forked from OSchip/llvm-project
812 lines
26 KiB
C++
812 lines
26 KiB
C++
//===- ScopHelper.cpp - Some Helper Functions for Scop. ------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Small functions that help with Scop and LLVM-IR.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "polly/Support/ScopHelper.h"
|
|
#include "polly/Options.h"
|
|
#include "polly/ScopInfo.h"
|
|
#include "polly/Support/SCEVValidator.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/RegionInfo.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
|
|
|
|
using namespace llvm;
|
|
using namespace polly;
|
|
|
|
#define DEBUG_TYPE "polly-scop-helper"
|
|
|
|
static cl::list<std::string> DebugFunctions(
|
|
"polly-debug-func",
|
|
cl::desc("Allow calls to the specified functions in SCoPs even if their "
|
|
"side-effects are unknown. This can be used to do debug output in "
|
|
"Polly-transformed code."),
|
|
cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory));
|
|
|
|
// Ensures that there is just one predecessor to the entry node from outside the
|
|
// region.
|
|
// The identity of the region entry node is preserved.
|
|
static void simplifyRegionEntry(Region *R, DominatorTree *DT, LoopInfo *LI,
|
|
RegionInfo *RI) {
|
|
BasicBlock *EnteringBB = R->getEnteringBlock();
|
|
BasicBlock *Entry = R->getEntry();
|
|
|
|
// Before (one of):
|
|
//
|
|
// \ / //
|
|
// EnteringBB //
|
|
// | \------> //
|
|
// \ / | //
|
|
// Entry <--\ Entry <--\ //
|
|
// / \ / / \ / //
|
|
// .... .... //
|
|
|
|
// Create single entry edge if the region has multiple entry edges.
|
|
if (!EnteringBB) {
|
|
SmallVector<BasicBlock *, 4> Preds;
|
|
for (BasicBlock *P : predecessors(Entry))
|
|
if (!R->contains(P))
|
|
Preds.push_back(P);
|
|
|
|
BasicBlock *NewEntering =
|
|
SplitBlockPredecessors(Entry, Preds, ".region_entering", DT, LI);
|
|
|
|
if (RI) {
|
|
// The exit block of predecessing regions must be changed to NewEntering
|
|
for (BasicBlock *ExitPred : predecessors(NewEntering)) {
|
|
Region *RegionOfPred = RI->getRegionFor(ExitPred);
|
|
if (RegionOfPred->getExit() != Entry)
|
|
continue;
|
|
|
|
while (!RegionOfPred->isTopLevelRegion() &&
|
|
RegionOfPred->getExit() == Entry) {
|
|
RegionOfPred->replaceExit(NewEntering);
|
|
RegionOfPred = RegionOfPred->getParent();
|
|
}
|
|
}
|
|
|
|
// Make all ancestors use EnteringBB as entry; there might be edges to it
|
|
Region *AncestorR = R->getParent();
|
|
RI->setRegionFor(NewEntering, AncestorR);
|
|
while (!AncestorR->isTopLevelRegion() && AncestorR->getEntry() == Entry) {
|
|
AncestorR->replaceEntry(NewEntering);
|
|
AncestorR = AncestorR->getParent();
|
|
}
|
|
}
|
|
|
|
EnteringBB = NewEntering;
|
|
}
|
|
assert(R->getEnteringBlock() == EnteringBB);
|
|
|
|
// After:
|
|
//
|
|
// \ / //
|
|
// EnteringBB //
|
|
// | //
|
|
// | //
|
|
// Entry <--\ //
|
|
// / \ / //
|
|
// .... //
|
|
}
|
|
|
|
// Ensure that the region has a single block that branches to the exit node.
|
|
static void simplifyRegionExit(Region *R, DominatorTree *DT, LoopInfo *LI,
|
|
RegionInfo *RI) {
|
|
BasicBlock *ExitBB = R->getExit();
|
|
BasicBlock *ExitingBB = R->getExitingBlock();
|
|
|
|
// Before:
|
|
//
|
|
// (Region) ______/ //
|
|
// \ | / //
|
|
// ExitBB //
|
|
// / \ //
|
|
|
|
if (!ExitingBB) {
|
|
SmallVector<BasicBlock *, 4> Preds;
|
|
for (BasicBlock *P : predecessors(ExitBB))
|
|
if (R->contains(P))
|
|
Preds.push_back(P);
|
|
|
|
// Preds[0] Preds[1] otherBB //
|
|
// \ | ________/ //
|
|
// \ | / //
|
|
// BB //
|
|
ExitingBB =
|
|
SplitBlockPredecessors(ExitBB, Preds, ".region_exiting", DT, LI);
|
|
// Preds[0] Preds[1] otherBB //
|
|
// \ / / //
|
|
// BB.region_exiting / //
|
|
// \ / //
|
|
// BB //
|
|
|
|
if (RI)
|
|
RI->setRegionFor(ExitingBB, R);
|
|
|
|
// Change the exit of nested regions, but not the region itself,
|
|
R->replaceExitRecursive(ExitingBB);
|
|
R->replaceExit(ExitBB);
|
|
}
|
|
assert(ExitingBB == R->getExitingBlock());
|
|
|
|
// After:
|
|
//
|
|
// \ / //
|
|
// ExitingBB _____/ //
|
|
// \ / //
|
|
// ExitBB //
|
|
// / \ //
|
|
}
|
|
|
|
void polly::simplifyRegion(Region *R, DominatorTree *DT, LoopInfo *LI,
|
|
RegionInfo *RI) {
|
|
assert(R && !R->isTopLevelRegion());
|
|
assert(!RI || RI == R->getRegionInfo());
|
|
assert((!RI || DT) &&
|
|
"RegionInfo requires DominatorTree to be updated as well");
|
|
|
|
simplifyRegionEntry(R, DT, LI, RI);
|
|
simplifyRegionExit(R, DT, LI, RI);
|
|
assert(R->isSimple());
|
|
}
|
|
|
|
// Split the block into two successive blocks.
|
|
//
|
|
// Like llvm::SplitBlock, but also preserves RegionInfo
|
|
static BasicBlock *splitBlock(BasicBlock *Old, Instruction *SplitPt,
|
|
DominatorTree *DT, llvm::LoopInfo *LI,
|
|
RegionInfo *RI) {
|
|
assert(Old && SplitPt);
|
|
|
|
// Before:
|
|
//
|
|
// \ / //
|
|
// Old //
|
|
// / \ //
|
|
|
|
BasicBlock *NewBlock = llvm::SplitBlock(Old, SplitPt, DT, LI);
|
|
|
|
if (RI) {
|
|
Region *R = RI->getRegionFor(Old);
|
|
RI->setRegionFor(NewBlock, R);
|
|
}
|
|
|
|
// After:
|
|
//
|
|
// \ / //
|
|
// Old //
|
|
// | //
|
|
// NewBlock //
|
|
// / \ //
|
|
|
|
return NewBlock;
|
|
}
|
|
|
|
void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, DominatorTree *DT,
|
|
LoopInfo *LI, RegionInfo *RI) {
|
|
// Find first non-alloca instruction. Every basic block has a non-alloca
|
|
// instruction, as every well formed basic block has a terminator.
|
|
BasicBlock::iterator I = EntryBlock->begin();
|
|
while (isa<AllocaInst>(I))
|
|
++I;
|
|
|
|
// splitBlock updates DT, LI and RI.
|
|
splitBlock(EntryBlock, &*I, DT, LI, RI);
|
|
}
|
|
|
|
void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, Pass *P) {
|
|
auto *DTWP = P->getAnalysisIfAvailable<DominatorTreeWrapperPass>();
|
|
auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
|
|
auto *LIWP = P->getAnalysisIfAvailable<LoopInfoWrapperPass>();
|
|
auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
|
|
RegionInfoPass *RIP = P->getAnalysisIfAvailable<RegionInfoPass>();
|
|
RegionInfo *RI = RIP ? &RIP->getRegionInfo() : nullptr;
|
|
|
|
// splitBlock updates DT, LI and RI.
|
|
polly::splitEntryBlockForAlloca(EntryBlock, DT, LI, RI);
|
|
}
|
|
|
|
void polly::recordAssumption(polly::RecordedAssumptionsTy *RecordedAssumptions,
|
|
polly::AssumptionKind Kind, isl::set Set,
|
|
DebugLoc Loc, polly::AssumptionSign Sign,
|
|
BasicBlock *BB, bool RTC) {
|
|
assert((Set.is_params() || BB) &&
|
|
"Assumptions without a basic block must be parameter sets");
|
|
if (RecordedAssumptions)
|
|
RecordedAssumptions->push_back({Kind, Sign, Set, Loc, BB, RTC});
|
|
}
|
|
|
|
/// The SCEVExpander will __not__ generate any code for an existing SDiv/SRem
|
|
/// instruction but just use it, if it is referenced as a SCEVUnknown. We want
|
|
/// however to generate new code if the instruction is in the analyzed region
|
|
/// and we generate code outside/in front of that region. Hence, we generate the
|
|
/// code for the SDiv/SRem operands in front of the analyzed region and then
|
|
/// create a new SDiv/SRem operation there too.
|
|
struct ScopExpander : SCEVVisitor<ScopExpander, const SCEV *> {
|
|
friend struct SCEVVisitor<ScopExpander, const SCEV *>;
|
|
|
|
explicit ScopExpander(const Region &R, ScalarEvolution &SE,
|
|
const DataLayout &DL, const char *Name, ValueMapT *VMap,
|
|
BasicBlock *RTCBB)
|
|
: Expander(SE, DL, Name, /*PreserveLCSSA=*/false), SE(SE), Name(Name),
|
|
R(R), VMap(VMap), RTCBB(RTCBB) {}
|
|
|
|
Value *expandCodeFor(const SCEV *E, Type *Ty, Instruction *I) {
|
|
// If we generate code in the region we will immediately fall back to the
|
|
// SCEVExpander, otherwise we will stop at all unknowns in the SCEV and if
|
|
// needed replace them by copies computed in the entering block.
|
|
if (!R.contains(I))
|
|
E = visit(E);
|
|
return Expander.expandCodeFor(E, Ty, I);
|
|
}
|
|
|
|
const SCEV *visit(const SCEV *E) {
|
|
// Cache the expansion results for intermediate SCEV expressions. A SCEV
|
|
// expression can refer to an operand multiple times (e.g. "x*x), so
|
|
// a naive visitor takes exponential time.
|
|
if (SCEVCache.count(E))
|
|
return SCEVCache[E];
|
|
const SCEV *Result = SCEVVisitor::visit(E);
|
|
SCEVCache[E] = Result;
|
|
return Result;
|
|
}
|
|
|
|
private:
|
|
SCEVExpander Expander;
|
|
ScalarEvolution &SE;
|
|
const char *Name;
|
|
const Region &R;
|
|
ValueMapT *VMap;
|
|
BasicBlock *RTCBB;
|
|
DenseMap<const SCEV *, const SCEV *> SCEVCache;
|
|
|
|
const SCEV *visitGenericInst(const SCEVUnknown *E, Instruction *Inst,
|
|
Instruction *IP) {
|
|
if (!Inst || !R.contains(Inst))
|
|
return E;
|
|
|
|
assert(!Inst->mayThrow() && !Inst->mayReadOrWriteMemory() &&
|
|
!isa<PHINode>(Inst));
|
|
|
|
auto *InstClone = Inst->clone();
|
|
for (auto &Op : Inst->operands()) {
|
|
assert(SE.isSCEVable(Op->getType()));
|
|
auto *OpSCEV = SE.getSCEV(Op);
|
|
auto *OpClone = expandCodeFor(OpSCEV, Op->getType(), IP);
|
|
InstClone->replaceUsesOfWith(Op, OpClone);
|
|
}
|
|
|
|
InstClone->setName(Name + Inst->getName());
|
|
InstClone->insertBefore(IP);
|
|
return SE.getSCEV(InstClone);
|
|
}
|
|
|
|
const SCEV *visitUnknown(const SCEVUnknown *E) {
|
|
|
|
// If a value mapping was given try if the underlying value is remapped.
|
|
Value *NewVal = VMap ? VMap->lookup(E->getValue()) : nullptr;
|
|
if (NewVal) {
|
|
auto *NewE = SE.getSCEV(NewVal);
|
|
|
|
// While the mapped value might be different the SCEV representation might
|
|
// not be. To this end we will check before we go into recursion here.
|
|
if (E != NewE)
|
|
return visit(NewE);
|
|
}
|
|
|
|
Instruction *Inst = dyn_cast<Instruction>(E->getValue());
|
|
Instruction *IP;
|
|
if (Inst && !R.contains(Inst))
|
|
IP = Inst;
|
|
else if (Inst && RTCBB->getParent() == Inst->getFunction())
|
|
IP = RTCBB->getTerminator();
|
|
else
|
|
IP = RTCBB->getParent()->getEntryBlock().getTerminator();
|
|
|
|
if (!Inst || (Inst->getOpcode() != Instruction::SRem &&
|
|
Inst->getOpcode() != Instruction::SDiv))
|
|
return visitGenericInst(E, Inst, IP);
|
|
|
|
const SCEV *LHSScev = SE.getSCEV(Inst->getOperand(0));
|
|
const SCEV *RHSScev = SE.getSCEV(Inst->getOperand(1));
|
|
|
|
if (!SE.isKnownNonZero(RHSScev))
|
|
RHSScev = SE.getUMaxExpr(RHSScev, SE.getConstant(E->getType(), 1));
|
|
|
|
Value *LHS = expandCodeFor(LHSScev, E->getType(), IP);
|
|
Value *RHS = expandCodeFor(RHSScev, E->getType(), IP);
|
|
|
|
Inst = BinaryOperator::Create((Instruction::BinaryOps)Inst->getOpcode(),
|
|
LHS, RHS, Inst->getName() + Name, IP);
|
|
return SE.getSCEV(Inst);
|
|
}
|
|
|
|
/// The following functions will just traverse the SCEV and rebuild it with
|
|
/// the new operands returned by the traversal.
|
|
///
|
|
///{
|
|
const SCEV *visitConstant(const SCEVConstant *E) { return E; }
|
|
const SCEV *visitPtrToIntExpr(const SCEVPtrToIntExpr *E) {
|
|
return SE.getPtrToIntExpr(visit(E->getOperand()), E->getType());
|
|
}
|
|
const SCEV *visitTruncateExpr(const SCEVTruncateExpr *E) {
|
|
return SE.getTruncateExpr(visit(E->getOperand()), E->getType());
|
|
}
|
|
const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *E) {
|
|
return SE.getZeroExtendExpr(visit(E->getOperand()), E->getType());
|
|
}
|
|
const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *E) {
|
|
return SE.getSignExtendExpr(visit(E->getOperand()), E->getType());
|
|
}
|
|
const SCEV *visitUDivExpr(const SCEVUDivExpr *E) {
|
|
auto *RHSScev = visit(E->getRHS());
|
|
if (!SE.isKnownNonZero(RHSScev))
|
|
RHSScev = SE.getUMaxExpr(RHSScev, SE.getConstant(E->getType(), 1));
|
|
return SE.getUDivExpr(visit(E->getLHS()), RHSScev);
|
|
}
|
|
const SCEV *visitAddExpr(const SCEVAddExpr *E) {
|
|
SmallVector<const SCEV *, 4> NewOps;
|
|
for (const SCEV *Op : E->operands())
|
|
NewOps.push_back(visit(Op));
|
|
return SE.getAddExpr(NewOps);
|
|
}
|
|
const SCEV *visitMulExpr(const SCEVMulExpr *E) {
|
|
SmallVector<const SCEV *, 4> NewOps;
|
|
for (const SCEV *Op : E->operands())
|
|
NewOps.push_back(visit(Op));
|
|
return SE.getMulExpr(NewOps);
|
|
}
|
|
const SCEV *visitUMaxExpr(const SCEVUMaxExpr *E) {
|
|
SmallVector<const SCEV *, 4> NewOps;
|
|
for (const SCEV *Op : E->operands())
|
|
NewOps.push_back(visit(Op));
|
|
return SE.getUMaxExpr(NewOps);
|
|
}
|
|
const SCEV *visitSMaxExpr(const SCEVSMaxExpr *E) {
|
|
SmallVector<const SCEV *, 4> NewOps;
|
|
for (const SCEV *Op : E->operands())
|
|
NewOps.push_back(visit(Op));
|
|
return SE.getSMaxExpr(NewOps);
|
|
}
|
|
const SCEV *visitUMinExpr(const SCEVUMinExpr *E) {
|
|
SmallVector<const SCEV *, 4> NewOps;
|
|
for (const SCEV *Op : E->operands())
|
|
NewOps.push_back(visit(Op));
|
|
return SE.getUMinExpr(NewOps);
|
|
}
|
|
const SCEV *visitSMinExpr(const SCEVSMinExpr *E) {
|
|
SmallVector<const SCEV *, 4> NewOps;
|
|
for (const SCEV *Op : E->operands())
|
|
NewOps.push_back(visit(Op));
|
|
return SE.getSMinExpr(NewOps);
|
|
}
|
|
const SCEV *visitAddRecExpr(const SCEVAddRecExpr *E) {
|
|
SmallVector<const SCEV *, 4> NewOps;
|
|
for (const SCEV *Op : E->operands())
|
|
NewOps.push_back(visit(Op));
|
|
return SE.getAddRecExpr(NewOps, E->getLoop(), E->getNoWrapFlags());
|
|
}
|
|
///}
|
|
};
|
|
|
|
Value *polly::expandCodeFor(Scop &S, ScalarEvolution &SE, const DataLayout &DL,
|
|
const char *Name, const SCEV *E, Type *Ty,
|
|
Instruction *IP, ValueMapT *VMap,
|
|
BasicBlock *RTCBB) {
|
|
ScopExpander Expander(S.getRegion(), SE, DL, Name, VMap, RTCBB);
|
|
return Expander.expandCodeFor(E, Ty, IP);
|
|
}
|
|
|
|
Value *polly::getConditionFromTerminator(Instruction *TI) {
|
|
if (BranchInst *BR = dyn_cast<BranchInst>(TI)) {
|
|
if (BR->isUnconditional())
|
|
return ConstantInt::getTrue(Type::getInt1Ty(TI->getContext()));
|
|
|
|
return BR->getCondition();
|
|
}
|
|
|
|
if (SwitchInst *SI = dyn_cast<SwitchInst>(TI))
|
|
return SI->getCondition();
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Loop *polly::getLoopSurroundingScop(Scop &S, LoopInfo &LI) {
|
|
// Start with the smallest loop containing the entry and expand that
|
|
// loop until it contains all blocks in the region. If there is a loop
|
|
// containing all blocks in the region check if it is itself contained
|
|
// and if so take the parent loop as it will be the smallest containing
|
|
// the region but not contained by it.
|
|
Loop *L = LI.getLoopFor(S.getEntry());
|
|
while (L) {
|
|
bool AllContained = true;
|
|
for (auto *BB : S.blocks())
|
|
AllContained &= L->contains(BB);
|
|
if (AllContained)
|
|
break;
|
|
L = L->getParentLoop();
|
|
}
|
|
|
|
return L ? (S.contains(L) ? L->getParentLoop() : L) : nullptr;
|
|
}
|
|
|
|
unsigned polly::getNumBlocksInLoop(Loop *L) {
|
|
unsigned NumBlocks = L->getNumBlocks();
|
|
SmallVector<BasicBlock *, 4> ExitBlocks;
|
|
L->getExitBlocks(ExitBlocks);
|
|
|
|
for (auto ExitBlock : ExitBlocks) {
|
|
if (isa<UnreachableInst>(ExitBlock->getTerminator()))
|
|
NumBlocks++;
|
|
}
|
|
return NumBlocks;
|
|
}
|
|
|
|
unsigned polly::getNumBlocksInRegionNode(RegionNode *RN) {
|
|
if (!RN->isSubRegion())
|
|
return 1;
|
|
|
|
Region *R = RN->getNodeAs<Region>();
|
|
return std::distance(R->block_begin(), R->block_end());
|
|
}
|
|
|
|
Loop *polly::getRegionNodeLoop(RegionNode *RN, LoopInfo &LI) {
|
|
if (!RN->isSubRegion()) {
|
|
BasicBlock *BB = RN->getNodeAs<BasicBlock>();
|
|
Loop *L = LI.getLoopFor(BB);
|
|
|
|
// Unreachable statements are not considered to belong to a LLVM loop, as
|
|
// they are not part of an actual loop in the control flow graph.
|
|
// Nevertheless, we handle certain unreachable statements that are common
|
|
// when modeling run-time bounds checks as being part of the loop to be
|
|
// able to model them and to later eliminate the run-time bounds checks.
|
|
//
|
|
// Specifically, for basic blocks that terminate in an unreachable and
|
|
// where the immediate predecessor is part of a loop, we assume these
|
|
// basic blocks belong to the loop the predecessor belongs to. This
|
|
// allows us to model the following code.
|
|
//
|
|
// for (i = 0; i < N; i++) {
|
|
// if (i > 1024)
|
|
// abort(); <- this abort might be translated to an
|
|
// unreachable
|
|
//
|
|
// A[i] = ...
|
|
// }
|
|
if (!L && isa<UnreachableInst>(BB->getTerminator()) && BB->getPrevNode())
|
|
L = LI.getLoopFor(BB->getPrevNode());
|
|
return L;
|
|
}
|
|
|
|
Region *NonAffineSubRegion = RN->getNodeAs<Region>();
|
|
Loop *L = LI.getLoopFor(NonAffineSubRegion->getEntry());
|
|
while (L && NonAffineSubRegion->contains(L))
|
|
L = L->getParentLoop();
|
|
return L;
|
|
}
|
|
|
|
static bool hasVariantIndex(GetElementPtrInst *Gep, Loop *L, Region &R,
|
|
ScalarEvolution &SE) {
|
|
for (const Use &Val : llvm::drop_begin(Gep->operands(), 1)) {
|
|
const SCEV *PtrSCEV = SE.getSCEVAtScope(Val, L);
|
|
Loop *OuterLoop = R.outermostLoopInRegion(L);
|
|
if (!SE.isLoopInvariant(PtrSCEV, OuterLoop))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool polly::isHoistableLoad(LoadInst *LInst, Region &R, LoopInfo &LI,
|
|
ScalarEvolution &SE, const DominatorTree &DT,
|
|
const InvariantLoadsSetTy &KnownInvariantLoads) {
|
|
Loop *L = LI.getLoopFor(LInst->getParent());
|
|
auto *Ptr = LInst->getPointerOperand();
|
|
|
|
// A LoadInst is hoistable if the address it is loading from is also
|
|
// invariant; in this case: another invariant load (whether that address
|
|
// is also not written to has to be checked separately)
|
|
// TODO: This only checks for a LoadInst->GetElementPtrInst->LoadInst
|
|
// pattern generated by the Chapel frontend, but generally this applies
|
|
// for any chain of instruction that does not also depend on any
|
|
// induction variable
|
|
if (auto *GepInst = dyn_cast<GetElementPtrInst>(Ptr)) {
|
|
if (!hasVariantIndex(GepInst, L, R, SE)) {
|
|
if (auto *DecidingLoad =
|
|
dyn_cast<LoadInst>(GepInst->getPointerOperand())) {
|
|
if (KnownInvariantLoads.count(DecidingLoad))
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
const SCEV *PtrSCEV = SE.getSCEVAtScope(Ptr, L);
|
|
while (L && R.contains(L)) {
|
|
if (!SE.isLoopInvariant(PtrSCEV, L))
|
|
return false;
|
|
L = L->getParentLoop();
|
|
}
|
|
|
|
for (auto *User : Ptr->users()) {
|
|
auto *UserI = dyn_cast<Instruction>(User);
|
|
if (!UserI || !R.contains(UserI))
|
|
continue;
|
|
if (!UserI->mayWriteToMemory())
|
|
continue;
|
|
|
|
auto &BB = *UserI->getParent();
|
|
if (DT.dominates(&BB, LInst->getParent()))
|
|
return false;
|
|
|
|
bool DominatesAllPredecessors = true;
|
|
if (R.isTopLevelRegion()) {
|
|
for (BasicBlock &I : *R.getEntry()->getParent())
|
|
if (isa<ReturnInst>(I.getTerminator()) && !DT.dominates(&BB, &I))
|
|
DominatesAllPredecessors = false;
|
|
} else {
|
|
for (auto Pred : predecessors(R.getExit()))
|
|
if (R.contains(Pred) && !DT.dominates(&BB, Pred))
|
|
DominatesAllPredecessors = false;
|
|
}
|
|
|
|
if (!DominatesAllPredecessors)
|
|
continue;
|
|
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool polly::isIgnoredIntrinsic(const Value *V) {
|
|
if (auto *IT = dyn_cast<IntrinsicInst>(V)) {
|
|
switch (IT->getIntrinsicID()) {
|
|
// Lifetime markers are supported/ignored.
|
|
case llvm::Intrinsic::lifetime_start:
|
|
case llvm::Intrinsic::lifetime_end:
|
|
// Invariant markers are supported/ignored.
|
|
case llvm::Intrinsic::invariant_start:
|
|
case llvm::Intrinsic::invariant_end:
|
|
// Some misc annotations are supported/ignored.
|
|
case llvm::Intrinsic::var_annotation:
|
|
case llvm::Intrinsic::ptr_annotation:
|
|
case llvm::Intrinsic::annotation:
|
|
case llvm::Intrinsic::donothing:
|
|
case llvm::Intrinsic::assume:
|
|
// Some debug info intrinsics are supported/ignored.
|
|
case llvm::Intrinsic::dbg_value:
|
|
case llvm::Intrinsic::dbg_declare:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool polly::canSynthesize(const Value *V, const Scop &S, ScalarEvolution *SE,
|
|
Loop *Scope) {
|
|
if (!V || !SE->isSCEVable(V->getType()))
|
|
return false;
|
|
|
|
const InvariantLoadsSetTy &ILS = S.getRequiredInvariantLoads();
|
|
if (const SCEV *Scev = SE->getSCEVAtScope(const_cast<Value *>(V), Scope))
|
|
if (!isa<SCEVCouldNotCompute>(Scev))
|
|
if (!hasScalarDepsInsideRegion(Scev, &S.getRegion(), Scope, false, ILS))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
llvm::BasicBlock *polly::getUseBlock(const llvm::Use &U) {
|
|
Instruction *UI = dyn_cast<Instruction>(U.getUser());
|
|
if (!UI)
|
|
return nullptr;
|
|
|
|
if (PHINode *PHI = dyn_cast<PHINode>(UI))
|
|
return PHI->getIncomingBlock(U);
|
|
|
|
return UI->getParent();
|
|
}
|
|
|
|
llvm::Loop *polly::getFirstNonBoxedLoopFor(llvm::Loop *L, llvm::LoopInfo &LI,
|
|
const BoxedLoopsSetTy &BoxedLoops) {
|
|
while (BoxedLoops.count(L))
|
|
L = L->getParentLoop();
|
|
return L;
|
|
}
|
|
|
|
llvm::Loop *polly::getFirstNonBoxedLoopFor(llvm::BasicBlock *BB,
|
|
llvm::LoopInfo &LI,
|
|
const BoxedLoopsSetTy &BoxedLoops) {
|
|
Loop *L = LI.getLoopFor(BB);
|
|
return getFirstNonBoxedLoopFor(L, LI, BoxedLoops);
|
|
}
|
|
|
|
bool polly::isDebugCall(Instruction *Inst) {
|
|
auto *CI = dyn_cast<CallInst>(Inst);
|
|
if (!CI)
|
|
return false;
|
|
|
|
Function *CF = CI->getCalledFunction();
|
|
if (!CF)
|
|
return false;
|
|
|
|
return std::find(DebugFunctions.begin(), DebugFunctions.end(),
|
|
CF->getName()) != DebugFunctions.end();
|
|
}
|
|
|
|
static bool hasDebugCall(BasicBlock *BB) {
|
|
for (Instruction &Inst : *BB) {
|
|
if (isDebugCall(&Inst))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool polly::hasDebugCall(ScopStmt *Stmt) {
|
|
// Quick skip if no debug functions have been defined.
|
|
if (DebugFunctions.empty())
|
|
return false;
|
|
|
|
if (!Stmt)
|
|
return false;
|
|
|
|
for (Instruction *Inst : Stmt->getInstructions())
|
|
if (isDebugCall(Inst))
|
|
return true;
|
|
|
|
if (Stmt->isRegionStmt()) {
|
|
for (BasicBlock *RBB : Stmt->getRegion()->blocks())
|
|
if (RBB != Stmt->getEntryBlock() && ::hasDebugCall(RBB))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Find a property in a LoopID.
|
|
static MDNode *findNamedMetadataNode(MDNode *LoopMD, StringRef Name) {
|
|
if (!LoopMD)
|
|
return nullptr;
|
|
for (const MDOperand &X : drop_begin(LoopMD->operands(), 1)) {
|
|
auto *OpNode = dyn_cast<MDNode>(X.get());
|
|
if (!OpNode)
|
|
continue;
|
|
|
|
auto *OpName = dyn_cast<MDString>(OpNode->getOperand(0));
|
|
if (!OpName)
|
|
continue;
|
|
if (OpName->getString() == Name)
|
|
return OpNode;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
static Optional<const MDOperand *> findNamedMetadataArg(MDNode *LoopID,
|
|
StringRef Name) {
|
|
MDNode *MD = findNamedMetadataNode(LoopID, Name);
|
|
if (!MD)
|
|
return None;
|
|
switch (MD->getNumOperands()) {
|
|
case 1:
|
|
return nullptr;
|
|
case 2:
|
|
return &MD->getOperand(1);
|
|
default:
|
|
llvm_unreachable("loop metadata has 0 or 1 operand");
|
|
}
|
|
}
|
|
|
|
Optional<Metadata *> polly::findMetadataOperand(MDNode *LoopMD,
|
|
StringRef Name) {
|
|
MDNode *MD = findNamedMetadataNode(LoopMD, Name);
|
|
if (!MD)
|
|
return None;
|
|
switch (MD->getNumOperands()) {
|
|
case 1:
|
|
return nullptr;
|
|
case 2:
|
|
return MD->getOperand(1).get();
|
|
default:
|
|
llvm_unreachable("loop metadata must have 0 or 1 operands");
|
|
}
|
|
}
|
|
|
|
static Optional<bool> getOptionalBoolLoopAttribute(MDNode *LoopID,
|
|
StringRef Name) {
|
|
MDNode *MD = findNamedMetadataNode(LoopID, Name);
|
|
if (!MD)
|
|
return None;
|
|
switch (MD->getNumOperands()) {
|
|
case 1:
|
|
return true;
|
|
case 2:
|
|
if (ConstantInt *IntMD =
|
|
mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get()))
|
|
return IntMD->getZExtValue();
|
|
return true;
|
|
}
|
|
llvm_unreachable("unexpected number of options");
|
|
}
|
|
|
|
bool polly::getBooleanLoopAttribute(MDNode *LoopID, StringRef Name) {
|
|
return getOptionalBoolLoopAttribute(LoopID, Name).getValueOr(false);
|
|
}
|
|
|
|
llvm::Optional<int> polly::getOptionalIntLoopAttribute(MDNode *LoopID,
|
|
StringRef Name) {
|
|
const MDOperand *AttrMD =
|
|
findNamedMetadataArg(LoopID, Name).getValueOr(nullptr);
|
|
if (!AttrMD)
|
|
return None;
|
|
|
|
ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
|
|
if (!IntMD)
|
|
return None;
|
|
|
|
return IntMD->getSExtValue();
|
|
}
|
|
|
|
bool polly::hasDisableAllTransformsHint(Loop *L) {
|
|
return llvm::hasDisableAllTransformsHint(L);
|
|
}
|
|
|
|
bool polly::hasDisableAllTransformsHint(llvm::MDNode *LoopID) {
|
|
return getBooleanLoopAttribute(LoopID, "llvm.loop.disable_nonforced");
|
|
}
|
|
|
|
isl::id polly::getIslLoopAttr(isl::ctx Ctx, BandAttr *Attr) {
|
|
assert(Attr && "Must be a valid BandAttr");
|
|
|
|
// The name "Loop" signals that this id contains a pointer to a BandAttr.
|
|
// The ScheduleOptimizer also uses the string "Inter iteration alias-free" in
|
|
// markers, but it's user pointer is an llvm::Value.
|
|
isl::id Result = isl::id::alloc(Ctx, "Loop with Metadata", Attr);
|
|
Result = isl::manage(isl_id_set_free_user(Result.release(), [](void *Ptr) {
|
|
BandAttr *Attr = reinterpret_cast<BandAttr *>(Ptr);
|
|
delete Attr;
|
|
}));
|
|
return Result;
|
|
}
|
|
|
|
isl::id polly::createIslLoopAttr(isl::ctx Ctx, Loop *L) {
|
|
if (!L)
|
|
return {};
|
|
|
|
// A loop without metadata does not need to be annotated.
|
|
MDNode *LoopID = L->getLoopID();
|
|
if (!LoopID)
|
|
return {};
|
|
|
|
BandAttr *Attr = new BandAttr();
|
|
Attr->OriginalLoop = L;
|
|
Attr->Metadata = L->getLoopID();
|
|
|
|
return getIslLoopAttr(Ctx, Attr);
|
|
}
|
|
|
|
bool polly::isLoopAttr(const isl::id &Id) {
|
|
if (Id.is_null())
|
|
return false;
|
|
|
|
return Id.get_name() == "Loop with Metadata";
|
|
}
|
|
|
|
BandAttr *polly::getLoopAttr(const isl::id &Id) {
|
|
if (!isLoopAttr(Id))
|
|
return nullptr;
|
|
|
|
return reinterpret_cast<BandAttr *>(Id.get_user());
|
|
}
|