forked from OSchip/llvm-project
1947 lines
68 KiB
C++
1947 lines
68 KiB
C++
//===- Writer.cpp ---------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Writer.h"
|
|
#include "Config.h"
|
|
#include "DLL.h"
|
|
#include "InputFiles.h"
|
|
#include "MapFile.h"
|
|
#include "PDB.h"
|
|
#include "SymbolTable.h"
|
|
#include "Symbols.h"
|
|
#include "lld/Common/ErrorHandler.h"
|
|
#include "lld/Common/Memory.h"
|
|
#include "lld/Common/Threads.h"
|
|
#include "lld/Common/Timer.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/Support/BinaryStreamReader.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Endian.h"
|
|
#include "llvm/Support/FileOutputBuffer.h"
|
|
#include "llvm/Support/Parallel.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Support/RandomNumberGenerator.h"
|
|
#include "llvm/Support/xxhash.h"
|
|
#include <algorithm>
|
|
#include <cstdio>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::COFF;
|
|
using namespace llvm::object;
|
|
using namespace llvm::support;
|
|
using namespace llvm::support::endian;
|
|
using namespace lld;
|
|
using namespace lld::coff;
|
|
|
|
/* To re-generate DOSProgram:
|
|
$ cat > /tmp/DOSProgram.asm
|
|
org 0
|
|
; Copy cs to ds.
|
|
push cs
|
|
pop ds
|
|
; Point ds:dx at the $-terminated string.
|
|
mov dx, str
|
|
; Int 21/AH=09h: Write string to standard output.
|
|
mov ah, 0x9
|
|
int 0x21
|
|
; Int 21/AH=4Ch: Exit with return code (in AL).
|
|
mov ax, 0x4C01
|
|
int 0x21
|
|
str:
|
|
db 'This program cannot be run in DOS mode.$'
|
|
align 8, db 0
|
|
$ nasm -fbin /tmp/DOSProgram.asm -o /tmp/DOSProgram.bin
|
|
$ xxd -i /tmp/DOSProgram.bin
|
|
*/
|
|
static unsigned char dosProgram[] = {
|
|
0x0e, 0x1f, 0xba, 0x0e, 0x00, 0xb4, 0x09, 0xcd, 0x21, 0xb8, 0x01, 0x4c,
|
|
0xcd, 0x21, 0x54, 0x68, 0x69, 0x73, 0x20, 0x70, 0x72, 0x6f, 0x67, 0x72,
|
|
0x61, 0x6d, 0x20, 0x63, 0x61, 0x6e, 0x6e, 0x6f, 0x74, 0x20, 0x62, 0x65,
|
|
0x20, 0x72, 0x75, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x44, 0x4f, 0x53, 0x20,
|
|
0x6d, 0x6f, 0x64, 0x65, 0x2e, 0x24, 0x00, 0x00
|
|
};
|
|
static_assert(sizeof(dosProgram) % 8 == 0,
|
|
"DOSProgram size must be multiple of 8");
|
|
|
|
static const int dosStubSize = sizeof(dos_header) + sizeof(dosProgram);
|
|
static_assert(dosStubSize % 8 == 0, "DOSStub size must be multiple of 8");
|
|
|
|
static const int numberOfDataDirectory = 16;
|
|
|
|
// Global vector of all output sections. After output sections are finalized,
|
|
// this can be indexed by Chunk::getOutputSection.
|
|
static std::vector<OutputSection *> outputSections;
|
|
|
|
OutputSection *Chunk::getOutputSection() const {
|
|
return osidx == 0 ? nullptr : outputSections[osidx - 1];
|
|
}
|
|
|
|
namespace {
|
|
|
|
class DebugDirectoryChunk : public NonSectionChunk {
|
|
public:
|
|
DebugDirectoryChunk(const std::vector<Chunk *> &r, bool writeRepro)
|
|
: records(r), writeRepro(writeRepro) {}
|
|
|
|
size_t getSize() const override {
|
|
return (records.size() + int(writeRepro)) * sizeof(debug_directory);
|
|
}
|
|
|
|
void writeTo(uint8_t *b) const override {
|
|
auto *d = reinterpret_cast<debug_directory *>(b);
|
|
|
|
for (const Chunk *record : records) {
|
|
OutputSection *os = record->getOutputSection();
|
|
uint64_t offs = os->getFileOff() + (record->getRVA() - os->getRVA());
|
|
fillEntry(d, COFF::IMAGE_DEBUG_TYPE_CODEVIEW, record->getSize(),
|
|
record->getRVA(), offs);
|
|
++d;
|
|
}
|
|
|
|
if (writeRepro) {
|
|
// FIXME: The COFF spec allows either a 0-sized entry to just say
|
|
// "the timestamp field is really a hash", or a 4-byte size field
|
|
// followed by that many bytes containing a longer hash (with the
|
|
// lowest 4 bytes usually being the timestamp in little-endian order).
|
|
// Consider storing the full 8 bytes computed by xxHash64 here.
|
|
fillEntry(d, COFF::IMAGE_DEBUG_TYPE_REPRO, 0, 0, 0);
|
|
}
|
|
}
|
|
|
|
void setTimeDateStamp(uint32_t timeDateStamp) {
|
|
for (support::ulittle32_t *tds : timeDateStamps)
|
|
*tds = timeDateStamp;
|
|
}
|
|
|
|
private:
|
|
void fillEntry(debug_directory *d, COFF::DebugType debugType, size_t size,
|
|
uint64_t rva, uint64_t offs) const {
|
|
d->Characteristics = 0;
|
|
d->TimeDateStamp = 0;
|
|
d->MajorVersion = 0;
|
|
d->MinorVersion = 0;
|
|
d->Type = debugType;
|
|
d->SizeOfData = size;
|
|
d->AddressOfRawData = rva;
|
|
d->PointerToRawData = offs;
|
|
|
|
timeDateStamps.push_back(&d->TimeDateStamp);
|
|
}
|
|
|
|
mutable std::vector<support::ulittle32_t *> timeDateStamps;
|
|
const std::vector<Chunk *> &records;
|
|
bool writeRepro;
|
|
};
|
|
|
|
class CVDebugRecordChunk : public NonSectionChunk {
|
|
public:
|
|
size_t getSize() const override {
|
|
return sizeof(codeview::DebugInfo) + config->pdbAltPath.size() + 1;
|
|
}
|
|
|
|
void writeTo(uint8_t *b) const override {
|
|
// Save off the DebugInfo entry to backfill the file signature (build id)
|
|
// in Writer::writeBuildId
|
|
buildId = reinterpret_cast<codeview::DebugInfo *>(b);
|
|
|
|
// variable sized field (PDB Path)
|
|
char *p = reinterpret_cast<char *>(b + sizeof(*buildId));
|
|
if (!config->pdbAltPath.empty())
|
|
memcpy(p, config->pdbAltPath.data(), config->pdbAltPath.size());
|
|
p[config->pdbAltPath.size()] = '\0';
|
|
}
|
|
|
|
mutable codeview::DebugInfo *buildId = nullptr;
|
|
};
|
|
|
|
// PartialSection represents a group of chunks that contribute to an
|
|
// OutputSection. Collating a collection of PartialSections of same name and
|
|
// characteristics constitutes the OutputSection.
|
|
class PartialSectionKey {
|
|
public:
|
|
StringRef name;
|
|
unsigned characteristics;
|
|
|
|
bool operator<(const PartialSectionKey &other) const {
|
|
int c = name.compare(other.name);
|
|
if (c == 1)
|
|
return false;
|
|
if (c == 0)
|
|
return characteristics < other.characteristics;
|
|
return true;
|
|
}
|
|
};
|
|
|
|
// The writer writes a SymbolTable result to a file.
|
|
class Writer {
|
|
public:
|
|
Writer() : buffer(errorHandler().outputBuffer) {}
|
|
void run();
|
|
|
|
private:
|
|
void createSections();
|
|
void createMiscChunks();
|
|
void createImportTables();
|
|
void appendImportThunks();
|
|
void locateImportTables();
|
|
void createExportTable();
|
|
void mergeSections();
|
|
void removeUnusedSections();
|
|
void assignAddresses();
|
|
void finalizeAddresses();
|
|
void removeEmptySections();
|
|
void assignOutputSectionIndices();
|
|
void createSymbolAndStringTable();
|
|
void openFile(StringRef outputPath);
|
|
template <typename PEHeaderTy> void writeHeader();
|
|
void createSEHTable();
|
|
void createRuntimePseudoRelocs();
|
|
void insertCtorDtorSymbols();
|
|
void createGuardCFTables();
|
|
void markSymbolsForRVATable(ObjFile *file,
|
|
ArrayRef<SectionChunk *> symIdxChunks,
|
|
SymbolRVASet &tableSymbols);
|
|
void maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym,
|
|
StringRef countSym);
|
|
void setSectionPermissions();
|
|
void writeSections();
|
|
void writeBuildId();
|
|
void sortExceptionTable();
|
|
void sortCRTSectionChunks(std::vector<Chunk *> &chunks);
|
|
void addSyntheticIdata();
|
|
void fixPartialSectionChars(StringRef name, uint32_t chars);
|
|
bool fixGnuImportChunks();
|
|
PartialSection *createPartialSection(StringRef name, uint32_t outChars);
|
|
PartialSection *findPartialSection(StringRef name, uint32_t outChars);
|
|
|
|
llvm::Optional<coff_symbol16> createSymbol(Defined *d);
|
|
size_t addEntryToStringTable(StringRef str);
|
|
|
|
OutputSection *findSection(StringRef name);
|
|
void addBaserels();
|
|
void addBaserelBlocks(std::vector<Baserel> &v);
|
|
|
|
uint32_t getSizeOfInitializedData();
|
|
|
|
std::unique_ptr<FileOutputBuffer> &buffer;
|
|
std::map<PartialSectionKey, PartialSection *> partialSections;
|
|
std::vector<char> strtab;
|
|
std::vector<llvm::object::coff_symbol16> outputSymtab;
|
|
IdataContents idata;
|
|
Chunk *importTableStart = nullptr;
|
|
uint64_t importTableSize = 0;
|
|
Chunk *edataStart = nullptr;
|
|
Chunk *edataEnd = nullptr;
|
|
Chunk *iatStart = nullptr;
|
|
uint64_t iatSize = 0;
|
|
DelayLoadContents delayIdata;
|
|
EdataContents edata;
|
|
bool setNoSEHCharacteristic = false;
|
|
|
|
DebugDirectoryChunk *debugDirectory = nullptr;
|
|
std::vector<Chunk *> debugRecords;
|
|
CVDebugRecordChunk *buildId = nullptr;
|
|
ArrayRef<uint8_t> sectionTable;
|
|
|
|
uint64_t fileSize;
|
|
uint32_t pointerToSymbolTable = 0;
|
|
uint64_t sizeOfImage;
|
|
uint64_t sizeOfHeaders;
|
|
|
|
OutputSection *textSec;
|
|
OutputSection *rdataSec;
|
|
OutputSection *buildidSec;
|
|
OutputSection *dataSec;
|
|
OutputSection *pdataSec;
|
|
OutputSection *idataSec;
|
|
OutputSection *edataSec;
|
|
OutputSection *didatSec;
|
|
OutputSection *rsrcSec;
|
|
OutputSection *relocSec;
|
|
OutputSection *ctorsSec;
|
|
OutputSection *dtorsSec;
|
|
|
|
// The first and last .pdata sections in the output file.
|
|
//
|
|
// We need to keep track of the location of .pdata in whichever section it
|
|
// gets merged into so that we can sort its contents and emit a correct data
|
|
// directory entry for the exception table. This is also the case for some
|
|
// other sections (such as .edata) but because the contents of those sections
|
|
// are entirely linker-generated we can keep track of their locations using
|
|
// the chunks that the linker creates. All .pdata chunks come from input
|
|
// files, so we need to keep track of them separately.
|
|
Chunk *firstPdata = nullptr;
|
|
Chunk *lastPdata;
|
|
};
|
|
} // anonymous namespace
|
|
|
|
namespace lld {
|
|
namespace coff {
|
|
|
|
static Timer codeLayoutTimer("Code Layout", Timer::root());
|
|
static Timer diskCommitTimer("Commit Output File", Timer::root());
|
|
|
|
void writeResult() { Writer().run(); }
|
|
|
|
void OutputSection::addChunk(Chunk *c) {
|
|
chunks.push_back(c);
|
|
}
|
|
|
|
void OutputSection::insertChunkAtStart(Chunk *c) {
|
|
chunks.insert(chunks.begin(), c);
|
|
}
|
|
|
|
void OutputSection::setPermissions(uint32_t c) {
|
|
header.Characteristics &= ~permMask;
|
|
header.Characteristics |= c;
|
|
}
|
|
|
|
void OutputSection::merge(OutputSection *other) {
|
|
chunks.insert(chunks.end(), other->chunks.begin(), other->chunks.end());
|
|
other->chunks.clear();
|
|
contribSections.insert(contribSections.end(), other->contribSections.begin(),
|
|
other->contribSections.end());
|
|
other->contribSections.clear();
|
|
}
|
|
|
|
// Write the section header to a given buffer.
|
|
void OutputSection::writeHeaderTo(uint8_t *buf) {
|
|
auto *hdr = reinterpret_cast<coff_section *>(buf);
|
|
*hdr = header;
|
|
if (stringTableOff) {
|
|
// If name is too long, write offset into the string table as a name.
|
|
sprintf(hdr->Name, "/%d", stringTableOff);
|
|
} else {
|
|
assert(!config->debug || name.size() <= COFF::NameSize ||
|
|
(hdr->Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0);
|
|
strncpy(hdr->Name, name.data(),
|
|
std::min(name.size(), (size_t)COFF::NameSize));
|
|
}
|
|
}
|
|
|
|
void OutputSection::addContributingPartialSection(PartialSection *sec) {
|
|
contribSections.push_back(sec);
|
|
}
|
|
|
|
} // namespace coff
|
|
} // namespace lld
|
|
|
|
// Check whether the target address S is in range from a relocation
|
|
// of type relType at address P.
|
|
static bool isInRange(uint16_t relType, uint64_t s, uint64_t p, int margin) {
|
|
if (config->machine == ARMNT) {
|
|
int64_t diff = AbsoluteDifference(s, p + 4) + margin;
|
|
switch (relType) {
|
|
case IMAGE_REL_ARM_BRANCH20T:
|
|
return isInt<21>(diff);
|
|
case IMAGE_REL_ARM_BRANCH24T:
|
|
case IMAGE_REL_ARM_BLX23T:
|
|
return isInt<25>(diff);
|
|
default:
|
|
return true;
|
|
}
|
|
} else if (config->machine == ARM64) {
|
|
int64_t diff = AbsoluteDifference(s, p) + margin;
|
|
switch (relType) {
|
|
case IMAGE_REL_ARM64_BRANCH26:
|
|
return isInt<28>(diff);
|
|
case IMAGE_REL_ARM64_BRANCH19:
|
|
return isInt<21>(diff);
|
|
case IMAGE_REL_ARM64_BRANCH14:
|
|
return isInt<16>(diff);
|
|
default:
|
|
return true;
|
|
}
|
|
} else {
|
|
llvm_unreachable("Unexpected architecture");
|
|
}
|
|
}
|
|
|
|
// Return the last thunk for the given target if it is in range,
|
|
// or create a new one.
|
|
static std::pair<Defined *, bool>
|
|
getThunk(DenseMap<uint64_t, Defined *> &lastThunks, Defined *target, uint64_t p,
|
|
uint16_t type, int margin) {
|
|
Defined *&lastThunk = lastThunks[target->getRVA()];
|
|
if (lastThunk && isInRange(type, lastThunk->getRVA(), p, margin))
|
|
return {lastThunk, false};
|
|
Chunk *c;
|
|
switch (config->machine) {
|
|
case ARMNT:
|
|
c = make<RangeExtensionThunkARM>(target);
|
|
break;
|
|
case ARM64:
|
|
c = make<RangeExtensionThunkARM64>(target);
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unexpected architecture");
|
|
}
|
|
Defined *d = make<DefinedSynthetic>("", c);
|
|
lastThunk = d;
|
|
return {d, true};
|
|
}
|
|
|
|
// This checks all relocations, and for any relocation which isn't in range
|
|
// it adds a thunk after the section chunk that contains the relocation.
|
|
// If the latest thunk for the specific target is in range, that is used
|
|
// instead of creating a new thunk. All range checks are done with the
|
|
// specified margin, to make sure that relocations that originally are in
|
|
// range, but only barely, also get thunks - in case other added thunks makes
|
|
// the target go out of range.
|
|
//
|
|
// After adding thunks, we verify that all relocations are in range (with
|
|
// no extra margin requirements). If this failed, we restart (throwing away
|
|
// the previously created thunks) and retry with a wider margin.
|
|
static bool createThunks(OutputSection *os, int margin) {
|
|
bool addressesChanged = false;
|
|
DenseMap<uint64_t, Defined *> lastThunks;
|
|
DenseMap<std::pair<ObjFile *, Defined *>, uint32_t> thunkSymtabIndices;
|
|
size_t thunksSize = 0;
|
|
// Recheck Chunks.size() each iteration, since we can insert more
|
|
// elements into it.
|
|
for (size_t i = 0; i != os->chunks.size(); ++i) {
|
|
SectionChunk *sc = dyn_cast_or_null<SectionChunk>(os->chunks[i]);
|
|
if (!sc)
|
|
continue;
|
|
size_t thunkInsertionSpot = i + 1;
|
|
|
|
// Try to get a good enough estimate of where new thunks will be placed.
|
|
// Offset this by the size of the new thunks added so far, to make the
|
|
// estimate slightly better.
|
|
size_t thunkInsertionRVA = sc->getRVA() + sc->getSize() + thunksSize;
|
|
ObjFile *file = sc->file;
|
|
std::vector<std::pair<uint32_t, uint32_t>> relocReplacements;
|
|
ArrayRef<coff_relocation> originalRelocs =
|
|
file->getCOFFObj()->getRelocations(sc->header);
|
|
for (size_t j = 0, e = originalRelocs.size(); j < e; ++j) {
|
|
const coff_relocation &rel = originalRelocs[j];
|
|
Symbol *relocTarget = file->getSymbol(rel.SymbolTableIndex);
|
|
|
|
// The estimate of the source address P should be pretty accurate,
|
|
// but we don't know whether the target Symbol address should be
|
|
// offset by thunksSize or not (or by some of thunksSize but not all of
|
|
// it), giving us some uncertainty once we have added one thunk.
|
|
uint64_t p = sc->getRVA() + rel.VirtualAddress + thunksSize;
|
|
|
|
Defined *sym = dyn_cast_or_null<Defined>(relocTarget);
|
|
if (!sym)
|
|
continue;
|
|
|
|
uint64_t s = sym->getRVA();
|
|
|
|
if (isInRange(rel.Type, s, p, margin))
|
|
continue;
|
|
|
|
// If the target isn't in range, hook it up to an existing or new
|
|
// thunk.
|
|
Defined *thunk;
|
|
bool wasNew;
|
|
std::tie(thunk, wasNew) = getThunk(lastThunks, sym, p, rel.Type, margin);
|
|
if (wasNew) {
|
|
Chunk *thunkChunk = thunk->getChunk();
|
|
thunkChunk->setRVA(
|
|
thunkInsertionRVA); // Estimate of where it will be located.
|
|
os->chunks.insert(os->chunks.begin() + thunkInsertionSpot, thunkChunk);
|
|
thunkInsertionSpot++;
|
|
thunksSize += thunkChunk->getSize();
|
|
thunkInsertionRVA += thunkChunk->getSize();
|
|
addressesChanged = true;
|
|
}
|
|
|
|
// To redirect the relocation, add a symbol to the parent object file's
|
|
// symbol table, and replace the relocation symbol table index with the
|
|
// new index.
|
|
auto insertion = thunkSymtabIndices.insert({{file, thunk}, ~0U});
|
|
uint32_t &thunkSymbolIndex = insertion.first->second;
|
|
if (insertion.second)
|
|
thunkSymbolIndex = file->addRangeThunkSymbol(thunk);
|
|
relocReplacements.push_back({j, thunkSymbolIndex});
|
|
}
|
|
|
|
// Get a writable copy of this section's relocations so they can be
|
|
// modified. If the relocations point into the object file, allocate new
|
|
// memory. Otherwise, this must be previously allocated memory that can be
|
|
// modified in place.
|
|
ArrayRef<coff_relocation> curRelocs = sc->getRelocs();
|
|
MutableArrayRef<coff_relocation> newRelocs;
|
|
if (originalRelocs.data() == curRelocs.data()) {
|
|
newRelocs = makeMutableArrayRef(
|
|
bAlloc.Allocate<coff_relocation>(originalRelocs.size()),
|
|
originalRelocs.size());
|
|
} else {
|
|
newRelocs = makeMutableArrayRef(
|
|
const_cast<coff_relocation *>(curRelocs.data()), curRelocs.size());
|
|
}
|
|
|
|
// Copy each relocation, but replace the symbol table indices which need
|
|
// thunks.
|
|
auto nextReplacement = relocReplacements.begin();
|
|
auto endReplacement = relocReplacements.end();
|
|
for (size_t i = 0, e = originalRelocs.size(); i != e; ++i) {
|
|
newRelocs[i] = originalRelocs[i];
|
|
if (nextReplacement != endReplacement && nextReplacement->first == i) {
|
|
newRelocs[i].SymbolTableIndex = nextReplacement->second;
|
|
++nextReplacement;
|
|
}
|
|
}
|
|
|
|
sc->setRelocs(newRelocs);
|
|
}
|
|
return addressesChanged;
|
|
}
|
|
|
|
// Verify that all relocations are in range, with no extra margin requirements.
|
|
static bool verifyRanges(const std::vector<Chunk *> chunks) {
|
|
for (Chunk *c : chunks) {
|
|
SectionChunk *sc = dyn_cast_or_null<SectionChunk>(c);
|
|
if (!sc)
|
|
continue;
|
|
|
|
ArrayRef<coff_relocation> relocs = sc->getRelocs();
|
|
for (size_t j = 0, e = relocs.size(); j < e; ++j) {
|
|
const coff_relocation &rel = relocs[j];
|
|
Symbol *relocTarget = sc->file->getSymbol(rel.SymbolTableIndex);
|
|
|
|
Defined *sym = dyn_cast_or_null<Defined>(relocTarget);
|
|
if (!sym)
|
|
continue;
|
|
|
|
uint64_t p = sc->getRVA() + rel.VirtualAddress;
|
|
uint64_t s = sym->getRVA();
|
|
|
|
if (!isInRange(rel.Type, s, p, 0))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Assign addresses and add thunks if necessary.
|
|
void Writer::finalizeAddresses() {
|
|
assignAddresses();
|
|
if (config->machine != ARMNT && config->machine != ARM64)
|
|
return;
|
|
|
|
size_t origNumChunks = 0;
|
|
for (OutputSection *sec : outputSections) {
|
|
sec->origChunks = sec->chunks;
|
|
origNumChunks += sec->chunks.size();
|
|
}
|
|
|
|
int pass = 0;
|
|
int margin = 1024 * 100;
|
|
while (true) {
|
|
// First check whether we need thunks at all, or if the previous pass of
|
|
// adding them turned out ok.
|
|
bool rangesOk = true;
|
|
size_t numChunks = 0;
|
|
for (OutputSection *sec : outputSections) {
|
|
if (!verifyRanges(sec->chunks)) {
|
|
rangesOk = false;
|
|
break;
|
|
}
|
|
numChunks += sec->chunks.size();
|
|
}
|
|
if (rangesOk) {
|
|
if (pass > 0)
|
|
log("Added " + Twine(numChunks - origNumChunks) + " thunks with " +
|
|
"margin " + Twine(margin) + " in " + Twine(pass) + " passes");
|
|
return;
|
|
}
|
|
|
|
if (pass >= 10)
|
|
fatal("adding thunks hasn't converged after " + Twine(pass) + " passes");
|
|
|
|
if (pass > 0) {
|
|
// If the previous pass didn't work out, reset everything back to the
|
|
// original conditions before retrying with a wider margin. This should
|
|
// ideally never happen under real circumstances.
|
|
for (OutputSection *sec : outputSections)
|
|
sec->chunks = sec->origChunks;
|
|
margin *= 2;
|
|
}
|
|
|
|
// Try adding thunks everywhere where it is needed, with a margin
|
|
// to avoid things going out of range due to the added thunks.
|
|
bool addressesChanged = false;
|
|
for (OutputSection *sec : outputSections)
|
|
addressesChanged |= createThunks(sec, margin);
|
|
// If the verification above thought we needed thunks, we should have
|
|
// added some.
|
|
assert(addressesChanged);
|
|
|
|
// Recalculate the layout for the whole image (and verify the ranges at
|
|
// the start of the next round).
|
|
assignAddresses();
|
|
|
|
pass++;
|
|
}
|
|
}
|
|
|
|
// The main function of the writer.
|
|
void Writer::run() {
|
|
ScopedTimer t1(codeLayoutTimer);
|
|
|
|
createImportTables();
|
|
createSections();
|
|
createMiscChunks();
|
|
appendImportThunks();
|
|
createExportTable();
|
|
mergeSections();
|
|
removeUnusedSections();
|
|
finalizeAddresses();
|
|
removeEmptySections();
|
|
assignOutputSectionIndices();
|
|
setSectionPermissions();
|
|
createSymbolAndStringTable();
|
|
|
|
if (fileSize > UINT32_MAX)
|
|
fatal("image size (" + Twine(fileSize) + ") " +
|
|
"exceeds maximum allowable size (" + Twine(UINT32_MAX) + ")");
|
|
|
|
openFile(config->outputFile);
|
|
if (config->is64()) {
|
|
writeHeader<pe32plus_header>();
|
|
} else {
|
|
writeHeader<pe32_header>();
|
|
}
|
|
writeSections();
|
|
sortExceptionTable();
|
|
|
|
t1.stop();
|
|
|
|
if (!config->pdbPath.empty() && config->debug) {
|
|
assert(buildId);
|
|
createPDB(symtab, outputSections, sectionTable, buildId->buildId);
|
|
}
|
|
writeBuildId();
|
|
|
|
writeMapFile(outputSections);
|
|
|
|
if (errorCount())
|
|
return;
|
|
|
|
ScopedTimer t2(diskCommitTimer);
|
|
if (auto e = buffer->commit())
|
|
fatal("failed to write the output file: " + toString(std::move(e)));
|
|
}
|
|
|
|
static StringRef getOutputSectionName(StringRef name) {
|
|
StringRef s = name.split('$').first;
|
|
|
|
// Treat a later period as a separator for MinGW, for sections like
|
|
// ".ctors.01234".
|
|
return s.substr(0, s.find('.', 1));
|
|
}
|
|
|
|
// For /order.
|
|
static void sortBySectionOrder(std::vector<Chunk *> &chunks) {
|
|
auto getPriority = [](const Chunk *c) {
|
|
if (auto *sec = dyn_cast<SectionChunk>(c))
|
|
if (sec->sym)
|
|
return config->order.lookup(sec->sym->getName());
|
|
return 0;
|
|
};
|
|
|
|
llvm::stable_sort(chunks, [=](const Chunk *a, const Chunk *b) {
|
|
return getPriority(a) < getPriority(b);
|
|
});
|
|
}
|
|
|
|
// Change the characteristics of existing PartialSections that belong to the
|
|
// section Name to Chars.
|
|
void Writer::fixPartialSectionChars(StringRef name, uint32_t chars) {
|
|
for (auto it : partialSections) {
|
|
PartialSection *pSec = it.second;
|
|
StringRef curName = pSec->name;
|
|
if (!curName.consume_front(name) ||
|
|
(!curName.empty() && !curName.startswith("$")))
|
|
continue;
|
|
if (pSec->characteristics == chars)
|
|
continue;
|
|
PartialSection *destSec = createPartialSection(pSec->name, chars);
|
|
destSec->chunks.insert(destSec->chunks.end(), pSec->chunks.begin(),
|
|
pSec->chunks.end());
|
|
pSec->chunks.clear();
|
|
}
|
|
}
|
|
|
|
// Sort concrete section chunks from GNU import libraries.
|
|
//
|
|
// GNU binutils doesn't use short import files, but instead produces import
|
|
// libraries that consist of object files, with section chunks for the .idata$*
|
|
// sections. These are linked just as regular static libraries. Each import
|
|
// library consists of one header object, one object file for every imported
|
|
// symbol, and one trailer object. In order for the .idata tables/lists to
|
|
// be formed correctly, the section chunks within each .idata$* section need
|
|
// to be grouped by library, and sorted alphabetically within each library
|
|
// (which makes sure the header comes first and the trailer last).
|
|
bool Writer::fixGnuImportChunks() {
|
|
uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
|
|
|
|
// Make sure all .idata$* section chunks are mapped as RDATA in order to
|
|
// be sorted into the same sections as our own synthesized .idata chunks.
|
|
fixPartialSectionChars(".idata", rdata);
|
|
|
|
bool hasIdata = false;
|
|
// Sort all .idata$* chunks, grouping chunks from the same library,
|
|
// with alphabetical ordering of the object fils within a library.
|
|
for (auto it : partialSections) {
|
|
PartialSection *pSec = it.second;
|
|
if (!pSec->name.startswith(".idata"))
|
|
continue;
|
|
|
|
if (!pSec->chunks.empty())
|
|
hasIdata = true;
|
|
llvm::stable_sort(pSec->chunks, [&](Chunk *s, Chunk *t) {
|
|
SectionChunk *sc1 = dyn_cast_or_null<SectionChunk>(s);
|
|
SectionChunk *sc2 = dyn_cast_or_null<SectionChunk>(t);
|
|
if (!sc1 || !sc2) {
|
|
// if SC1, order them ascending. If SC2 or both null,
|
|
// S is not less than T.
|
|
return sc1 != nullptr;
|
|
}
|
|
// Make a string with "libraryname/objectfile" for sorting, achieving
|
|
// both grouping by library and sorting of objects within a library,
|
|
// at once.
|
|
std::string key1 =
|
|
(sc1->file->parentName + "/" + sc1->file->getName()).str();
|
|
std::string key2 =
|
|
(sc2->file->parentName + "/" + sc2->file->getName()).str();
|
|
return key1 < key2;
|
|
});
|
|
}
|
|
return hasIdata;
|
|
}
|
|
|
|
// Add generated idata chunks, for imported symbols and DLLs, and a
|
|
// terminator in .idata$2.
|
|
void Writer::addSyntheticIdata() {
|
|
uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
|
|
idata.create();
|
|
|
|
// Add the .idata content in the right section groups, to allow
|
|
// chunks from other linked in object files to be grouped together.
|
|
// See Microsoft PE/COFF spec 5.4 for details.
|
|
auto add = [&](StringRef n, std::vector<Chunk *> &v) {
|
|
PartialSection *pSec = createPartialSection(n, rdata);
|
|
pSec->chunks.insert(pSec->chunks.end(), v.begin(), v.end());
|
|
};
|
|
|
|
// The loader assumes a specific order of data.
|
|
// Add each type in the correct order.
|
|
add(".idata$2", idata.dirs);
|
|
add(".idata$4", idata.lookups);
|
|
add(".idata$5", idata.addresses);
|
|
add(".idata$6", idata.hints);
|
|
add(".idata$7", idata.dllNames);
|
|
}
|
|
|
|
// Locate the first Chunk and size of the import directory list and the
|
|
// IAT.
|
|
void Writer::locateImportTables() {
|
|
uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
|
|
|
|
if (PartialSection *importDirs = findPartialSection(".idata$2", rdata)) {
|
|
if (!importDirs->chunks.empty())
|
|
importTableStart = importDirs->chunks.front();
|
|
for (Chunk *c : importDirs->chunks)
|
|
importTableSize += c->getSize();
|
|
}
|
|
|
|
if (PartialSection *importAddresses = findPartialSection(".idata$5", rdata)) {
|
|
if (!importAddresses->chunks.empty())
|
|
iatStart = importAddresses->chunks.front();
|
|
for (Chunk *c : importAddresses->chunks)
|
|
iatSize += c->getSize();
|
|
}
|
|
}
|
|
|
|
// Return whether a SectionChunk's suffix (the dollar and any trailing
|
|
// suffix) should be removed and sorted into the main suffixless
|
|
// PartialSection.
|
|
static bool shouldStripSectionSuffix(SectionChunk *sc, StringRef name) {
|
|
// On MinGW, comdat groups are formed by putting the comdat group name
|
|
// after the '$' in the section name. For .eh_frame$<symbol>, that must
|
|
// still be sorted before the .eh_frame trailer from crtend.o, thus just
|
|
// strip the section name trailer. For other sections, such as
|
|
// .tls$$<symbol> (where non-comdat .tls symbols are otherwise stored in
|
|
// ".tls$"), they must be strictly sorted after .tls. And for the
|
|
// hypothetical case of comdat .CRT$XCU, we definitely need to keep the
|
|
// suffix for sorting. Thus, to play it safe, only strip the suffix for
|
|
// the standard sections.
|
|
if (!config->mingw)
|
|
return false;
|
|
if (!sc || !sc->isCOMDAT())
|
|
return false;
|
|
return name.startswith(".text$") || name.startswith(".data$") ||
|
|
name.startswith(".rdata$") || name.startswith(".pdata$") ||
|
|
name.startswith(".xdata$") || name.startswith(".eh_frame$");
|
|
}
|
|
|
|
// Create output section objects and add them to OutputSections.
|
|
void Writer::createSections() {
|
|
// First, create the builtin sections.
|
|
const uint32_t data = IMAGE_SCN_CNT_INITIALIZED_DATA;
|
|
const uint32_t bss = IMAGE_SCN_CNT_UNINITIALIZED_DATA;
|
|
const uint32_t code = IMAGE_SCN_CNT_CODE;
|
|
const uint32_t discardable = IMAGE_SCN_MEM_DISCARDABLE;
|
|
const uint32_t r = IMAGE_SCN_MEM_READ;
|
|
const uint32_t w = IMAGE_SCN_MEM_WRITE;
|
|
const uint32_t x = IMAGE_SCN_MEM_EXECUTE;
|
|
|
|
SmallDenseMap<std::pair<StringRef, uint32_t>, OutputSection *> sections;
|
|
auto createSection = [&](StringRef name, uint32_t outChars) {
|
|
OutputSection *&sec = sections[{name, outChars}];
|
|
if (!sec) {
|
|
sec = make<OutputSection>(name, outChars);
|
|
outputSections.push_back(sec);
|
|
}
|
|
return sec;
|
|
};
|
|
|
|
// Try to match the section order used by link.exe.
|
|
textSec = createSection(".text", code | r | x);
|
|
createSection(".bss", bss | r | w);
|
|
rdataSec = createSection(".rdata", data | r);
|
|
buildidSec = createSection(".buildid", data | r);
|
|
dataSec = createSection(".data", data | r | w);
|
|
pdataSec = createSection(".pdata", data | r);
|
|
idataSec = createSection(".idata", data | r);
|
|
edataSec = createSection(".edata", data | r);
|
|
didatSec = createSection(".didat", data | r);
|
|
rsrcSec = createSection(".rsrc", data | r);
|
|
relocSec = createSection(".reloc", data | discardable | r);
|
|
ctorsSec = createSection(".ctors", data | r | w);
|
|
dtorsSec = createSection(".dtors", data | r | w);
|
|
|
|
// Then bin chunks by name and output characteristics.
|
|
for (Chunk *c : symtab->getChunks()) {
|
|
auto *sc = dyn_cast<SectionChunk>(c);
|
|
if (sc && !sc->live) {
|
|
if (config->verbose)
|
|
sc->printDiscardedMessage();
|
|
continue;
|
|
}
|
|
StringRef name = c->getSectionName();
|
|
if (shouldStripSectionSuffix(sc, name))
|
|
name = name.split('$').first;
|
|
PartialSection *pSec = createPartialSection(name,
|
|
c->getOutputCharacteristics());
|
|
pSec->chunks.push_back(c);
|
|
}
|
|
|
|
fixPartialSectionChars(".rsrc", data | r);
|
|
fixPartialSectionChars(".edata", data | r);
|
|
// Even in non MinGW cases, we might need to link against GNU import
|
|
// libraries.
|
|
bool hasIdata = fixGnuImportChunks();
|
|
if (!idata.empty())
|
|
hasIdata = true;
|
|
|
|
if (hasIdata)
|
|
addSyntheticIdata();
|
|
|
|
// Process an /order option.
|
|
if (!config->order.empty())
|
|
for (auto it : partialSections)
|
|
sortBySectionOrder(it.second->chunks);
|
|
|
|
if (hasIdata)
|
|
locateImportTables();
|
|
|
|
// Then create an OutputSection for each section.
|
|
// '$' and all following characters in input section names are
|
|
// discarded when determining output section. So, .text$foo
|
|
// contributes to .text, for example. See PE/COFF spec 3.2.
|
|
for (auto it : partialSections) {
|
|
PartialSection *pSec = it.second;
|
|
StringRef name = getOutputSectionName(pSec->name);
|
|
uint32_t outChars = pSec->characteristics;
|
|
|
|
if (name == ".CRT") {
|
|
// In link.exe, there is a special case for the I386 target where .CRT
|
|
// sections are treated as if they have output characteristics DATA | R if
|
|
// their characteristics are DATA | R | W. This implements the same
|
|
// special case for all architectures.
|
|
outChars = data | r;
|
|
|
|
log("Processing section " + pSec->name + " -> " + name);
|
|
|
|
sortCRTSectionChunks(pSec->chunks);
|
|
}
|
|
|
|
OutputSection *sec = createSection(name, outChars);
|
|
for (Chunk *c : pSec->chunks)
|
|
sec->addChunk(c);
|
|
|
|
sec->addContributingPartialSection(pSec);
|
|
}
|
|
|
|
// Finally, move some output sections to the end.
|
|
auto sectionOrder = [&](const OutputSection *s) {
|
|
// Move DISCARDABLE (or non-memory-mapped) sections to the end of file
|
|
// because the loader cannot handle holes. Stripping can remove other
|
|
// discardable ones than .reloc, which is first of them (created early).
|
|
if (s->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE)
|
|
return 2;
|
|
// .rsrc should come at the end of the non-discardable sections because its
|
|
// size may change by the Win32 UpdateResources() function, causing
|
|
// subsequent sections to move (see https://crbug.com/827082).
|
|
if (s == rsrcSec)
|
|
return 1;
|
|
return 0;
|
|
};
|
|
llvm::stable_sort(outputSections,
|
|
[&](const OutputSection *s, const OutputSection *t) {
|
|
return sectionOrder(s) < sectionOrder(t);
|
|
});
|
|
}
|
|
|
|
void Writer::createMiscChunks() {
|
|
for (MergeChunk *p : MergeChunk::instances) {
|
|
if (p) {
|
|
p->finalizeContents();
|
|
rdataSec->addChunk(p);
|
|
}
|
|
}
|
|
|
|
// Create thunks for locally-dllimported symbols.
|
|
if (!symtab->localImportChunks.empty()) {
|
|
for (Chunk *c : symtab->localImportChunks)
|
|
rdataSec->addChunk(c);
|
|
}
|
|
|
|
// Create Debug Information Chunks
|
|
OutputSection *debugInfoSec = config->mingw ? buildidSec : rdataSec;
|
|
if (config->debug || config->repro) {
|
|
debugDirectory = make<DebugDirectoryChunk>(debugRecords, config->repro);
|
|
debugInfoSec->addChunk(debugDirectory);
|
|
}
|
|
|
|
if (config->debug) {
|
|
// Make a CVDebugRecordChunk even when /DEBUG:CV is not specified. We
|
|
// output a PDB no matter what, and this chunk provides the only means of
|
|
// allowing a debugger to match a PDB and an executable. So we need it even
|
|
// if we're ultimately not going to write CodeView data to the PDB.
|
|
buildId = make<CVDebugRecordChunk>();
|
|
debugRecords.push_back(buildId);
|
|
|
|
for (Chunk *c : debugRecords)
|
|
debugInfoSec->addChunk(c);
|
|
}
|
|
|
|
// Create SEH table. x86-only.
|
|
if (config->safeSEH)
|
|
createSEHTable();
|
|
|
|
// Create /guard:cf tables if requested.
|
|
if (config->guardCF != GuardCFLevel::Off)
|
|
createGuardCFTables();
|
|
|
|
if (config->mingw) {
|
|
createRuntimePseudoRelocs();
|
|
|
|
insertCtorDtorSymbols();
|
|
}
|
|
}
|
|
|
|
// Create .idata section for the DLL-imported symbol table.
|
|
// The format of this section is inherently Windows-specific.
|
|
// IdataContents class abstracted away the details for us,
|
|
// so we just let it create chunks and add them to the section.
|
|
void Writer::createImportTables() {
|
|
// Initialize DLLOrder so that import entries are ordered in
|
|
// the same order as in the command line. (That affects DLL
|
|
// initialization order, and this ordering is MSVC-compatible.)
|
|
for (ImportFile *file : ImportFile::instances) {
|
|
if (!file->live)
|
|
continue;
|
|
|
|
std::string dll = StringRef(file->dllName).lower();
|
|
if (config->dllOrder.count(dll) == 0)
|
|
config->dllOrder[dll] = config->dllOrder.size();
|
|
|
|
if (file->impSym && !isa<DefinedImportData>(file->impSym))
|
|
fatal(toString(*file->impSym) + " was replaced");
|
|
DefinedImportData *impSym = cast_or_null<DefinedImportData>(file->impSym);
|
|
if (config->delayLoads.count(StringRef(file->dllName).lower())) {
|
|
if (!file->thunkSym)
|
|
fatal("cannot delay-load " + toString(file) +
|
|
" due to import of data: " + toString(*impSym));
|
|
delayIdata.add(impSym);
|
|
} else {
|
|
idata.add(impSym);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Writer::appendImportThunks() {
|
|
if (ImportFile::instances.empty())
|
|
return;
|
|
|
|
for (ImportFile *file : ImportFile::instances) {
|
|
if (!file->live)
|
|
continue;
|
|
|
|
if (!file->thunkSym)
|
|
continue;
|
|
|
|
if (!isa<DefinedImportThunk>(file->thunkSym))
|
|
fatal(toString(*file->thunkSym) + " was replaced");
|
|
DefinedImportThunk *thunk = cast<DefinedImportThunk>(file->thunkSym);
|
|
if (file->thunkLive)
|
|
textSec->addChunk(thunk->getChunk());
|
|
}
|
|
|
|
if (!delayIdata.empty()) {
|
|
Defined *helper = cast<Defined>(config->delayLoadHelper);
|
|
delayIdata.create(helper);
|
|
for (Chunk *c : delayIdata.getChunks())
|
|
didatSec->addChunk(c);
|
|
for (Chunk *c : delayIdata.getDataChunks())
|
|
dataSec->addChunk(c);
|
|
for (Chunk *c : delayIdata.getCodeChunks())
|
|
textSec->addChunk(c);
|
|
}
|
|
}
|
|
|
|
void Writer::createExportTable() {
|
|
if (!edataSec->chunks.empty()) {
|
|
// Allow using a custom built export table from input object files, instead
|
|
// of having the linker synthesize the tables.
|
|
if (config->hadExplicitExports)
|
|
warn("literal .edata sections override exports");
|
|
} else if (!config->exports.empty()) {
|
|
for (Chunk *c : edata.chunks)
|
|
edataSec->addChunk(c);
|
|
}
|
|
if (!edataSec->chunks.empty()) {
|
|
edataStart = edataSec->chunks.front();
|
|
edataEnd = edataSec->chunks.back();
|
|
}
|
|
}
|
|
|
|
void Writer::removeUnusedSections() {
|
|
// Remove sections that we can be sure won't get content, to avoid
|
|
// allocating space for their section headers.
|
|
auto isUnused = [this](OutputSection *s) {
|
|
if (s == relocSec)
|
|
return false; // This section is populated later.
|
|
// MergeChunks have zero size at this point, as their size is finalized
|
|
// later. Only remove sections that have no Chunks at all.
|
|
return s->chunks.empty();
|
|
};
|
|
outputSections.erase(
|
|
std::remove_if(outputSections.begin(), outputSections.end(), isUnused),
|
|
outputSections.end());
|
|
}
|
|
|
|
// The Windows loader doesn't seem to like empty sections,
|
|
// so we remove them if any.
|
|
void Writer::removeEmptySections() {
|
|
auto isEmpty = [](OutputSection *s) { return s->getVirtualSize() == 0; };
|
|
outputSections.erase(
|
|
std::remove_if(outputSections.begin(), outputSections.end(), isEmpty),
|
|
outputSections.end());
|
|
}
|
|
|
|
void Writer::assignOutputSectionIndices() {
|
|
// Assign final output section indices, and assign each chunk to its output
|
|
// section.
|
|
uint32_t idx = 1;
|
|
for (OutputSection *os : outputSections) {
|
|
os->sectionIndex = idx;
|
|
for (Chunk *c : os->chunks)
|
|
c->setOutputSectionIdx(idx);
|
|
++idx;
|
|
}
|
|
|
|
// Merge chunks are containers of chunks, so assign those an output section
|
|
// too.
|
|
for (MergeChunk *mc : MergeChunk::instances)
|
|
if (mc)
|
|
for (SectionChunk *sc : mc->sections)
|
|
if (sc && sc->live)
|
|
sc->setOutputSectionIdx(mc->getOutputSectionIdx());
|
|
}
|
|
|
|
size_t Writer::addEntryToStringTable(StringRef str) {
|
|
assert(str.size() > COFF::NameSize);
|
|
size_t offsetOfEntry = strtab.size() + 4; // +4 for the size field
|
|
strtab.insert(strtab.end(), str.begin(), str.end());
|
|
strtab.push_back('\0');
|
|
return offsetOfEntry;
|
|
}
|
|
|
|
Optional<coff_symbol16> Writer::createSymbol(Defined *def) {
|
|
coff_symbol16 sym;
|
|
switch (def->kind()) {
|
|
case Symbol::DefinedAbsoluteKind:
|
|
sym.Value = def->getRVA();
|
|
sym.SectionNumber = IMAGE_SYM_ABSOLUTE;
|
|
break;
|
|
case Symbol::DefinedSyntheticKind:
|
|
// Relative symbols are unrepresentable in a COFF symbol table.
|
|
return None;
|
|
default: {
|
|
// Don't write symbols that won't be written to the output to the symbol
|
|
// table.
|
|
Chunk *c = def->getChunk();
|
|
if (!c)
|
|
return None;
|
|
OutputSection *os = c->getOutputSection();
|
|
if (!os)
|
|
return None;
|
|
|
|
sym.Value = def->getRVA() - os->getRVA();
|
|
sym.SectionNumber = os->sectionIndex;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Symbols that are runtime pseudo relocations don't point to the actual
|
|
// symbol data itself (as they are imported), but points to the IAT entry
|
|
// instead. Avoid emitting them to the symbol table, as they can confuse
|
|
// debuggers.
|
|
if (def->isRuntimePseudoReloc)
|
|
return None;
|
|
|
|
StringRef name = def->getName();
|
|
if (name.size() > COFF::NameSize) {
|
|
sym.Name.Offset.Zeroes = 0;
|
|
sym.Name.Offset.Offset = addEntryToStringTable(name);
|
|
} else {
|
|
memset(sym.Name.ShortName, 0, COFF::NameSize);
|
|
memcpy(sym.Name.ShortName, name.data(), name.size());
|
|
}
|
|
|
|
if (auto *d = dyn_cast<DefinedCOFF>(def)) {
|
|
COFFSymbolRef ref = d->getCOFFSymbol();
|
|
sym.Type = ref.getType();
|
|
sym.StorageClass = ref.getStorageClass();
|
|
} else {
|
|
sym.Type = IMAGE_SYM_TYPE_NULL;
|
|
sym.StorageClass = IMAGE_SYM_CLASS_EXTERNAL;
|
|
}
|
|
sym.NumberOfAuxSymbols = 0;
|
|
return sym;
|
|
}
|
|
|
|
void Writer::createSymbolAndStringTable() {
|
|
// PE/COFF images are limited to 8 byte section names. Longer names can be
|
|
// supported by writing a non-standard string table, but this string table is
|
|
// not mapped at runtime and the long names will therefore be inaccessible.
|
|
// link.exe always truncates section names to 8 bytes, whereas binutils always
|
|
// preserves long section names via the string table. LLD adopts a hybrid
|
|
// solution where discardable sections have long names preserved and
|
|
// non-discardable sections have their names truncated, to ensure that any
|
|
// section which is mapped at runtime also has its name mapped at runtime.
|
|
for (OutputSection *sec : outputSections) {
|
|
if (sec->name.size() <= COFF::NameSize)
|
|
continue;
|
|
if ((sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0)
|
|
continue;
|
|
sec->setStringTableOff(addEntryToStringTable(sec->name));
|
|
}
|
|
|
|
if (config->debugDwarf || config->debugSymtab) {
|
|
for (ObjFile *file : ObjFile::instances) {
|
|
for (Symbol *b : file->getSymbols()) {
|
|
auto *d = dyn_cast_or_null<Defined>(b);
|
|
if (!d || d->writtenToSymtab)
|
|
continue;
|
|
d->writtenToSymtab = true;
|
|
|
|
if (Optional<coff_symbol16> sym = createSymbol(d))
|
|
outputSymtab.push_back(*sym);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (outputSymtab.empty() && strtab.empty())
|
|
return;
|
|
|
|
// We position the symbol table to be adjacent to the end of the last section.
|
|
uint64_t fileOff = fileSize;
|
|
pointerToSymbolTable = fileOff;
|
|
fileOff += outputSymtab.size() * sizeof(coff_symbol16);
|
|
fileOff += 4 + strtab.size();
|
|
fileSize = alignTo(fileOff, config->fileAlign);
|
|
}
|
|
|
|
void Writer::mergeSections() {
|
|
if (!pdataSec->chunks.empty()) {
|
|
firstPdata = pdataSec->chunks.front();
|
|
lastPdata = pdataSec->chunks.back();
|
|
}
|
|
|
|
for (auto &p : config->merge) {
|
|
StringRef toName = p.second;
|
|
if (p.first == toName)
|
|
continue;
|
|
StringSet<> names;
|
|
while (1) {
|
|
if (!names.insert(toName).second)
|
|
fatal("/merge: cycle found for section '" + p.first + "'");
|
|
auto i = config->merge.find(toName);
|
|
if (i == config->merge.end())
|
|
break;
|
|
toName = i->second;
|
|
}
|
|
OutputSection *from = findSection(p.first);
|
|
OutputSection *to = findSection(toName);
|
|
if (!from)
|
|
continue;
|
|
if (!to) {
|
|
from->name = toName;
|
|
continue;
|
|
}
|
|
to->merge(from);
|
|
}
|
|
}
|
|
|
|
// Visits all sections to assign incremental, non-overlapping RVAs and
|
|
// file offsets.
|
|
void Writer::assignAddresses() {
|
|
sizeOfHeaders = dosStubSize + sizeof(PEMagic) + sizeof(coff_file_header) +
|
|
sizeof(data_directory) * numberOfDataDirectory +
|
|
sizeof(coff_section) * outputSections.size();
|
|
sizeOfHeaders +=
|
|
config->is64() ? sizeof(pe32plus_header) : sizeof(pe32_header);
|
|
sizeOfHeaders = alignTo(sizeOfHeaders, config->fileAlign);
|
|
fileSize = sizeOfHeaders;
|
|
|
|
// The first page is kept unmapped.
|
|
uint64_t rva = alignTo(sizeOfHeaders, config->align);
|
|
|
|
for (OutputSection *sec : outputSections) {
|
|
if (sec == relocSec)
|
|
addBaserels();
|
|
uint64_t rawSize = 0, virtualSize = 0;
|
|
sec->header.VirtualAddress = rva;
|
|
|
|
// If /FUNCTIONPADMIN is used, functions are padded in order to create a
|
|
// hotpatchable image.
|
|
const bool isCodeSection =
|
|
(sec->header.Characteristics & IMAGE_SCN_CNT_CODE) &&
|
|
(sec->header.Characteristics & IMAGE_SCN_MEM_READ) &&
|
|
(sec->header.Characteristics & IMAGE_SCN_MEM_EXECUTE);
|
|
uint32_t padding = isCodeSection ? config->functionPadMin : 0;
|
|
|
|
for (Chunk *c : sec->chunks) {
|
|
if (padding && c->isHotPatchable())
|
|
virtualSize += padding;
|
|
virtualSize = alignTo(virtualSize, c->getAlignment());
|
|
c->setRVA(rva + virtualSize);
|
|
virtualSize += c->getSize();
|
|
if (c->hasData)
|
|
rawSize = alignTo(virtualSize, config->fileAlign);
|
|
}
|
|
if (virtualSize > UINT32_MAX)
|
|
error("section larger than 4 GiB: " + sec->name);
|
|
sec->header.VirtualSize = virtualSize;
|
|
sec->header.SizeOfRawData = rawSize;
|
|
if (rawSize != 0)
|
|
sec->header.PointerToRawData = fileSize;
|
|
rva += alignTo(virtualSize, config->align);
|
|
fileSize += alignTo(rawSize, config->fileAlign);
|
|
}
|
|
sizeOfImage = alignTo(rva, config->align);
|
|
|
|
// Assign addresses to sections in MergeChunks.
|
|
for (MergeChunk *mc : MergeChunk::instances)
|
|
if (mc)
|
|
mc->assignSubsectionRVAs();
|
|
}
|
|
|
|
template <typename PEHeaderTy> void Writer::writeHeader() {
|
|
// Write DOS header. For backwards compatibility, the first part of a PE/COFF
|
|
// executable consists of an MS-DOS MZ executable. If the executable is run
|
|
// under DOS, that program gets run (usually to just print an error message).
|
|
// When run under Windows, the loader looks at AddressOfNewExeHeader and uses
|
|
// the PE header instead.
|
|
uint8_t *buf = buffer->getBufferStart();
|
|
auto *dos = reinterpret_cast<dos_header *>(buf);
|
|
buf += sizeof(dos_header);
|
|
dos->Magic[0] = 'M';
|
|
dos->Magic[1] = 'Z';
|
|
dos->UsedBytesInTheLastPage = dosStubSize % 512;
|
|
dos->FileSizeInPages = divideCeil(dosStubSize, 512);
|
|
dos->HeaderSizeInParagraphs = sizeof(dos_header) / 16;
|
|
|
|
dos->AddressOfRelocationTable = sizeof(dos_header);
|
|
dos->AddressOfNewExeHeader = dosStubSize;
|
|
|
|
// Write DOS program.
|
|
memcpy(buf, dosProgram, sizeof(dosProgram));
|
|
buf += sizeof(dosProgram);
|
|
|
|
// Write PE magic
|
|
memcpy(buf, PEMagic, sizeof(PEMagic));
|
|
buf += sizeof(PEMagic);
|
|
|
|
// Write COFF header
|
|
auto *coff = reinterpret_cast<coff_file_header *>(buf);
|
|
buf += sizeof(*coff);
|
|
coff->Machine = config->machine;
|
|
coff->NumberOfSections = outputSections.size();
|
|
coff->Characteristics = IMAGE_FILE_EXECUTABLE_IMAGE;
|
|
if (config->largeAddressAware)
|
|
coff->Characteristics |= IMAGE_FILE_LARGE_ADDRESS_AWARE;
|
|
if (!config->is64())
|
|
coff->Characteristics |= IMAGE_FILE_32BIT_MACHINE;
|
|
if (config->dll)
|
|
coff->Characteristics |= IMAGE_FILE_DLL;
|
|
if (!config->relocatable)
|
|
coff->Characteristics |= IMAGE_FILE_RELOCS_STRIPPED;
|
|
if (config->swaprunCD)
|
|
coff->Characteristics |= IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP;
|
|
if (config->swaprunNet)
|
|
coff->Characteristics |= IMAGE_FILE_NET_RUN_FROM_SWAP;
|
|
coff->SizeOfOptionalHeader =
|
|
sizeof(PEHeaderTy) + sizeof(data_directory) * numberOfDataDirectory;
|
|
|
|
// Write PE header
|
|
auto *pe = reinterpret_cast<PEHeaderTy *>(buf);
|
|
buf += sizeof(*pe);
|
|
pe->Magic = config->is64() ? PE32Header::PE32_PLUS : PE32Header::PE32;
|
|
|
|
// If {Major,Minor}LinkerVersion is left at 0.0, then for some
|
|
// reason signing the resulting PE file with Authenticode produces a
|
|
// signature that fails to validate on Windows 7 (but is OK on 10).
|
|
// Set it to 14.0, which is what VS2015 outputs, and which avoids
|
|
// that problem.
|
|
pe->MajorLinkerVersion = 14;
|
|
pe->MinorLinkerVersion = 0;
|
|
|
|
pe->ImageBase = config->imageBase;
|
|
pe->SectionAlignment = config->align;
|
|
pe->FileAlignment = config->fileAlign;
|
|
pe->MajorImageVersion = config->majorImageVersion;
|
|
pe->MinorImageVersion = config->minorImageVersion;
|
|
pe->MajorOperatingSystemVersion = config->majorOSVersion;
|
|
pe->MinorOperatingSystemVersion = config->minorOSVersion;
|
|
pe->MajorSubsystemVersion = config->majorOSVersion;
|
|
pe->MinorSubsystemVersion = config->minorOSVersion;
|
|
pe->Subsystem = config->subsystem;
|
|
pe->SizeOfImage = sizeOfImage;
|
|
pe->SizeOfHeaders = sizeOfHeaders;
|
|
if (!config->noEntry) {
|
|
Defined *entry = cast<Defined>(config->entry);
|
|
pe->AddressOfEntryPoint = entry->getRVA();
|
|
// Pointer to thumb code must have the LSB set, so adjust it.
|
|
if (config->machine == ARMNT)
|
|
pe->AddressOfEntryPoint |= 1;
|
|
}
|
|
pe->SizeOfStackReserve = config->stackReserve;
|
|
pe->SizeOfStackCommit = config->stackCommit;
|
|
pe->SizeOfHeapReserve = config->heapReserve;
|
|
pe->SizeOfHeapCommit = config->heapCommit;
|
|
if (config->appContainer)
|
|
pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_APPCONTAINER;
|
|
if (config->dynamicBase)
|
|
pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE;
|
|
if (config->highEntropyVA)
|
|
pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VA;
|
|
if (!config->allowBind)
|
|
pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_BIND;
|
|
if (config->nxCompat)
|
|
pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NX_COMPAT;
|
|
if (!config->allowIsolation)
|
|
pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_ISOLATION;
|
|
if (config->guardCF != GuardCFLevel::Off)
|
|
pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_GUARD_CF;
|
|
if (config->integrityCheck)
|
|
pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_FORCE_INTEGRITY;
|
|
if (setNoSEHCharacteristic)
|
|
pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_SEH;
|
|
if (config->terminalServerAware)
|
|
pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_TERMINAL_SERVER_AWARE;
|
|
pe->NumberOfRvaAndSize = numberOfDataDirectory;
|
|
if (textSec->getVirtualSize()) {
|
|
pe->BaseOfCode = textSec->getRVA();
|
|
pe->SizeOfCode = textSec->getRawSize();
|
|
}
|
|
pe->SizeOfInitializedData = getSizeOfInitializedData();
|
|
|
|
// Write data directory
|
|
auto *dir = reinterpret_cast<data_directory *>(buf);
|
|
buf += sizeof(*dir) * numberOfDataDirectory;
|
|
if (edataStart) {
|
|
dir[EXPORT_TABLE].RelativeVirtualAddress = edataStart->getRVA();
|
|
dir[EXPORT_TABLE].Size =
|
|
edataEnd->getRVA() + edataEnd->getSize() - edataStart->getRVA();
|
|
}
|
|
if (importTableStart) {
|
|
dir[IMPORT_TABLE].RelativeVirtualAddress = importTableStart->getRVA();
|
|
dir[IMPORT_TABLE].Size = importTableSize;
|
|
}
|
|
if (iatStart) {
|
|
dir[IAT].RelativeVirtualAddress = iatStart->getRVA();
|
|
dir[IAT].Size = iatSize;
|
|
}
|
|
if (rsrcSec->getVirtualSize()) {
|
|
dir[RESOURCE_TABLE].RelativeVirtualAddress = rsrcSec->getRVA();
|
|
dir[RESOURCE_TABLE].Size = rsrcSec->getVirtualSize();
|
|
}
|
|
if (firstPdata) {
|
|
dir[EXCEPTION_TABLE].RelativeVirtualAddress = firstPdata->getRVA();
|
|
dir[EXCEPTION_TABLE].Size =
|
|
lastPdata->getRVA() + lastPdata->getSize() - firstPdata->getRVA();
|
|
}
|
|
if (relocSec->getVirtualSize()) {
|
|
dir[BASE_RELOCATION_TABLE].RelativeVirtualAddress = relocSec->getRVA();
|
|
dir[BASE_RELOCATION_TABLE].Size = relocSec->getVirtualSize();
|
|
}
|
|
if (Symbol *sym = symtab->findUnderscore("_tls_used")) {
|
|
if (Defined *b = dyn_cast<Defined>(sym)) {
|
|
dir[TLS_TABLE].RelativeVirtualAddress = b->getRVA();
|
|
dir[TLS_TABLE].Size = config->is64()
|
|
? sizeof(object::coff_tls_directory64)
|
|
: sizeof(object::coff_tls_directory32);
|
|
}
|
|
}
|
|
if (debugDirectory) {
|
|
dir[DEBUG_DIRECTORY].RelativeVirtualAddress = debugDirectory->getRVA();
|
|
dir[DEBUG_DIRECTORY].Size = debugDirectory->getSize();
|
|
}
|
|
if (Symbol *sym = symtab->findUnderscore("_load_config_used")) {
|
|
if (auto *b = dyn_cast<DefinedRegular>(sym)) {
|
|
SectionChunk *sc = b->getChunk();
|
|
assert(b->getRVA() >= sc->getRVA());
|
|
uint64_t offsetInChunk = b->getRVA() - sc->getRVA();
|
|
if (!sc->hasData || offsetInChunk + 4 > sc->getSize())
|
|
fatal("_load_config_used is malformed");
|
|
|
|
ArrayRef<uint8_t> secContents = sc->getContents();
|
|
uint32_t loadConfigSize =
|
|
*reinterpret_cast<const ulittle32_t *>(&secContents[offsetInChunk]);
|
|
if (offsetInChunk + loadConfigSize > sc->getSize())
|
|
fatal("_load_config_used is too large");
|
|
dir[LOAD_CONFIG_TABLE].RelativeVirtualAddress = b->getRVA();
|
|
dir[LOAD_CONFIG_TABLE].Size = loadConfigSize;
|
|
}
|
|
}
|
|
if (!delayIdata.empty()) {
|
|
dir[DELAY_IMPORT_DESCRIPTOR].RelativeVirtualAddress =
|
|
delayIdata.getDirRVA();
|
|
dir[DELAY_IMPORT_DESCRIPTOR].Size = delayIdata.getDirSize();
|
|
}
|
|
|
|
// Write section table
|
|
for (OutputSection *sec : outputSections) {
|
|
sec->writeHeaderTo(buf);
|
|
buf += sizeof(coff_section);
|
|
}
|
|
sectionTable = ArrayRef<uint8_t>(
|
|
buf - outputSections.size() * sizeof(coff_section), buf);
|
|
|
|
if (outputSymtab.empty() && strtab.empty())
|
|
return;
|
|
|
|
coff->PointerToSymbolTable = pointerToSymbolTable;
|
|
uint32_t numberOfSymbols = outputSymtab.size();
|
|
coff->NumberOfSymbols = numberOfSymbols;
|
|
auto *symbolTable = reinterpret_cast<coff_symbol16 *>(
|
|
buffer->getBufferStart() + coff->PointerToSymbolTable);
|
|
for (size_t i = 0; i != numberOfSymbols; ++i)
|
|
symbolTable[i] = outputSymtab[i];
|
|
// Create the string table, it follows immediately after the symbol table.
|
|
// The first 4 bytes is length including itself.
|
|
buf = reinterpret_cast<uint8_t *>(&symbolTable[numberOfSymbols]);
|
|
write32le(buf, strtab.size() + 4);
|
|
if (!strtab.empty())
|
|
memcpy(buf + 4, strtab.data(), strtab.size());
|
|
}
|
|
|
|
void Writer::openFile(StringRef path) {
|
|
buffer = CHECK(
|
|
FileOutputBuffer::create(path, fileSize, FileOutputBuffer::F_executable),
|
|
"failed to open " + path);
|
|
}
|
|
|
|
void Writer::createSEHTable() {
|
|
SymbolRVASet handlers;
|
|
for (ObjFile *file : ObjFile::instances) {
|
|
if (!file->hasSafeSEH())
|
|
error("/safeseh: " + file->getName() + " is not compatible with SEH");
|
|
markSymbolsForRVATable(file, file->getSXDataChunks(), handlers);
|
|
}
|
|
|
|
// Set the "no SEH" characteristic if there really were no handlers, or if
|
|
// there is no load config object to point to the table of handlers.
|
|
setNoSEHCharacteristic =
|
|
handlers.empty() || !symtab->findUnderscore("_load_config_used");
|
|
|
|
maybeAddRVATable(std::move(handlers), "__safe_se_handler_table",
|
|
"__safe_se_handler_count");
|
|
}
|
|
|
|
// Add a symbol to an RVA set. Two symbols may have the same RVA, but an RVA set
|
|
// cannot contain duplicates. Therefore, the set is uniqued by Chunk and the
|
|
// symbol's offset into that Chunk.
|
|
static void addSymbolToRVASet(SymbolRVASet &rvaSet, Defined *s) {
|
|
Chunk *c = s->getChunk();
|
|
if (auto *sc = dyn_cast<SectionChunk>(c))
|
|
c = sc->repl; // Look through ICF replacement.
|
|
uint32_t off = s->getRVA() - (c ? c->getRVA() : 0);
|
|
rvaSet.insert({c, off});
|
|
}
|
|
|
|
// Given a symbol, add it to the GFIDs table if it is a live, defined, function
|
|
// symbol in an executable section.
|
|
static void maybeAddAddressTakenFunction(SymbolRVASet &addressTakenSyms,
|
|
Symbol *s) {
|
|
if (!s)
|
|
return;
|
|
|
|
switch (s->kind()) {
|
|
case Symbol::DefinedLocalImportKind:
|
|
case Symbol::DefinedImportDataKind:
|
|
// Defines an __imp_ pointer, so it is data, so it is ignored.
|
|
break;
|
|
case Symbol::DefinedCommonKind:
|
|
// Common is always data, so it is ignored.
|
|
break;
|
|
case Symbol::DefinedAbsoluteKind:
|
|
case Symbol::DefinedSyntheticKind:
|
|
// Absolute is never code, synthetic generally isn't and usually isn't
|
|
// determinable.
|
|
break;
|
|
case Symbol::LazyArchiveKind:
|
|
case Symbol::LazyObjectKind:
|
|
case Symbol::UndefinedKind:
|
|
// Undefined symbols resolve to zero, so they don't have an RVA. Lazy
|
|
// symbols shouldn't have relocations.
|
|
break;
|
|
|
|
case Symbol::DefinedImportThunkKind:
|
|
// Thunks are always code, include them.
|
|
addSymbolToRVASet(addressTakenSyms, cast<Defined>(s));
|
|
break;
|
|
|
|
case Symbol::DefinedRegularKind: {
|
|
// This is a regular, defined, symbol from a COFF file. Mark the symbol as
|
|
// address taken if the symbol type is function and it's in an executable
|
|
// section.
|
|
auto *d = cast<DefinedRegular>(s);
|
|
if (d->getCOFFSymbol().getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) {
|
|
SectionChunk *sc = dyn_cast<SectionChunk>(d->getChunk());
|
|
if (sc && sc->live &&
|
|
sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE)
|
|
addSymbolToRVASet(addressTakenSyms, d);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Visit all relocations from all section contributions of this object file and
|
|
// mark the relocation target as address-taken.
|
|
static void markSymbolsWithRelocations(ObjFile *file,
|
|
SymbolRVASet &usedSymbols) {
|
|
for (Chunk *c : file->getChunks()) {
|
|
// We only care about live section chunks. Common chunks and other chunks
|
|
// don't generally contain relocations.
|
|
SectionChunk *sc = dyn_cast<SectionChunk>(c);
|
|
if (!sc || !sc->live)
|
|
continue;
|
|
|
|
for (const coff_relocation &reloc : sc->getRelocs()) {
|
|
if (config->machine == I386 && reloc.Type == COFF::IMAGE_REL_I386_REL32)
|
|
// Ignore relative relocations on x86. On x86_64 they can't be ignored
|
|
// since they're also used to compute absolute addresses.
|
|
continue;
|
|
|
|
Symbol *ref = sc->file->getSymbol(reloc.SymbolTableIndex);
|
|
maybeAddAddressTakenFunction(usedSymbols, ref);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Create the guard function id table. This is a table of RVAs of all
|
|
// address-taken functions. It is sorted and uniqued, just like the safe SEH
|
|
// table.
|
|
void Writer::createGuardCFTables() {
|
|
SymbolRVASet addressTakenSyms;
|
|
SymbolRVASet longJmpTargets;
|
|
for (ObjFile *file : ObjFile::instances) {
|
|
// If the object was compiled with /guard:cf, the address taken symbols
|
|
// are in .gfids$y sections, and the longjmp targets are in .gljmp$y
|
|
// sections. If the object was not compiled with /guard:cf, we assume there
|
|
// were no setjmp targets, and that all code symbols with relocations are
|
|
// possibly address-taken.
|
|
if (file->hasGuardCF()) {
|
|
markSymbolsForRVATable(file, file->getGuardFidChunks(), addressTakenSyms);
|
|
markSymbolsForRVATable(file, file->getGuardLJmpChunks(), longJmpTargets);
|
|
} else {
|
|
markSymbolsWithRelocations(file, addressTakenSyms);
|
|
}
|
|
}
|
|
|
|
// Mark the image entry as address-taken.
|
|
if (config->entry)
|
|
maybeAddAddressTakenFunction(addressTakenSyms, config->entry);
|
|
|
|
// Mark exported symbols in executable sections as address-taken.
|
|
for (Export &e : config->exports)
|
|
maybeAddAddressTakenFunction(addressTakenSyms, e.sym);
|
|
|
|
// Ensure sections referenced in the gfid table are 16-byte aligned.
|
|
for (const ChunkAndOffset &c : addressTakenSyms)
|
|
if (c.inputChunk->getAlignment() < 16)
|
|
c.inputChunk->setAlignment(16);
|
|
|
|
maybeAddRVATable(std::move(addressTakenSyms), "__guard_fids_table",
|
|
"__guard_fids_count");
|
|
|
|
// Add the longjmp target table unless the user told us not to.
|
|
if (config->guardCF == GuardCFLevel::Full)
|
|
maybeAddRVATable(std::move(longJmpTargets), "__guard_longjmp_table",
|
|
"__guard_longjmp_count");
|
|
|
|
// Set __guard_flags, which will be used in the load config to indicate that
|
|
// /guard:cf was enabled.
|
|
uint32_t guardFlags = uint32_t(coff_guard_flags::CFInstrumented) |
|
|
uint32_t(coff_guard_flags::HasFidTable);
|
|
if (config->guardCF == GuardCFLevel::Full)
|
|
guardFlags |= uint32_t(coff_guard_flags::HasLongJmpTable);
|
|
Symbol *flagSym = symtab->findUnderscore("__guard_flags");
|
|
cast<DefinedAbsolute>(flagSym)->setVA(guardFlags);
|
|
}
|
|
|
|
// Take a list of input sections containing symbol table indices and add those
|
|
// symbols to an RVA table. The challenge is that symbol RVAs are not known and
|
|
// depend on the table size, so we can't directly build a set of integers.
|
|
void Writer::markSymbolsForRVATable(ObjFile *file,
|
|
ArrayRef<SectionChunk *> symIdxChunks,
|
|
SymbolRVASet &tableSymbols) {
|
|
for (SectionChunk *c : symIdxChunks) {
|
|
// Skip sections discarded by linker GC. This comes up when a .gfids section
|
|
// is associated with something like a vtable and the vtable is discarded.
|
|
// In this case, the associated gfids section is discarded, and we don't
|
|
// mark the virtual member functions as address-taken by the vtable.
|
|
if (!c->live)
|
|
continue;
|
|
|
|
// Validate that the contents look like symbol table indices.
|
|
ArrayRef<uint8_t> data = c->getContents();
|
|
if (data.size() % 4 != 0) {
|
|
warn("ignoring " + c->getSectionName() +
|
|
" symbol table index section in object " + toString(file));
|
|
continue;
|
|
}
|
|
|
|
// Read each symbol table index and check if that symbol was included in the
|
|
// final link. If so, add it to the table symbol set.
|
|
ArrayRef<ulittle32_t> symIndices(
|
|
reinterpret_cast<const ulittle32_t *>(data.data()), data.size() / 4);
|
|
ArrayRef<Symbol *> objSymbols = file->getSymbols();
|
|
for (uint32_t symIndex : symIndices) {
|
|
if (symIndex >= objSymbols.size()) {
|
|
warn("ignoring invalid symbol table index in section " +
|
|
c->getSectionName() + " in object " + toString(file));
|
|
continue;
|
|
}
|
|
if (Symbol *s = objSymbols[symIndex]) {
|
|
if (s->isLive())
|
|
addSymbolToRVASet(tableSymbols, cast<Defined>(s));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Replace the absolute table symbol with a synthetic symbol pointing to
|
|
// tableChunk so that we can emit base relocations for it and resolve section
|
|
// relative relocations.
|
|
void Writer::maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym,
|
|
StringRef countSym) {
|
|
if (tableSymbols.empty())
|
|
return;
|
|
|
|
RVATableChunk *tableChunk = make<RVATableChunk>(std::move(tableSymbols));
|
|
rdataSec->addChunk(tableChunk);
|
|
|
|
Symbol *t = symtab->findUnderscore(tableSym);
|
|
Symbol *c = symtab->findUnderscore(countSym);
|
|
replaceSymbol<DefinedSynthetic>(t, t->getName(), tableChunk);
|
|
cast<DefinedAbsolute>(c)->setVA(tableChunk->getSize() / 4);
|
|
}
|
|
|
|
// MinGW specific. Gather all relocations that are imported from a DLL even
|
|
// though the code didn't expect it to, produce the table that the runtime
|
|
// uses for fixing them up, and provide the synthetic symbols that the
|
|
// runtime uses for finding the table.
|
|
void Writer::createRuntimePseudoRelocs() {
|
|
std::vector<RuntimePseudoReloc> rels;
|
|
|
|
for (Chunk *c : symtab->getChunks()) {
|
|
auto *sc = dyn_cast<SectionChunk>(c);
|
|
if (!sc || !sc->live)
|
|
continue;
|
|
sc->getRuntimePseudoRelocs(rels);
|
|
}
|
|
|
|
if (!rels.empty())
|
|
log("Writing " + Twine(rels.size()) + " runtime pseudo relocations");
|
|
PseudoRelocTableChunk *table = make<PseudoRelocTableChunk>(rels);
|
|
rdataSec->addChunk(table);
|
|
EmptyChunk *endOfList = make<EmptyChunk>();
|
|
rdataSec->addChunk(endOfList);
|
|
|
|
Symbol *headSym = symtab->findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST__");
|
|
Symbol *endSym = symtab->findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST_END__");
|
|
replaceSymbol<DefinedSynthetic>(headSym, headSym->getName(), table);
|
|
replaceSymbol<DefinedSynthetic>(endSym, endSym->getName(), endOfList);
|
|
}
|
|
|
|
// MinGW specific.
|
|
// The MinGW .ctors and .dtors lists have sentinels at each end;
|
|
// a (uintptr_t)-1 at the start and a (uintptr_t)0 at the end.
|
|
// There's a symbol pointing to the start sentinel pointer, __CTOR_LIST__
|
|
// and __DTOR_LIST__ respectively.
|
|
void Writer::insertCtorDtorSymbols() {
|
|
AbsolutePointerChunk *ctorListHead = make<AbsolutePointerChunk>(-1);
|
|
AbsolutePointerChunk *ctorListEnd = make<AbsolutePointerChunk>(0);
|
|
AbsolutePointerChunk *dtorListHead = make<AbsolutePointerChunk>(-1);
|
|
AbsolutePointerChunk *dtorListEnd = make<AbsolutePointerChunk>(0);
|
|
ctorsSec->insertChunkAtStart(ctorListHead);
|
|
ctorsSec->addChunk(ctorListEnd);
|
|
dtorsSec->insertChunkAtStart(dtorListHead);
|
|
dtorsSec->addChunk(dtorListEnd);
|
|
|
|
Symbol *ctorListSym = symtab->findUnderscore("__CTOR_LIST__");
|
|
Symbol *dtorListSym = symtab->findUnderscore("__DTOR_LIST__");
|
|
replaceSymbol<DefinedSynthetic>(ctorListSym, ctorListSym->getName(),
|
|
ctorListHead);
|
|
replaceSymbol<DefinedSynthetic>(dtorListSym, dtorListSym->getName(),
|
|
dtorListHead);
|
|
}
|
|
|
|
// Handles /section options to allow users to overwrite
|
|
// section attributes.
|
|
void Writer::setSectionPermissions() {
|
|
for (auto &p : config->section) {
|
|
StringRef name = p.first;
|
|
uint32_t perm = p.second;
|
|
for (OutputSection *sec : outputSections)
|
|
if (sec->name == name)
|
|
sec->setPermissions(perm);
|
|
}
|
|
}
|
|
|
|
// Write section contents to a mmap'ed file.
|
|
void Writer::writeSections() {
|
|
// Record the number of sections to apply section index relocations
|
|
// against absolute symbols. See applySecIdx in Chunks.cpp..
|
|
DefinedAbsolute::numOutputSections = outputSections.size();
|
|
|
|
uint8_t *buf = buffer->getBufferStart();
|
|
for (OutputSection *sec : outputSections) {
|
|
uint8_t *secBuf = buf + sec->getFileOff();
|
|
// Fill gaps between functions in .text with INT3 instructions
|
|
// instead of leaving as NUL bytes (which can be interpreted as
|
|
// ADD instructions).
|
|
if (sec->header.Characteristics & IMAGE_SCN_CNT_CODE)
|
|
memset(secBuf, 0xCC, sec->getRawSize());
|
|
parallelForEach(sec->chunks, [&](Chunk *c) {
|
|
c->writeTo(secBuf + c->getRVA() - sec->getRVA());
|
|
});
|
|
}
|
|
}
|
|
|
|
void Writer::writeBuildId() {
|
|
// There are two important parts to the build ID.
|
|
// 1) If building with debug info, the COFF debug directory contains a
|
|
// timestamp as well as a Guid and Age of the PDB.
|
|
// 2) In all cases, the PE COFF file header also contains a timestamp.
|
|
// For reproducibility, instead of a timestamp we want to use a hash of the
|
|
// PE contents.
|
|
if (config->debug) {
|
|
assert(buildId && "BuildId is not set!");
|
|
// BuildId->BuildId was filled in when the PDB was written.
|
|
}
|
|
|
|
// At this point the only fields in the COFF file which remain unset are the
|
|
// "timestamp" in the COFF file header, and the ones in the coff debug
|
|
// directory. Now we can hash the file and write that hash to the various
|
|
// timestamp fields in the file.
|
|
StringRef outputFileData(
|
|
reinterpret_cast<const char *>(buffer->getBufferStart()),
|
|
buffer->getBufferSize());
|
|
|
|
uint32_t timestamp = config->timestamp;
|
|
uint64_t hash = 0;
|
|
bool generateSyntheticBuildId =
|
|
config->mingw && config->debug && config->pdbPath.empty();
|
|
|
|
if (config->repro || generateSyntheticBuildId)
|
|
hash = xxHash64(outputFileData);
|
|
|
|
if (config->repro)
|
|
timestamp = static_cast<uint32_t>(hash);
|
|
|
|
if (generateSyntheticBuildId) {
|
|
// For MinGW builds without a PDB file, we still generate a build id
|
|
// to allow associating a crash dump to the executable.
|
|
buildId->buildId->PDB70.CVSignature = OMF::Signature::PDB70;
|
|
buildId->buildId->PDB70.Age = 1;
|
|
memcpy(buildId->buildId->PDB70.Signature, &hash, 8);
|
|
// xxhash only gives us 8 bytes, so put some fixed data in the other half.
|
|
memcpy(&buildId->buildId->PDB70.Signature[8], "LLD PDB.", 8);
|
|
}
|
|
|
|
if (debugDirectory)
|
|
debugDirectory->setTimeDateStamp(timestamp);
|
|
|
|
uint8_t *buf = buffer->getBufferStart();
|
|
buf += dosStubSize + sizeof(PEMagic);
|
|
object::coff_file_header *coffHeader =
|
|
reinterpret_cast<coff_file_header *>(buf);
|
|
coffHeader->TimeDateStamp = timestamp;
|
|
}
|
|
|
|
// Sort .pdata section contents according to PE/COFF spec 5.5.
|
|
void Writer::sortExceptionTable() {
|
|
if (!firstPdata)
|
|
return;
|
|
// We assume .pdata contains function table entries only.
|
|
auto bufAddr = [&](Chunk *c) {
|
|
OutputSection *os = c->getOutputSection();
|
|
return buffer->getBufferStart() + os->getFileOff() + c->getRVA() -
|
|
os->getRVA();
|
|
};
|
|
uint8_t *begin = bufAddr(firstPdata);
|
|
uint8_t *end = bufAddr(lastPdata) + lastPdata->getSize();
|
|
if (config->machine == AMD64) {
|
|
struct Entry { ulittle32_t begin, end, unwind; };
|
|
parallelSort(
|
|
MutableArrayRef<Entry>((Entry *)begin, (Entry *)end),
|
|
[](const Entry &a, const Entry &b) { return a.begin < b.begin; });
|
|
return;
|
|
}
|
|
if (config->machine == ARMNT || config->machine == ARM64) {
|
|
struct Entry { ulittle32_t begin, unwind; };
|
|
parallelSort(
|
|
MutableArrayRef<Entry>((Entry *)begin, (Entry *)end),
|
|
[](const Entry &a, const Entry &b) { return a.begin < b.begin; });
|
|
return;
|
|
}
|
|
errs() << "warning: don't know how to handle .pdata.\n";
|
|
}
|
|
|
|
// The CRT section contains, among other things, the array of function
|
|
// pointers that initialize every global variable that is not trivially
|
|
// constructed. The CRT calls them one after the other prior to invoking
|
|
// main().
|
|
//
|
|
// As per C++ spec, 3.6.2/2.3,
|
|
// "Variables with ordered initialization defined within a single
|
|
// translation unit shall be initialized in the order of their definitions
|
|
// in the translation unit"
|
|
//
|
|
// It is therefore critical to sort the chunks containing the function
|
|
// pointers in the order that they are listed in the object file (top to
|
|
// bottom), otherwise global objects might not be initialized in the
|
|
// correct order.
|
|
void Writer::sortCRTSectionChunks(std::vector<Chunk *> &chunks) {
|
|
auto sectionChunkOrder = [](const Chunk *a, const Chunk *b) {
|
|
auto sa = dyn_cast<SectionChunk>(a);
|
|
auto sb = dyn_cast<SectionChunk>(b);
|
|
assert(sa && sb && "Non-section chunks in CRT section!");
|
|
|
|
StringRef sAObj = sa->file->mb.getBufferIdentifier();
|
|
StringRef sBObj = sb->file->mb.getBufferIdentifier();
|
|
|
|
return sAObj == sBObj && sa->getSectionNumber() < sb->getSectionNumber();
|
|
};
|
|
llvm::stable_sort(chunks, sectionChunkOrder);
|
|
|
|
if (config->verbose) {
|
|
for (auto &c : chunks) {
|
|
auto sc = dyn_cast<SectionChunk>(c);
|
|
log(" " + sc->file->mb.getBufferIdentifier().str() +
|
|
", SectionID: " + Twine(sc->getSectionNumber()));
|
|
}
|
|
}
|
|
}
|
|
|
|
OutputSection *Writer::findSection(StringRef name) {
|
|
for (OutputSection *sec : outputSections)
|
|
if (sec->name == name)
|
|
return sec;
|
|
return nullptr;
|
|
}
|
|
|
|
uint32_t Writer::getSizeOfInitializedData() {
|
|
uint32_t res = 0;
|
|
for (OutputSection *s : outputSections)
|
|
if (s->header.Characteristics & IMAGE_SCN_CNT_INITIALIZED_DATA)
|
|
res += s->getRawSize();
|
|
return res;
|
|
}
|
|
|
|
// Add base relocations to .reloc section.
|
|
void Writer::addBaserels() {
|
|
if (!config->relocatable)
|
|
return;
|
|
relocSec->chunks.clear();
|
|
std::vector<Baserel> v;
|
|
for (OutputSection *sec : outputSections) {
|
|
if (sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE)
|
|
continue;
|
|
// Collect all locations for base relocations.
|
|
for (Chunk *c : sec->chunks)
|
|
c->getBaserels(&v);
|
|
// Add the addresses to .reloc section.
|
|
if (!v.empty())
|
|
addBaserelBlocks(v);
|
|
v.clear();
|
|
}
|
|
}
|
|
|
|
// Add addresses to .reloc section. Note that addresses are grouped by page.
|
|
void Writer::addBaserelBlocks(std::vector<Baserel> &v) {
|
|
const uint32_t mask = ~uint32_t(pageSize - 1);
|
|
uint32_t page = v[0].rva & mask;
|
|
size_t i = 0, j = 1;
|
|
for (size_t e = v.size(); j < e; ++j) {
|
|
uint32_t p = v[j].rva & mask;
|
|
if (p == page)
|
|
continue;
|
|
relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j));
|
|
i = j;
|
|
page = p;
|
|
}
|
|
if (i == j)
|
|
return;
|
|
relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j));
|
|
}
|
|
|
|
PartialSection *Writer::createPartialSection(StringRef name,
|
|
uint32_t outChars) {
|
|
PartialSection *&pSec = partialSections[{name, outChars}];
|
|
if (pSec)
|
|
return pSec;
|
|
pSec = make<PartialSection>(name, outChars);
|
|
return pSec;
|
|
}
|
|
|
|
PartialSection *Writer::findPartialSection(StringRef name, uint32_t outChars) {
|
|
auto it = partialSections.find({name, outChars});
|
|
if (it != partialSections.end())
|
|
return it->second;
|
|
return nullptr;
|
|
}
|