::arith::DivSIOp>(loc, m, doLoop.getStep());
|
|
mlir::Value one = builder.createIntegerConstant(loc, n.getType(), 1);
|
|
offsets.push_back(builder.create<mlir::arith::AddIOp>(loc, n, one));
|
|
}
|
|
mlir::IntegerType i32Ty = builder.getIntegerType(32);
|
|
mlir::Value uno = builder.createIntegerConstant(loc, i32Ty, 1);
|
|
mlir::Type coorTy = builder.getRefType(raggedTy.getType(1));
|
|
auto hdOff = builder.create<fir::CoordinateOp>(loc, coorTy, header, uno);
|
|
auto toTy = fir::SequenceType::get(raggedTy, offsets.size());
|
|
mlir::Type toRefTy = builder.getRefType(toTy);
|
|
auto ldHdr = builder.create<fir::LoadOp>(loc, hdOff);
|
|
mlir::Value hdArr = builder.createConvert(loc, toRefTy, ldHdr);
|
|
auto shapeOp = builder.genShape(loc, extents);
|
|
header = builder.create<fir::ArrayCoorOp>(
|
|
loc, builder.getRefType(raggedTy), hdArr, shapeOp,
|
|
/*slice=*/mlir::Value{}, offsets,
|
|
/*typeparams=*/mlir::ValueRange{});
|
|
auto hdrVar = builder.create<fir::CoordinateOp>(loc, coorTy, header, uno);
|
|
auto inVar = builder.create<fir::LoadOp>(loc, hdrVar);
|
|
mlir::Value two = builder.createIntegerConstant(loc, i32Ty, 2);
|
|
mlir::Type coorTy2 = builder.getRefType(raggedTy.getType(2));
|
|
auto hdrSh = builder.create<fir::CoordinateOp>(loc, coorTy2, header, two);
|
|
auto shapePtr = builder.create<fir::LoadOp>(loc, hdrSh);
|
|
// Replace the binding.
|
|
implicitSpace->rebind(expr, genMaskAccess(inVar, shapePtr));
|
|
if (i < depth - 1)
|
|
builder.restoreInsertionPoint(insPt);
|
|
}
|
|
return header;
|
|
}
|
|
|
|
/// Lower mask expressions with implied iteration spaces from the variants of
|
|
/// WHERE syntax. Since it is legal for mask expressions to have side-effects
|
|
/// and modify values that will be used for the lhs, rhs, or both of
|
|
/// subsequent assignments, the mask must be evaluated before the assignment
|
|
/// is processed.
|
|
/// Mask expressions are array expressions too.
|
|
void genMasks() {
|
|
// Lower the mask expressions, if any.
|
|
if (implicitSpaceHasMasks()) {
|
|
mlir::Location loc = getLoc();
|
|
// Mask expressions are array expressions too.
|
|
for (const auto *e : implicitSpace->getExprs())
|
|
if (e && !implicitSpace->isLowered(e)) {
|
|
if (mlir::Value var = implicitSpace->lookupMaskVariable(e)) {
|
|
// Allocate the mask buffer lazily.
|
|
assert(explicitSpaceIsActive());
|
|
mlir::Value header =
|
|
prepareRaggedArrays</*withAllocations=*/true>(e);
|
|
Fortran::lower::createLazyArrayTempValue(converter, *e, header,
|
|
symMap, stmtCtx);
|
|
// Close the explicit loops.
|
|
builder.create<fir::ResultOp>(loc, explicitSpace->getInnerArgs());
|
|
builder.setInsertionPointAfter(explicitSpace->getOuterLoop());
|
|
// Open a new copy of the explicit loop nest.
|
|
explicitSpace->genLoopNest();
|
|
continue;
|
|
}
|
|
fir::ExtendedValue tmp = Fortran::lower::createSomeArrayTempValue(
|
|
converter, *e, symMap, stmtCtx);
|
|
mlir::Value shape = builder.createShape(loc, tmp);
|
|
implicitSpace->bind(e, genMaskAccess(fir::getBase(tmp), shape));
|
|
}
|
|
|
|
// Set buffer from the header.
|
|
for (const auto *e : implicitSpace->getExprs()) {
|
|
if (!e)
|
|
continue;
|
|
if (implicitSpace->lookupMaskVariable(e)) {
|
|
// Index into the ragged buffer to retrieve cached results.
|
|
const int rank = e->Rank();
|
|
assert(destShape.empty() ||
|
|
static_cast<std::size_t>(rank) == destShape.size());
|
|
mlir::Value header = prepareRaggedArrays(e);
|
|
mlir::TupleType raggedTy =
|
|
fir::factory::getRaggedArrayHeaderType(builder);
|
|
mlir::IntegerType i32Ty = builder.getIntegerType(32);
|
|
mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1);
|
|
auto coor1 = builder.create<fir::CoordinateOp>(
|
|
loc, builder.getRefType(raggedTy.getType(1)), header, one);
|
|
auto db = builder.create<fir::LoadOp>(loc, coor1);
|
|
mlir::Type eleTy =
|
|
fir::unwrapSequenceType(fir::unwrapRefType(db.getType()));
|
|
mlir::Type buffTy =
|
|
builder.getRefType(fir::SequenceType::get(eleTy, rank));
|
|
// Address of ragged buffer data.
|
|
mlir::Value buff = builder.createConvert(loc, buffTy, db);
|
|
|
|
mlir::Value two = builder.createIntegerConstant(loc, i32Ty, 2);
|
|
auto coor2 = builder.create<fir::CoordinateOp>(
|
|
loc, builder.getRefType(raggedTy.getType(2)), header, two);
|
|
auto shBuff = builder.create<fir::LoadOp>(loc, coor2);
|
|
mlir::IntegerType i64Ty = builder.getIntegerType(64);
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
llvm::SmallVector<mlir::Value> extents;
|
|
for (std::remove_const_t<decltype(rank)> i = 0; i < rank; ++i) {
|
|
mlir::Value off = builder.createIntegerConstant(loc, i32Ty, i);
|
|
auto coor = builder.create<fir::CoordinateOp>(
|
|
loc, builder.getRefType(i64Ty), shBuff, off);
|
|
auto ldExt = builder.create<fir::LoadOp>(loc, coor);
|
|
extents.push_back(builder.createConvert(loc, idxTy, ldExt));
|
|
}
|
|
if (destShape.empty())
|
|
destShape = extents;
|
|
// Construct shape of buffer.
|
|
mlir::Value shapeOp = builder.genShape(loc, extents);
|
|
|
|
// Replace binding with the local result.
|
|
implicitSpace->rebind(e, genMaskAccess(buff, shapeOp));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// FIXME: should take multiple inner arguments.
|
|
std::pair<IterationSpace, mlir::OpBuilder::InsertPoint>
|
|
genImplicitLoops(mlir::ValueRange shape, mlir::Value innerArg) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
|
|
mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0);
|
|
llvm::SmallVector<mlir::Value> loopUppers;
|
|
|
|
// Convert any implied shape to closed interval form. The fir.do_loop will
|
|
// run from 0 to `extent - 1` inclusive.
|
|
for (auto extent : shape)
|
|
loopUppers.push_back(
|
|
builder.create<mlir::arith::SubIOp>(loc, extent, one));
|
|
|
|
// Iteration space is created with outermost columns, innermost rows
|
|
llvm::SmallVector<fir::DoLoopOp> loops;
|
|
|
|
const std::size_t loopDepth = loopUppers.size();
|
|
llvm::SmallVector<mlir::Value> ivars;
|
|
|
|
for (auto i : llvm::enumerate(llvm::reverse(loopUppers))) {
|
|
if (i.index() > 0) {
|
|
assert(!loops.empty());
|
|
builder.setInsertionPointToStart(loops.back().getBody());
|
|
}
|
|
fir::DoLoopOp loop;
|
|
if (innerArg) {
|
|
loop = builder.create<fir::DoLoopOp>(
|
|
loc, zero, i.value(), one, isUnordered(),
|
|
/*finalCount=*/false, mlir::ValueRange{innerArg});
|
|
innerArg = loop.getRegionIterArgs().front();
|
|
if (explicitSpaceIsActive())
|
|
explicitSpace->setInnerArg(0, innerArg);
|
|
} else {
|
|
loop = builder.create<fir::DoLoopOp>(loc, zero, i.value(), one,
|
|
isUnordered(),
|
|
/*finalCount=*/false);
|
|
}
|
|
ivars.push_back(loop.getInductionVar());
|
|
loops.push_back(loop);
|
|
}
|
|
|
|
if (innerArg)
|
|
for (std::remove_const_t<decltype(loopDepth)> i = 0; i + 1 < loopDepth;
|
|
++i) {
|
|
builder.setInsertionPointToEnd(loops[i].getBody());
|
|
builder.create<fir::ResultOp>(loc, loops[i + 1].getResult(0));
|
|
}
|
|
|
|
// Move insertion point to the start of the innermost loop in the nest.
|
|
builder.setInsertionPointToStart(loops.back().getBody());
|
|
// Set `afterLoopNest` to just after the entire loop nest.
|
|
auto currPt = builder.saveInsertionPoint();
|
|
builder.setInsertionPointAfter(loops[0]);
|
|
auto afterLoopNest = builder.saveInsertionPoint();
|
|
builder.restoreInsertionPoint(currPt);
|
|
|
|
// Put the implicit loop variables in row to column order to match FIR's
|
|
// Ops. (The loops were constructed from outermost column to innermost
|
|
// row.)
|
|
mlir::Value outerRes = loops[0].getResult(0);
|
|
return {IterationSpace(innerArg, outerRes, llvm::reverse(ivars)),
|
|
afterLoopNest};
|
|
}
|
|
|
|
/// Build the iteration space into which the array expression will be
|
|
/// lowered. The resultType is used to create a temporary, if needed.
|
|
std::pair<IterationSpace, mlir::OpBuilder::InsertPoint>
|
|
genIterSpace(mlir::Type resultType) {
|
|
mlir::Location loc = getLoc();
|
|
llvm::SmallVector<mlir::Value> shape = genIterationShape();
|
|
if (!destination) {
|
|
// Allocate storage for the result if it is not already provided.
|
|
destination = createAndLoadSomeArrayTemp(resultType, shape);
|
|
}
|
|
|
|
// Generate the lazy mask allocation, if one was given.
|
|
if (ccPrelude.hasValue())
|
|
ccPrelude.getValue()(shape);
|
|
|
|
// Now handle the implicit loops.
|
|
mlir::Value inner = explicitSpaceIsActive()
|
|
? explicitSpace->getInnerArgs().front()
|
|
: destination.getResult();
|
|
auto [iters, afterLoopNest] = genImplicitLoops(shape, inner);
|
|
mlir::Value innerArg = iters.innerArgument();
|
|
|
|
// Generate the mask conditional structure, if there are masks. Unlike the
|
|
// explicit masks, which are interleaved, these mask expression appear in
|
|
// the innermost loop.
|
|
if (implicitSpaceHasMasks()) {
|
|
// Recover the cached condition from the mask buffer.
|
|
auto genCond = [&](Fortran::lower::FrontEndExpr e, IterSpace iters) {
|
|
return implicitSpace->getBoundClosure(e)(iters);
|
|
};
|
|
|
|
// Handle the negated conditions in topological order of the WHERE
|
|
// clauses. See 10.2.3.2p4 as to why this control structure is produced.
|
|
for (llvm::SmallVector<Fortran::lower::FrontEndExpr> maskExprs :
|
|
implicitSpace->getMasks()) {
|
|
const std::size_t size = maskExprs.size() - 1;
|
|
auto genFalseBlock = [&](const auto *e, auto &&cond) {
|
|
auto ifOp = builder.create<fir::IfOp>(
|
|
loc, mlir::TypeRange{innerArg.getType()}, fir::getBase(cond),
|
|
/*withElseRegion=*/true);
|
|
builder.create<fir::ResultOp>(loc, ifOp.getResult(0));
|
|
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
|
|
builder.create<fir::ResultOp>(loc, innerArg);
|
|
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
|
|
};
|
|
auto genTrueBlock = [&](const auto *e, auto &&cond) {
|
|
auto ifOp = builder.create<fir::IfOp>(
|
|
loc, mlir::TypeRange{innerArg.getType()}, fir::getBase(cond),
|
|
/*withElseRegion=*/true);
|
|
builder.create<fir::ResultOp>(loc, ifOp.getResult(0));
|
|
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
|
|
builder.create<fir::ResultOp>(loc, innerArg);
|
|
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
|
|
};
|
|
for (std::size_t i = 0; i < size; ++i)
|
|
if (const auto *e = maskExprs[i])
|
|
genFalseBlock(e, genCond(e, iters));
|
|
|
|
// The last condition is either non-negated or unconditionally negated.
|
|
if (const auto *e = maskExprs[size])
|
|
genTrueBlock(e, genCond(e, iters));
|
|
}
|
|
}
|
|
|
|
// We're ready to lower the body (an assignment statement) for this context
|
|
// of loop nests at this point.
|
|
return {iters, afterLoopNest};
|
|
}
|
|
|
|
fir::ArrayLoadOp
|
|
createAndLoadSomeArrayTemp(mlir::Type type,
|
|
llvm::ArrayRef<mlir::Value> shape) {
|
|
if (ccLoadDest.hasValue())
|
|
return ccLoadDest.getValue()(shape);
|
|
auto seqTy = type.dyn_cast<fir::SequenceType>();
|
|
assert(seqTy && "must be an array");
|
|
mlir::Location loc = getLoc();
|
|
// TODO: Need to thread the length parameters here. For character, they may
|
|
// differ from the operands length (e.g concatenation). So the array loads
|
|
// type parameters are not enough.
|
|
if (auto charTy = seqTy.getEleTy().dyn_cast<fir::CharacterType>())
|
|
if (charTy.hasDynamicLen())
|
|
TODO(loc, "character array expression temp with dynamic length");
|
|
if (auto recTy = seqTy.getEleTy().dyn_cast<fir::RecordType>())
|
|
if (recTy.getNumLenParams() > 0)
|
|
TODO(loc, "derived type array expression temp with length parameters");
|
|
mlir::Value temp = seqTy.hasConstantShape()
|
|
? builder.create<fir::AllocMemOp>(loc, type)
|
|
: builder.create<fir::AllocMemOp>(
|
|
loc, type, ".array.expr", llvm::None, shape);
|
|
fir::FirOpBuilder *bldr = &converter.getFirOpBuilder();
|
|
stmtCtx.attachCleanup(
|
|
[bldr, loc, temp]() { bldr->create<fir::FreeMemOp>(loc, temp); });
|
|
mlir::Value shapeOp = genShapeOp(shape);
|
|
return builder.create<fir::ArrayLoadOp>(loc, seqTy, temp, shapeOp,
|
|
/*slice=*/mlir::Value{},
|
|
llvm::None);
|
|
}
|
|
|
|
static fir::ShapeOp genShapeOp(mlir::Location loc, fir::FirOpBuilder &builder,
|
|
llvm::ArrayRef<mlir::Value> shape) {
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
llvm::SmallVector<mlir::Value> idxShape;
|
|
for (auto s : shape)
|
|
idxShape.push_back(builder.createConvert(loc, idxTy, s));
|
|
auto shapeTy = fir::ShapeType::get(builder.getContext(), idxShape.size());
|
|
return builder.create<fir::ShapeOp>(loc, shapeTy, idxShape);
|
|
}
|
|
|
|
fir::ShapeOp genShapeOp(llvm::ArrayRef<mlir::Value> shape) {
|
|
return genShapeOp(getLoc(), builder, shape);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Expression traversal and lowering.
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Lower the expression, \p x, in a scalar context.
|
|
template <typename A>
|
|
ExtValue asScalar(const A &x) {
|
|
return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx}.genval(x);
|
|
}
|
|
|
|
/// Lower the expression, \p x, in a scalar context. If this is an explicit
|
|
/// space, the expression may be scalar and refer to an array. We want to
|
|
/// raise the array access to array operations in FIR to analyze potential
|
|
/// conflicts even when the result is a scalar element.
|
|
template <typename A>
|
|
ExtValue asScalarArray(const A &x) {
|
|
return explicitSpaceIsActive() ? genarr(x)(IterationSpace{}) : asScalar(x);
|
|
}
|
|
|
|
/// Lower the expression in a scalar context to a memory reference.
|
|
template <typename A>
|
|
ExtValue asScalarRef(const A &x) {
|
|
return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx}.gen(x);
|
|
}
|
|
|
|
/// Lower an expression without dereferencing any indirection that may be
|
|
/// a nullptr (because this is an absent optional or unallocated/disassociated
|
|
/// descriptor). The returned expression cannot be addressed directly, it is
|
|
/// meant to inquire about its status before addressing the related entity.
|
|
template <typename A>
|
|
ExtValue asInquired(const A &x) {
|
|
return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx}
|
|
.lowerIntrinsicArgumentAsInquired(x);
|
|
}
|
|
|
|
// An expression with non-zero rank is an array expression.
|
|
template <typename A>
|
|
bool isArray(const A &x) const {
|
|
return x.Rank() != 0;
|
|
}
|
|
|
|
/// Some temporaries are allocated on an element-by-element basis during the
|
|
/// array expression evaluation. Collect the cleanups here so the resources
|
|
/// can be freed before the next loop iteration, avoiding memory leaks. etc.
|
|
Fortran::lower::StatementContext &getElementCtx() {
|
|
if (!elementCtx) {
|
|
stmtCtx.pushScope();
|
|
elementCtx = true;
|
|
}
|
|
return stmtCtx;
|
|
}
|
|
|
|
/// If there were temporaries created for this element evaluation, finalize
|
|
/// and deallocate the resources now. This should be done just prior the the
|
|
/// fir::ResultOp at the end of the innermost loop.
|
|
void finalizeElementCtx() {
|
|
if (elementCtx) {
|
|
stmtCtx.finalize(/*popScope=*/true);
|
|
elementCtx = false;
|
|
}
|
|
}
|
|
|
|
/// Lower an elemental function array argument. This ensures array
|
|
/// sub-expressions that are not variables and must be passed by address
|
|
/// are lowered by value and placed in memory.
|
|
template <typename A>
|
|
CC genElementalArgument(const A &x) {
|
|
// Ensure the returned element is in memory if this is what was requested.
|
|
if ((semant == ConstituentSemantics::RefOpaque ||
|
|
semant == ConstituentSemantics::DataAddr ||
|
|
semant == ConstituentSemantics::ByValueArg)) {
|
|
if (!Fortran::evaluate::IsVariable(x)) {
|
|
PushSemantics(ConstituentSemantics::DataValue);
|
|
CC cc = genarr(x);
|
|
mlir::Location loc = getLoc();
|
|
if (isParenthesizedVariable(x)) {
|
|
// Parenthesised variables are lowered to a reference to the variable
|
|
// storage. When passing it as an argument, a copy must be passed.
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
return createInMemoryScalarCopy(builder, loc, cc(iters));
|
|
};
|
|
}
|
|
mlir::Type storageType =
|
|
fir::unwrapSequenceType(converter.genType(toEvExpr(x)));
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
return placeScalarValueInMemory(builder, loc, cc(iters), storageType);
|
|
};
|
|
}
|
|
}
|
|
return genarr(x);
|
|
}
|
|
|
|
// A procedure reference to a Fortran elemental intrinsic procedure.
|
|
CC genElementalIntrinsicProcRef(
|
|
const Fortran::evaluate::ProcedureRef &procRef,
|
|
llvm::Optional<mlir::Type> retTy,
|
|
const Fortran::evaluate::SpecificIntrinsic &intrinsic) {
|
|
llvm::SmallVector<CC> operands;
|
|
llvm::StringRef name = intrinsic.name;
|
|
const Fortran::lower::IntrinsicArgumentLoweringRules *argLowering =
|
|
Fortran::lower::getIntrinsicArgumentLowering(name);
|
|
mlir::Location loc = getLoc();
|
|
if (Fortran::lower::intrinsicRequiresCustomOptionalHandling(
|
|
procRef, intrinsic, converter)) {
|
|
using CcPairT = std::pair<CC, llvm::Optional<mlir::Value>>;
|
|
llvm::SmallVector<CcPairT> operands;
|
|
auto prepareOptionalArg = [&](const Fortran::lower::SomeExpr &expr) {
|
|
if (expr.Rank() == 0) {
|
|
ExtValue optionalArg = this->asInquired(expr);
|
|
mlir::Value isPresent =
|
|
genActualIsPresentTest(builder, loc, optionalArg);
|
|
operands.emplace_back(
|
|
[=](IterSpace iters) -> ExtValue {
|
|
return genLoad(builder, loc, optionalArg);
|
|
},
|
|
isPresent);
|
|
} else {
|
|
auto [cc, isPresent, _] = this->genOptionalArrayFetch(expr);
|
|
operands.emplace_back(cc, isPresent);
|
|
}
|
|
};
|
|
auto prepareOtherArg = [&](const Fortran::lower::SomeExpr &expr) {
|
|
PushSemantics(ConstituentSemantics::RefTransparent);
|
|
operands.emplace_back(genElementalArgument(expr), llvm::None);
|
|
};
|
|
Fortran::lower::prepareCustomIntrinsicArgument(
|
|
procRef, intrinsic, retTy, prepareOptionalArg, prepareOtherArg,
|
|
converter);
|
|
|
|
fir::FirOpBuilder *bldr = &converter.getFirOpBuilder();
|
|
llvm::StringRef name = intrinsic.name;
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
auto getArgument = [&](std::size_t i) -> ExtValue {
|
|
return operands[i].first(iters);
|
|
};
|
|
auto isPresent = [&](std::size_t i) -> llvm::Optional<mlir::Value> {
|
|
return operands[i].second;
|
|
};
|
|
return Fortran::lower::lowerCustomIntrinsic(
|
|
*bldr, loc, name, retTy, isPresent, getArgument, operands.size(),
|
|
getElementCtx());
|
|
};
|
|
}
|
|
/// Otherwise, pre-lower arguments and use intrinsic lowering utility.
|
|
for (const auto &[arg, dummy] :
|
|
llvm::zip(procRef.arguments(),
|
|
intrinsic.characteristics.value().dummyArguments)) {
|
|
const auto *expr =
|
|
Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(arg);
|
|
if (!expr) {
|
|
// Absent optional.
|
|
operands.emplace_back([=](IterSpace) { return mlir::Value{}; });
|
|
} else if (!argLowering) {
|
|
// No argument lowering instruction, lower by value.
|
|
PushSemantics(ConstituentSemantics::RefTransparent);
|
|
operands.emplace_back(genElementalArgument(*expr));
|
|
} else {
|
|
// Ad-hoc argument lowering handling.
|
|
Fortran::lower::ArgLoweringRule argRules =
|
|
Fortran::lower::lowerIntrinsicArgumentAs(getLoc(), *argLowering,
|
|
dummy.name);
|
|
if (argRules.handleDynamicOptional &&
|
|
Fortran::evaluate::MayBePassedAsAbsentOptional(
|
|
*expr, converter.getFoldingContext())) {
|
|
// Currently, there is not elemental intrinsic that requires lowering
|
|
// a potentially absent argument to something else than a value (apart
|
|
// from character MAX/MIN that are handled elsewhere.)
|
|
if (argRules.lowerAs != Fortran::lower::LowerIntrinsicArgAs::Value)
|
|
TODO(loc, "lowering non trivial optional elemental intrinsic array "
|
|
"argument");
|
|
PushSemantics(ConstituentSemantics::RefTransparent);
|
|
operands.emplace_back(genarrForwardOptionalArgumentToCall(*expr));
|
|
continue;
|
|
}
|
|
switch (argRules.lowerAs) {
|
|
case Fortran::lower::LowerIntrinsicArgAs::Value: {
|
|
PushSemantics(ConstituentSemantics::RefTransparent);
|
|
operands.emplace_back(genElementalArgument(*expr));
|
|
} break;
|
|
case Fortran::lower::LowerIntrinsicArgAs::Addr: {
|
|
// Note: assume does not have Fortran VALUE attribute semantics.
|
|
PushSemantics(ConstituentSemantics::RefOpaque);
|
|
operands.emplace_back(genElementalArgument(*expr));
|
|
} break;
|
|
case Fortran::lower::LowerIntrinsicArgAs::Box: {
|
|
PushSemantics(ConstituentSemantics::RefOpaque);
|
|
auto lambda = genElementalArgument(*expr);
|
|
operands.emplace_back([=](IterSpace iters) {
|
|
return builder.createBox(loc, lambda(iters));
|
|
});
|
|
} break;
|
|
case Fortran::lower::LowerIntrinsicArgAs::Inquired:
|
|
TODO(loc, "intrinsic function with inquired argument");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Let the intrinsic library lower the intrinsic procedure call
|
|
return [=](IterSpace iters) {
|
|
llvm::SmallVector<ExtValue> args;
|
|
for (const auto &cc : operands)
|
|
args.push_back(cc(iters));
|
|
return Fortran::lower::genIntrinsicCall(builder, loc, name, retTy, args,
|
|
getElementCtx());
|
|
};
|
|
}
|
|
|
|
/// Lower a procedure reference to a user-defined elemental procedure.
|
|
CC genElementalUserDefinedProcRef(
|
|
const Fortran::evaluate::ProcedureRef &procRef,
|
|
llvm::Optional<mlir::Type> retTy) {
|
|
using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
|
|
|
|
// 10.1.4 p5. Impure elemental procedures must be called in element order.
|
|
if (const Fortran::semantics::Symbol *procSym = procRef.proc().GetSymbol())
|
|
if (!Fortran::semantics::IsPureProcedure(*procSym))
|
|
setUnordered(false);
|
|
|
|
Fortran::lower::CallerInterface caller(procRef, converter);
|
|
llvm::SmallVector<CC> operands;
|
|
operands.reserve(caller.getPassedArguments().size());
|
|
mlir::Location loc = getLoc();
|
|
mlir::FunctionType callSiteType = caller.genFunctionType();
|
|
for (const Fortran::lower::CallInterface<
|
|
Fortran::lower::CallerInterface>::PassedEntity &arg :
|
|
caller.getPassedArguments()) {
|
|
// 15.8.3 p1. Elemental procedure with intent(out)/intent(inout)
|
|
// arguments must be called in element order.
|
|
if (arg.mayBeModifiedByCall())
|
|
setUnordered(false);
|
|
const auto *actual = arg.entity;
|
|
mlir::Type argTy = callSiteType.getInput(arg.firArgument);
|
|
if (!actual) {
|
|
// Optional dummy argument for which there is no actual argument.
|
|
auto absent = builder.create<fir::AbsentOp>(loc, argTy);
|
|
operands.emplace_back([=](IterSpace) { return absent; });
|
|
continue;
|
|
}
|
|
const auto *expr = actual->UnwrapExpr();
|
|
if (!expr)
|
|
TODO(loc, "assumed type actual argument lowering");
|
|
|
|
LLVM_DEBUG(expr->AsFortran(llvm::dbgs()
|
|
<< "argument: " << arg.firArgument << " = [")
|
|
<< "]\n");
|
|
if (arg.isOptional() && Fortran::evaluate::MayBePassedAsAbsentOptional(
|
|
*expr, converter.getFoldingContext()))
|
|
TODO(loc,
|
|
"passing dynamically optional argument to elemental procedures");
|
|
switch (arg.passBy) {
|
|
case PassBy::Value: {
|
|
// True pass-by-value semantics.
|
|
PushSemantics(ConstituentSemantics::RefTransparent);
|
|
operands.emplace_back(genElementalArgument(*expr));
|
|
} break;
|
|
case PassBy::BaseAddressValueAttribute: {
|
|
// VALUE attribute or pass-by-reference to a copy semantics. (byval*)
|
|
if (isArray(*expr)) {
|
|
PushSemantics(ConstituentSemantics::ByValueArg);
|
|
operands.emplace_back(genElementalArgument(*expr));
|
|
} else {
|
|
// Store scalar value in a temp to fulfill VALUE attribute.
|
|
mlir::Value val = fir::getBase(asScalar(*expr));
|
|
mlir::Value temp = builder.createTemporary(
|
|
loc, val.getType(),
|
|
llvm::ArrayRef<mlir::NamedAttribute>{
|
|
Fortran::lower::getAdaptToByRefAttr(builder)});
|
|
builder.create<fir::StoreOp>(loc, val, temp);
|
|
operands.emplace_back(
|
|
[=](IterSpace iters) -> ExtValue { return temp; });
|
|
}
|
|
} break;
|
|
case PassBy::BaseAddress: {
|
|
if (isArray(*expr)) {
|
|
PushSemantics(ConstituentSemantics::RefOpaque);
|
|
operands.emplace_back(genElementalArgument(*expr));
|
|
} else {
|
|
ExtValue exv = asScalarRef(*expr);
|
|
operands.emplace_back([=](IterSpace iters) { return exv; });
|
|
}
|
|
} break;
|
|
case PassBy::CharBoxValueAttribute: {
|
|
if (isArray(*expr)) {
|
|
PushSemantics(ConstituentSemantics::DataValue);
|
|
auto lambda = genElementalArgument(*expr);
|
|
operands.emplace_back([=](IterSpace iters) {
|
|
return fir::factory::CharacterExprHelper{builder, loc}
|
|
.createTempFrom(lambda(iters));
|
|
});
|
|
} else {
|
|
fir::factory::CharacterExprHelper helper(builder, loc);
|
|
fir::CharBoxValue argVal = helper.createTempFrom(asScalarRef(*expr));
|
|
operands.emplace_back(
|
|
[=](IterSpace iters) -> ExtValue { return argVal; });
|
|
}
|
|
} break;
|
|
case PassBy::BoxChar: {
|
|
PushSemantics(ConstituentSemantics::RefOpaque);
|
|
operands.emplace_back(genElementalArgument(*expr));
|
|
} break;
|
|
case PassBy::AddressAndLength:
|
|
// PassBy::AddressAndLength is only used for character results. Results
|
|
// are not handled here.
|
|
fir::emitFatalError(
|
|
loc, "unexpected PassBy::AddressAndLength in elemental call");
|
|
break;
|
|
case PassBy::CharProcTuple: {
|
|
ExtValue argRef = asScalarRef(*expr);
|
|
mlir::Value tuple = createBoxProcCharTuple(
|
|
converter, argTy, fir::getBase(argRef), fir::getLen(argRef));
|
|
operands.emplace_back(
|
|
[=](IterSpace iters) -> ExtValue { return tuple; });
|
|
} break;
|
|
case PassBy::Box:
|
|
case PassBy::MutableBox:
|
|
// See C15100 and C15101
|
|
fir::emitFatalError(loc, "cannot be POINTER, ALLOCATABLE");
|
|
}
|
|
}
|
|
|
|
if (caller.getIfIndirectCallSymbol())
|
|
fir::emitFatalError(loc, "cannot be indirect call");
|
|
|
|
// The lambda is mutable so that `caller` copy can be modified inside it.
|
|
return
|
|
[=, caller = std::move(caller)](IterSpace iters) mutable -> ExtValue {
|
|
for (const auto &[cc, argIface] :
|
|
llvm::zip(operands, caller.getPassedArguments())) {
|
|
auto exv = cc(iters);
|
|
auto arg = exv.match(
|
|
[&](const fir::CharBoxValue &cb) -> mlir::Value {
|
|
return fir::factory::CharacterExprHelper{builder, loc}
|
|
.createEmbox(cb);
|
|
},
|
|
[&](const auto &) { return fir::getBase(exv); });
|
|
caller.placeInput(argIface, arg);
|
|
}
|
|
return ScalarExprLowering{loc, converter, symMap, getElementCtx()}
|
|
.genCallOpAndResult(caller, callSiteType, retTy);
|
|
};
|
|
}
|
|
|
|
/// Generate a procedure reference. This code is shared for both functions and
|
|
/// subroutines, the difference being reflected by `retTy`.
|
|
CC genProcRef(const Fortran::evaluate::ProcedureRef &procRef,
|
|
llvm::Optional<mlir::Type> retTy) {
|
|
mlir::Location loc = getLoc();
|
|
if (procRef.IsElemental()) {
|
|
if (const Fortran::evaluate::SpecificIntrinsic *intrin =
|
|
procRef.proc().GetSpecificIntrinsic()) {
|
|
// All elemental intrinsic functions are pure and cannot modify their
|
|
// arguments. The only elemental subroutine, MVBITS has an Intent(inout)
|
|
// argument. So for this last one, loops must be in element order
|
|
// according to 15.8.3 p1.
|
|
if (!retTy)
|
|
setUnordered(false);
|
|
|
|
// Elemental intrinsic call.
|
|
// The intrinsic procedure is called once per element of the array.
|
|
return genElementalIntrinsicProcRef(procRef, retTy, *intrin);
|
|
}
|
|
if (ScalarExprLowering::isStatementFunctionCall(procRef))
|
|
fir::emitFatalError(loc, "statement function cannot be elemental");
|
|
|
|
// Elemental call.
|
|
// The procedure is called once per element of the array argument(s).
|
|
return genElementalUserDefinedProcRef(procRef, retTy);
|
|
}
|
|
|
|
// Transformational call.
|
|
// The procedure is called once and produces a value of rank > 0.
|
|
if (const Fortran::evaluate::SpecificIntrinsic *intrinsic =
|
|
procRef.proc().GetSpecificIntrinsic()) {
|
|
if (explicitSpaceIsActive() && procRef.Rank() == 0) {
|
|
// Elide any implicit loop iters.
|
|
return [=, &procRef](IterSpace) {
|
|
return ScalarExprLowering{loc, converter, symMap, stmtCtx}
|
|
.genIntrinsicRef(procRef, *intrinsic, retTy);
|
|
};
|
|
}
|
|
return genarr(
|
|
ScalarExprLowering{loc, converter, symMap, stmtCtx}.genIntrinsicRef(
|
|
procRef, *intrinsic, retTy));
|
|
}
|
|
|
|
if (explicitSpaceIsActive() && procRef.Rank() == 0) {
|
|
// Elide any implicit loop iters.
|
|
return [=, &procRef](IterSpace) {
|
|
return ScalarExprLowering{loc, converter, symMap, stmtCtx}
|
|
.genProcedureRef(procRef, retTy);
|
|
};
|
|
}
|
|
// In the default case, the call can be hoisted out of the loop nest. Apply
|
|
// the iterations to the result, which may be an array value.
|
|
return genarr(
|
|
ScalarExprLowering{loc, converter, symMap, stmtCtx}.genProcedureRef(
|
|
procRef, retTy));
|
|
}
|
|
|
|
template <typename A>
|
|
CC genScalarAndForwardValue(const A &x) {
|
|
ExtValue result = asScalar(x);
|
|
return [=](IterSpace) { return result; };
|
|
}
|
|
|
|
template <typename A, typename = std::enable_if_t<Fortran::common::HasMember<
|
|
A, Fortran::evaluate::TypelessExpression>>>
|
|
CC genarr(const A &x) {
|
|
return genScalarAndForwardValue(x);
|
|
}
|
|
|
|
template <typename A>
|
|
CC genarr(const Fortran::evaluate::Expr<A> &x) {
|
|
LLVM_DEBUG(Fortran::lower::DumpEvaluateExpr::dump(llvm::dbgs(), x));
|
|
if (isArray(x) || explicitSpaceIsActive() ||
|
|
isElementalProcWithArrayArgs(x))
|
|
return std::visit([&](const auto &e) { return genarr(e); }, x.u);
|
|
return genScalarAndForwardValue(x);
|
|
}
|
|
|
|
// Converting a value of memory bound type requires creating a temp and
|
|
// copying the value.
|
|
static ExtValue convertAdjustedType(fir::FirOpBuilder &builder,
|
|
mlir::Location loc, mlir::Type toType,
|
|
const ExtValue &exv) {
|
|
return exv.match(
|
|
[&](const fir::CharBoxValue &cb) -> ExtValue {
|
|
mlir::Value len = cb.getLen();
|
|
auto mem =
|
|
builder.create<fir::AllocaOp>(loc, toType, mlir::ValueRange{len});
|
|
fir::CharBoxValue result(mem, len);
|
|
fir::factory::CharacterExprHelper{builder, loc}.createAssign(
|
|
ExtValue{result}, exv);
|
|
return result;
|
|
},
|
|
[&](const auto &) -> ExtValue {
|
|
fir::emitFatalError(loc, "convert on adjusted extended value");
|
|
});
|
|
}
|
|
template <Fortran::common::TypeCategory TC1, int KIND,
|
|
Fortran::common::TypeCategory TC2>
|
|
CC genarr(const Fortran::evaluate::Convert<Fortran::evaluate::Type<TC1, KIND>,
|
|
TC2> &x) {
|
|
mlir::Location loc = getLoc();
|
|
auto lambda = genarr(x.left());
|
|
mlir::Type ty = converter.genType(TC1, KIND);
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
auto exv = lambda(iters);
|
|
mlir::Value val = fir::getBase(exv);
|
|
auto valTy = val.getType();
|
|
if (elementTypeWasAdjusted(valTy) &&
|
|
!(fir::isa_ref_type(valTy) && fir::isa_integer(ty)))
|
|
return convertAdjustedType(builder, loc, ty, exv);
|
|
return builder.createConvert(loc, ty, val);
|
|
};
|
|
}
|
|
|
|
template <int KIND>
|
|
CC genarr(const Fortran::evaluate::ComplexComponent<KIND> &x) {
|
|
TODO(getLoc(), "ComplexComponent<KIND>");
|
|
}
|
|
|
|
template <typename T>
|
|
CC genarr(const Fortran::evaluate::Parentheses<T> &x) {
|
|
mlir::Location loc = getLoc();
|
|
if (isReferentiallyOpaque()) {
|
|
// Context is a call argument in, for example, an elemental procedure
|
|
// call. TODO: all array arguments should use array_load, array_access,
|
|
// array_amend, and INTENT(OUT), INTENT(INOUT) arguments should have
|
|
// array_merge_store ops.
|
|
TODO(loc, "parentheses on argument in elemental call");
|
|
}
|
|
auto f = genarr(x.left());
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
auto val = f(iters);
|
|
mlir::Value base = fir::getBase(val);
|
|
auto newBase =
|
|
builder.create<fir::NoReassocOp>(loc, base.getType(), base);
|
|
return fir::substBase(val, newBase);
|
|
};
|
|
}
|
|
template <int KIND>
|
|
CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
|
|
Fortran::common::TypeCategory::Integer, KIND>> &x) {
|
|
mlir::Location loc = getLoc();
|
|
auto f = genarr(x.left());
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
mlir::Value val = fir::getBase(f(iters));
|
|
mlir::Type ty =
|
|
converter.genType(Fortran::common::TypeCategory::Integer, KIND);
|
|
mlir::Value zero = builder.createIntegerConstant(loc, ty, 0);
|
|
return builder.create<mlir::arith::SubIOp>(loc, zero, val);
|
|
};
|
|
}
|
|
template <int KIND>
|
|
CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
|
|
Fortran::common::TypeCategory::Real, KIND>> &x) {
|
|
mlir::Location loc = getLoc();
|
|
auto f = genarr(x.left());
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
return builder.create<mlir::arith::NegFOp>(loc, fir::getBase(f(iters)));
|
|
};
|
|
}
|
|
template <int KIND>
|
|
CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
|
|
Fortran::common::TypeCategory::Complex, KIND>> &x) {
|
|
mlir::Location loc = getLoc();
|
|
auto f = genarr(x.left());
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
return builder.create<fir::NegcOp>(loc, fir::getBase(f(iters)));
|
|
};
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Binary elemental ops
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
template <typename OP, typename A>
|
|
CC createBinaryOp(const A &evEx) {
|
|
mlir::Location loc = getLoc();
|
|
auto lambda = genarr(evEx.left());
|
|
auto rf = genarr(evEx.right());
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
mlir::Value left = fir::getBase(lambda(iters));
|
|
mlir::Value right = fir::getBase(rf(iters));
|
|
return builder.create<OP>(loc, left, right);
|
|
};
|
|
}
|
|
|
|
#undef GENBIN
|
|
#define GENBIN(GenBinEvOp, GenBinTyCat, GenBinFirOp) \
|
|
template <int KIND> \
|
|
CC genarr(const Fortran::evaluate::GenBinEvOp<Fortran::evaluate::Type< \
|
|
Fortran::common::TypeCategory::GenBinTyCat, KIND>> &x) { \
|
|
return createBinaryOp<GenBinFirOp>(x); \
|
|
}
|
|
|
|
GENBIN(Add, Integer, mlir::arith::AddIOp)
|
|
GENBIN(Add, Real, mlir::arith::AddFOp)
|
|
GENBIN(Add, Complex, fir::AddcOp)
|
|
GENBIN(Subtract, Integer, mlir::arith::SubIOp)
|
|
GENBIN(Subtract, Real, mlir::arith::SubFOp)
|
|
GENBIN(Subtract, Complex, fir::SubcOp)
|
|
GENBIN(Multiply, Integer, mlir::arith::MulIOp)
|
|
GENBIN(Multiply, Real, mlir::arith::MulFOp)
|
|
GENBIN(Multiply, Complex, fir::MulcOp)
|
|
GENBIN(Divide, Integer, mlir::arith::DivSIOp)
|
|
GENBIN(Divide, Real, mlir::arith::DivFOp)
|
|
GENBIN(Divide, Complex, fir::DivcOp)
|
|
|
|
template <Fortran::common::TypeCategory TC, int KIND>
|
|
CC genarr(
|
|
const Fortran::evaluate::Power<Fortran::evaluate::Type<TC, KIND>> &x) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::Type ty = converter.genType(TC, KIND);
|
|
auto lf = genarr(x.left());
|
|
auto rf = genarr(x.right());
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
mlir::Value lhs = fir::getBase(lf(iters));
|
|
mlir::Value rhs = fir::getBase(rf(iters));
|
|
return Fortran::lower::genPow(builder, loc, ty, lhs, rhs);
|
|
};
|
|
}
|
|
template <Fortran::common::TypeCategory TC, int KIND>
|
|
CC genarr(
|
|
const Fortran::evaluate::Extremum<Fortran::evaluate::Type<TC, KIND>> &x) {
|
|
TODO(getLoc(), "genarr Extremum<Fortran::evaluate::Type<TC, KIND>>");
|
|
}
|
|
template <Fortran::common::TypeCategory TC, int KIND>
|
|
CC genarr(
|
|
const Fortran::evaluate::RealToIntPower<Fortran::evaluate::Type<TC, KIND>>
|
|
&x) {
|
|
TODO(getLoc(), "genarr RealToIntPower<Fortran::evaluate::Type<TC, KIND>>");
|
|
}
|
|
template <int KIND>
|
|
CC genarr(const Fortran::evaluate::ComplexConstructor<KIND> &x) {
|
|
TODO(getLoc(), "genarr ComplexConstructor<KIND>");
|
|
}
|
|
|
|
/// Fortran's concatenation operator `//`.
|
|
template <int KIND>
|
|
CC genarr(const Fortran::evaluate::Concat<KIND> &x) {
|
|
mlir::Location loc = getLoc();
|
|
auto lf = genarr(x.left());
|
|
auto rf = genarr(x.right());
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
auto lhs = lf(iters);
|
|
auto rhs = rf(iters);
|
|
const fir::CharBoxValue *lchr = lhs.getCharBox();
|
|
const fir::CharBoxValue *rchr = rhs.getCharBox();
|
|
if (lchr && rchr) {
|
|
return fir::factory::CharacterExprHelper{builder, loc}
|
|
.createConcatenate(*lchr, *rchr);
|
|
}
|
|
TODO(loc, "concat on unexpected extended values");
|
|
return mlir::Value{};
|
|
};
|
|
}
|
|
|
|
template <int KIND>
|
|
CC genarr(const Fortran::evaluate::SetLength<KIND> &x) {
|
|
auto lf = genarr(x.left());
|
|
mlir::Value rhs = fir::getBase(asScalar(x.right()));
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
mlir::Value lhs = fir::getBase(lf(iters));
|
|
return fir::CharBoxValue{lhs, rhs};
|
|
};
|
|
}
|
|
|
|
template <typename A>
|
|
CC genarr(const Fortran::evaluate::Constant<A> &x) {
|
|
if (/*explicitSpaceIsActive() &&*/ x.Rank() == 0)
|
|
return genScalarAndForwardValue(x);
|
|
mlir::Location loc = getLoc();
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
mlir::Type arrTy = converter.genType(toEvExpr(x));
|
|
std::string globalName = Fortran::lower::mangle::mangleArrayLiteral(x);
|
|
fir::GlobalOp global = builder.getNamedGlobal(globalName);
|
|
if (!global) {
|
|
mlir::Type symTy = arrTy;
|
|
mlir::Type eleTy = symTy.cast<fir::SequenceType>().getEleTy();
|
|
// If we have a rank-1 array of integer, real, or logical, then we can
|
|
// create a global array with the dense attribute.
|
|
//
|
|
// The mlir tensor type can only handle integer, real, or logical. It
|
|
// does not currently support nested structures which is required for
|
|
// complex.
|
|
//
|
|
// Also, we currently handle just rank-1 since tensor type assumes
|
|
// row major array ordering. We will need to reorder the dimensions
|
|
// in the tensor type to support Fortran's column major array ordering.
|
|
// How to create this tensor type is to be determined.
|
|
if (x.Rank() == 1 &&
|
|
eleTy.isa<fir::LogicalType, mlir::IntegerType, mlir::FloatType>())
|
|
global = Fortran::lower::createDenseGlobal(
|
|
loc, arrTy, globalName, builder.createInternalLinkage(), true,
|
|
toEvExpr(x), converter);
|
|
// Note: If call to createDenseGlobal() returns 0, then call
|
|
// createGlobalConstant() below.
|
|
if (!global)
|
|
global = builder.createGlobalConstant(
|
|
loc, arrTy, globalName,
|
|
[&](fir::FirOpBuilder &builder) {
|
|
Fortran::lower::StatementContext stmtCtx(
|
|
/*cleanupProhibited=*/true);
|
|
fir::ExtendedValue result =
|
|
Fortran::lower::createSomeInitializerExpression(
|
|
loc, converter, toEvExpr(x), symMap, stmtCtx);
|
|
mlir::Value castTo =
|
|
builder.createConvert(loc, arrTy, fir::getBase(result));
|
|
builder.create<fir::HasValueOp>(loc, castTo);
|
|
},
|
|
builder.createInternalLinkage());
|
|
}
|
|
auto addr = builder.create<fir::AddrOfOp>(getLoc(), global.resultType(),
|
|
global.getSymbol());
|
|
auto seqTy = global.getType().cast<fir::SequenceType>();
|
|
llvm::SmallVector<mlir::Value> extents;
|
|
for (auto extent : seqTy.getShape())
|
|
extents.push_back(builder.createIntegerConstant(loc, idxTy, extent));
|
|
if (auto charTy = seqTy.getEleTy().dyn_cast<fir::CharacterType>()) {
|
|
mlir::Value len = builder.createIntegerConstant(loc, builder.getI64Type(),
|
|
charTy.getLen());
|
|
return genarr(fir::CharArrayBoxValue{addr, len, extents});
|
|
}
|
|
return genarr(fir::ArrayBoxValue{addr, extents});
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// A vector subscript expression may be wrapped with a cast to INTEGER*8.
|
|
// Get rid of it here so the vector can be loaded. Add it back when
|
|
// generating the elemental evaluation (inside the loop nest).
|
|
|
|
static Fortran::lower::SomeExpr
|
|
ignoreEvConvert(const Fortran::evaluate::Expr<Fortran::evaluate::Type<
|
|
Fortran::common::TypeCategory::Integer, 8>> &x) {
|
|
return std::visit([&](const auto &v) { return ignoreEvConvert(v); }, x.u);
|
|
}
|
|
template <Fortran::common::TypeCategory FROM>
|
|
static Fortran::lower::SomeExpr ignoreEvConvert(
|
|
const Fortran::evaluate::Convert<
|
|
Fortran::evaluate::Type<Fortran::common::TypeCategory::Integer, 8>,
|
|
FROM> &x) {
|
|
return toEvExpr(x.left());
|
|
}
|
|
template <typename A>
|
|
static Fortran::lower::SomeExpr ignoreEvConvert(const A &x) {
|
|
return toEvExpr(x);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Get the `Se::Symbol*` for the subscript expression, `x`. This symbol can
|
|
// be used to determine the lbound, ubound of the vector.
|
|
|
|
template <typename A>
|
|
static const Fortran::semantics::Symbol *
|
|
extractSubscriptSymbol(const Fortran::evaluate::Expr<A> &x) {
|
|
return std::visit([&](const auto &v) { return extractSubscriptSymbol(v); },
|
|
x.u);
|
|
}
|
|
template <typename A>
|
|
static const Fortran::semantics::Symbol *
|
|
extractSubscriptSymbol(const Fortran::evaluate::Designator<A> &x) {
|
|
return Fortran::evaluate::UnwrapWholeSymbolDataRef(x);
|
|
}
|
|
template <typename A>
|
|
static const Fortran::semantics::Symbol *extractSubscriptSymbol(const A &x) {
|
|
return nullptr;
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Get the declared lower bound value of the array `x` in dimension `dim`.
|
|
/// The argument `one` must be an ssa-value for the constant 1.
|
|
mlir::Value getLBound(const ExtValue &x, unsigned dim, mlir::Value one) {
|
|
return fir::factory::readLowerBound(builder, getLoc(), x, dim, one);
|
|
}
|
|
|
|
/// Get the declared upper bound value of the array `x` in dimension `dim`.
|
|
/// The argument `one` must be an ssa-value for the constant 1.
|
|
mlir::Value getUBound(const ExtValue &x, unsigned dim, mlir::Value one) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::Value lb = getLBound(x, dim, one);
|
|
mlir::Value extent = fir::factory::readExtent(builder, loc, x, dim);
|
|
auto add = builder.create<mlir::arith::AddIOp>(loc, lb, extent);
|
|
return builder.create<mlir::arith::SubIOp>(loc, add, one);
|
|
}
|
|
|
|
/// Return the extent of the boxed array `x` in dimesion `dim`.
|
|
mlir::Value getExtent(const ExtValue &x, unsigned dim) {
|
|
return fir::factory::readExtent(builder, getLoc(), x, dim);
|
|
}
|
|
|
|
template <typename A>
|
|
ExtValue genArrayBase(const A &base) {
|
|
ScalarExprLowering sel{getLoc(), converter, symMap, stmtCtx};
|
|
return base.IsSymbol() ? sel.gen(base.GetFirstSymbol())
|
|
: sel.gen(base.GetComponent());
|
|
}
|
|
|
|
template <typename A>
|
|
bool hasEvArrayRef(const A &x) {
|
|
struct HasEvArrayRefHelper
|
|
: public Fortran::evaluate::AnyTraverse<HasEvArrayRefHelper> {
|
|
HasEvArrayRefHelper()
|
|
: Fortran::evaluate::AnyTraverse<HasEvArrayRefHelper>(*this) {}
|
|
using Fortran::evaluate::AnyTraverse<HasEvArrayRefHelper>::operator();
|
|
bool operator()(const Fortran::evaluate::ArrayRef &) const {
|
|
return true;
|
|
}
|
|
} helper;
|
|
return helper(x);
|
|
}
|
|
|
|
CC genVectorSubscriptArrayFetch(const Fortran::lower::SomeExpr &expr,
|
|
std::size_t dim) {
|
|
PushSemantics(ConstituentSemantics::RefTransparent);
|
|
auto saved = Fortran::common::ScopedSet(explicitSpace, nullptr);
|
|
llvm::SmallVector<mlir::Value> savedDestShape = destShape;
|
|
destShape.clear();
|
|
auto result = genarr(expr);
|
|
if (destShape.empty())
|
|
TODO(getLoc(), "expected vector to have an extent");
|
|
assert(destShape.size() == 1 && "vector has rank > 1");
|
|
if (destShape[0] != savedDestShape[dim]) {
|
|
// Not the same, so choose the smaller value.
|
|
mlir::Location loc = getLoc();
|
|
auto cmp = builder.create<mlir::arith::CmpIOp>(
|
|
loc, mlir::arith::CmpIPredicate::sgt, destShape[0],
|
|
savedDestShape[dim]);
|
|
auto sel = builder.create<mlir::arith::SelectOp>(
|
|
loc, cmp, savedDestShape[dim], destShape[0]);
|
|
savedDestShape[dim] = sel;
|
|
destShape = savedDestShape;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/// Generate an access by vector subscript using the index in the iteration
|
|
/// vector at `dim`.
|
|
mlir::Value genAccessByVector(mlir::Location loc, CC genArrFetch,
|
|
IterSpace iters, std::size_t dim) {
|
|
IterationSpace vecIters(iters,
|
|
llvm::ArrayRef<mlir::Value>{iters.iterValue(dim)});
|
|
fir::ExtendedValue fetch = genArrFetch(vecIters);
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
return builder.createConvert(loc, idxTy, fir::getBase(fetch));
|
|
}
|
|
|
|
/// When we have an array reference, the expressions specified in each
|
|
/// dimension may be slice operations (e.g. `i:j:k`), vectors, or simple
|
|
/// (loop-invarianet) scalar expressions. This returns the base entity, the
|
|
/// resulting type, and a continuation to adjust the default iteration space.
|
|
void genSliceIndices(ComponentPath &cmptData, const ExtValue &arrayExv,
|
|
const Fortran::evaluate::ArrayRef &x, bool atBase) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
|
|
llvm::SmallVector<mlir::Value> &trips = cmptData.trips;
|
|
LLVM_DEBUG(llvm::dbgs() << "array: " << arrayExv << '\n');
|
|
auto &pc = cmptData.pc;
|
|
const bool useTripsForSlice = !explicitSpaceIsActive();
|
|
const bool createDestShape = destShape.empty();
|
|
bool useSlice = false;
|
|
std::size_t shapeIndex = 0;
|
|
for (auto sub : llvm::enumerate(x.subscript())) {
|
|
const std::size_t subsIndex = sub.index();
|
|
std::visit(
|
|
Fortran::common::visitors{
|
|
[&](const Fortran::evaluate::Triplet &t) {
|
|
mlir::Value lowerBound;
|
|
if (auto optLo = t.lower())
|
|
lowerBound = fir::getBase(asScalar(*optLo));
|
|
else
|
|
lowerBound = getLBound(arrayExv, subsIndex, one);
|
|
lowerBound = builder.createConvert(loc, idxTy, lowerBound);
|
|
mlir::Value stride = fir::getBase(asScalar(t.stride()));
|
|
stride = builder.createConvert(loc, idxTy, stride);
|
|
if (useTripsForSlice || createDestShape) {
|
|
// Generate a slice operation for the triplet. The first and
|
|
// second position of the triplet may be omitted, and the
|
|
// declared lbound and/or ubound expression values,
|
|
// respectively, should be used instead.
|
|
trips.push_back(lowerBound);
|
|
mlir::Value upperBound;
|
|
if (auto optUp = t.upper())
|
|
upperBound = fir::getBase(asScalar(*optUp));
|
|
else
|
|
upperBound = getUBound(arrayExv, subsIndex, one);
|
|
upperBound = builder.createConvert(loc, idxTy, upperBound);
|
|
trips.push_back(upperBound);
|
|
trips.push_back(stride);
|
|
if (createDestShape) {
|
|
auto extent = builder.genExtentFromTriplet(
|
|
loc, lowerBound, upperBound, stride, idxTy);
|
|
destShape.push_back(extent);
|
|
}
|
|
useSlice = true;
|
|
}
|
|
if (!useTripsForSlice) {
|
|
auto currentPC = pc;
|
|
pc = [=](IterSpace iters) {
|
|
IterationSpace newIters = currentPC(iters);
|
|
mlir::Value impliedIter = newIters.iterValue(subsIndex);
|
|
// FIXME: must use the lower bound of this component.
|
|
auto arrLowerBound =
|
|
atBase ? getLBound(arrayExv, subsIndex, one) : one;
|
|
auto initial = builder.create<mlir::arith::SubIOp>(
|
|
loc, lowerBound, arrLowerBound);
|
|
auto prod = builder.create<mlir::arith::MulIOp>(
|
|
loc, impliedIter, stride);
|
|
auto result =
|
|
builder.create<mlir::arith::AddIOp>(loc, initial, prod);
|
|
newIters.setIndexValue(subsIndex, result);
|
|
return newIters;
|
|
};
|
|
}
|
|
shapeIndex++;
|
|
},
|
|
[&](const Fortran::evaluate::IndirectSubscriptIntegerExpr &ie) {
|
|
const auto &e = ie.value(); // dereference
|
|
if (isArray(e)) {
|
|
// This is a vector subscript. Use the index values as read
|
|
// from a vector to determine the temporary array value.
|
|
// Note: 9.5.3.3.3(3) specifies undefined behavior for
|
|
// multiple updates to any specific array element through a
|
|
// vector subscript with replicated values.
|
|
assert(!isBoxValue() &&
|
|
"fir.box cannot be created with vector subscripts");
|
|
auto arrExpr = ignoreEvConvert(e);
|
|
if (createDestShape) {
|
|
destShape.push_back(fir::getExtentAtDimension(
|
|
arrayExv, builder, loc, subsIndex));
|
|
}
|
|
auto genArrFetch =
|
|
genVectorSubscriptArrayFetch(arrExpr, shapeIndex);
|
|
auto currentPC = pc;
|
|
pc = [=](IterSpace iters) {
|
|
IterationSpace newIters = currentPC(iters);
|
|
auto val = genAccessByVector(loc, genArrFetch, newIters,
|
|
subsIndex);
|
|
// Value read from vector subscript array and normalized
|
|
// using the base array's lower bound value.
|
|
mlir::Value lb = fir::factory::readLowerBound(
|
|
builder, loc, arrayExv, subsIndex, one);
|
|
auto origin = builder.create<mlir::arith::SubIOp>(
|
|
loc, idxTy, val, lb);
|
|
newIters.setIndexValue(subsIndex, origin);
|
|
return newIters;
|
|
};
|
|
if (useTripsForSlice) {
|
|
LLVM_ATTRIBUTE_UNUSED auto vectorSubscriptShape =
|
|
getShape(arrayOperands.back());
|
|
auto undef = builder.create<fir::UndefOp>(loc, idxTy);
|
|
trips.push_back(undef);
|
|
trips.push_back(undef);
|
|
trips.push_back(undef);
|
|
}
|
|
shapeIndex++;
|
|
} else {
|
|
// This is a regular scalar subscript.
|
|
if (useTripsForSlice) {
|
|
// A regular scalar index, which does not yield an array
|
|
// section. Use a degenerate slice operation
|
|
// `(e:undef:undef)` in this dimension as a placeholder.
|
|
// This does not necessarily change the rank of the original
|
|
// array, so the iteration space must also be extended to
|
|
// include this expression in this dimension to adjust to
|
|
// the array's declared rank.
|
|
mlir::Value v = fir::getBase(asScalar(e));
|
|
trips.push_back(v);
|
|
auto undef = builder.create<fir::UndefOp>(loc, idxTy);
|
|
trips.push_back(undef);
|
|
trips.push_back(undef);
|
|
auto currentPC = pc;
|
|
// Cast `e` to index type.
|
|
mlir::Value iv = builder.createConvert(loc, idxTy, v);
|
|
// Normalize `e` by subtracting the declared lbound.
|
|
mlir::Value lb = fir::factory::readLowerBound(
|
|
builder, loc, arrayExv, subsIndex, one);
|
|
mlir::Value ivAdj =
|
|
builder.create<mlir::arith::SubIOp>(loc, idxTy, iv, lb);
|
|
// Add lbound adjusted value of `e` to the iteration vector
|
|
// (except when creating a box because the iteration vector
|
|
// is empty).
|
|
if (!isBoxValue())
|
|
pc = [=](IterSpace iters) {
|
|
IterationSpace newIters = currentPC(iters);
|
|
newIters.insertIndexValue(subsIndex, ivAdj);
|
|
return newIters;
|
|
};
|
|
} else {
|
|
auto currentPC = pc;
|
|
mlir::Value newValue = fir::getBase(asScalarArray(e));
|
|
mlir::Value result =
|
|
builder.createConvert(loc, idxTy, newValue);
|
|
mlir::Value lb = fir::factory::readLowerBound(
|
|
builder, loc, arrayExv, subsIndex, one);
|
|
result = builder.create<mlir::arith::SubIOp>(loc, idxTy,
|
|
result, lb);
|
|
pc = [=](IterSpace iters) {
|
|
IterationSpace newIters = currentPC(iters);
|
|
newIters.insertIndexValue(subsIndex, result);
|
|
return newIters;
|
|
};
|
|
}
|
|
}
|
|
}},
|
|
sub.value().u);
|
|
}
|
|
if (!useSlice)
|
|
trips.clear();
|
|
}
|
|
|
|
CC genarr(const Fortran::semantics::SymbolRef &sym,
|
|
ComponentPath &components) {
|
|
return genarr(sym.get(), components);
|
|
}
|
|
|
|
ExtValue abstractArrayExtValue(mlir::Value val, mlir::Value len = {}) {
|
|
return convertToArrayBoxValue(getLoc(), builder, val, len);
|
|
}
|
|
|
|
CC genarr(const ExtValue &extMemref) {
|
|
ComponentPath dummy(/*isImplicit=*/true);
|
|
return genarr(extMemref, dummy);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Array construction
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Target agnostic computation of the size of an element in the array.
|
|
/// Returns the size in bytes with type `index` or a null Value if the element
|
|
/// size is not constant.
|
|
mlir::Value computeElementSize(const ExtValue &exv, mlir::Type eleTy,
|
|
mlir::Type resTy) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
mlir::Value multiplier = builder.createIntegerConstant(loc, idxTy, 1);
|
|
if (fir::hasDynamicSize(eleTy)) {
|
|
if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
|
|
// Array of char with dynamic length parameter. Downcast to an array
|
|
// of singleton char, and scale by the len type parameter from
|
|
// `exv`.
|
|
exv.match(
|
|
[&](const fir::CharBoxValue &cb) { multiplier = cb.getLen(); },
|
|
[&](const fir::CharArrayBoxValue &cb) { multiplier = cb.getLen(); },
|
|
[&](const fir::BoxValue &box) {
|
|
multiplier = fir::factory::CharacterExprHelper(builder, loc)
|
|
.readLengthFromBox(box.getAddr());
|
|
},
|
|
[&](const fir::MutableBoxValue &box) {
|
|
multiplier = fir::factory::CharacterExprHelper(builder, loc)
|
|
.readLengthFromBox(box.getAddr());
|
|
},
|
|
[&](const auto &) {
|
|
fir::emitFatalError(loc,
|
|
"array constructor element has unknown size");
|
|
});
|
|
fir::CharacterType newEleTy = fir::CharacterType::getSingleton(
|
|
eleTy.getContext(), charTy.getFKind());
|
|
if (auto seqTy = resTy.dyn_cast<fir::SequenceType>()) {
|
|
assert(eleTy == seqTy.getEleTy());
|
|
resTy = fir::SequenceType::get(seqTy.getShape(), newEleTy);
|
|
}
|
|
eleTy = newEleTy;
|
|
} else {
|
|
TODO(loc, "dynamic sized type");
|
|
}
|
|
}
|
|
mlir::Type eleRefTy = builder.getRefType(eleTy);
|
|
mlir::Type resRefTy = builder.getRefType(resTy);
|
|
mlir::Value nullPtr = builder.createNullConstant(loc, resRefTy);
|
|
auto offset = builder.create<fir::CoordinateOp>(
|
|
loc, eleRefTy, nullPtr, mlir::ValueRange{multiplier});
|
|
return builder.createConvert(loc, idxTy, offset);
|
|
}
|
|
|
|
/// Get the function signature of the LLVM memcpy intrinsic.
|
|
mlir::FunctionType memcpyType() {
|
|
return fir::factory::getLlvmMemcpy(builder).getFunctionType();
|
|
}
|
|
|
|
/// Create a call to the LLVM memcpy intrinsic.
|
|
void createCallMemcpy(llvm::ArrayRef<mlir::Value> args) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::FuncOp memcpyFunc = fir::factory::getLlvmMemcpy(builder);
|
|
mlir::SymbolRefAttr funcSymAttr =
|
|
builder.getSymbolRefAttr(memcpyFunc.getName());
|
|
mlir::FunctionType funcTy = memcpyFunc.getFunctionType();
|
|
builder.create<fir::CallOp>(loc, funcTy.getResults(), funcSymAttr, args);
|
|
}
|
|
|
|
// Construct code to check for a buffer overrun and realloc the buffer when
|
|
// space is depleted. This is done between each item in the ac-value-list.
|
|
mlir::Value growBuffer(mlir::Value mem, mlir::Value needed,
|
|
mlir::Value bufferSize, mlir::Value buffSize,
|
|
mlir::Value eleSz) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::FuncOp reallocFunc = fir::factory::getRealloc(builder);
|
|
auto cond = builder.create<mlir::arith::CmpIOp>(
|
|
loc, mlir::arith::CmpIPredicate::sle, bufferSize, needed);
|
|
auto ifOp = builder.create<fir::IfOp>(loc, mem.getType(), cond,
|
|
/*withElseRegion=*/true);
|
|
auto insPt = builder.saveInsertionPoint();
|
|
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
|
|
// Not enough space, resize the buffer.
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
mlir::Value two = builder.createIntegerConstant(loc, idxTy, 2);
|
|
auto newSz = builder.create<mlir::arith::MulIOp>(loc, needed, two);
|
|
builder.create<fir::StoreOp>(loc, newSz, buffSize);
|
|
mlir::Value byteSz = builder.create<mlir::arith::MulIOp>(loc, newSz, eleSz);
|
|
mlir::SymbolRefAttr funcSymAttr =
|
|
builder.getSymbolRefAttr(reallocFunc.getName());
|
|
mlir::FunctionType funcTy = reallocFunc.getFunctionType();
|
|
auto newMem = builder.create<fir::CallOp>(
|
|
loc, funcTy.getResults(), funcSymAttr,
|
|
llvm::ArrayRef<mlir::Value>{
|
|
builder.createConvert(loc, funcTy.getInputs()[0], mem),
|
|
builder.createConvert(loc, funcTy.getInputs()[1], byteSz)});
|
|
mlir::Value castNewMem =
|
|
builder.createConvert(loc, mem.getType(), newMem.getResult(0));
|
|
builder.create<fir::ResultOp>(loc, castNewMem);
|
|
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
|
|
// Otherwise, just forward the buffer.
|
|
builder.create<fir::ResultOp>(loc, mem);
|
|
builder.restoreInsertionPoint(insPt);
|
|
return ifOp.getResult(0);
|
|
}
|
|
|
|
/// Copy the next value (or vector of values) into the array being
|
|
/// constructed.
|
|
mlir::Value copyNextArrayCtorSection(const ExtValue &exv, mlir::Value buffPos,
|
|
mlir::Value buffSize, mlir::Value mem,
|
|
mlir::Value eleSz, mlir::Type eleTy,
|
|
mlir::Type eleRefTy, mlir::Type resTy) {
|
|
mlir::Location loc = getLoc();
|
|
auto off = builder.create<fir::LoadOp>(loc, buffPos);
|
|
auto limit = builder.create<fir::LoadOp>(loc, buffSize);
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
|
|
|
|
if (fir::isRecordWithAllocatableMember(eleTy))
|
|
TODO(loc, "deep copy on allocatable members");
|
|
|
|
if (!eleSz) {
|
|
// Compute the element size at runtime.
|
|
assert(fir::hasDynamicSize(eleTy));
|
|
if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
|
|
auto charBytes =
|
|
builder.getKindMap().getCharacterBitsize(charTy.getFKind()) / 8;
|
|
mlir::Value bytes =
|
|
builder.createIntegerConstant(loc, idxTy, charBytes);
|
|
mlir::Value length = fir::getLen(exv);
|
|
if (!length)
|
|
fir::emitFatalError(loc, "result is not boxed character");
|
|
eleSz = builder.create<mlir::arith::MulIOp>(loc, bytes, length);
|
|
} else {
|
|
TODO(loc, "PDT size");
|
|
// Will call the PDT's size function with the type parameters.
|
|
}
|
|
}
|
|
|
|
// Compute the coordinate using `fir.coordinate_of`, or, if the type has
|
|
// dynamic size, generating the pointer arithmetic.
|
|
auto computeCoordinate = [&](mlir::Value buff, mlir::Value off) {
|
|
mlir::Type refTy = eleRefTy;
|
|
if (fir::hasDynamicSize(eleTy)) {
|
|
if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
|
|
// Scale a simple pointer using dynamic length and offset values.
|
|
auto chTy = fir::CharacterType::getSingleton(charTy.getContext(),
|
|
charTy.getFKind());
|
|
refTy = builder.getRefType(chTy);
|
|
mlir::Type toTy = builder.getRefType(builder.getVarLenSeqTy(chTy));
|
|
buff = builder.createConvert(loc, toTy, buff);
|
|
off = builder.create<mlir::arith::MulIOp>(loc, off, eleSz);
|
|
} else {
|
|
TODO(loc, "PDT offset");
|
|
}
|
|
}
|
|
auto coor = builder.create<fir::CoordinateOp>(loc, refTy, buff,
|
|
mlir::ValueRange{off});
|
|
return builder.createConvert(loc, eleRefTy, coor);
|
|
};
|
|
|
|
// Lambda to lower an abstract array box value.
|
|
auto doAbstractArray = [&](const auto &v) {
|
|
// Compute the array size.
|
|
mlir::Value arrSz = one;
|
|
for (auto ext : v.getExtents())
|
|
arrSz = builder.create<mlir::arith::MulIOp>(loc, arrSz, ext);
|
|
|
|
// Grow the buffer as needed.
|
|
auto endOff = builder.create<mlir::arith::AddIOp>(loc, off, arrSz);
|
|
mem = growBuffer(mem, endOff, limit, buffSize, eleSz);
|
|
|
|
// Copy the elements to the buffer.
|
|
mlir::Value byteSz =
|
|
builder.create<mlir::arith::MulIOp>(loc, arrSz, eleSz);
|
|
auto buff = builder.createConvert(loc, fir::HeapType::get(resTy), mem);
|
|
mlir::Value buffi = computeCoordinate(buff, off);
|
|
llvm::SmallVector<mlir::Value> args = fir::runtime::createArguments(
|
|
builder, loc, memcpyType(), buffi, v.getAddr(), byteSz,
|
|
/*volatile=*/builder.createBool(loc, false));
|
|
createCallMemcpy(args);
|
|
|
|
// Save the incremented buffer position.
|
|
builder.create<fir::StoreOp>(loc, endOff, buffPos);
|
|
};
|
|
|
|
// Copy a trivial scalar value into the buffer.
|
|
auto doTrivialScalar = [&](const ExtValue &v, mlir::Value len = {}) {
|
|
// Increment the buffer position.
|
|
auto plusOne = builder.create<mlir::arith::AddIOp>(loc, off, one);
|
|
|
|
// Grow the buffer as needed.
|
|
mem = growBuffer(mem, plusOne, limit, buffSize, eleSz);
|
|
|
|
// Store the element in the buffer.
|
|
mlir::Value buff =
|
|
builder.createConvert(loc, fir::HeapType::get(resTy), mem);
|
|
auto buffi = builder.create<fir::CoordinateOp>(loc, eleRefTy, buff,
|
|
mlir::ValueRange{off});
|
|
fir::factory::genScalarAssignment(
|
|
builder, loc,
|
|
[&]() -> ExtValue {
|
|
if (len)
|
|
return fir::CharBoxValue(buffi, len);
|
|
return buffi;
|
|
}(),
|
|
v);
|
|
builder.create<fir::StoreOp>(loc, plusOne, buffPos);
|
|
};
|
|
|
|
// Copy the value.
|
|
exv.match(
|
|
[&](mlir::Value) { doTrivialScalar(exv); },
|
|
[&](const fir::CharBoxValue &v) {
|
|
auto buffer = v.getBuffer();
|
|
if (fir::isa_char(buffer.getType())) {
|
|
doTrivialScalar(exv, eleSz);
|
|
} else {
|
|
// Increment the buffer position.
|
|
auto plusOne = builder.create<mlir::arith::AddIOp>(loc, off, one);
|
|
|
|
// Grow the buffer as needed.
|
|
mem = growBuffer(mem, plusOne, limit, buffSize, eleSz);
|
|
|
|
// Store the element in the buffer.
|
|
mlir::Value buff =
|
|
builder.createConvert(loc, fir::HeapType::get(resTy), mem);
|
|
mlir::Value buffi = computeCoordinate(buff, off);
|
|
llvm::SmallVector<mlir::Value> args = fir::runtime::createArguments(
|
|
builder, loc, memcpyType(), buffi, v.getAddr(), eleSz,
|
|
/*volatile=*/builder.createBool(loc, false));
|
|
createCallMemcpy(args);
|
|
|
|
builder.create<fir::StoreOp>(loc, plusOne, buffPos);
|
|
}
|
|
},
|
|
[&](const fir::ArrayBoxValue &v) { doAbstractArray(v); },
|
|
[&](const fir::CharArrayBoxValue &v) { doAbstractArray(v); },
|
|
[&](const auto &) {
|
|
TODO(loc, "unhandled array constructor expression");
|
|
});
|
|
return mem;
|
|
}
|
|
|
|
// Lower the expr cases in an ac-value-list.
|
|
template <typename A>
|
|
std::pair<ExtValue, bool>
|
|
genArrayCtorInitializer(const Fortran::evaluate::Expr<A> &x, mlir::Type,
|
|
mlir::Value, mlir::Value, mlir::Value,
|
|
Fortran::lower::StatementContext &stmtCtx) {
|
|
if (isArray(x))
|
|
return {lowerNewArrayExpression(converter, symMap, stmtCtx, toEvExpr(x)),
|
|
/*needCopy=*/true};
|
|
return {asScalar(x), /*needCopy=*/true};
|
|
}
|
|
|
|
// Lower an ac-implied-do in an ac-value-list.
|
|
template <typename A>
|
|
std::pair<ExtValue, bool>
|
|
genArrayCtorInitializer(const Fortran::evaluate::ImpliedDo<A> &x,
|
|
mlir::Type resTy, mlir::Value mem,
|
|
mlir::Value buffPos, mlir::Value buffSize,
|
|
Fortran::lower::StatementContext &) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
mlir::Value lo =
|
|
builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.lower())));
|
|
mlir::Value up =
|
|
builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.upper())));
|
|
mlir::Value step =
|
|
builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.stride())));
|
|
auto seqTy = resTy.template cast<fir::SequenceType>();
|
|
mlir::Type eleTy = fir::unwrapSequenceType(seqTy);
|
|
auto loop =
|
|
builder.create<fir::DoLoopOp>(loc, lo, up, step, /*unordered=*/false,
|
|
/*finalCount=*/false, mem);
|
|
// create a new binding for x.name(), to ac-do-variable, to the iteration
|
|
// value.
|
|
symMap.pushImpliedDoBinding(toStringRef(x.name()), loop.getInductionVar());
|
|
auto insPt = builder.saveInsertionPoint();
|
|
builder.setInsertionPointToStart(loop.getBody());
|
|
// Thread mem inside the loop via loop argument.
|
|
mem = loop.getRegionIterArgs()[0];
|
|
|
|
mlir::Type eleRefTy = builder.getRefType(eleTy);
|
|
|
|
// Any temps created in the loop body must be freed inside the loop body.
|
|
stmtCtx.pushScope();
|
|
llvm::Optional<mlir::Value> charLen;
|
|
for (const Fortran::evaluate::ArrayConstructorValue<A> &acv : x.values()) {
|
|
auto [exv, copyNeeded] = std::visit(
|
|
[&](const auto &v) {
|
|
return genArrayCtorInitializer(v, resTy, mem, buffPos, buffSize,
|
|
stmtCtx);
|
|
},
|
|
acv.u);
|
|
mlir::Value eleSz = computeElementSize(exv, eleTy, resTy);
|
|
mem = copyNeeded ? copyNextArrayCtorSection(exv, buffPos, buffSize, mem,
|
|
eleSz, eleTy, eleRefTy, resTy)
|
|
: fir::getBase(exv);
|
|
if (fir::isa_char(seqTy.getEleTy()) && !charLen.hasValue()) {
|
|
charLen = builder.createTemporary(loc, builder.getI64Type());
|
|
mlir::Value castLen =
|
|
builder.createConvert(loc, builder.getI64Type(), fir::getLen(exv));
|
|
builder.create<fir::StoreOp>(loc, castLen, charLen.getValue());
|
|
}
|
|
}
|
|
stmtCtx.finalize(/*popScope=*/true);
|
|
|
|
builder.create<fir::ResultOp>(loc, mem);
|
|
builder.restoreInsertionPoint(insPt);
|
|
mem = loop.getResult(0);
|
|
symMap.popImpliedDoBinding();
|
|
llvm::SmallVector<mlir::Value> extents = {
|
|
builder.create<fir::LoadOp>(loc, buffPos).getResult()};
|
|
|
|
// Convert to extended value.
|
|
if (fir::isa_char(seqTy.getEleTy())) {
|
|
auto len = builder.create<fir::LoadOp>(loc, charLen.getValue());
|
|
return {fir::CharArrayBoxValue{mem, len, extents}, /*needCopy=*/false};
|
|
}
|
|
return {fir::ArrayBoxValue{mem, extents}, /*needCopy=*/false};
|
|
}
|
|
|
|
// To simplify the handling and interaction between the various cases, array
|
|
// constructors are always lowered to the incremental construction code
|
|
// pattern, even if the extent of the array value is constant. After the
|
|
// MemToReg pass and constant folding, the optimizer should be able to
|
|
// determine that all the buffer overrun tests are false when the
|
|
// incremental construction wasn't actually required.
|
|
template <typename A>
|
|
CC genarr(const Fortran::evaluate::ArrayConstructor<A> &x) {
|
|
mlir::Location loc = getLoc();
|
|
auto evExpr = toEvExpr(x);
|
|
mlir::Type resTy = translateSomeExprToFIRType(converter, evExpr);
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
auto seqTy = resTy.template cast<fir::SequenceType>();
|
|
mlir::Type eleTy = fir::unwrapSequenceType(resTy);
|
|
mlir::Value buffSize = builder.createTemporary(loc, idxTy, ".buff.size");
|
|
mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0);
|
|
mlir::Value buffPos = builder.createTemporary(loc, idxTy, ".buff.pos");
|
|
builder.create<fir::StoreOp>(loc, zero, buffPos);
|
|
// Allocate space for the array to be constructed.
|
|
mlir::Value mem;
|
|
if (fir::hasDynamicSize(resTy)) {
|
|
if (fir::hasDynamicSize(eleTy)) {
|
|
// The size of each element may depend on a general expression. Defer
|
|
// creating the buffer until after the expression is evaluated.
|
|
mem = builder.createNullConstant(loc, builder.getRefType(eleTy));
|
|
builder.create<fir::StoreOp>(loc, zero, buffSize);
|
|
} else {
|
|
mlir::Value initBuffSz =
|
|
builder.createIntegerConstant(loc, idxTy, clInitialBufferSize);
|
|
mem = builder.create<fir::AllocMemOp>(
|
|
loc, eleTy, /*typeparams=*/llvm::None, initBuffSz);
|
|
builder.create<fir::StoreOp>(loc, initBuffSz, buffSize);
|
|
}
|
|
} else {
|
|
mem = builder.create<fir::AllocMemOp>(loc, resTy);
|
|
int64_t buffSz = 1;
|
|
for (auto extent : seqTy.getShape())
|
|
buffSz *= extent;
|
|
mlir::Value initBuffSz =
|
|
builder.createIntegerConstant(loc, idxTy, buffSz);
|
|
builder.create<fir::StoreOp>(loc, initBuffSz, buffSize);
|
|
}
|
|
// Compute size of element
|
|
mlir::Type eleRefTy = builder.getRefType(eleTy);
|
|
|
|
// Populate the buffer with the elements, growing as necessary.
|
|
llvm::Optional<mlir::Value> charLen;
|
|
for (const auto &expr : x) {
|
|
auto [exv, copyNeeded] = std::visit(
|
|
[&](const auto &e) {
|
|
return genArrayCtorInitializer(e, resTy, mem, buffPos, buffSize,
|
|
stmtCtx);
|
|
},
|
|
expr.u);
|
|
mlir::Value eleSz = computeElementSize(exv, eleTy, resTy);
|
|
mem = copyNeeded ? copyNextArrayCtorSection(exv, buffPos, buffSize, mem,
|
|
eleSz, eleTy, eleRefTy, resTy)
|
|
: fir::getBase(exv);
|
|
if (fir::isa_char(seqTy.getEleTy()) && !charLen.hasValue()) {
|
|
charLen = builder.createTemporary(loc, builder.getI64Type());
|
|
mlir::Value castLen =
|
|
builder.createConvert(loc, builder.getI64Type(), fir::getLen(exv));
|
|
builder.create<fir::StoreOp>(loc, castLen, charLen.getValue());
|
|
}
|
|
}
|
|
mem = builder.createConvert(loc, fir::HeapType::get(resTy), mem);
|
|
llvm::SmallVector<mlir::Value> extents = {
|
|
builder.create<fir::LoadOp>(loc, buffPos)};
|
|
|
|
// Cleanup the temporary.
|
|
fir::FirOpBuilder *bldr = &converter.getFirOpBuilder();
|
|
stmtCtx.attachCleanup(
|
|
[bldr, loc, mem]() { bldr->create<fir::FreeMemOp>(loc, mem); });
|
|
|
|
// Return the continuation.
|
|
if (fir::isa_char(seqTy.getEleTy())) {
|
|
if (charLen.hasValue()) {
|
|
auto len = builder.create<fir::LoadOp>(loc, charLen.getValue());
|
|
return genarr(fir::CharArrayBoxValue{mem, len, extents});
|
|
}
|
|
return genarr(fir::CharArrayBoxValue{mem, zero, extents});
|
|
}
|
|
return genarr(fir::ArrayBoxValue{mem, extents});
|
|
}
|
|
|
|
CC genarr(const Fortran::evaluate::ImpliedDoIndex &) {
|
|
TODO(getLoc(), "genarr ImpliedDoIndex");
|
|
}
|
|
|
|
CC genarr(const Fortran::evaluate::TypeParamInquiry &x) {
|
|
TODO(getLoc(), "genarr TypeParamInquiry");
|
|
}
|
|
|
|
CC genarr(const Fortran::evaluate::DescriptorInquiry &x) {
|
|
TODO(getLoc(), "genarr DescriptorInquiry");
|
|
}
|
|
|
|
CC genarr(const Fortran::evaluate::StructureConstructor &x) {
|
|
TODO(getLoc(), "genarr StructureConstructor");
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// LOCICAL operators (.NOT., .AND., .EQV., etc.)
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
template <int KIND>
|
|
CC genarr(const Fortran::evaluate::Not<KIND> &x) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::IntegerType i1Ty = builder.getI1Type();
|
|
auto lambda = genarr(x.left());
|
|
mlir::Value truth = builder.createBool(loc, true);
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
mlir::Value logical = fir::getBase(lambda(iters));
|
|
mlir::Value val = builder.createConvert(loc, i1Ty, logical);
|
|
return builder.create<mlir::arith::XOrIOp>(loc, val, truth);
|
|
};
|
|
}
|
|
template <typename OP, typename A>
|
|
CC createBinaryBoolOp(const A &x) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::IntegerType i1Ty = builder.getI1Type();
|
|
auto lf = genarr(x.left());
|
|
auto rf = genarr(x.right());
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
mlir::Value left = fir::getBase(lf(iters));
|
|
mlir::Value right = fir::getBase(rf(iters));
|
|
mlir::Value lhs = builder.createConvert(loc, i1Ty, left);
|
|
mlir::Value rhs = builder.createConvert(loc, i1Ty, right);
|
|
return builder.create<OP>(loc, lhs, rhs);
|
|
};
|
|
}
|
|
template <typename OP, typename A>
|
|
CC createCompareBoolOp(mlir::arith::CmpIPredicate pred, const A &x) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::IntegerType i1Ty = builder.getI1Type();
|
|
auto lf = genarr(x.left());
|
|
auto rf = genarr(x.right());
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
mlir::Value left = fir::getBase(lf(iters));
|
|
mlir::Value right = fir::getBase(rf(iters));
|
|
mlir::Value lhs = builder.createConvert(loc, i1Ty, left);
|
|
mlir::Value rhs = builder.createConvert(loc, i1Ty, right);
|
|
return builder.create<OP>(loc, pred, lhs, rhs);
|
|
};
|
|
}
|
|
template <int KIND>
|
|
CC genarr(const Fortran::evaluate::LogicalOperation<KIND> &x) {
|
|
switch (x.logicalOperator) {
|
|
case Fortran::evaluate::LogicalOperator::And:
|
|
return createBinaryBoolOp<mlir::arith::AndIOp>(x);
|
|
case Fortran::evaluate::LogicalOperator::Or:
|
|
return createBinaryBoolOp<mlir::arith::OrIOp>(x);
|
|
case Fortran::evaluate::LogicalOperator::Eqv:
|
|
return createCompareBoolOp<mlir::arith::CmpIOp>(
|
|
mlir::arith::CmpIPredicate::eq, x);
|
|
case Fortran::evaluate::LogicalOperator::Neqv:
|
|
return createCompareBoolOp<mlir::arith::CmpIOp>(
|
|
mlir::arith::CmpIPredicate::ne, x);
|
|
case Fortran::evaluate::LogicalOperator::Not:
|
|
llvm_unreachable(".NOT. handled elsewhere");
|
|
}
|
|
llvm_unreachable("unhandled case");
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Relational operators (<, <=, ==, etc.)
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
template <typename OP, typename PRED, typename A>
|
|
CC createCompareOp(PRED pred, const A &x) {
|
|
mlir::Location loc = getLoc();
|
|
auto lf = genarr(x.left());
|
|
auto rf = genarr(x.right());
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
mlir::Value lhs = fir::getBase(lf(iters));
|
|
mlir::Value rhs = fir::getBase(rf(iters));
|
|
return builder.create<OP>(loc, pred, lhs, rhs);
|
|
};
|
|
}
|
|
template <typename A>
|
|
CC createCompareCharOp(mlir::arith::CmpIPredicate pred, const A &x) {
|
|
mlir::Location loc = getLoc();
|
|
auto lf = genarr(x.left());
|
|
auto rf = genarr(x.right());
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
auto lhs = lf(iters);
|
|
auto rhs = rf(iters);
|
|
return fir::runtime::genCharCompare(builder, loc, pred, lhs, rhs);
|
|
};
|
|
}
|
|
template <int KIND>
|
|
CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
|
|
Fortran::common::TypeCategory::Integer, KIND>> &x) {
|
|
return createCompareOp<mlir::arith::CmpIOp>(translateRelational(x.opr), x);
|
|
}
|
|
template <int KIND>
|
|
CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
|
|
Fortran::common::TypeCategory::Character, KIND>> &x) {
|
|
return createCompareCharOp(translateRelational(x.opr), x);
|
|
}
|
|
template <int KIND>
|
|
CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
|
|
Fortran::common::TypeCategory::Real, KIND>> &x) {
|
|
return createCompareOp<mlir::arith::CmpFOp>(translateFloatRelational(x.opr),
|
|
x);
|
|
}
|
|
template <int KIND>
|
|
CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
|
|
Fortran::common::TypeCategory::Complex, KIND>> &x) {
|
|
return createCompareOp<fir::CmpcOp>(translateFloatRelational(x.opr), x);
|
|
}
|
|
CC genarr(
|
|
const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &r) {
|
|
return std::visit([&](const auto &x) { return genarr(x); }, r.u);
|
|
}
|
|
|
|
template <typename A>
|
|
CC genarr(const Fortran::evaluate::Designator<A> &des) {
|
|
ComponentPath components(des.Rank() > 0);
|
|
return std::visit([&](const auto &x) { return genarr(x, components); },
|
|
des.u);
|
|
}
|
|
|
|
template <typename T>
|
|
CC genarr(const Fortran::evaluate::FunctionRef<T> &funRef) {
|
|
// Note that it's possible that the function being called returns either an
|
|
// array or a scalar. In the first case, use the element type of the array.
|
|
return genProcRef(
|
|
funRef, fir::unwrapSequenceType(converter.genType(toEvExpr(funRef))));
|
|
}
|
|
|
|
//===-------------------------------------------------------------------===//
|
|
// Array data references in an explicit iteration space.
|
|
//
|
|
// Use the base array that was loaded before the loop nest.
|
|
//===-------------------------------------------------------------------===//
|
|
|
|
/// Lower the path (`revPath`, in reverse) to be appended to an array_fetch or
|
|
/// array_update op. \p ty is the initial type of the array
|
|
/// (reference). Returns the type of the element after application of the
|
|
/// path in \p components.
|
|
///
|
|
/// TODO: This needs to deal with array's with initial bounds other than 1.
|
|
/// TODO: Thread type parameters correctly.
|
|
mlir::Type lowerPath(const ExtValue &arrayExv, ComponentPath &components) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::Type ty = fir::getBase(arrayExv).getType();
|
|
auto &revPath = components.reversePath;
|
|
ty = fir::unwrapPassByRefType(ty);
|
|
bool prefix = true;
|
|
auto addComponent = [&](mlir::Value v) {
|
|
if (prefix)
|
|
components.prefixComponents.push_back(v);
|
|
else
|
|
components.suffixComponents.push_back(v);
|
|
};
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
|
|
bool atBase = true;
|
|
auto saveSemant = semant;
|
|
if (isProjectedCopyInCopyOut())
|
|
semant = ConstituentSemantics::RefTransparent;
|
|
for (const auto &v : llvm::reverse(revPath)) {
|
|
std::visit(
|
|
Fortran::common::visitors{
|
|
[&](const ImplicitSubscripts &) {
|
|
prefix = false;
|
|
ty = fir::unwrapSequenceType(ty);
|
|
},
|
|
[&](const Fortran::evaluate::ComplexPart *x) {
|
|
assert(!prefix && "complex part must be at end");
|
|
mlir::Value offset = builder.createIntegerConstant(
|
|
loc, builder.getI32Type(),
|
|
x->part() == Fortran::evaluate::ComplexPart::Part::RE ? 0
|
|
: 1);
|
|
components.suffixComponents.push_back(offset);
|
|
ty = fir::applyPathToType(ty, mlir::ValueRange{offset});
|
|
},
|
|
[&](const Fortran::evaluate::ArrayRef *x) {
|
|
if (Fortran::lower::isRankedArrayAccess(*x)) {
|
|
genSliceIndices(components, arrayExv, *x, atBase);
|
|
} else {
|
|
// Array access where the expressions are scalar and cannot
|
|
// depend upon the implied iteration space.
|
|
unsigned ssIndex = 0u;
|
|
for (const auto &ss : x->subscript()) {
|
|
std::visit(
|
|
Fortran::common::visitors{
|
|
[&](const Fortran::evaluate::
|
|
IndirectSubscriptIntegerExpr &ie) {
|
|
const auto &e = ie.value();
|
|
if (isArray(e))
|
|
fir::emitFatalError(
|
|
loc,
|
|
"multiple components along single path "
|
|
"generating array subexpressions");
|
|
// Lower scalar index expression, append it to
|
|
// subs.
|
|
mlir::Value subscriptVal =
|
|
fir::getBase(asScalarArray(e));
|
|
// arrayExv is the base array. It needs to reflect
|
|
// the current array component instead.
|
|
// FIXME: must use lower bound of this component,
|
|
// not just the constant 1.
|
|
mlir::Value lb =
|
|
atBase ? fir::factory::readLowerBound(
|
|
builder, loc, arrayExv, ssIndex,
|
|
one)
|
|
: one;
|
|
mlir::Value val = builder.createConvert(
|
|
loc, idxTy, subscriptVal);
|
|
mlir::Value ivAdj =
|
|
builder.create<mlir::arith::SubIOp>(
|
|
loc, idxTy, val, lb);
|
|
addComponent(
|
|
builder.createConvert(loc, idxTy, ivAdj));
|
|
},
|
|
[&](const auto &) {
|
|
fir::emitFatalError(
|
|
loc, "multiple components along single path "
|
|
"generating array subexpressions");
|
|
}},
|
|
ss.u);
|
|
ssIndex++;
|
|
}
|
|
}
|
|
ty = fir::unwrapSequenceType(ty);
|
|
},
|
|
[&](const Fortran::evaluate::Component *x) {
|
|
auto fieldTy = fir::FieldType::get(builder.getContext());
|
|
llvm::StringRef name = toStringRef(getLastSym(*x).name());
|
|
auto recTy = ty.cast<fir::RecordType>();
|
|
ty = recTy.getType(name);
|
|
auto fld = builder.create<fir::FieldIndexOp>(
|
|
loc, fieldTy, name, recTy, fir::getTypeParams(arrayExv));
|
|
addComponent(fld);
|
|
}},
|
|
v);
|
|
atBase = false;
|
|
}
|
|
semant = saveSemant;
|
|
ty = fir::unwrapSequenceType(ty);
|
|
components.applied = true;
|
|
return ty;
|
|
}
|
|
|
|
llvm::SmallVector<mlir::Value> genSubstringBounds(ComponentPath &components) {
|
|
llvm::SmallVector<mlir::Value> result;
|
|
if (components.substring)
|
|
populateBounds(result, components.substring);
|
|
return result;
|
|
}
|
|
|
|
CC applyPathToArrayLoad(fir::ArrayLoadOp load, ComponentPath &components) {
|
|
mlir::Location loc = getLoc();
|
|
auto revPath = components.reversePath;
|
|
fir::ExtendedValue arrayExv =
|
|
arrayLoadExtValue(builder, loc, load, {}, load);
|
|
mlir::Type eleTy = lowerPath(arrayExv, components);
|
|
auto currentPC = components.pc;
|
|
auto pc = [=, prefix = components.prefixComponents,
|
|
suffix = components.suffixComponents](IterSpace iters) {
|
|
IterationSpace newIters = currentPC(iters);
|
|
// Add path prefix and suffix.
|
|
IterationSpace addIters(newIters, prefix, suffix);
|
|
return addIters;
|
|
};
|
|
components.pc = [=](IterSpace iters) { return iters; };
|
|
llvm::SmallVector<mlir::Value> substringBounds =
|
|
genSubstringBounds(components);
|
|
if (isProjectedCopyInCopyOut()) {
|
|
destination = load;
|
|
auto lambda = [=, esp = this->explicitSpace](IterSpace iters) mutable {
|
|
mlir::Value innerArg = esp->findArgumentOfLoad(load);
|
|
if (isAdjustedArrayElementType(eleTy)) {
|
|
mlir::Type eleRefTy = builder.getRefType(eleTy);
|
|
auto arrayOp = builder.create<fir::ArrayAccessOp>(
|
|
loc, eleRefTy, innerArg, iters.iterVec(), load.getTypeparams());
|
|
if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
|
|
mlir::Value dstLen = fir::factory::genLenOfCharacter(
|
|
builder, loc, load, iters.iterVec(), substringBounds);
|
|
fir::ArrayAmendOp amend = createCharArrayAmend(
|
|
loc, builder, arrayOp, dstLen, iters.elementExv(), innerArg,
|
|
substringBounds);
|
|
return arrayLoadExtValue(builder, loc, load, iters.iterVec(), amend,
|
|
dstLen);
|
|
} else if (fir::isa_derived(eleTy)) {
|
|
fir::ArrayAmendOp amend =
|
|
createDerivedArrayAmend(loc, load, builder, arrayOp,
|
|
iters.elementExv(), eleTy, innerArg);
|
|
return arrayLoadExtValue(builder, loc, load, iters.iterVec(),
|
|
amend);
|
|
}
|
|
assert(eleTy.isa<fir::SequenceType>());
|
|
TODO(loc, "array (as element) assignment");
|
|
}
|
|
mlir::Value castedElement =
|
|
builder.createConvert(loc, eleTy, iters.getElement());
|
|
auto update = builder.create<fir::ArrayUpdateOp>(
|
|
loc, innerArg.getType(), innerArg, castedElement, iters.iterVec(),
|
|
load.getTypeparams());
|
|
return arrayLoadExtValue(builder, loc, load, iters.iterVec(), update);
|
|
};
|
|
return [=](IterSpace iters) mutable { return lambda(pc(iters)); };
|
|
}
|
|
if (isCustomCopyInCopyOut()) {
|
|
// Create an array_modify to get the LHS element address and indicate
|
|
// the assignment, and create the call to the user defined assignment.
|
|
destination = load;
|
|
auto lambda = [=](IterSpace iters) mutable {
|
|
mlir::Value innerArg = explicitSpace->findArgumentOfLoad(load);
|
|
mlir::Type refEleTy =
|
|
fir::isa_ref_type(eleTy) ? eleTy : builder.getRefType(eleTy);
|
|
auto arrModify = builder.create<fir::ArrayModifyOp>(
|
|
loc, mlir::TypeRange{refEleTy, innerArg.getType()}, innerArg,
|
|
iters.iterVec(), load.getTypeparams());
|
|
return arrayLoadExtValue(builder, loc, load, iters.iterVec(),
|
|
arrModify.getResult(1));
|
|
};
|
|
return [=](IterSpace iters) mutable { return lambda(pc(iters)); };
|
|
}
|
|
auto lambda = [=, semant = this->semant](IterSpace iters) mutable {
|
|
if (semant == ConstituentSemantics::RefOpaque ||
|
|
isAdjustedArrayElementType(eleTy)) {
|
|
mlir::Type resTy = builder.getRefType(eleTy);
|
|
// Use array element reference semantics.
|
|
auto access = builder.create<fir::ArrayAccessOp>(
|
|
loc, resTy, load, iters.iterVec(), load.getTypeparams());
|
|
mlir::Value newBase = access;
|
|
if (fir::isa_char(eleTy)) {
|
|
mlir::Value dstLen = fir::factory::genLenOfCharacter(
|
|
builder, loc, load, iters.iterVec(), substringBounds);
|
|
if (!substringBounds.empty()) {
|
|
fir::CharBoxValue charDst{access, dstLen};
|
|
fir::factory::CharacterExprHelper helper{builder, loc};
|
|
charDst = helper.createSubstring(charDst, substringBounds);
|
|
newBase = charDst.getAddr();
|
|
}
|
|
return arrayLoadExtValue(builder, loc, load, iters.iterVec(), newBase,
|
|
dstLen);
|
|
}
|
|
return arrayLoadExtValue(builder, loc, load, iters.iterVec(), newBase);
|
|
}
|
|
auto fetch = builder.create<fir::ArrayFetchOp>(
|
|
loc, eleTy, load, iters.iterVec(), load.getTypeparams());
|
|
return arrayLoadExtValue(builder, loc, load, iters.iterVec(), fetch);
|
|
};
|
|
return [=](IterSpace iters) mutable {
|
|
auto newIters = pc(iters);
|
|
return lambda(newIters);
|
|
};
|
|
}
|
|
|
|
template <typename A>
|
|
CC genImplicitArrayAccess(const A &x, ComponentPath &components) {
|
|
components.reversePath.push_back(ImplicitSubscripts{});
|
|
ExtValue exv = asScalarRef(x);
|
|
lowerPath(exv, components);
|
|
auto lambda = genarr(exv, components);
|
|
return [=](IterSpace iters) { return lambda(components.pc(iters)); };
|
|
}
|
|
CC genImplicitArrayAccess(const Fortran::evaluate::NamedEntity &x,
|
|
ComponentPath &components) {
|
|
if (x.IsSymbol())
|
|
return genImplicitArrayAccess(x.GetFirstSymbol(), components);
|
|
return genImplicitArrayAccess(x.GetComponent(), components);
|
|
}
|
|
|
|
template <typename A>
|
|
CC genAsScalar(const A &x) {
|
|
mlir::Location loc = getLoc();
|
|
if (isProjectedCopyInCopyOut()) {
|
|
return [=, &x, builder = &converter.getFirOpBuilder()](
|
|
IterSpace iters) -> ExtValue {
|
|
ExtValue exv = asScalarRef(x);
|
|
mlir::Value val = fir::getBase(exv);
|
|
mlir::Type eleTy = fir::unwrapRefType(val.getType());
|
|
if (isAdjustedArrayElementType(eleTy)) {
|
|
if (fir::isa_char(eleTy)) {
|
|
TODO(getLoc(), "assignment of character type");
|
|
} else if (fir::isa_derived(eleTy)) {
|
|
TODO(loc, "assignment of derived type");
|
|
} else {
|
|
fir::emitFatalError(loc, "array type not expected in scalar");
|
|
}
|
|
} else {
|
|
builder->create<fir::StoreOp>(loc, iters.getElement(), val);
|
|
}
|
|
return exv;
|
|
};
|
|
}
|
|
return [=, &x](IterSpace) { return asScalar(x); };
|
|
}
|
|
|
|
CC genarr(const Fortran::semantics::Symbol &x, ComponentPath &components) {
|
|
if (explicitSpaceIsActive()) {
|
|
if (x.Rank() > 0)
|
|
components.reversePath.push_back(ImplicitSubscripts{});
|
|
if (fir::ArrayLoadOp load = explicitSpace->findBinding(&x))
|
|
return applyPathToArrayLoad(load, components);
|
|
} else {
|
|
return genImplicitArrayAccess(x, components);
|
|
}
|
|
if (pathIsEmpty(components))
|
|
return genAsScalar(x);
|
|
mlir::Location loc = getLoc();
|
|
return [=](IterSpace) -> ExtValue {
|
|
fir::emitFatalError(loc, "reached symbol with path");
|
|
};
|
|
}
|
|
|
|
/// Lower a component path with or without rank.
|
|
/// Example: <code>array%baz%qux%waldo</code>
|
|
CC genarr(const Fortran::evaluate::Component &x, ComponentPath &components) {
|
|
if (explicitSpaceIsActive()) {
|
|
if (x.base().Rank() == 0 && x.Rank() > 0)
|
|
components.reversePath.push_back(ImplicitSubscripts{});
|
|
if (fir::ArrayLoadOp load = explicitSpace->findBinding(&x))
|
|
return applyPathToArrayLoad(load, components);
|
|
} else {
|
|
if (x.base().Rank() == 0)
|
|
return genImplicitArrayAccess(x, components);
|
|
}
|
|
bool atEnd = pathIsEmpty(components);
|
|
if (!getLastSym(x).test(Fortran::semantics::Symbol::Flag::ParentComp))
|
|
// Skip parent components; their components are placed directly in the
|
|
// object.
|
|
components.reversePath.push_back(&x);
|
|
auto result = genarr(x.base(), components);
|
|
if (components.applied)
|
|
return result;
|
|
if (atEnd)
|
|
return genAsScalar(x);
|
|
mlir::Location loc = getLoc();
|
|
return [=](IterSpace) -> ExtValue {
|
|
fir::emitFatalError(loc, "reached component with path");
|
|
};
|
|
}
|
|
|
|
/// Array reference with subscripts. If this has rank > 0, this is a form
|
|
/// of an array section (slice).
|
|
///
|
|
/// There are two "slicing" primitives that may be applied on a dimension by
|
|
/// dimension basis: (1) triple notation and (2) vector addressing. Since
|
|
/// dimensions can be selectively sliced, some dimensions may contain
|
|
/// regular scalar expressions and those dimensions do not participate in
|
|
/// the array expression evaluation.
|
|
CC genarr(const Fortran::evaluate::ArrayRef &x, ComponentPath &components) {
|
|
if (explicitSpaceIsActive()) {
|
|
if (Fortran::lower::isRankedArrayAccess(x))
|
|
components.reversePath.push_back(ImplicitSubscripts{});
|
|
if (fir::ArrayLoadOp load = explicitSpace->findBinding(&x)) {
|
|
components.reversePath.push_back(&x);
|
|
return applyPathToArrayLoad(load, components);
|
|
}
|
|
} else {
|
|
if (Fortran::lower::isRankedArrayAccess(x)) {
|
|
components.reversePath.push_back(&x);
|
|
return genImplicitArrayAccess(x.base(), components);
|
|
}
|
|
}
|
|
bool atEnd = pathIsEmpty(components);
|
|
components.reversePath.push_back(&x);
|
|
auto result = genarr(x.base(), components);
|
|
if (components.applied)
|
|
return result;
|
|
mlir::Location loc = getLoc();
|
|
if (atEnd) {
|
|
if (x.Rank() == 0)
|
|
return genAsScalar(x);
|
|
fir::emitFatalError(loc, "expected scalar");
|
|
}
|
|
return [=](IterSpace) -> ExtValue {
|
|
fir::emitFatalError(loc, "reached arrayref with path");
|
|
};
|
|
}
|
|
|
|
CC genarr(const Fortran::evaluate::CoarrayRef &x, ComponentPath &components) {
|
|
TODO(getLoc(), "coarray reference");
|
|
}
|
|
|
|
CC genarr(const Fortran::evaluate::NamedEntity &x,
|
|
ComponentPath &components) {
|
|
return x.IsSymbol() ? genarr(x.GetFirstSymbol(), components)
|
|
: genarr(x.GetComponent(), components);
|
|
}
|
|
|
|
CC genarr(const Fortran::evaluate::DataRef &x, ComponentPath &components) {
|
|
return std::visit([&](const auto &v) { return genarr(v, components); },
|
|
x.u);
|
|
}
|
|
|
|
bool pathIsEmpty(const ComponentPath &components) {
|
|
return components.reversePath.empty();
|
|
}
|
|
|
|
/// Given an optional fir.box, returns an fir.box that is the original one if
|
|
/// it is present and it otherwise an unallocated box.
|
|
/// Absent fir.box are implemented as a null pointer descriptor. Generated
|
|
/// code may need to unconditionally read a fir.box that can be absent.
|
|
/// This helper allows creating a fir.box that can be read in all cases
|
|
/// outside of a fir.if (isPresent) region. However, the usages of the value
|
|
/// read from such box should still only be done in a fir.if(isPresent).
|
|
static fir::ExtendedValue
|
|
absentBoxToUnalllocatedBox(fir::FirOpBuilder &builder, mlir::Location loc,
|
|
const fir::ExtendedValue &exv,
|
|
mlir::Value isPresent) {
|
|
mlir::Value box = fir::getBase(exv);
|
|
mlir::Type boxType = box.getType();
|
|
assert(boxType.isa<fir::BoxType>() && "argument must be a fir.box");
|
|
mlir::Value emptyBox =
|
|
fir::factory::createUnallocatedBox(builder, loc, boxType, llvm::None);
|
|
auto safeToReadBox =
|
|
builder.create<mlir::arith::SelectOp>(loc, isPresent, box, emptyBox);
|
|
return fir::substBase(exv, safeToReadBox);
|
|
}
|
|
|
|
std::tuple<CC, mlir::Value, mlir::Type>
|
|
genOptionalArrayFetch(const Fortran::lower::SomeExpr &expr) {
|
|
assert(expr.Rank() > 0 && "expr must be an array");
|
|
mlir::Location loc = getLoc();
|
|
ExtValue optionalArg = asInquired(expr);
|
|
mlir::Value isPresent = genActualIsPresentTest(builder, loc, optionalArg);
|
|
// Generate an array load and access to an array that may be an absent
|
|
// optional or an unallocated optional.
|
|
mlir::Value base = getBase(optionalArg);
|
|
const bool hasOptionalAttr =
|
|
fir::valueHasFirAttribute(base, fir::getOptionalAttrName());
|
|
mlir::Type baseType = fir::unwrapRefType(base.getType());
|
|
const bool isBox = baseType.isa<fir::BoxType>();
|
|
const bool isAllocOrPtr = Fortran::evaluate::IsAllocatableOrPointerObject(
|
|
expr, converter.getFoldingContext());
|
|
mlir::Type arrType = fir::unwrapPassByRefType(baseType);
|
|
mlir::Type eleType = fir::unwrapSequenceType(arrType);
|
|
ExtValue exv = optionalArg;
|
|
if (hasOptionalAttr && isBox && !isAllocOrPtr) {
|
|
// Elemental argument cannot be allocatable or pointers (C15100).
|
|
// Hence, per 15.5.2.12 3 (8) and (9), the provided Allocatable and
|
|
// Pointer optional arrays cannot be absent. The only kind of entities
|
|
// that can get here are optional assumed shape and polymorphic entities.
|
|
exv = absentBoxToUnalllocatedBox(builder, loc, exv, isPresent);
|
|
}
|
|
// All the properties can be read from any fir.box but the read values may
|
|
// be undefined and should only be used inside a fir.if (canBeRead) region.
|
|
if (const auto *mutableBox = exv.getBoxOf<fir::MutableBoxValue>())
|
|
exv = fir::factory::genMutableBoxRead(builder, loc, *mutableBox);
|
|
|
|
mlir::Value memref = fir::getBase(exv);
|
|
mlir::Value shape = builder.createShape(loc, exv);
|
|
mlir::Value noSlice;
|
|
auto arrLoad = builder.create<fir::ArrayLoadOp>(
|
|
loc, arrType, memref, shape, noSlice, fir::getTypeParams(exv));
|
|
mlir::Operation::operand_range arrLdTypeParams = arrLoad.getTypeparams();
|
|
mlir::Value arrLd = arrLoad.getResult();
|
|
// Mark the load to tell later passes it is unsafe to use this array_load
|
|
// shape unconditionally.
|
|
arrLoad->setAttr(fir::getOptionalAttrName(), builder.getUnitAttr());
|
|
|
|
// Place the array as optional on the arrayOperands stack so that its
|
|
// shape will only be used as a fallback to induce the implicit loop nest
|
|
// (that is if there is no non optional array arguments).
|
|
arrayOperands.push_back(
|
|
ArrayOperand{memref, shape, noSlice, /*mayBeAbsent=*/true});
|
|
|
|
// By value semantics.
|
|
auto cc = [=](IterSpace iters) -> ExtValue {
|
|
auto arrFetch = builder.create<fir::ArrayFetchOp>(
|
|
loc, eleType, arrLd, iters.iterVec(), arrLdTypeParams);
|
|
return fir::factory::arraySectionElementToExtendedValue(
|
|
builder, loc, exv, arrFetch, noSlice);
|
|
};
|
|
return {cc, isPresent, eleType};
|
|
}
|
|
|
|
/// Generate a continuation to pass \p expr to an OPTIONAL argument of an
|
|
/// elemental procedure. This is meant to handle the cases where \p expr might
|
|
/// be dynamically absent (i.e. when it is a POINTER, an ALLOCATABLE or an
|
|
/// OPTIONAL variable). If p\ expr is guaranteed to be present genarr() can
|
|
/// directly be called instead.
|
|
CC genarrForwardOptionalArgumentToCall(const Fortran::lower::SomeExpr &expr) {
|
|
mlir::Location loc = getLoc();
|
|
// Only by-value numerical and logical so far.
|
|
if (semant != ConstituentSemantics::RefTransparent)
|
|
TODO(loc, "optional arguments in user defined elemental procedures");
|
|
|
|
// Handle scalar argument case (the if-then-else is generated outside of the
|
|
// implicit loop nest).
|
|
if (expr.Rank() == 0) {
|
|
ExtValue optionalArg = asInquired(expr);
|
|
mlir::Value isPresent = genActualIsPresentTest(builder, loc, optionalArg);
|
|
mlir::Value elementValue =
|
|
fir::getBase(genOptionalValue(builder, loc, optionalArg, isPresent));
|
|
return [=](IterSpace iters) -> ExtValue { return elementValue; };
|
|
}
|
|
|
|
CC cc;
|
|
mlir::Value isPresent;
|
|
mlir::Type eleType;
|
|
std::tie(cc, isPresent, eleType) = genOptionalArrayFetch(expr);
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
mlir::Value elementValue =
|
|
builder
|
|
.genIfOp(loc, {eleType}, isPresent,
|
|
/*withElseRegion=*/true)
|
|
.genThen([&]() {
|
|
builder.create<fir::ResultOp>(loc, fir::getBase(cc(iters)));
|
|
})
|
|
.genElse([&]() {
|
|
mlir::Value zero =
|
|
fir::factory::createZeroValue(builder, loc, eleType);
|
|
builder.create<fir::ResultOp>(loc, zero);
|
|
})
|
|
.getResults()[0];
|
|
return elementValue;
|
|
};
|
|
}
|
|
|
|
/// Reduce the rank of a array to be boxed based on the slice's operands.
|
|
static mlir::Type reduceRank(mlir::Type arrTy, mlir::Value slice) {
|
|
if (slice) {
|
|
auto slOp = mlir::dyn_cast<fir::SliceOp>(slice.getDefiningOp());
|
|
assert(slOp && "expected slice op");
|
|
auto seqTy = arrTy.dyn_cast<fir::SequenceType>();
|
|
assert(seqTy && "expected array type");
|
|
mlir::Operation::operand_range triples = slOp.getTriples();
|
|
fir::SequenceType::Shape shape;
|
|
// reduce the rank for each invariant dimension
|
|
for (unsigned i = 1, end = triples.size(); i < end; i += 3)
|
|
if (!mlir::isa_and_nonnull<fir::UndefOp>(triples[i].getDefiningOp()))
|
|
shape.push_back(fir::SequenceType::getUnknownExtent());
|
|
return fir::SequenceType::get(shape, seqTy.getEleTy());
|
|
}
|
|
// not sliced, so no change in rank
|
|
return arrTy;
|
|
}
|
|
|
|
CC genarr(const Fortran::evaluate::ComplexPart &x,
|
|
ComponentPath &components) {
|
|
components.reversePath.push_back(&x);
|
|
return genarr(x.complex(), components);
|
|
}
|
|
|
|
CC genarr(const Fortran::evaluate::StaticDataObject::Pointer &,
|
|
ComponentPath &components) {
|
|
TODO(getLoc(), "genarr StaticDataObject::Pointer");
|
|
}
|
|
|
|
/// Substrings (see 9.4.1)
|
|
CC genarr(const Fortran::evaluate::Substring &x, ComponentPath &components) {
|
|
components.substring = &x;
|
|
return std::visit([&](const auto &v) { return genarr(v, components); },
|
|
x.parent());
|
|
}
|
|
|
|
/// Base case of generating an array reference,
|
|
CC genarr(const ExtValue &extMemref, ComponentPath &components) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::Value memref = fir::getBase(extMemref);
|
|
mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(memref.getType());
|
|
assert(arrTy.isa<fir::SequenceType>() && "memory ref must be an array");
|
|
mlir::Value shape = builder.createShape(loc, extMemref);
|
|
mlir::Value slice;
|
|
if (components.isSlice()) {
|
|
if (isBoxValue() && components.substring) {
|
|
// Append the substring operator to emboxing Op as it will become an
|
|
// interior adjustment (add offset, adjust LEN) to the CHARACTER value
|
|
// being referenced in the descriptor.
|
|
llvm::SmallVector<mlir::Value> substringBounds;
|
|
populateBounds(substringBounds, components.substring);
|
|
// Convert to (offset, size)
|
|
mlir::Type iTy = substringBounds[0].getType();
|
|
if (substringBounds.size() != 2) {
|
|
fir::CharacterType charTy =
|
|
fir::factory::CharacterExprHelper::getCharType(arrTy);
|
|
if (charTy.hasConstantLen()) {
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
fir::CharacterType::LenType charLen = charTy.getLen();
|
|
mlir::Value lenValue =
|
|
builder.createIntegerConstant(loc, idxTy, charLen);
|
|
substringBounds.push_back(lenValue);
|
|
} else {
|
|
llvm::SmallVector<mlir::Value> typeparams =
|
|
fir::getTypeParams(extMemref);
|
|
substringBounds.push_back(typeparams.back());
|
|
}
|
|
}
|
|
// Convert the lower bound to 0-based substring.
|
|
mlir::Value one =
|
|
builder.createIntegerConstant(loc, substringBounds[0].getType(), 1);
|
|
substringBounds[0] =
|
|
builder.create<mlir::arith::SubIOp>(loc, substringBounds[0], one);
|
|
// Convert the upper bound to a length.
|
|
mlir::Value cast = builder.createConvert(loc, iTy, substringBounds[1]);
|
|
mlir::Value zero = builder.createIntegerConstant(loc, iTy, 0);
|
|
auto size =
|
|
builder.create<mlir::arith::SubIOp>(loc, cast, substringBounds[0]);
|
|
auto cmp = builder.create<mlir::arith::CmpIOp>(
|
|
loc, mlir::arith::CmpIPredicate::sgt, size, zero);
|
|
// size = MAX(upper - (lower - 1), 0)
|
|
substringBounds[1] =
|
|
builder.create<mlir::arith::SelectOp>(loc, cmp, size, zero);
|
|
slice = builder.create<fir::SliceOp>(loc, components.trips,
|
|
components.suffixComponents,
|
|
substringBounds);
|
|
} else {
|
|
slice = builder.createSlice(loc, extMemref, components.trips,
|
|
components.suffixComponents);
|
|
}
|
|
if (components.hasComponents()) {
|
|
auto seqTy = arrTy.cast<fir::SequenceType>();
|
|
mlir::Type eleTy =
|
|
fir::applyPathToType(seqTy.getEleTy(), components.suffixComponents);
|
|
if (!eleTy)
|
|
fir::emitFatalError(loc, "slicing path is ill-formed");
|
|
if (auto realTy = eleTy.dyn_cast<fir::RealType>())
|
|
eleTy = Fortran::lower::convertReal(realTy.getContext(),
|
|
realTy.getFKind());
|
|
|
|
// create the type of the projected array.
|
|
arrTy = fir::SequenceType::get(seqTy.getShape(), eleTy);
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "type of array projection from component slicing: "
|
|
<< eleTy << ", " << arrTy << '\n');
|
|
}
|
|
}
|
|
arrayOperands.push_back(ArrayOperand{memref, shape, slice});
|
|
if (destShape.empty())
|
|
destShape = getShape(arrayOperands.back());
|
|
if (isBoxValue()) {
|
|
// Semantics are a reference to a boxed array.
|
|
// This case just requires that an embox operation be created to box the
|
|
// value. The value of the box is forwarded in the continuation.
|
|
mlir::Type reduceTy = reduceRank(arrTy, slice);
|
|
auto boxTy = fir::BoxType::get(reduceTy);
|
|
if (components.substring) {
|
|
// Adjust char length to substring size.
|
|
fir::CharacterType charTy =
|
|
fir::factory::CharacterExprHelper::getCharType(reduceTy);
|
|
auto seqTy = reduceTy.cast<fir::SequenceType>();
|
|
// TODO: Use a constant for fir.char LEN if we can compute it.
|
|
boxTy = fir::BoxType::get(
|
|
fir::SequenceType::get(fir::CharacterType::getUnknownLen(
|
|
builder.getContext(), charTy.getFKind()),
|
|
seqTy.getDimension()));
|
|
}
|
|
mlir::Value embox =
|
|
memref.getType().isa<fir::BoxType>()
|
|
? builder.create<fir::ReboxOp>(loc, boxTy, memref, shape, slice)
|
|
.getResult()
|
|
: builder
|
|
.create<fir::EmboxOp>(loc, boxTy, memref, shape, slice,
|
|
fir::getTypeParams(extMemref))
|
|
.getResult();
|
|
return [=](IterSpace) -> ExtValue { return fir::BoxValue(embox); };
|
|
}
|
|
auto eleTy = arrTy.cast<fir::SequenceType>().getEleTy();
|
|
if (isReferentiallyOpaque()) {
|
|
// Semantics are an opaque reference to an array.
|
|
// This case forwards a continuation that will generate the address
|
|
// arithmetic to the array element. This does not have copy-in/copy-out
|
|
// semantics. No attempt to copy the array value will be made during the
|
|
// interpretation of the Fortran statement.
|
|
mlir::Type refEleTy = builder.getRefType(eleTy);
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
// ArrayCoorOp does not expect zero based indices.
|
|
llvm::SmallVector<mlir::Value> indices = fir::factory::originateIndices(
|
|
loc, builder, memref.getType(), shape, iters.iterVec());
|
|
mlir::Value coor = builder.create<fir::ArrayCoorOp>(
|
|
loc, refEleTy, memref, shape, slice, indices,
|
|
fir::getTypeParams(extMemref));
|
|
if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
|
|
llvm::SmallVector<mlir::Value> substringBounds;
|
|
populateBounds(substringBounds, components.substring);
|
|
if (!substringBounds.empty()) {
|
|
mlir::Value dstLen = fir::factory::genLenOfCharacter(
|
|
builder, loc, arrTy.cast<fir::SequenceType>(), memref,
|
|
fir::getTypeParams(extMemref), iters.iterVec(),
|
|
substringBounds);
|
|
fir::CharBoxValue dstChar(coor, dstLen);
|
|
return fir::factory::CharacterExprHelper{builder, loc}
|
|
.createSubstring(dstChar, substringBounds);
|
|
}
|
|
}
|
|
return fir::factory::arraySectionElementToExtendedValue(
|
|
builder, loc, extMemref, coor, slice);
|
|
};
|
|
}
|
|
auto arrLoad = builder.create<fir::ArrayLoadOp>(
|
|
loc, arrTy, memref, shape, slice, fir::getTypeParams(extMemref));
|
|
mlir::Value arrLd = arrLoad.getResult();
|
|
if (isProjectedCopyInCopyOut()) {
|
|
// Semantics are projected copy-in copy-out.
|
|
// The backing store of the destination of an array expression may be
|
|
// partially modified. These updates are recorded in FIR by forwarding a
|
|
// continuation that generates an `array_update` Op. The destination is
|
|
// always loaded at the beginning of the statement and merged at the
|
|
// end.
|
|
destination = arrLoad;
|
|
auto lambda = ccStoreToDest.hasValue()
|
|
? ccStoreToDest.getValue()
|
|
: defaultStoreToDestination(components.substring);
|
|
return [=](IterSpace iters) -> ExtValue { return lambda(iters); };
|
|
}
|
|
if (isCustomCopyInCopyOut()) {
|
|
// Create an array_modify to get the LHS element address and indicate
|
|
// the assignment, the actual assignment must be implemented in
|
|
// ccStoreToDest.
|
|
destination = arrLoad;
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
mlir::Value innerArg = iters.innerArgument();
|
|
mlir::Type resTy = innerArg.getType();
|
|
mlir::Type eleTy = fir::applyPathToType(resTy, iters.iterVec());
|
|
mlir::Type refEleTy =
|
|
fir::isa_ref_type(eleTy) ? eleTy : builder.getRefType(eleTy);
|
|
auto arrModify = builder.create<fir::ArrayModifyOp>(
|
|
loc, mlir::TypeRange{refEleTy, resTy}, innerArg, iters.iterVec(),
|
|
destination.getTypeparams());
|
|
return abstractArrayExtValue(arrModify.getResult(1));
|
|
};
|
|
}
|
|
if (isCopyInCopyOut()) {
|
|
// Semantics are copy-in copy-out.
|
|
// The continuation simply forwards the result of the `array_load` Op,
|
|
// which is the value of the array as it was when loaded. All data
|
|
// references with rank > 0 in an array expression typically have
|
|
// copy-in copy-out semantics.
|
|
return [=](IterSpace) -> ExtValue { return arrLd; };
|
|
}
|
|
mlir::Operation::operand_range arrLdTypeParams = arrLoad.getTypeparams();
|
|
if (isValueAttribute()) {
|
|
// Semantics are value attribute.
|
|
// Here the continuation will `array_fetch` a value from an array and
|
|
// then store that value in a temporary. One can thus imitate pass by
|
|
// value even when the call is pass by reference.
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
mlir::Value base;
|
|
mlir::Type eleTy = fir::applyPathToType(arrTy, iters.iterVec());
|
|
if (isAdjustedArrayElementType(eleTy)) {
|
|
mlir::Type eleRefTy = builder.getRefType(eleTy);
|
|
base = builder.create<fir::ArrayAccessOp>(
|
|
loc, eleRefTy, arrLd, iters.iterVec(), arrLdTypeParams);
|
|
} else {
|
|
base = builder.create<fir::ArrayFetchOp>(
|
|
loc, eleTy, arrLd, iters.iterVec(), arrLdTypeParams);
|
|
}
|
|
mlir::Value temp = builder.createTemporary(
|
|
loc, base.getType(),
|
|
llvm::ArrayRef<mlir::NamedAttribute>{
|
|
Fortran::lower::getAdaptToByRefAttr(builder)});
|
|
builder.create<fir::StoreOp>(loc, base, temp);
|
|
return fir::factory::arraySectionElementToExtendedValue(
|
|
builder, loc, extMemref, temp, slice);
|
|
};
|
|
}
|
|
// In the default case, the array reference forwards an `array_fetch` or
|
|
// `array_access` Op in the continuation.
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
mlir::Type eleTy = fir::applyPathToType(arrTy, iters.iterVec());
|
|
if (isAdjustedArrayElementType(eleTy)) {
|
|
mlir::Type eleRefTy = builder.getRefType(eleTy);
|
|
mlir::Value arrayOp = builder.create<fir::ArrayAccessOp>(
|
|
loc, eleRefTy, arrLd, iters.iterVec(), arrLdTypeParams);
|
|
if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
|
|
llvm::SmallVector<mlir::Value> substringBounds;
|
|
populateBounds(substringBounds, components.substring);
|
|
if (!substringBounds.empty()) {
|
|
mlir::Value dstLen = fir::factory::genLenOfCharacter(
|
|
builder, loc, arrLoad, iters.iterVec(), substringBounds);
|
|
fir::CharBoxValue dstChar(arrayOp, dstLen);
|
|
return fir::factory::CharacterExprHelper{builder, loc}
|
|
.createSubstring(dstChar, substringBounds);
|
|
}
|
|
}
|
|
return fir::factory::arraySectionElementToExtendedValue(
|
|
builder, loc, extMemref, arrayOp, slice);
|
|
}
|
|
auto arrFetch = builder.create<fir::ArrayFetchOp>(
|
|
loc, eleTy, arrLd, iters.iterVec(), arrLdTypeParams);
|
|
return fir::factory::arraySectionElementToExtendedValue(
|
|
builder, loc, extMemref, arrFetch, slice);
|
|
};
|
|
}
|
|
|
|
private:
|
|
void determineShapeOfDest(const fir::ExtendedValue &lhs) {
|
|
destShape = fir::factory::getExtents(builder, getLoc(), lhs);
|
|
}
|
|
|
|
void determineShapeOfDest(const Fortran::lower::SomeExpr &lhs) {
|
|
if (!destShape.empty())
|
|
return;
|
|
if (explicitSpaceIsActive() && determineShapeWithSlice(lhs))
|
|
return;
|
|
mlir::Type idxTy = builder.getIndexType();
|
|
mlir::Location loc = getLoc();
|
|
if (std::optional<Fortran::evaluate::ConstantSubscripts> constantShape =
|
|
Fortran::evaluate::GetConstantExtents(converter.getFoldingContext(),
|
|
lhs))
|
|
for (Fortran::common::ConstantSubscript extent : *constantShape)
|
|
destShape.push_back(builder.createIntegerConstant(loc, idxTy, extent));
|
|
}
|
|
|
|
bool genShapeFromDataRef(const Fortran::semantics::Symbol &x) {
|
|
return false;
|
|
}
|
|
bool genShapeFromDataRef(const Fortran::evaluate::CoarrayRef &) {
|
|
TODO(getLoc(), "coarray ref");
|
|
return false;
|
|
}
|
|
bool genShapeFromDataRef(const Fortran::evaluate::Component &x) {
|
|
return x.base().Rank() > 0 ? genShapeFromDataRef(x.base()) : false;
|
|
}
|
|
bool genShapeFromDataRef(const Fortran::evaluate::ArrayRef &x) {
|
|
if (x.Rank() == 0)
|
|
return false;
|
|
if (x.base().Rank() > 0)
|
|
if (genShapeFromDataRef(x.base()))
|
|
return true;
|
|
// x has rank and x.base did not produce a shape.
|
|
ExtValue exv = x.base().IsSymbol() ? asScalarRef(getFirstSym(x.base()))
|
|
: asScalarRef(x.base().GetComponent());
|
|
mlir::Location loc = getLoc();
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
llvm::SmallVector<mlir::Value> definedShape =
|
|
fir::factory::getExtents(builder, loc, exv);
|
|
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
|
|
for (auto ss : llvm::enumerate(x.subscript())) {
|
|
std::visit(Fortran::common::visitors{
|
|
[&](const Fortran::evaluate::Triplet &trip) {
|
|
// For a subscript of triple notation, we compute the
|
|
// range of this dimension of the iteration space.
|
|
auto lo = [&]() {
|
|
if (auto optLo = trip.lower())
|
|
return fir::getBase(asScalar(*optLo));
|
|
return getLBound(exv, ss.index(), one);
|
|
}();
|
|
auto hi = [&]() {
|
|
if (auto optHi = trip.upper())
|
|
return fir::getBase(asScalar(*optHi));
|
|
return getUBound(exv, ss.index(), one);
|
|
}();
|
|
auto step = builder.createConvert(
|
|
loc, idxTy, fir::getBase(asScalar(trip.stride())));
|
|
auto extent = builder.genExtentFromTriplet(loc, lo, hi,
|
|
step, idxTy);
|
|
destShape.push_back(extent);
|
|
},
|
|
[&](auto) {}},
|
|
ss.value().u);
|
|
}
|
|
return true;
|
|
}
|
|
bool genShapeFromDataRef(const Fortran::evaluate::NamedEntity &x) {
|
|
if (x.IsSymbol())
|
|
return genShapeFromDataRef(getFirstSym(x));
|
|
return genShapeFromDataRef(x.GetComponent());
|
|
}
|
|
bool genShapeFromDataRef(const Fortran::evaluate::DataRef &x) {
|
|
return std::visit([&](const auto &v) { return genShapeFromDataRef(v); },
|
|
x.u);
|
|
}
|
|
|
|
/// When in an explicit space, the ranked component must be evaluated to
|
|
/// determine the actual number of iterations when slicing triples are
|
|
/// present. Lower these expressions here.
|
|
bool determineShapeWithSlice(const Fortran::lower::SomeExpr &lhs) {
|
|
LLVM_DEBUG(Fortran::lower::DumpEvaluateExpr::dump(
|
|
llvm::dbgs() << "determine shape of:\n", lhs));
|
|
// FIXME: We may not want to use ExtractDataRef here since it doesn't deal
|
|
// with substrings, etc.
|
|
std::optional<Fortran::evaluate::DataRef> dref =
|
|
Fortran::evaluate::ExtractDataRef(lhs);
|
|
return dref.has_value() ? genShapeFromDataRef(*dref) : false;
|
|
}
|
|
|
|
ExtValue lowerArrayExpression(const Fortran::lower::SomeExpr &exp) {
|
|
mlir::Type resTy = converter.genType(exp);
|
|
return std::visit(
|
|
[&](const auto &e) { return lowerArrayExpression(genarr(e), resTy); },
|
|
exp.u);
|
|
}
|
|
ExtValue lowerArrayExpression(const ExtValue &exv) {
|
|
assert(!explicitSpace);
|
|
mlir::Type resTy = fir::unwrapPassByRefType(fir::getBase(exv).getType());
|
|
return lowerArrayExpression(genarr(exv), resTy);
|
|
}
|
|
|
|
void populateBounds(llvm::SmallVectorImpl<mlir::Value> &bounds,
|
|
const Fortran::evaluate::Substring *substring) {
|
|
if (!substring)
|
|
return;
|
|
bounds.push_back(fir::getBase(asScalar(substring->lower())));
|
|
if (auto upper = substring->upper())
|
|
bounds.push_back(fir::getBase(asScalar(*upper)));
|
|
}
|
|
|
|
/// Default store to destination implementation.
|
|
/// This implements the default case, which is to assign the value in
|
|
/// `iters.element` into the destination array, `iters.innerArgument`. Handles
|
|
/// by value and by reference assignment.
|
|
CC defaultStoreToDestination(const Fortran::evaluate::Substring *substring) {
|
|
return [=](IterSpace iterSpace) -> ExtValue {
|
|
mlir::Location loc = getLoc();
|
|
mlir::Value innerArg = iterSpace.innerArgument();
|
|
fir::ExtendedValue exv = iterSpace.elementExv();
|
|
mlir::Type arrTy = innerArg.getType();
|
|
mlir::Type eleTy = fir::applyPathToType(arrTy, iterSpace.iterVec());
|
|
if (isAdjustedArrayElementType(eleTy)) {
|
|
// The elemental update is in the memref domain. Under this semantics,
|
|
// we must always copy the computed new element from its location in
|
|
// memory into the destination array.
|
|
mlir::Type resRefTy = builder.getRefType(eleTy);
|
|
// Get a reference to the array element to be amended.
|
|
auto arrayOp = builder.create<fir::ArrayAccessOp>(
|
|
loc, resRefTy, innerArg, iterSpace.iterVec(),
|
|
destination.getTypeparams());
|
|
if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
|
|
llvm::SmallVector<mlir::Value> substringBounds;
|
|
populateBounds(substringBounds, substring);
|
|
mlir::Value dstLen = fir::factory::genLenOfCharacter(
|
|
builder, loc, destination, iterSpace.iterVec(), substringBounds);
|
|
fir::ArrayAmendOp amend = createCharArrayAmend(
|
|
loc, builder, arrayOp, dstLen, exv, innerArg, substringBounds);
|
|
return abstractArrayExtValue(amend, dstLen);
|
|
}
|
|
if (fir::isa_derived(eleTy)) {
|
|
fir::ArrayAmendOp amend = createDerivedArrayAmend(
|
|
loc, destination, builder, arrayOp, exv, eleTy, innerArg);
|
|
return abstractArrayExtValue(amend /*FIXME: typeparams?*/);
|
|
}
|
|
assert(eleTy.isa<fir::SequenceType>() && "must be an array");
|
|
TODO(loc, "array (as element) assignment");
|
|
}
|
|
// By value semantics. The element is being assigned by value.
|
|
mlir::Value ele = builder.createConvert(loc, eleTy, fir::getBase(exv));
|
|
auto update = builder.create<fir::ArrayUpdateOp>(
|
|
loc, arrTy, innerArg, ele, iterSpace.iterVec(),
|
|
destination.getTypeparams());
|
|
return abstractArrayExtValue(update);
|
|
};
|
|
}
|
|
|
|
/// For an elemental array expression.
|
|
/// 1. Lower the scalars and array loads.
|
|
/// 2. Create the iteration space.
|
|
/// 3. Create the element-by-element computation in the loop.
|
|
/// 4. Return the resulting array value.
|
|
/// If no destination was set in the array context, a temporary of
|
|
/// \p resultTy will be created to hold the evaluated expression.
|
|
/// Otherwise, \p resultTy is ignored and the expression is evaluated
|
|
/// in the destination. \p f is a continuation built from an
|
|
/// evaluate::Expr or an ExtendedValue.
|
|
ExtValue lowerArrayExpression(CC f, mlir::Type resultTy) {
|
|
mlir::Location loc = getLoc();
|
|
auto [iterSpace, insPt] = genIterSpace(resultTy);
|
|
auto exv = f(iterSpace);
|
|
iterSpace.setElement(std::move(exv));
|
|
auto lambda = ccStoreToDest.hasValue()
|
|
? ccStoreToDest.getValue()
|
|
: defaultStoreToDestination(/*substring=*/nullptr);
|
|
mlir::Value updVal = fir::getBase(lambda(iterSpace));
|
|
finalizeElementCtx();
|
|
builder.create<fir::ResultOp>(loc, updVal);
|
|
builder.restoreInsertionPoint(insPt);
|
|
return abstractArrayExtValue(iterSpace.outerResult());
|
|
}
|
|
|
|
/// Compute the shape of a slice.
|
|
llvm::SmallVector<mlir::Value> computeSliceShape(mlir::Value slice) {
|
|
llvm::SmallVector<mlir::Value> slicedShape;
|
|
auto slOp = mlir::cast<fir::SliceOp>(slice.getDefiningOp());
|
|
mlir::Operation::operand_range triples = slOp.getTriples();
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
mlir::Location loc = getLoc();
|
|
for (unsigned i = 0, end = triples.size(); i < end; i += 3) {
|
|
if (!mlir::isa_and_nonnull<fir::UndefOp>(
|
|
triples[i + 1].getDefiningOp())) {
|
|
// (..., lb:ub:step, ...) case: extent = max((ub-lb+step)/step, 0)
|
|
// See Fortran 2018 9.5.3.3.2 section for more details.
|
|
mlir::Value res = builder.genExtentFromTriplet(
|
|
loc, triples[i], triples[i + 1], triples[i + 2], idxTy);
|
|
slicedShape.emplace_back(res);
|
|
} else {
|
|
// do nothing. `..., i, ...` case, so dimension is dropped.
|
|
}
|
|
}
|
|
return slicedShape;
|
|
}
|
|
|
|
/// Get the shape from an ArrayOperand. The shape of the array is adjusted if
|
|
/// the array was sliced.
|
|
llvm::SmallVector<mlir::Value> getShape(ArrayOperand array) {
|
|
if (array.slice)
|
|
return computeSliceShape(array.slice);
|
|
if (array.memref.getType().isa<fir::BoxType>())
|
|
return fir::factory::readExtents(builder, getLoc(),
|
|
fir::BoxValue{array.memref});
|
|
std::vector<mlir::Value, std::allocator<mlir::Value>> extents =
|
|
fir::factory::getExtents(array.shape);
|
|
return {extents.begin(), extents.end()};
|
|
}
|
|
|
|
/// Get the shape from an ArrayLoad.
|
|
llvm::SmallVector<mlir::Value> getShape(fir::ArrayLoadOp arrayLoad) {
|
|
return getShape(ArrayOperand{arrayLoad.getMemref(), arrayLoad.getShape(),
|
|
arrayLoad.getSlice()});
|
|
}
|
|
|
|
/// Returns the first array operand that may not be absent. If all
|
|
/// array operands may be absent, return the first one.
|
|
const ArrayOperand &getInducingShapeArrayOperand() const {
|
|
assert(!arrayOperands.empty());
|
|
for (const ArrayOperand &op : arrayOperands)
|
|
if (!op.mayBeAbsent)
|
|
return op;
|
|
// If all arrays operand appears in optional position, then none of them
|
|
// is allowed to be absent as per 15.5.2.12 point 3. (6). Just pick the
|
|
// first operands.
|
|
// TODO: There is an opportunity to add a runtime check here that
|
|
// this array is present as required.
|
|
return arrayOperands[0];
|
|
}
|
|
|
|
/// Generate the shape of the iteration space over the array expression. The
|
|
/// iteration space may be implicit, explicit, or both. If it is implied it is
|
|
/// based on the destination and operand array loads, or an optional
|
|
/// Fortran::evaluate::Shape from the front end. If the shape is explicit,
|
|
/// this returns any implicit shape component, if it exists.
|
|
llvm::SmallVector<mlir::Value> genIterationShape() {
|
|
// Use the precomputed destination shape.
|
|
if (!destShape.empty())
|
|
return destShape;
|
|
// Otherwise, use the destination's shape.
|
|
if (destination)
|
|
return getShape(destination);
|
|
// Otherwise, use the first ArrayLoad operand shape.
|
|
if (!arrayOperands.empty())
|
|
return getShape(getInducingShapeArrayOperand());
|
|
fir::emitFatalError(getLoc(),
|
|
"failed to compute the array expression shape");
|
|
}
|
|
|
|
explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::StatementContext &stmtCtx,
|
|
Fortran::lower::SymMap &symMap)
|
|
: converter{converter}, builder{converter.getFirOpBuilder()},
|
|
stmtCtx{stmtCtx}, symMap{symMap} {}
|
|
|
|
explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::StatementContext &stmtCtx,
|
|
Fortran::lower::SymMap &symMap,
|
|
ConstituentSemantics sem)
|
|
: converter{converter}, builder{converter.getFirOpBuilder()},
|
|
stmtCtx{stmtCtx}, symMap{symMap}, semant{sem} {}
|
|
|
|
explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::StatementContext &stmtCtx,
|
|
Fortran::lower::SymMap &symMap,
|
|
ConstituentSemantics sem,
|
|
Fortran::lower::ExplicitIterSpace *expSpace,
|
|
Fortran::lower::ImplicitIterSpace *impSpace)
|
|
: converter{converter}, builder{converter.getFirOpBuilder()},
|
|
stmtCtx{stmtCtx}, symMap{symMap},
|
|
explicitSpace(expSpace->isActive() ? expSpace : nullptr),
|
|
implicitSpace(impSpace->empty() ? nullptr : impSpace), semant{sem} {
|
|
// Generate any mask expressions, as necessary. This is the compute step
|
|
// that creates the effective masks. See 10.2.3.2 in particular.
|
|
genMasks();
|
|
}
|
|
|
|
mlir::Location getLoc() { return converter.getCurrentLocation(); }
|
|
|
|
/// Array appears in a lhs context such that it is assigned after the rhs is
|
|
/// fully evaluated.
|
|
inline bool isCopyInCopyOut() {
|
|
return semant == ConstituentSemantics::CopyInCopyOut;
|
|
}
|
|
|
|
/// Array appears in a lhs (or temp) context such that a projected,
|
|
/// discontiguous subspace of the array is assigned after the rhs is fully
|
|
/// evaluated. That is, the rhs array value is merged into a section of the
|
|
/// lhs array.
|
|
inline bool isProjectedCopyInCopyOut() {
|
|
return semant == ConstituentSemantics::ProjectedCopyInCopyOut;
|
|
}
|
|
|
|
inline bool isCustomCopyInCopyOut() {
|
|
return semant == ConstituentSemantics::CustomCopyInCopyOut;
|
|
}
|
|
|
|
/// Array appears in a context where it must be boxed.
|
|
inline bool isBoxValue() { return semant == ConstituentSemantics::BoxValue; }
|
|
|
|
/// Array appears in a context where differences in the memory reference can
|
|
/// be observable in the computational results. For example, an array
|
|
/// element is passed to an impure procedure.
|
|
inline bool isReferentiallyOpaque() {
|
|
return semant == ConstituentSemantics::RefOpaque;
|
|
}
|
|
|
|
/// Array appears in a context where it is passed as a VALUE argument.
|
|
inline bool isValueAttribute() {
|
|
return semant == ConstituentSemantics::ByValueArg;
|
|
}
|
|
|
|
/// Can the loops over the expression be unordered?
|
|
inline bool isUnordered() const { return unordered; }
|
|
|
|
void setUnordered(bool b) { unordered = b; }
|
|
|
|
Fortran::lower::AbstractConverter &converter;
|
|
fir::FirOpBuilder &builder;
|
|
Fortran::lower::StatementContext &stmtCtx;
|
|
bool elementCtx = false;
|
|
Fortran::lower::SymMap &symMap;
|
|
/// The continuation to generate code to update the destination.
|
|
llvm::Optional<CC> ccStoreToDest;
|
|
llvm::Optional<std::function<void(llvm::ArrayRef<mlir::Value>)>> ccPrelude;
|
|
llvm::Optional<std::function<fir::ArrayLoadOp(llvm::ArrayRef<mlir::Value>)>>
|
|
ccLoadDest;
|
|
/// The destination is the loaded array into which the results will be
|
|
/// merged.
|
|
fir::ArrayLoadOp destination;
|
|
/// The shape of the destination.
|
|
llvm::SmallVector<mlir::Value> destShape;
|
|
/// List of arrays in the expression that have been loaded.
|
|
llvm::SmallVector<ArrayOperand> arrayOperands;
|
|
/// If there is a user-defined iteration space, explicitShape will hold the
|
|
/// information from the front end.
|
|
Fortran::lower::ExplicitIterSpace *explicitSpace = nullptr;
|
|
Fortran::lower::ImplicitIterSpace *implicitSpace = nullptr;
|
|
ConstituentSemantics semant = ConstituentSemantics::RefTransparent;
|
|
// Can the array expression be evaluated in any order?
|
|
// Will be set to false if any of the expression parts prevent this.
|
|
bool unordered = true;
|
|
};
|
|
} // namespace
|
|
|
|
fir::ExtendedValue Fortran::lower::createSomeExtendedExpression(
|
|
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
|
|
Fortran::lower::StatementContext &stmtCtx) {
|
|
LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "expr: ") << '\n');
|
|
return ScalarExprLowering{loc, converter, symMap, stmtCtx}.genval(expr);
|
|
}
|
|
|
|
fir::GlobalOp Fortran::lower::createDenseGlobal(
|
|
mlir::Location loc, mlir::Type symTy, llvm::StringRef globalName,
|
|
mlir::StringAttr linkage, bool isConst,
|
|
const Fortran::lower::SomeExpr &expr,
|
|
Fortran::lower::AbstractConverter &converter) {
|
|
|
|
Fortran::lower::StatementContext stmtCtx(/*prohibited=*/true);
|
|
Fortran::lower::SymMap emptyMap;
|
|
InitializerData initData(/*genRawVals=*/true);
|
|
ScalarExprLowering sel(loc, converter, emptyMap, stmtCtx,
|
|
/*initializer=*/&initData);
|
|
sel.genval(expr);
|
|
|
|
size_t sz = initData.rawVals.size();
|
|
llvm::ArrayRef<mlir::Attribute> ar = {initData.rawVals.data(), sz};
|
|
|
|
mlir::RankedTensorType tensorTy;
|
|
auto &builder = converter.getFirOpBuilder();
|
|
mlir::Type iTy = initData.rawType;
|
|
if (!iTy)
|
|
return 0; // array extent is probably 0 in this case, so just return 0.
|
|
tensorTy = mlir::RankedTensorType::get(sz, iTy);
|
|
auto init = mlir::DenseElementsAttr::get(tensorTy, ar);
|
|
return builder.createGlobal(loc, symTy, globalName, linkage, init, isConst);
|
|
}
|
|
|
|
fir::ExtendedValue Fortran::lower::createSomeInitializerExpression(
|
|
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
|
|
Fortran::lower::StatementContext &stmtCtx) {
|
|
LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "expr: ") << '\n');
|
|
InitializerData initData; // needed for initializations
|
|
return ScalarExprLowering{loc, converter, symMap, stmtCtx,
|
|
/*initializer=*/&initData}
|
|
.genval(expr);
|
|
}
|
|
|
|
fir::ExtendedValue Fortran::lower::createSomeExtendedAddress(
|
|
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
|
|
Fortran::lower::StatementContext &stmtCtx) {
|
|
LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "address: ") << '\n');
|
|
return ScalarExprLowering{loc, converter, symMap, stmtCtx}.gen(expr);
|
|
}
|
|
|
|
fir::ExtendedValue Fortran::lower::createInitializerAddress(
|
|
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
|
|
Fortran::lower::StatementContext &stmtCtx) {
|
|
LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "address: ") << '\n');
|
|
InitializerData init;
|
|
return ScalarExprLowering(loc, converter, symMap, stmtCtx, &init).gen(expr);
|
|
}
|
|
|
|
fir::ExtendedValue
|
|
Fortran::lower::createSomeArrayBox(Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::lower::SomeExpr &expr,
|
|
Fortran::lower::SymMap &symMap,
|
|
Fortran::lower::StatementContext &stmtCtx) {
|
|
LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "box designator: ") << '\n');
|
|
return ArrayExprLowering::lowerBoxedArrayExpression(converter, symMap,
|
|
stmtCtx, expr);
|
|
}
|
|
|
|
fir::MutableBoxValue Fortran::lower::createMutableBox(
|
|
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap) {
|
|
// MutableBox lowering StatementContext does not need to be propagated
|
|
// to the caller because the result value is a variable, not a temporary
|
|
// expression. The StatementContext clean-up can occur before using the
|
|
// resulting MutableBoxValue. Variables of all other types are handled in the
|
|
// bridge.
|
|
Fortran::lower::StatementContext dummyStmtCtx;
|
|
return ScalarExprLowering{loc, converter, symMap, dummyStmtCtx}
|
|
.genMutableBoxValue(expr);
|
|
}
|
|
|
|
fir::ExtendedValue Fortran::lower::createBoxValue(
|
|
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
|
|
Fortran::lower::StatementContext &stmtCtx) {
|
|
if (expr.Rank() > 0 && Fortran::evaluate::IsVariable(expr) &&
|
|
!Fortran::evaluate::HasVectorSubscript(expr))
|
|
return Fortran::lower::createSomeArrayBox(converter, expr, symMap, stmtCtx);
|
|
fir::ExtendedValue addr = Fortran::lower::createSomeExtendedAddress(
|
|
loc, converter, expr, symMap, stmtCtx);
|
|
return fir::BoxValue(converter.getFirOpBuilder().createBox(loc, addr));
|
|
}
|
|
|
|
mlir::Value Fortran::lower::createSubroutineCall(
|
|
AbstractConverter &converter, const evaluate::ProcedureRef &call,
|
|
ExplicitIterSpace &explicitIterSpace, ImplicitIterSpace &implicitIterSpace,
|
|
SymMap &symMap, StatementContext &stmtCtx, bool isUserDefAssignment) {
|
|
mlir::Location loc = converter.getCurrentLocation();
|
|
|
|
if (isUserDefAssignment) {
|
|
assert(call.arguments().size() == 2);
|
|
const auto *lhs = call.arguments()[0].value().UnwrapExpr();
|
|
const auto *rhs = call.arguments()[1].value().UnwrapExpr();
|
|
assert(lhs && rhs &&
|
|
"user defined assignment arguments must be expressions");
|
|
if (call.IsElemental() && lhs->Rank() > 0) {
|
|
// Elemental user defined assignment has special requirements to deal with
|
|
// LHS/RHS overlaps. See 10.2.1.5 p2.
|
|
ArrayExprLowering::lowerElementalUserAssignment(
|
|
converter, symMap, stmtCtx, explicitIterSpace, implicitIterSpace,
|
|
call);
|
|
} else if (explicitIterSpace.isActive() && lhs->Rank() == 0) {
|
|
// Scalar defined assignment (elemental or not) in a FORALL context.
|
|
mlir::FuncOp func =
|
|
Fortran::lower::CallerInterface(call, converter).getFuncOp();
|
|
ArrayExprLowering::lowerScalarUserAssignment(
|
|
converter, symMap, stmtCtx, explicitIterSpace, func, *lhs, *rhs);
|
|
} else if (explicitIterSpace.isActive()) {
|
|
// TODO: need to array fetch/modify sub-arrays?
|
|
TODO(loc, "non elemental user defined array assignment inside FORALL");
|
|
} else {
|
|
if (!implicitIterSpace.empty())
|
|
fir::emitFatalError(
|
|
loc,
|
|
"C1032: user defined assignment inside WHERE must be elemental");
|
|
// Non elemental user defined assignment outside of FORALL and WHERE.
|
|
// FIXME: The non elemental user defined assignment case with array
|
|
// arguments must be take into account potential overlap. So far the front
|
|
// end does not add parentheses around the RHS argument in the call as it
|
|
// should according to 15.4.3.4.3 p2.
|
|
Fortran::lower::createSomeExtendedExpression(
|
|
loc, converter, toEvExpr(call), symMap, stmtCtx);
|
|
}
|
|
return {};
|
|
}
|
|
|
|
assert(implicitIterSpace.empty() && !explicitIterSpace.isActive() &&
|
|
"subroutine calls are not allowed inside WHERE and FORALL");
|
|
|
|
if (isElementalProcWithArrayArgs(call)) {
|
|
ArrayExprLowering::lowerElementalSubroutine(converter, symMap, stmtCtx,
|
|
toEvExpr(call));
|
|
return {};
|
|
}
|
|
// Simple subroutine call, with potential alternate return.
|
|
auto res = Fortran::lower::createSomeExtendedExpression(
|
|
loc, converter, toEvExpr(call), symMap, stmtCtx);
|
|
return fir::getBase(res);
|
|
}
|
|
|
|
template <typename A>
|
|
fir::ArrayLoadOp genArrayLoad(mlir::Location loc,
|
|
Fortran::lower::AbstractConverter &converter,
|
|
fir::FirOpBuilder &builder, const A *x,
|
|
Fortran::lower::SymMap &symMap,
|
|
Fortran::lower::StatementContext &stmtCtx) {
|
|
auto exv = ScalarExprLowering{loc, converter, symMap, stmtCtx}.gen(*x);
|
|
mlir::Value addr = fir::getBase(exv);
|
|
mlir::Value shapeOp = builder.createShape(loc, exv);
|
|
mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(addr.getType());
|
|
return builder.create<fir::ArrayLoadOp>(loc, arrTy, addr, shapeOp,
|
|
/*slice=*/mlir::Value{},
|
|
fir::getTypeParams(exv));
|
|
}
|
|
template <>
|
|
fir::ArrayLoadOp
|
|
genArrayLoad(mlir::Location loc, Fortran::lower::AbstractConverter &converter,
|
|
fir::FirOpBuilder &builder, const Fortran::evaluate::ArrayRef *x,
|
|
Fortran::lower::SymMap &symMap,
|
|
Fortran::lower::StatementContext &stmtCtx) {
|
|
if (x->base().IsSymbol())
|
|
return genArrayLoad(loc, converter, builder, &x->base().GetLastSymbol(),
|
|
symMap, stmtCtx);
|
|
return genArrayLoad(loc, converter, builder, &x->base().GetComponent(),
|
|
symMap, stmtCtx);
|
|
}
|
|
|
|
void Fortran::lower::createArrayLoads(
|
|
Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::ExplicitIterSpace &esp, Fortran::lower::SymMap &symMap) {
|
|
std::size_t counter = esp.getCounter();
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
mlir::Location loc = converter.getCurrentLocation();
|
|
Fortran::lower::StatementContext &stmtCtx = esp.stmtContext();
|
|
// Gen the fir.array_load ops.
|
|
auto genLoad = [&](const auto *x) -> fir::ArrayLoadOp {
|
|
return genArrayLoad(loc, converter, builder, x, symMap, stmtCtx);
|
|
};
|
|
if (esp.lhsBases[counter].hasValue()) {
|
|
auto &base = esp.lhsBases[counter].getValue();
|
|
auto load = std::visit(genLoad, base);
|
|
esp.initialArgs.push_back(load);
|
|
esp.resetInnerArgs();
|
|
esp.bindLoad(base, load);
|
|
}
|
|
for (const auto &base : esp.rhsBases[counter])
|
|
esp.bindLoad(base, std::visit(genLoad, base));
|
|
}
|
|
|
|
void Fortran::lower::createArrayMergeStores(
|
|
Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::ExplicitIterSpace &esp) {
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
mlir::Location loc = converter.getCurrentLocation();
|
|
builder.setInsertionPointAfter(esp.getOuterLoop());
|
|
// Gen the fir.array_merge_store ops for all LHS arrays.
|
|
for (auto i : llvm::enumerate(esp.getOuterLoop().getResults()))
|
|
if (llvm::Optional<fir::ArrayLoadOp> ldOpt = esp.getLhsLoad(i.index())) {
|
|
fir::ArrayLoadOp load = ldOpt.getValue();
|
|
builder.create<fir::ArrayMergeStoreOp>(loc, load, i.value(),
|
|
load.getMemref(), load.getSlice(),
|
|
load.getTypeparams());
|
|
}
|
|
if (esp.loopCleanup.hasValue()) {
|
|
esp.loopCleanup.getValue()(builder);
|
|
esp.loopCleanup = llvm::None;
|
|
}
|
|
esp.initialArgs.clear();
|
|
esp.innerArgs.clear();
|
|
esp.outerLoop = llvm::None;
|
|
esp.resetBindings();
|
|
esp.incrementCounter();
|
|
}
|
|
|
|
void Fortran::lower::createSomeArrayAssignment(
|
|
Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
|
|
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
|
|
LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "onto array: ") << '\n';
|
|
rhs.AsFortran(llvm::dbgs() << "assign expression: ") << '\n';);
|
|
ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs);
|
|
}
|
|
|
|
void Fortran::lower::createSomeArrayAssignment(
|
|
Fortran::lower::AbstractConverter &converter, const fir::ExtendedValue &lhs,
|
|
const Fortran::lower::SomeExpr &rhs, Fortran::lower::SymMap &symMap,
|
|
Fortran::lower::StatementContext &stmtCtx) {
|
|
LLVM_DEBUG(llvm::dbgs() << "onto array: " << lhs << '\n';
|
|
rhs.AsFortran(llvm::dbgs() << "assign expression: ") << '\n';);
|
|
ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs);
|
|
}
|
|
|
|
void Fortran::lower::createSomeArrayAssignment(
|
|
Fortran::lower::AbstractConverter &converter, const fir::ExtendedValue &lhs,
|
|
const fir::ExtendedValue &rhs, Fortran::lower::SymMap &symMap,
|
|
Fortran::lower::StatementContext &stmtCtx) {
|
|
LLVM_DEBUG(llvm::dbgs() << "onto array: " << lhs << '\n';
|
|
llvm::dbgs() << "assign expression: " << rhs << '\n';);
|
|
ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs);
|
|
}
|
|
|
|
void Fortran::lower::createAnyMaskedArrayAssignment(
|
|
Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
|
|
Fortran::lower::ExplicitIterSpace &explicitSpace,
|
|
Fortran::lower::ImplicitIterSpace &implicitSpace,
|
|
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
|
|
LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "onto array: ") << '\n';
|
|
rhs.AsFortran(llvm::dbgs() << "assign expression: ")
|
|
<< " given the explicit iteration space:\n"
|
|
<< explicitSpace << "\n and implied mask conditions:\n"
|
|
<< implicitSpace << '\n';);
|
|
ArrayExprLowering::lowerAnyMaskedArrayAssignment(
|
|
converter, symMap, stmtCtx, lhs, rhs, explicitSpace, implicitSpace);
|
|
}
|
|
|
|
void Fortran::lower::createAllocatableArrayAssignment(
|
|
Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
|
|
Fortran::lower::ExplicitIterSpace &explicitSpace,
|
|
Fortran::lower::ImplicitIterSpace &implicitSpace,
|
|
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
|
|
LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "defining array: ") << '\n';
|
|
rhs.AsFortran(llvm::dbgs() << "assign expression: ")
|
|
<< " given the explicit iteration space:\n"
|
|
<< explicitSpace << "\n and implied mask conditions:\n"
|
|
<< implicitSpace << '\n';);
|
|
ArrayExprLowering::lowerAllocatableArrayAssignment(
|
|
converter, symMap, stmtCtx, lhs, rhs, explicitSpace, implicitSpace);
|
|
}
|
|
|
|
fir::ExtendedValue Fortran::lower::createSomeArrayTempValue(
|
|
Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
|
|
Fortran::lower::StatementContext &stmtCtx) {
|
|
LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "array value: ") << '\n');
|
|
return ArrayExprLowering::lowerNewArrayExpression(converter, symMap, stmtCtx,
|
|
expr);
|
|
}
|
|
|
|
void Fortran::lower::createLazyArrayTempValue(
|
|
Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::lower::SomeExpr &expr, mlir::Value raggedHeader,
|
|
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
|
|
LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "array value: ") << '\n');
|
|
ArrayExprLowering::lowerLazyArrayExpression(converter, symMap, stmtCtx, expr,
|
|
raggedHeader);
|
|
}
|
|
|
|
mlir::Value Fortran::lower::genMaxWithZero(fir::FirOpBuilder &builder,
|
|
mlir::Location loc,
|
|
mlir::Value value) {
|
|
mlir::Value zero = builder.createIntegerConstant(loc, value.getType(), 0);
|
|
if (mlir::Operation *definingOp = value.getDefiningOp())
|
|
if (auto cst = mlir::dyn_cast<mlir::arith::ConstantOp>(definingOp))
|
|
if (auto intAttr = cst.getValue().dyn_cast<mlir::IntegerAttr>())
|
|
return intAttr.getInt() < 0 ? zero : value;
|
|
return Fortran::lower::genMax(builder, loc,
|
|
llvm::SmallVector<mlir::Value>{value, zero});
|
|
}
|