llvm-project/lldb/source/Target/Process.cpp

3266 lines
107 KiB
C++

//===-- Process.cpp ---------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Target/Process.h"
#include "lldb/lldb-private-log.h"
#include "lldb/Breakpoint/StoppointCallbackContext.h"
#include "lldb/Breakpoint/BreakpointLocation.h"
#include "lldb/Core/Event.h"
#include "lldb/Core/ConnectionFileDescriptor.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/InputReader.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/State.h"
#include "lldb/Interpreter/CommandInterpreter.h"
#include "lldb/Host/Host.h"
#include "lldb/Target/ABI.h"
#include "lldb/Target/DynamicLoader.h"
#include "lldb/Target/LanguageRuntime.h"
#include "lldb/Target/CPPLanguageRuntime.h"
#include "lldb/Target/ObjCLanguageRuntime.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/StopInfo.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/TargetList.h"
#include "lldb/Target/Thread.h"
#include "lldb/Target/ThreadPlan.h"
using namespace lldb;
using namespace lldb_private;
//----------------------------------------------------------------------
// MemoryCache constructor
//----------------------------------------------------------------------
Process::MemoryCache::MemoryCache() :
m_cache_line_byte_size (512),
m_cache_mutex (Mutex::eMutexTypeRecursive),
m_cache ()
{
}
//----------------------------------------------------------------------
// Destructor
//----------------------------------------------------------------------
Process::MemoryCache::~MemoryCache()
{
}
void
Process::MemoryCache::Clear()
{
Mutex::Locker locker (m_cache_mutex);
m_cache.clear();
}
void
Process::MemoryCache::Flush (addr_t addr, size_t size)
{
if (size == 0)
return;
const uint32_t cache_line_byte_size = m_cache_line_byte_size;
const addr_t end_addr = (addr + size - 1);
const addr_t flush_start_addr = addr - (addr % cache_line_byte_size);
const addr_t flush_end_addr = end_addr - (end_addr % cache_line_byte_size);
Mutex::Locker locker (m_cache_mutex);
if (m_cache.empty())
return;
assert ((flush_start_addr % cache_line_byte_size) == 0);
for (addr_t curr_addr = flush_start_addr; curr_addr <= flush_end_addr; curr_addr += cache_line_byte_size)
{
collection::iterator pos = m_cache.find (curr_addr);
if (pos != m_cache.end())
m_cache.erase(pos);
}
}
size_t
Process::MemoryCache::Read
(
Process *process,
addr_t addr,
void *dst,
size_t dst_len,
Error &error
)
{
size_t bytes_left = dst_len;
if (dst && bytes_left > 0)
{
const uint32_t cache_line_byte_size = m_cache_line_byte_size;
uint8_t *dst_buf = (uint8_t *)dst;
addr_t curr_addr = addr - (addr % cache_line_byte_size);
addr_t cache_offset = addr - curr_addr;
Mutex::Locker locker (m_cache_mutex);
while (bytes_left > 0)
{
collection::const_iterator pos = m_cache.find (curr_addr);
collection::const_iterator end = m_cache.end ();
if (pos != end)
{
size_t curr_read_size = cache_line_byte_size - cache_offset;
if (curr_read_size > bytes_left)
curr_read_size = bytes_left;
memcpy (dst_buf + dst_len - bytes_left, pos->second->GetBytes() + cache_offset, curr_read_size);
bytes_left -= curr_read_size;
curr_addr += curr_read_size + cache_offset;
cache_offset = 0;
if (bytes_left > 0)
{
// Get sequential cache page hits
for (++pos; (pos != end) && (bytes_left > 0); ++pos)
{
assert ((curr_addr % cache_line_byte_size) == 0);
if (pos->first != curr_addr)
break;
curr_read_size = pos->second->GetByteSize();
if (curr_read_size > bytes_left)
curr_read_size = bytes_left;
memcpy (dst_buf + dst_len - bytes_left, pos->second->GetBytes(), curr_read_size);
bytes_left -= curr_read_size;
curr_addr += curr_read_size;
// We have a cache page that succeeded to read some bytes
// but not an entire page. If this happens, we must cap
// off how much data we are able to read...
if (pos->second->GetByteSize() != cache_line_byte_size)
return dst_len - bytes_left;
}
}
}
// We need to read from the process
if (bytes_left > 0)
{
assert ((curr_addr % cache_line_byte_size) == 0);
std::auto_ptr<DataBufferHeap> data_buffer_heap_ap(new DataBufferHeap (cache_line_byte_size, 0));
size_t process_bytes_read = process->ReadMemoryFromInferior (curr_addr,
data_buffer_heap_ap->GetBytes(),
data_buffer_heap_ap->GetByteSize(),
error);
if (process_bytes_read == 0)
return dst_len - bytes_left;
if (process_bytes_read != cache_line_byte_size)
data_buffer_heap_ap->SetByteSize (process_bytes_read);
m_cache[curr_addr] = DataBufferSP (data_buffer_heap_ap.release());
// We have read data and put it into the cache, continue through the
// loop again to get the data out of the cache...
}
}
}
return dst_len - bytes_left;
}
Process*
Process::FindPlugin (Target &target, const char *plugin_name, Listener &listener)
{
ProcessCreateInstance create_callback = NULL;
if (plugin_name)
{
create_callback = PluginManager::GetProcessCreateCallbackForPluginName (plugin_name);
if (create_callback)
{
std::auto_ptr<Process> debugger_ap(create_callback(target, listener));
if (debugger_ap->CanDebug(target))
return debugger_ap.release();
}
}
else
{
for (uint32_t idx = 0; (create_callback = PluginManager::GetProcessCreateCallbackAtIndex(idx)) != NULL; ++idx)
{
std::auto_ptr<Process> debugger_ap(create_callback(target, listener));
if (debugger_ap->CanDebug(target))
return debugger_ap.release();
}
}
return NULL;
}
//----------------------------------------------------------------------
// Process constructor
//----------------------------------------------------------------------
Process::Process(Target &target, Listener &listener) :
UserID (LLDB_INVALID_PROCESS_ID),
Broadcaster ("lldb.process"),
ProcessInstanceSettings (*GetSettingsController()),
m_target (target),
m_public_state (eStateUnloaded),
m_private_state (eStateUnloaded),
m_private_state_broadcaster ("lldb.process.internal_state_broadcaster"),
m_private_state_control_broadcaster ("lldb.process.internal_state_control_broadcaster"),
m_private_state_listener ("lldb.process.internal_state_listener"),
m_private_state_control_wait(),
m_private_state_thread (LLDB_INVALID_HOST_THREAD),
m_stop_id (0),
m_thread_index_id (0),
m_exit_status (-1),
m_exit_string (),
m_thread_list (this),
m_notifications (),
m_image_tokens (),
m_listener (listener),
m_breakpoint_site_list (),
m_dynamic_checkers_ap (),
m_unix_signals (),
m_target_triple (),
m_byte_order (eByteOrderHost),
m_addr_byte_size (0),
m_abi_sp (),
m_process_input_reader (),
m_stdio_communication ("process.stdio"),
m_stdio_communication_mutex (Mutex::eMutexTypeRecursive),
m_stdout_data (),
m_memory_cache ()
{
UpdateInstanceName();
LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_OBJECT));
if (log)
log->Printf ("%p Process::Process()", this);
SetEventName (eBroadcastBitStateChanged, "state-changed");
SetEventName (eBroadcastBitInterrupt, "interrupt");
SetEventName (eBroadcastBitSTDOUT, "stdout-available");
SetEventName (eBroadcastBitSTDERR, "stderr-available");
listener.StartListeningForEvents (this,
eBroadcastBitStateChanged |
eBroadcastBitInterrupt |
eBroadcastBitSTDOUT |
eBroadcastBitSTDERR);
m_private_state_listener.StartListeningForEvents(&m_private_state_broadcaster,
eBroadcastBitStateChanged);
m_private_state_listener.StartListeningForEvents(&m_private_state_control_broadcaster,
eBroadcastInternalStateControlStop |
eBroadcastInternalStateControlPause |
eBroadcastInternalStateControlResume);
}
//----------------------------------------------------------------------
// Destructor
//----------------------------------------------------------------------
Process::~Process()
{
LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_OBJECT));
if (log)
log->Printf ("%p Process::~Process()", this);
StopPrivateStateThread();
}
void
Process::Finalize()
{
// Do any cleanup needed prior to being destructed... Subclasses
// that override this method should call this superclass method as well.
}
void
Process::RegisterNotificationCallbacks (const Notifications& callbacks)
{
m_notifications.push_back(callbacks);
if (callbacks.initialize != NULL)
callbacks.initialize (callbacks.baton, this);
}
bool
Process::UnregisterNotificationCallbacks(const Notifications& callbacks)
{
std::vector<Notifications>::iterator pos, end = m_notifications.end();
for (pos = m_notifications.begin(); pos != end; ++pos)
{
if (pos->baton == callbacks.baton &&
pos->initialize == callbacks.initialize &&
pos->process_state_changed == callbacks.process_state_changed)
{
m_notifications.erase(pos);
return true;
}
}
return false;
}
void
Process::SynchronouslyNotifyStateChanged (StateType state)
{
std::vector<Notifications>::iterator notification_pos, notification_end = m_notifications.end();
for (notification_pos = m_notifications.begin(); notification_pos != notification_end; ++notification_pos)
{
if (notification_pos->process_state_changed)
notification_pos->process_state_changed (notification_pos->baton, this, state);
}
}
// FIXME: We need to do some work on events before the general Listener sees them.
// For instance if we are continuing from a breakpoint, we need to ensure that we do
// the little "insert real insn, step & stop" trick. But we can't do that when the
// event is delivered by the broadcaster - since that is done on the thread that is
// waiting for new events, so if we needed more than one event for our handling, we would
// stall. So instead we do it when we fetch the event off of the queue.
//
StateType
Process::GetNextEvent (EventSP &event_sp)
{
StateType state = eStateInvalid;
if (m_listener.GetNextEventForBroadcaster (this, event_sp) && event_sp)
state = Process::ProcessEventData::GetStateFromEvent (event_sp.get());
return state;
}
StateType
Process::WaitForProcessToStop (const TimeValue *timeout)
{
StateType match_states[] = { eStateStopped, eStateCrashed, eStateDetached, eStateExited, eStateUnloaded };
return WaitForState (timeout, match_states, sizeof(match_states) / sizeof(StateType));
}
StateType
Process::WaitForState
(
const TimeValue *timeout,
const StateType *match_states, const uint32_t num_match_states
)
{
EventSP event_sp;
uint32_t i;
StateType state = GetState();
while (state != eStateInvalid)
{
// If we are exited or detached, we won't ever get back to any
// other valid state...
if (state == eStateDetached || state == eStateExited)
return state;
state = WaitForStateChangedEvents (timeout, event_sp);
for (i=0; i<num_match_states; ++i)
{
if (match_states[i] == state)
return state;
}
}
return state;
}
bool
Process::HijackProcessEvents (Listener *listener)
{
if (listener != NULL)
{
return HijackBroadcaster(listener, eBroadcastBitStateChanged);
}
else
return false;
}
void
Process::RestoreProcessEvents ()
{
RestoreBroadcaster();
}
StateType
Process::WaitForStateChangedEvents (const TimeValue *timeout, EventSP &event_sp)
{
LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf ("Process::%s (timeout = %p, event_sp)...", __FUNCTION__, timeout);
StateType state = eStateInvalid;
if (m_listener.WaitForEventForBroadcasterWithType (timeout,
this,
eBroadcastBitStateChanged,
event_sp))
state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
if (log)
log->Printf ("Process::%s (timeout = %p, event_sp) => %s",
__FUNCTION__,
timeout,
StateAsCString(state));
return state;
}
Event *
Process::PeekAtStateChangedEvents ()
{
LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf ("Process::%s...", __FUNCTION__);
Event *event_ptr;
event_ptr = m_listener.PeekAtNextEventForBroadcasterWithType (this,
eBroadcastBitStateChanged);
if (log)
{
if (event_ptr)
{
log->Printf ("Process::%s (event_ptr) => %s",
__FUNCTION__,
StateAsCString(ProcessEventData::GetStateFromEvent (event_ptr)));
}
else
{
log->Printf ("Process::%s no events found",
__FUNCTION__);
}
}
return event_ptr;
}
StateType
Process::WaitForStateChangedEventsPrivate (const TimeValue *timeout, EventSP &event_sp)
{
LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf ("Process::%s (timeout = %p, event_sp)...", __FUNCTION__, timeout);
StateType state = eStateInvalid;
if (m_private_state_listener.WaitForEventForBroadcasterWithType (timeout,
&m_private_state_broadcaster,
eBroadcastBitStateChanged,
event_sp))
state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
// This is a bit of a hack, but when we wait here we could very well return
// to the command-line, and that could disable the log, which would render the
// log we got above invalid.
if (log)
{
if (state == eStateInvalid)
log->Printf ("Process::%s (timeout = %p, event_sp) => TIMEOUT", __FUNCTION__, timeout);
else
log->Printf ("Process::%s (timeout = %p, event_sp) => %s", __FUNCTION__, timeout, StateAsCString(state));
}
return state;
}
bool
Process::WaitForEventsPrivate (const TimeValue *timeout, EventSP &event_sp, bool control_only)
{
LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf ("Process::%s (timeout = %p, event_sp)...", __FUNCTION__, timeout);
if (control_only)
return m_private_state_listener.WaitForEventForBroadcaster(timeout, &m_private_state_control_broadcaster, event_sp);
else
return m_private_state_listener.WaitForEvent(timeout, event_sp);
}
bool
Process::IsRunning () const
{
return StateIsRunningState (m_public_state.GetValue());
}
int
Process::GetExitStatus ()
{
if (m_public_state.GetValue() == eStateExited)
return m_exit_status;
return -1;
}
void
Process::ProcessInstanceSettings::GetHostEnvironmentIfNeeded ()
{
if (m_inherit_host_env && !m_got_host_env)
{
m_got_host_env = true;
StringList host_env;
const size_t host_env_count = Host::GetEnvironment (host_env);
for (size_t idx=0; idx<host_env_count; idx++)
{
const char *env_entry = host_env.GetStringAtIndex (idx);
if (env_entry)
{
const char *equal_pos = ::strchr(env_entry, '=');
if (equal_pos)
{
std::string key (env_entry, equal_pos - env_entry);
std::string value (equal_pos + 1);
if (m_env_vars.find (key) == m_env_vars.end())
m_env_vars[key] = value;
}
}
}
}
}
size_t
Process::ProcessInstanceSettings::GetEnvironmentAsArgs (Args &env)
{
GetHostEnvironmentIfNeeded ();
dictionary::const_iterator pos, end = m_env_vars.end();
for (pos = m_env_vars.begin(); pos != end; ++pos)
{
std::string env_var_equal_value (pos->first);
env_var_equal_value.append(1, '=');
env_var_equal_value.append (pos->second);
env.AppendArgument (env_var_equal_value.c_str());
}
return env.GetArgumentCount();
}
const char *
Process::GetExitDescription ()
{
if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty())
return m_exit_string.c_str();
return NULL;
}
bool
Process::SetExitStatus (int status, const char *cstr)
{
// We were already in the exited state
if (m_private_state.GetValue() == eStateExited)
return false;
m_exit_status = status;
if (cstr)
m_exit_string = cstr;
else
m_exit_string.clear();
DidExit ();
SetPrivateState (eStateExited);
return true;
}
// This static callback can be used to watch for local child processes on
// the current host. The the child process exits, the process will be
// found in the global target list (we want to be completely sure that the
// lldb_private::Process doesn't go away before we can deliver the signal.
bool
Process::SetProcessExitStatus
(
void *callback_baton,
lldb::pid_t pid,
int signo, // Zero for no signal
int exit_status // Exit value of process if signal is zero
)
{
if (signo == 0 || exit_status)
{
TargetSP target_sp(Debugger::FindTargetWithProcessID (pid));
if (target_sp)
{
ProcessSP process_sp (target_sp->GetProcessSP());
if (process_sp)
{
const char *signal_cstr = NULL;
if (signo)
signal_cstr = process_sp->GetUnixSignals().GetSignalAsCString (signo);
process_sp->SetExitStatus (exit_status, signal_cstr);
}
}
return true;
}
return false;
}
uint32_t
Process::GetNextThreadIndexID ()
{
return ++m_thread_index_id;
}
StateType
Process::GetState()
{
// If any other threads access this we will need a mutex for it
return m_public_state.GetValue ();
}
void
Process::SetPublicState (StateType new_state)
{
LogSP log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STATE));
if (log)
log->Printf("Process::SetPublicState (%s)", StateAsCString(new_state));
m_public_state.SetValue (new_state);
}
StateType
Process::GetPrivateState ()
{
return m_private_state.GetValue();
}
void
Process::SetPrivateState (StateType new_state)
{
LogSP log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STATE));
bool state_changed = false;
if (log)
log->Printf("Process::SetPrivateState (%s)", StateAsCString(new_state));
Mutex::Locker locker(m_private_state.GetMutex());
const StateType old_state = m_private_state.GetValueNoLock ();
state_changed = old_state != new_state;
if (state_changed)
{
m_private_state.SetValueNoLock (new_state);
if (StateIsStoppedState(new_state))
{
m_stop_id++;
m_memory_cache.Clear();
if (log)
log->Printf("Process::SetPrivateState (%s) stop_id = %u", StateAsCString(new_state), m_stop_id);
}
// Use our target to get a shared pointer to ourselves...
m_private_state_broadcaster.BroadcastEvent (eBroadcastBitStateChanged, new ProcessEventData (GetTarget().GetProcessSP(), new_state));
}
else
{
if (log)
log->Printf("Process::SetPrivateState (%s) state didn't change. Ignoring...", StateAsCString(new_state), StateAsCString(old_state));
}
}
uint32_t
Process::GetStopID() const
{
return m_stop_id;
}
addr_t
Process::GetImageInfoAddress()
{
return LLDB_INVALID_ADDRESS;
}
//----------------------------------------------------------------------
// LoadImage
//
// This function provides a default implementation that works for most
// unix variants. Any Process subclasses that need to do shared library
// loading differently should override LoadImage and UnloadImage and
// do what is needed.
//----------------------------------------------------------------------
uint32_t
Process::LoadImage (const FileSpec &image_spec, Error &error)
{
DynamicLoader *loader = GetDynamicLoader();
if (loader)
{
error = loader->CanLoadImage();
if (error.Fail())
return LLDB_INVALID_IMAGE_TOKEN;
}
if (error.Success())
{
ThreadSP thread_sp(GetThreadList ().GetSelectedThread());
if (thread_sp == NULL)
thread_sp = GetThreadList ().GetThreadAtIndex(0, true);
if (thread_sp)
{
StackFrameSP frame_sp (thread_sp->GetStackFrameAtIndex (0));
if (frame_sp)
{
ExecutionContext exe_ctx;
frame_sp->CalculateExecutionContext (exe_ctx);
bool unwind_on_error = true;
bool keep_in_memory = false;
StreamString expr;
char path[PATH_MAX];
image_spec.GetPath(path, sizeof(path));
expr.Printf("dlopen (\"%s\", 2)", path);
const char *prefix = "extern \"C\" void* dlopen (const char *path, int mode);\n";
lldb::ValueObjectSP result_valobj_sp;
ClangUserExpression::Evaluate (exe_ctx, keep_in_memory, unwind_on_error, expr.GetData(), prefix, result_valobj_sp);
if (result_valobj_sp->GetError().Success())
{
Scalar scalar;
if (result_valobj_sp->ResolveValue (frame_sp.get(), scalar))
{
addr_t image_ptr = scalar.ULongLong(LLDB_INVALID_ADDRESS);
if (image_ptr != 0 && image_ptr != LLDB_INVALID_ADDRESS)
{
uint32_t image_token = m_image_tokens.size();
m_image_tokens.push_back (image_ptr);
return image_token;
}
}
}
}
}
}
return LLDB_INVALID_IMAGE_TOKEN;
}
//----------------------------------------------------------------------
// UnloadImage
//
// This function provides a default implementation that works for most
// unix variants. Any Process subclasses that need to do shared library
// loading differently should override LoadImage and UnloadImage and
// do what is needed.
//----------------------------------------------------------------------
Error
Process::UnloadImage (uint32_t image_token)
{
Error error;
if (image_token < m_image_tokens.size())
{
const addr_t image_addr = m_image_tokens[image_token];
if (image_addr == LLDB_INVALID_ADDRESS)
{
error.SetErrorString("image already unloaded");
}
else
{
DynamicLoader *loader = GetDynamicLoader();
if (loader)
error = loader->CanLoadImage();
if (error.Success())
{
ThreadSP thread_sp(GetThreadList ().GetSelectedThread());
if (thread_sp == NULL)
thread_sp = GetThreadList ().GetThreadAtIndex(0, true);
if (thread_sp)
{
StackFrameSP frame_sp (thread_sp->GetStackFrameAtIndex (0));
if (frame_sp)
{
ExecutionContext exe_ctx;
frame_sp->CalculateExecutionContext (exe_ctx);
bool unwind_on_error = true;
bool keep_in_memory = false;
StreamString expr;
expr.Printf("dlclose ((void *)0x%llx)", image_addr);
const char *prefix = "extern \"C\" int dlclose(void* handle);\n";
lldb::ValueObjectSP result_valobj_sp;
ClangUserExpression::Evaluate (exe_ctx, unwind_on_error, keep_in_memory, expr.GetData(), prefix, result_valobj_sp);
if (result_valobj_sp->GetError().Success())
{
Scalar scalar;
if (result_valobj_sp->ResolveValue (frame_sp.get(), scalar))
{
if (scalar.UInt(1))
{
error.SetErrorStringWithFormat("expression failed: \"%s\"", expr.GetData());
}
else
{
m_image_tokens[image_token] = LLDB_INVALID_ADDRESS;
}
}
}
else
{
error = result_valobj_sp->GetError();
}
}
}
}
}
}
else
{
error.SetErrorString("invalid image token");
}
return error;
}
DynamicLoader *
Process::GetDynamicLoader()
{
return NULL;
}
const ABI *
Process::GetABI()
{
ConstString& triple = m_target_triple;
if (triple.IsEmpty())
return NULL;
if (m_abi_sp.get() == NULL)
{
m_abi_sp.reset(ABI::FindPlugin(triple));
}
return m_abi_sp.get();
}
LanguageRuntime *
Process::GetLanguageRuntime(lldb::LanguageType language)
{
LanguageRuntimeCollection::iterator pos;
pos = m_language_runtimes.find (language);
if (pos == m_language_runtimes.end())
{
lldb::LanguageRuntimeSP runtime(LanguageRuntime::FindPlugin(this, language));
m_language_runtimes[language]
= runtime;
return runtime.get();
}
else
return (*pos).second.get();
}
CPPLanguageRuntime *
Process::GetCPPLanguageRuntime ()
{
LanguageRuntime *runtime = GetLanguageRuntime(eLanguageTypeC_plus_plus);
if (runtime != NULL && runtime->GetLanguageType() == eLanguageTypeC_plus_plus)
return static_cast<CPPLanguageRuntime *> (runtime);
return NULL;
}
ObjCLanguageRuntime *
Process::GetObjCLanguageRuntime ()
{
LanguageRuntime *runtime = GetLanguageRuntime(eLanguageTypeObjC);
if (runtime != NULL && runtime->GetLanguageType() == eLanguageTypeObjC)
return static_cast<ObjCLanguageRuntime *> (runtime);
return NULL;
}
BreakpointSiteList &
Process::GetBreakpointSiteList()
{
return m_breakpoint_site_list;
}
const BreakpointSiteList &
Process::GetBreakpointSiteList() const
{
return m_breakpoint_site_list;
}
void
Process::DisableAllBreakpointSites ()
{
m_breakpoint_site_list.SetEnabledForAll (false);
}
Error
Process::ClearBreakpointSiteByID (lldb::user_id_t break_id)
{
Error error (DisableBreakpointSiteByID (break_id));
if (error.Success())
m_breakpoint_site_list.Remove(break_id);
return error;
}
Error
Process::DisableBreakpointSiteByID (lldb::user_id_t break_id)
{
Error error;
BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID (break_id);
if (bp_site_sp)
{
if (bp_site_sp->IsEnabled())
error = DisableBreakpoint (bp_site_sp.get());
}
else
{
error.SetErrorStringWithFormat("invalid breakpoint site ID: %i", break_id);
}
return error;
}
Error
Process::EnableBreakpointSiteByID (lldb::user_id_t break_id)
{
Error error;
BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID (break_id);
if (bp_site_sp)
{
if (!bp_site_sp->IsEnabled())
error = EnableBreakpoint (bp_site_sp.get());
}
else
{
error.SetErrorStringWithFormat("invalid breakpoint site ID: %i", break_id);
}
return error;
}
lldb::break_id_t
Process::CreateBreakpointSite (BreakpointLocationSP &owner, bool use_hardware)
{
const addr_t load_addr = owner->GetAddress().GetLoadAddress (&m_target);
if (load_addr != LLDB_INVALID_ADDRESS)
{
BreakpointSiteSP bp_site_sp;
// Look up this breakpoint site. If it exists, then add this new owner, otherwise
// create a new breakpoint site and add it.
bp_site_sp = m_breakpoint_site_list.FindByAddress (load_addr);
if (bp_site_sp)
{
bp_site_sp->AddOwner (owner);
owner->SetBreakpointSite (bp_site_sp);
return bp_site_sp->GetID();
}
else
{
bp_site_sp.reset (new BreakpointSite (&m_breakpoint_site_list, owner, load_addr, LLDB_INVALID_THREAD_ID, use_hardware));
if (bp_site_sp)
{
if (EnableBreakpoint (bp_site_sp.get()).Success())
{
owner->SetBreakpointSite (bp_site_sp);
return m_breakpoint_site_list.Add (bp_site_sp);
}
}
}
}
// We failed to enable the breakpoint
return LLDB_INVALID_BREAK_ID;
}
void
Process::RemoveOwnerFromBreakpointSite (lldb::user_id_t owner_id, lldb::user_id_t owner_loc_id, BreakpointSiteSP &bp_site_sp)
{
uint32_t num_owners = bp_site_sp->RemoveOwner (owner_id, owner_loc_id);
if (num_owners == 0)
{
DisableBreakpoint(bp_site_sp.get());
m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress());
}
}
size_t
Process::RemoveBreakpointOpcodesFromBuffer (addr_t bp_addr, size_t size, uint8_t *buf) const
{
size_t bytes_removed = 0;
addr_t intersect_addr;
size_t intersect_size;
size_t opcode_offset;
size_t idx;
BreakpointSiteSP bp;
for (idx = 0; (bp = m_breakpoint_site_list.GetByIndex(idx)) != NULL; ++idx)
{
if (bp->GetType() == BreakpointSite::eSoftware)
{
if (bp->IntersectsRange(bp_addr, size, &intersect_addr, &intersect_size, &opcode_offset))
{
assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size);
assert(bp_addr < intersect_addr + intersect_size && intersect_addr + intersect_size <= bp_addr + size);
assert(opcode_offset + intersect_size <= bp->GetByteSize());
size_t buf_offset = intersect_addr - bp_addr;
::memcpy(buf + buf_offset, bp->GetSavedOpcodeBytes() + opcode_offset, intersect_size);
}
}
}
return bytes_removed;
}
Error
Process::EnableSoftwareBreakpoint (BreakpointSite *bp_site)
{
Error error;
assert (bp_site != NULL);
LogSP log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_BREAKPOINTS));
const addr_t bp_addr = bp_site->GetLoadAddress();
if (log)
log->Printf ("Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%llx", bp_site->GetID(), (uint64_t)bp_addr);
if (bp_site->IsEnabled())
{
if (log)
log->Printf ("Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%llx -- already enabled", bp_site->GetID(), (uint64_t)bp_addr);
return error;
}
if (bp_addr == LLDB_INVALID_ADDRESS)
{
error.SetErrorString("BreakpointSite contains an invalid load address.");
return error;
}
// Ask the lldb::Process subclass to fill in the correct software breakpoint
// trap for the breakpoint site
const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site);
if (bp_opcode_size == 0)
{
error.SetErrorStringWithFormat ("Process::GetSoftwareBreakpointTrapOpcode() returned zero, unable to get breakpoint trap for address 0x%llx.\n", bp_addr);
}
else
{
const uint8_t * const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes();
if (bp_opcode_bytes == NULL)
{
error.SetErrorString ("BreakpointSite doesn't contain a valid breakpoint trap opcode.");
return error;
}
// Save the original opcode by reading it
if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, error) == bp_opcode_size)
{
// Write a software breakpoint in place of the original opcode
if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == bp_opcode_size)
{
uint8_t verify_bp_opcode_bytes[64];
if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, error) == bp_opcode_size)
{
if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, bp_opcode_size) == 0)
{
bp_site->SetEnabled(true);
bp_site->SetType (BreakpointSite::eSoftware);
if (log)
log->Printf ("Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%llx -- SUCCESS",
bp_site->GetID(),
(uint64_t)bp_addr);
}
else
error.SetErrorString("Failed to verify the breakpoint trap in memory.");
}
else
error.SetErrorString("Unable to read memory to verify breakpoint trap.");
}
else
error.SetErrorString("Unable to write breakpoint trap to memory.");
}
else
error.SetErrorString("Unable to read memory at breakpoint address.");
}
if (log && error.Fail())
log->Printf ("Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%llx -- FAILED: %s",
bp_site->GetID(),
(uint64_t)bp_addr,
error.AsCString());
return error;
}
Error
Process::DisableSoftwareBreakpoint (BreakpointSite *bp_site)
{
Error error;
assert (bp_site != NULL);
LogSP log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_BREAKPOINTS));
addr_t bp_addr = bp_site->GetLoadAddress();
lldb::user_id_t breakID = bp_site->GetID();
if (log)
log->Printf ("Process::DisableBreakpoint (breakID = %d) addr = 0x%llx", breakID, (uint64_t)bp_addr);
if (bp_site->IsHardware())
{
error.SetErrorString("Breakpoint site is a hardware breakpoint.");
}
else if (bp_site->IsEnabled())
{
const size_t break_op_size = bp_site->GetByteSize();
const uint8_t * const break_op = bp_site->GetTrapOpcodeBytes();
if (break_op_size > 0)
{
// Clear a software breakoint instruction
uint8_t curr_break_op[8];
assert (break_op_size <= sizeof(curr_break_op));
bool break_op_found = false;
// Read the breakpoint opcode
if (DoReadMemory (bp_addr, curr_break_op, break_op_size, error) == break_op_size)
{
bool verify = false;
// Make sure we have the a breakpoint opcode exists at this address
if (::memcmp (curr_break_op, break_op, break_op_size) == 0)
{
break_op_found = true;
// We found a valid breakpoint opcode at this address, now restore
// the saved opcode.
if (DoWriteMemory (bp_addr, bp_site->GetSavedOpcodeBytes(), break_op_size, error) == break_op_size)
{
verify = true;
}
else
error.SetErrorString("Memory write failed when restoring original opcode.");
}
else
{
error.SetErrorString("Original breakpoint trap is no longer in memory.");
// Set verify to true and so we can check if the original opcode has already been restored
verify = true;
}
if (verify)
{
uint8_t verify_opcode[8];
assert (break_op_size < sizeof(verify_opcode));
// Verify that our original opcode made it back to the inferior
if (DoReadMemory (bp_addr, verify_opcode, break_op_size, error) == break_op_size)
{
// compare the memory we just read with the original opcode
if (::memcmp (bp_site->GetSavedOpcodeBytes(), verify_opcode, break_op_size) == 0)
{
// SUCCESS
bp_site->SetEnabled(false);
if (log)
log->Printf ("Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%llx -- SUCCESS", bp_site->GetID(), (uint64_t)bp_addr);
return error;
}
else
{
if (break_op_found)
error.SetErrorString("Failed to restore original opcode.");
}
}
else
error.SetErrorString("Failed to read memory to verify that breakpoint trap was restored.");
}
}
else
error.SetErrorString("Unable to read memory that should contain the breakpoint trap.");
}
}
else
{
if (log)
log->Printf ("Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%llx -- already disabled", bp_site->GetID(), (uint64_t)bp_addr);
return error;
}
if (log)
log->Printf ("Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%llx -- FAILED: %s",
bp_site->GetID(),
(uint64_t)bp_addr,
error.AsCString());
return error;
}
// Comment out line below to disable memory caching
#define ENABLE_MEMORY_CACHING
// Uncomment to verify memory caching works after making changes to caching code
//#define VERIFY_MEMORY_READS
#if defined (ENABLE_MEMORY_CACHING)
#if defined (VERIFY_MEMORY_READS)
size_t
Process::ReadMemory (addr_t addr, void *buf, size_t size, Error &error)
{
// Memory caching is enabled, with debug verification
if (buf && size)
{
// Uncomment the line below to make sure memory caching is working.
// I ran this through the test suite and got no assertions, so I am
// pretty confident this is working well. If any changes are made to
// memory caching, uncomment the line below and test your changes!
// Verify all memory reads by using the cache first, then redundantly
// reading the same memory from the inferior and comparing to make sure
// everything is exactly the same.
std::string verify_buf (size, '\0');
assert (verify_buf.size() == size);
const size_t cache_bytes_read = m_memory_cache.Read (this, addr, buf, size, error);
Error verify_error;
const size_t verify_bytes_read = ReadMemoryFromInferior (addr, const_cast<char *>(verify_buf.data()), verify_buf.size(), verify_error);
assert (cache_bytes_read == verify_bytes_read);
assert (memcmp(buf, verify_buf.data(), verify_buf.size()) == 0);
assert (verify_error.Success() == error.Success());
return cache_bytes_read;
}
return 0;
}
#else // #if defined (VERIFY_MEMORY_READS)
size_t
Process::ReadMemory (addr_t addr, void *buf, size_t size, Error &error)
{
// Memory caching enabled, no verification
return m_memory_cache.Read (this, addr, buf, size, error);
}
#endif // #else for #if defined (VERIFY_MEMORY_READS)
#else // #if defined (ENABLE_MEMORY_CACHING)
size_t
Process::ReadMemory (addr_t addr, void *buf, size_t size, Error &error)
{
// Memory caching is disabled
return ReadMemoryFromInferior (addr, buf, size, error);
}
#endif // #else for #if defined (ENABLE_MEMORY_CACHING)
size_t
Process::ReadMemoryFromInferior (addr_t addr, void *buf, size_t size, Error &error)
{
if (buf == NULL || size == 0)
return 0;
size_t bytes_read = 0;
uint8_t *bytes = (uint8_t *)buf;
while (bytes_read < size)
{
const size_t curr_size = size - bytes_read;
const size_t curr_bytes_read = DoReadMemory (addr + bytes_read,
bytes + bytes_read,
curr_size,
error);
bytes_read += curr_bytes_read;
if (curr_bytes_read == curr_size || curr_bytes_read == 0)
break;
}
// Replace any software breakpoint opcodes that fall into this range back
// into "buf" before we return
if (bytes_read > 0)
RemoveBreakpointOpcodesFromBuffer (addr, bytes_read, (uint8_t *)buf);
return bytes_read;
}
uint64_t
Process::ReadUnsignedInteger (lldb::addr_t vm_addr, size_t integer_byte_size, Error &error)
{
if (integer_byte_size > sizeof(uint64_t))
{
error.SetErrorString ("unsupported integer size");
}
else
{
uint8_t tmp[sizeof(uint64_t)];
DataExtractor data (tmp, integer_byte_size, GetByteOrder(), GetAddressByteSize());
if (ReadMemory (vm_addr, tmp, integer_byte_size, error) == integer_byte_size)
{
uint32_t offset = 0;
return data.GetMaxU64 (&offset, integer_byte_size);
}
}
// Any plug-in that doesn't return success a memory read with the number
// of bytes that were requested should be setting the error
assert (error.Fail());
return 0;
}
size_t
Process::WriteMemoryPrivate (addr_t addr, const void *buf, size_t size, Error &error)
{
size_t bytes_written = 0;
const uint8_t *bytes = (const uint8_t *)buf;
while (bytes_written < size)
{
const size_t curr_size = size - bytes_written;
const size_t curr_bytes_written = DoWriteMemory (addr + bytes_written,
bytes + bytes_written,
curr_size,
error);
bytes_written += curr_bytes_written;
if (curr_bytes_written == curr_size || curr_bytes_written == 0)
break;
}
return bytes_written;
}
size_t
Process::WriteMemory (addr_t addr, const void *buf, size_t size, Error &error)
{
#if defined (ENABLE_MEMORY_CACHING)
m_memory_cache.Flush (addr, size);
#endif
if (buf == NULL || size == 0)
return 0;
// We need to write any data that would go where any current software traps
// (enabled software breakpoints) any software traps (breakpoints) that we
// may have placed in our tasks memory.
BreakpointSiteList::collection::const_iterator iter = m_breakpoint_site_list.GetMap()->lower_bound (addr);
BreakpointSiteList::collection::const_iterator end = m_breakpoint_site_list.GetMap()->end();
if (iter == end || iter->second->GetLoadAddress() > addr + size)
return DoWriteMemory(addr, buf, size, error);
BreakpointSiteList::collection::const_iterator pos;
size_t bytes_written = 0;
addr_t intersect_addr = 0;
size_t intersect_size = 0;
size_t opcode_offset = 0;
const uint8_t *ubuf = (const uint8_t *)buf;
for (pos = iter; pos != end; ++pos)
{
BreakpointSiteSP bp;
bp = pos->second;
assert(bp->IntersectsRange(addr, size, &intersect_addr, &intersect_size, &opcode_offset));
assert(addr <= intersect_addr && intersect_addr < addr + size);
assert(addr < intersect_addr + intersect_size && intersect_addr + intersect_size <= addr + size);
assert(opcode_offset + intersect_size <= bp->GetByteSize());
// Check for bytes before this breakpoint
const addr_t curr_addr = addr + bytes_written;
if (intersect_addr > curr_addr)
{
// There are some bytes before this breakpoint that we need to
// just write to memory
size_t curr_size = intersect_addr - curr_addr;
size_t curr_bytes_written = WriteMemoryPrivate (curr_addr,
ubuf + bytes_written,
curr_size,
error);
bytes_written += curr_bytes_written;
if (curr_bytes_written != curr_size)
{
// We weren't able to write all of the requested bytes, we
// are done looping and will return the number of bytes that
// we have written so far.
break;
}
}
// Now write any bytes that would cover up any software breakpoints
// directly into the breakpoint opcode buffer
::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, intersect_size);
bytes_written += intersect_size;
}
// Write any remaining bytes after the last breakpoint if we have any left
if (bytes_written < size)
bytes_written += WriteMemoryPrivate (addr + bytes_written,
ubuf + bytes_written,
size - bytes_written,
error);
return bytes_written;
}
addr_t
Process::AllocateMemory(size_t size, uint32_t permissions, Error &error)
{
// Fixme: we should track the blocks we've allocated, and clean them up...
// We could even do our own allocator here if that ends up being more efficient.
return DoAllocateMemory (size, permissions, error);
}
Error
Process::DeallocateMemory (addr_t ptr)
{
return DoDeallocateMemory (ptr);
}
Error
Process::EnableWatchpoint (WatchpointLocation *watchpoint)
{
Error error;
error.SetErrorString("watchpoints are not supported");
return error;
}
Error
Process::DisableWatchpoint (WatchpointLocation *watchpoint)
{
Error error;
error.SetErrorString("watchpoints are not supported");
return error;
}
StateType
Process::WaitForProcessStopPrivate (const TimeValue *timeout, EventSP &event_sp)
{
StateType state;
// Now wait for the process to launch and return control to us, and then
// call DidLaunch:
while (1)
{
event_sp.reset();
state = WaitForStateChangedEventsPrivate (timeout, event_sp);
if (StateIsStoppedState(state))
break;
// If state is invalid, then we timed out
if (state == eStateInvalid)
break;
if (event_sp)
HandlePrivateEvent (event_sp);
}
return state;
}
Error
Process::Launch
(
char const *argv[],
char const *envp[],
uint32_t launch_flags,
const char *stdin_path,
const char *stdout_path,
const char *stderr_path
)
{
Error error;
m_target_triple.Clear();
m_abi_sp.reset();
m_process_input_reader.reset();
Module *exe_module = m_target.GetExecutableModule().get();
if (exe_module)
{
char exec_file_path[PATH_MAX];
exe_module->GetFileSpec().GetPath(exec_file_path, sizeof(exec_file_path));
if (exe_module->GetFileSpec().Exists())
{
error = WillLaunch (exe_module);
if (error.Success())
{
SetPublicState (eStateLaunching);
// The args coming in should not contain the application name, the
// lldb_private::Process class will add this in case the executable
// gets resolved to a different file than was given on the command
// line (like when an applicaiton bundle is specified and will
// resolve to the contained exectuable file, or the file given was
// a symlink or other file system link that resolves to a different
// file).
// Get the resolved exectuable path
// Make a new argument vector
std::vector<const char *> exec_path_plus_argv;
// Append the resolved executable path
exec_path_plus_argv.push_back (exec_file_path);
// Push all args if there are any
if (argv)
{
for (int i = 0; argv[i]; ++i)
exec_path_plus_argv.push_back(argv[i]);
}
// Push a NULL to terminate the args.
exec_path_plus_argv.push_back(NULL);
// Now launch using these arguments.
error = DoLaunch (exe_module,
exec_path_plus_argv.empty() ? NULL : &exec_path_plus_argv.front(),
envp,
launch_flags,
stdin_path,
stdout_path,
stderr_path);
if (error.Fail())
{
if (GetID() != LLDB_INVALID_PROCESS_ID)
{
SetID (LLDB_INVALID_PROCESS_ID);
const char *error_string = error.AsCString();
if (error_string == NULL)
error_string = "launch failed";
SetExitStatus (-1, error_string);
}
}
else
{
EventSP event_sp;
StateType state = WaitForProcessStopPrivate(NULL, event_sp);
if (state == eStateStopped || state == eStateCrashed)
{
DidLaunch ();
// This delays passing the stopped event to listeners till DidLaunch gets
// a chance to complete...
HandlePrivateEvent (event_sp);
StartPrivateStateThread ();
}
else if (state == eStateExited)
{
// We exited while trying to launch somehow. Don't call DidLaunch as that's
// not likely to work, and return an invalid pid.
HandlePrivateEvent (event_sp);
}
}
}
}
else
{
error.SetErrorStringWithFormat("File doesn't exist: '%s'.\n", exec_file_path);
}
}
return error;
}
Error
Process::CompleteAttach ()
{
Error error;
if (GetID() == LLDB_INVALID_PROCESS_ID)
{
error.SetErrorString("no process");
}
EventSP event_sp;
StateType state = WaitForProcessStopPrivate(NULL, event_sp);
if (state == eStateStopped || state == eStateCrashed)
{
DidAttach ();
// Figure out which one is the executable, and set that in our target:
ModuleList &modules = GetTarget().GetImages();
size_t num_modules = modules.GetSize();
for (int i = 0; i < num_modules; i++)
{
ModuleSP module_sp = modules.GetModuleAtIndex(i);
if (module_sp->IsExecutable())
{
ModuleSP exec_module = GetTarget().GetExecutableModule();
if (!exec_module || exec_module != module_sp)
{
GetTarget().SetExecutableModule (module_sp, false);
}
break;
}
}
// This delays passing the stopped event to listeners till DidLaunch gets
// a chance to complete...
HandlePrivateEvent(event_sp);
StartPrivateStateThread();
}
else
{
// We exited while trying to launch somehow. Don't call DidLaunch as that's
// not likely to work, and return an invalid pid.
if (state == eStateExited)
HandlePrivateEvent (event_sp);
error.SetErrorStringWithFormat("invalid state after attach: %s",
lldb_private::StateAsCString(state));
}
return error;
}
Error
Process::Attach (lldb::pid_t attach_pid)
{
m_target_triple.Clear();
m_abi_sp.reset();
m_process_input_reader.reset();
// Find the process and its architecture. Make sure it matches the architecture
// of the current Target, and if not adjust it.
ArchSpec attach_spec = GetArchSpecForExistingProcess (attach_pid);
if (attach_spec != GetTarget().GetArchitecture())
{
// Set the architecture on the target.
GetTarget().SetArchitecture(attach_spec);
}
Error error (WillAttachToProcessWithID(attach_pid));
if (error.Success())
{
SetPublicState (eStateAttaching);
error = DoAttachToProcessWithID (attach_pid);
if (error.Success())
{
error = CompleteAttach();
}
else
{
if (GetID() != LLDB_INVALID_PROCESS_ID)
{
SetID (LLDB_INVALID_PROCESS_ID);
const char *error_string = error.AsCString();
if (error_string == NULL)
error_string = "attach failed";
SetExitStatus(-1, error_string);
}
}
}
return error;
}
Error
Process::Attach (const char *process_name, bool wait_for_launch)
{
m_target_triple.Clear();
m_abi_sp.reset();
m_process_input_reader.reset();
// Find the process and its architecture. Make sure it matches the architecture
// of the current Target, and if not adjust it.
if (!wait_for_launch)
{
ArchSpec attach_spec = GetArchSpecForExistingProcess (process_name);
if (attach_spec.IsValid() && attach_spec != GetTarget().GetArchitecture())
{
// Set the architecture on the target.
GetTarget().SetArchitecture(attach_spec);
}
}
Error error (WillAttachToProcessWithName(process_name, wait_for_launch));
if (error.Success())
{
SetPublicState (eStateAttaching);
error = DoAttachToProcessWithName (process_name, wait_for_launch);
if (error.Fail())
{
if (GetID() != LLDB_INVALID_PROCESS_ID)
{
SetID (LLDB_INVALID_PROCESS_ID);
const char *error_string = error.AsCString();
if (error_string == NULL)
error_string = "attach failed";
SetExitStatus(-1, error_string);
}
}
else
{
error = CompleteAttach();
}
}
return error;
}
Error
Process::Resume ()
{
LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf("Process::Resume() m_stop_id = %u", m_stop_id);
Error error (WillResume());
// Tell the process it is about to resume before the thread list
if (error.Success())
{
// Now let the thread list know we are about to resume so it
// can let all of our threads know that they are about to be
// resumed. Threads will each be called with
// Thread::WillResume(StateType) where StateType contains the state
// that they are supposed to have when the process is resumed
// (suspended/running/stepping). Threads should also check
// their resume signal in lldb::Thread::GetResumeSignal()
// to see if they are suppoed to start back up with a signal.
if (m_thread_list.WillResume())
{
error = DoResume();
if (error.Success())
{
DidResume();
m_thread_list.DidResume();
}
}
else
{
error.SetErrorStringWithFormat("thread list returned flase after WillResume");
}
}
return error;
}
Error
Process::Halt ()
{
Error error (WillHalt());
if (error.Success())
{
bool caused_stop = false;
EventSP event_sp;
// Pause our private state thread so we can ensure no one else eats
// the stop event out from under us.
PausePrivateStateThread();
// Ask the process subclass to actually halt our process
error = DoHalt(caused_stop);
if (error.Success())
{
// If "caused_stop" is true, then DoHalt stopped the process. If
// "caused_stop" is false, the process was already stopped.
// If the DoHalt caused the process to stop, then we want to catch
// this event and set the interrupted bool to true before we pass
// this along so clients know that the process was interrupted by
// a halt command.
if (caused_stop)
{
// Wait for 2 seconds for the process to stop.
TimeValue timeout_time;
timeout_time = TimeValue::Now();
timeout_time.OffsetWithSeconds(1);
StateType state = WaitForStateChangedEventsPrivate (&timeout_time, event_sp);
if (state == eStateInvalid)
{
// We timeout out and didn't get a stop event...
error.SetErrorString ("Halt timed out.");
}
else
{
if (StateIsStoppedState (state))
{
// We caused the process to interrupt itself, so mark this
// as such in the stop event so clients can tell an interrupted
// process from a natural stop
ProcessEventData::SetInterruptedInEvent (event_sp.get(), true);
}
else
{
LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf("Process::Halt() failed to stop, state is: %s", StateAsCString(state));
error.SetErrorString ("Did not get stopped event after halt.");
}
}
}
DidHalt();
}
// Resume our private state thread before we post the event (if any)
ResumePrivateStateThread();
// Post any event we might have consumed. If all goes well, we will have
// stopped the process, intercepted the event and set the interrupted
// bool in the event. Post it to the private event queue and that will end up
// correctly setting the state.
if (event_sp)
m_private_state_broadcaster.BroadcastEvent(event_sp);
}
return error;
}
Error
Process::Detach ()
{
Error error (WillDetach());
if (error.Success())
{
DisableAllBreakpointSites();
error = DoDetach();
if (error.Success())
{
DidDetach();
StopPrivateStateThread();
}
}
return error;
}
Error
Process::Destroy ()
{
Error error (WillDestroy());
if (error.Success())
{
DisableAllBreakpointSites();
error = DoDestroy();
if (error.Success())
{
DidDestroy();
StopPrivateStateThread();
}
m_stdio_communication.StopReadThread();
m_stdio_communication.Disconnect();
if (m_process_input_reader && m_process_input_reader->IsActive())
m_target.GetDebugger().PopInputReader (m_process_input_reader);
if (m_process_input_reader)
m_process_input_reader.reset();
}
return error;
}
Error
Process::Signal (int signal)
{
Error error (WillSignal());
if (error.Success())
{
error = DoSignal(signal);
if (error.Success())
DidSignal();
}
return error;
}
UnixSignals &
Process::GetUnixSignals ()
{
return m_unix_signals;
}
Target &
Process::GetTarget ()
{
return m_target;
}
const Target &
Process::GetTarget () const
{
return m_target;
}
uint32_t
Process::GetAddressByteSize()
{
if (m_addr_byte_size == 0)
return m_target.GetArchitecture().GetAddressByteSize();
return m_addr_byte_size;
}
bool
Process::ShouldBroadcastEvent (Event *event_ptr)
{
const StateType state = Process::ProcessEventData::GetStateFromEvent (event_ptr);
bool return_value = true;
LogSP log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS));
switch (state)
{
case eStateAttaching:
case eStateLaunching:
case eStateDetached:
case eStateExited:
case eStateUnloaded:
// These events indicate changes in the state of the debugging session, always report them.
return_value = true;
break;
case eStateInvalid:
// We stopped for no apparent reason, don't report it.
return_value = false;
break;
case eStateRunning:
case eStateStepping:
// If we've started the target running, we handle the cases where we
// are already running and where there is a transition from stopped to
// running differently.
// running -> running: Automatically suppress extra running events
// stopped -> running: Report except when there is one or more no votes
// and no yes votes.
SynchronouslyNotifyStateChanged (state);
switch (m_public_state.GetValue())
{
case eStateRunning:
case eStateStepping:
// We always suppress multiple runnings with no PUBLIC stop in between.
return_value = false;
break;
default:
// TODO: make this work correctly. For now always report
// run if we aren't running so we don't miss any runnning
// events. If I run the lldb/test/thread/a.out file and
// break at main.cpp:58, run and hit the breakpoints on
// multiple threads, then somehow during the stepping over
// of all breakpoints no run gets reported.
return_value = true;
// This is a transition from stop to run.
switch (m_thread_list.ShouldReportRun (event_ptr))
{
case eVoteYes:
case eVoteNoOpinion:
return_value = true;
break;
case eVoteNo:
return_value = false;
break;
}
break;
}
break;
case eStateStopped:
case eStateCrashed:
case eStateSuspended:
{
// We've stopped. First see if we're going to restart the target.
// If we are going to stop, then we always broadcast the event.
// If we aren't going to stop, let the thread plans decide if we're going to report this event.
// If no thread has an opinion, we don't report it.
if (ProcessEventData::GetInterruptedFromEvent (event_ptr))
{
if (log)
log->Printf ("Process::ShouldBroadcastEvent (%p) stopped due to an interrupt, state: %s", event_ptr, StateAsCString(state));
return true;
}
else
{
RefreshStateAfterStop ();
if (m_thread_list.ShouldStop (event_ptr) == false)
{
switch (m_thread_list.ShouldReportStop (event_ptr))
{
case eVoteYes:
Process::ProcessEventData::SetRestartedInEvent (event_ptr, true);
// Intentional fall-through here.
case eVoteNoOpinion:
case eVoteNo:
return_value = false;
break;
}
if (log)
log->Printf ("Process::ShouldBroadcastEvent (%p) Restarting process from state: %s", event_ptr, StateAsCString(state));
Resume ();
}
else
{
return_value = true;
SynchronouslyNotifyStateChanged (state);
}
}
}
}
if (log)
log->Printf ("Process::ShouldBroadcastEvent (%p) => %s", event_ptr, StateAsCString(state), return_value ? "YES" : "NO");
return return_value;
}
//------------------------------------------------------------------
// Thread Queries
//------------------------------------------------------------------
ThreadList &
Process::GetThreadList ()
{
return m_thread_list;
}
const ThreadList &
Process::GetThreadList () const
{
return m_thread_list;
}
bool
Process::StartPrivateStateThread ()
{
LogSP log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS));
if (log)
log->Printf ("Process::%s ( )", __FUNCTION__);
// Create a thread that watches our internal state and controls which
// events make it to clients (into the DCProcess event queue).
char thread_name[1024];
snprintf(thread_name, sizeof(thread_name), "<lldb.process.internal-state(pid=%i)>", GetID());
m_private_state_thread = Host::ThreadCreate (thread_name, Process::PrivateStateThread, this, NULL);
return m_private_state_thread != LLDB_INVALID_HOST_THREAD;
}
void
Process::PausePrivateStateThread ()
{
ControlPrivateStateThread (eBroadcastInternalStateControlPause);
}
void
Process::ResumePrivateStateThread ()
{
ControlPrivateStateThread (eBroadcastInternalStateControlResume);
}
void
Process::StopPrivateStateThread ()
{
ControlPrivateStateThread (eBroadcastInternalStateControlStop);
}
void
Process::ControlPrivateStateThread (uint32_t signal)
{
LogSP log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS));
assert (signal == eBroadcastInternalStateControlStop ||
signal == eBroadcastInternalStateControlPause ||
signal == eBroadcastInternalStateControlResume);
if (log)
log->Printf ("Process::%s (signal = %d)", __FUNCTION__, signal);
// Signal the private state thread. First we should copy this is case the
// thread starts exiting since the private state thread will NULL this out
// when it exits
const lldb::thread_t private_state_thread = m_private_state_thread;
if (private_state_thread != LLDB_INVALID_HOST_THREAD)
{
TimeValue timeout_time;
bool timed_out;
m_private_state_control_broadcaster.BroadcastEvent (signal, NULL);
timeout_time = TimeValue::Now();
timeout_time.OffsetWithSeconds(2);
m_private_state_control_wait.WaitForValueEqualTo (true, &timeout_time, &timed_out);
m_private_state_control_wait.SetValue (false, eBroadcastNever);
if (signal == eBroadcastInternalStateControlStop)
{
if (timed_out)
Host::ThreadCancel (private_state_thread, NULL);
thread_result_t result = NULL;
Host::ThreadJoin (private_state_thread, &result, NULL);
m_private_state_thread = LLDB_INVALID_HOST_THREAD;
}
}
}
void
Process::HandlePrivateEvent (EventSP &event_sp)
{
LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
const StateType internal_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
// See if we should broadcast this state to external clients?
const bool should_broadcast = ShouldBroadcastEvent (event_sp.get());
if (log)
log->Printf ("Process::%s (arg = %p, pid = %i) got event '%s' broadcast = %s", __FUNCTION__, this, GetID(), StateAsCString(internal_state), should_broadcast ? "yes" : "no");
if (should_broadcast)
{
if (log)
{
log->Printf ("\tChanging public state from: %s to %s", StateAsCString(GetState ()), StateAsCString (internal_state));
}
if (StateIsRunningState (internal_state))
PushProcessInputReader ();
else
PopProcessInputReader ();
Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get());
BroadcastEvent (event_sp);
}
else
{
if (log)
{
log->Printf ("\tNot changing public state with event: %s", StateAsCString (internal_state));
}
}
}
void *
Process::PrivateStateThread (void *arg)
{
Process *proc = static_cast<Process*> (arg);
void *result = proc->RunPrivateStateThread ();
return result;
}
void *
Process::RunPrivateStateThread ()
{
bool control_only = false;
m_private_state_control_wait.SetValue (false, eBroadcastNever);
LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf ("Process::%s (arg = %p, pid = %i) thread starting...", __FUNCTION__, this, GetID());
bool exit_now = false;
while (!exit_now)
{
EventSP event_sp;
WaitForEventsPrivate (NULL, event_sp, control_only);
if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster))
{
switch (event_sp->GetType())
{
case eBroadcastInternalStateControlStop:
exit_now = true;
continue; // Go to next loop iteration so we exit without
break; // doing any internal state managment below
case eBroadcastInternalStateControlPause:
control_only = true;
break;
case eBroadcastInternalStateControlResume:
control_only = false;
break;
}
if (log)
log->Printf ("Process::%s (arg = %p, pid = %i) got a control event: %d", __FUNCTION__, this, GetID(), event_sp->GetType());
m_private_state_control_wait.SetValue (true, eBroadcastAlways);
continue;
}
const StateType internal_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
if (internal_state != eStateInvalid)
{
HandlePrivateEvent (event_sp);
}
if (internal_state == eStateInvalid ||
internal_state == eStateExited ||
internal_state == eStateDetached )
{
if (log)
log->Printf ("Process::%s (arg = %p, pid = %i) about to exit with internal state %s...", __FUNCTION__, this, GetID(), StateAsCString(internal_state));
break;
}
}
// Verify log is still enabled before attempting to write to it...
if (log)
log->Printf ("Process::%s (arg = %p, pid = %i) thread exiting...", __FUNCTION__, this, GetID());
m_private_state_control_wait.SetValue (true, eBroadcastAlways);
m_private_state_thread = LLDB_INVALID_HOST_THREAD;
return NULL;
}
//------------------------------------------------------------------
// Process Event Data
//------------------------------------------------------------------
Process::ProcessEventData::ProcessEventData () :
EventData (),
m_process_sp (),
m_state (eStateInvalid),
m_restarted (false),
m_update_state (false),
m_interrupted (false)
{
}
Process::ProcessEventData::ProcessEventData (const ProcessSP &process_sp, StateType state) :
EventData (),
m_process_sp (process_sp),
m_state (state),
m_restarted (false),
m_update_state (false),
m_interrupted (false)
{
}
Process::ProcessEventData::~ProcessEventData()
{
}
const ConstString &
Process::ProcessEventData::GetFlavorString ()
{
static ConstString g_flavor ("Process::ProcessEventData");
return g_flavor;
}
const ConstString &
Process::ProcessEventData::GetFlavor () const
{
return ProcessEventData::GetFlavorString ();
}
void
Process::ProcessEventData::DoOnRemoval (Event *event_ptr)
{
// This function gets called twice for each event, once when the event gets pulled
// off of the private process event queue, and once when it gets pulled off of
// the public event queue. m_update_state is used to distinguish these
// two cases; it is false when we're just pulling it off for private handling,
// and we don't want to do the breakpoint command handling then.
if (!m_update_state)
return;
m_process_sp->SetPublicState (m_state);
// If we're stopped and haven't restarted, then do the breakpoint commands here:
if (m_state == eStateStopped && ! m_restarted)
{
int num_threads = m_process_sp->GetThreadList().GetSize();
int idx;
for (idx = 0; idx < num_threads; ++idx)
{
lldb::ThreadSP thread_sp = m_process_sp->GetThreadList().GetThreadAtIndex(idx);
StopInfoSP stop_info_sp = thread_sp->GetStopInfo ();
if (stop_info_sp)
{
stop_info_sp->PerformAction(event_ptr);
}
}
// The stop action might restart the target. If it does, then we want to mark that in the
// event so that whoever is receiving it will know to wait for the running event and reflect
// that state appropriately.
if (m_process_sp->GetPrivateState() == eStateRunning)
SetRestarted(true);
}
}
void
Process::ProcessEventData::Dump (Stream *s) const
{
if (m_process_sp)
s->Printf(" process = %p (pid = %u), ", m_process_sp.get(), m_process_sp->GetID());
s->Printf("state = %s", StateAsCString(GetState()));;
}
const Process::ProcessEventData *
Process::ProcessEventData::GetEventDataFromEvent (const Event *event_ptr)
{
if (event_ptr)
{
const EventData *event_data = event_ptr->GetData();
if (event_data && event_data->GetFlavor() == ProcessEventData::GetFlavorString())
return static_cast <const ProcessEventData *> (event_ptr->GetData());
}
return NULL;
}
ProcessSP
Process::ProcessEventData::GetProcessFromEvent (const Event *event_ptr)
{
ProcessSP process_sp;
const ProcessEventData *data = GetEventDataFromEvent (event_ptr);
if (data)
process_sp = data->GetProcessSP();
return process_sp;
}
StateType
Process::ProcessEventData::GetStateFromEvent (const Event *event_ptr)
{
const ProcessEventData *data = GetEventDataFromEvent (event_ptr);
if (data == NULL)
return eStateInvalid;
else
return data->GetState();
}
bool
Process::ProcessEventData::GetRestartedFromEvent (const Event *event_ptr)
{
const ProcessEventData *data = GetEventDataFromEvent (event_ptr);
if (data == NULL)
return false;
else
return data->GetRestarted();
}
void
Process::ProcessEventData::SetRestartedInEvent (Event *event_ptr, bool new_value)
{
ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr));
if (data != NULL)
data->SetRestarted(new_value);
}
bool
Process::ProcessEventData::GetInterruptedFromEvent (const Event *event_ptr)
{
const ProcessEventData *data = GetEventDataFromEvent (event_ptr);
if (data == NULL)
return false;
else
return data->GetInterrupted ();
}
void
Process::ProcessEventData::SetInterruptedInEvent (Event *event_ptr, bool new_value)
{
ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr));
if (data != NULL)
data->SetInterrupted(new_value);
}
bool
Process::ProcessEventData::SetUpdateStateOnRemoval (Event *event_ptr)
{
ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr));
if (data)
{
data->SetUpdateStateOnRemoval();
return true;
}
return false;
}
Target *
Process::CalculateTarget ()
{
return &m_target;
}
Process *
Process::CalculateProcess ()
{
return this;
}
Thread *
Process::CalculateThread ()
{
return NULL;
}
StackFrame *
Process::CalculateStackFrame ()
{
return NULL;
}
void
Process::CalculateExecutionContext (ExecutionContext &exe_ctx)
{
exe_ctx.target = &m_target;
exe_ctx.process = this;
exe_ctx.thread = NULL;
exe_ctx.frame = NULL;
}
lldb::ProcessSP
Process::GetSP ()
{
return GetTarget().GetProcessSP();
}
uint32_t
Process::ListProcessesMatchingName (const char *name, StringList &matches, std::vector<lldb::pid_t> &pids)
{
return 0;
}
ArchSpec
Process::GetArchSpecForExistingProcess (lldb::pid_t pid)
{
return Host::GetArchSpecForExistingProcess (pid);
}
ArchSpec
Process::GetArchSpecForExistingProcess (const char *process_name)
{
return Host::GetArchSpecForExistingProcess (process_name);
}
void
Process::AppendSTDOUT (const char * s, size_t len)
{
Mutex::Locker locker (m_stdio_communication_mutex);
m_stdout_data.append (s, len);
BroadcastEventIfUnique (eBroadcastBitSTDOUT, new ProcessEventData (GetTarget().GetProcessSP(), GetState()));
}
void
Process::STDIOReadThreadBytesReceived (void *baton, const void *src, size_t src_len)
{
Process *process = (Process *) baton;
process->AppendSTDOUT (static_cast<const char *>(src), src_len);
}
size_t
Process::ProcessInputReaderCallback (void *baton,
InputReader &reader,
lldb::InputReaderAction notification,
const char *bytes,
size_t bytes_len)
{
Process *process = (Process *) baton;
switch (notification)
{
case eInputReaderActivate:
break;
case eInputReaderDeactivate:
break;
case eInputReaderReactivate:
break;
case eInputReaderGotToken:
{
Error error;
process->PutSTDIN (bytes, bytes_len, error);
}
break;
case eInputReaderInterrupt:
process->Halt ();
break;
case eInputReaderEndOfFile:
process->AppendSTDOUT ("^D", 2);
break;
case eInputReaderDone:
break;
}
return bytes_len;
}
void
Process::ResetProcessInputReader ()
{
m_process_input_reader.reset();
}
void
Process::SetUpProcessInputReader (int file_descriptor)
{
// First set up the Read Thread for reading/handling process I/O
std::auto_ptr<ConnectionFileDescriptor> conn_ap (new ConnectionFileDescriptor (file_descriptor, true));
if (conn_ap.get())
{
m_stdio_communication.SetConnection (conn_ap.release());
if (m_stdio_communication.IsConnected())
{
m_stdio_communication.SetReadThreadBytesReceivedCallback (STDIOReadThreadBytesReceived, this);
m_stdio_communication.StartReadThread();
// Now read thread is set up, set up input reader.
if (!m_process_input_reader.get())
{
m_process_input_reader.reset (new InputReader(m_target.GetDebugger()));
Error err (m_process_input_reader->Initialize (Process::ProcessInputReaderCallback,
this,
eInputReaderGranularityByte,
NULL,
NULL,
false));
if (err.Fail())
m_process_input_reader.reset();
}
}
}
}
void
Process::PushProcessInputReader ()
{
if (m_process_input_reader && !m_process_input_reader->IsActive())
m_target.GetDebugger().PushInputReader (m_process_input_reader);
}
void
Process::PopProcessInputReader ()
{
if (m_process_input_reader && m_process_input_reader->IsActive())
m_target.GetDebugger().PopInputReader (m_process_input_reader);
}
void
Process::Initialize ()
{
UserSettingsControllerSP &usc = GetSettingsController();
usc.reset (new SettingsController);
UserSettingsController::InitializeSettingsController (usc,
SettingsController::global_settings_table,
SettingsController::instance_settings_table);
}
void
Process::Terminate ()
{
UserSettingsControllerSP &usc = GetSettingsController();
UserSettingsController::FinalizeSettingsController (usc);
usc.reset();
}
UserSettingsControllerSP &
Process::GetSettingsController ()
{
static UserSettingsControllerSP g_settings_controller;
return g_settings_controller;
}
void
Process::UpdateInstanceName ()
{
ModuleSP module_sp = GetTarget().GetExecutableModule();
if (module_sp)
{
StreamString sstr;
sstr.Printf ("%s", module_sp->GetFileSpec().GetFilename().AsCString());
GetSettingsController()->RenameInstanceSettings (GetInstanceName().AsCString(),
sstr.GetData());
}
}
ExecutionResults
Process::RunThreadPlan (ExecutionContext &exe_ctx,
lldb::ThreadPlanSP &thread_plan_sp,
bool stop_others,
bool try_all_threads,
bool discard_on_error,
uint32_t single_thread_timeout_usec,
Stream &errors)
{
ExecutionResults return_value = eExecutionSetupError;
if (thread_plan_sp.get() == NULL)
{
errors.Printf("RunThreadPlan called with empty thread plan.");
return lldb::eExecutionSetupError;
}
// Save this value for restoration of the execution context after we run
uint32_t tid = exe_ctx.thread->GetIndexID();
// N.B. Running the target may unset the currently selected thread and frame. We don't want to do that either,
// so we should arrange to reset them as well.
lldb::ThreadSP selected_thread_sp = exe_ctx.process->GetThreadList().GetSelectedThread();
lldb::StackFrameSP selected_frame_sp;
uint32_t selected_tid;
if (selected_thread_sp != NULL)
{
selected_tid = selected_thread_sp->GetIndexID();
selected_frame_sp = selected_thread_sp->GetSelectedFrame();
}
else
{
selected_tid = LLDB_INVALID_THREAD_ID;
}
exe_ctx.thread->QueueThreadPlan(thread_plan_sp, true);
Listener listener("ClangFunction temporary listener");
exe_ctx.process->HijackProcessEvents(&listener);
lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_STEP));
if (log)
{
StreamString s;
thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose);
log->Printf ("Resuming thread 0x%x to run thread plan \"%s\".", tid, s.GetData());
}
Error resume_error = exe_ctx.process->Resume ();
if (!resume_error.Success())
{
errors.Printf("Error resuming inferior: \"%s\".\n", resume_error.AsCString());
exe_ctx.process->RestoreProcessEvents();
return lldb::eExecutionSetupError;
}
// We need to call the function synchronously, so spin waiting for it to return.
// If we get interrupted while executing, we're going to lose our context, and
// won't be able to gather the result at this point.
// We set the timeout AFTER the resume, since the resume takes some time and we
// don't want to charge that to the timeout.
TimeValue* timeout_ptr = NULL;
TimeValue real_timeout;
if (single_thread_timeout_usec != 0)
{
real_timeout = TimeValue::Now();
real_timeout.OffsetWithMicroSeconds(single_thread_timeout_usec);
timeout_ptr = &real_timeout;
}
while (1)
{
lldb::EventSP event_sp;
lldb::StateType stop_state = lldb::eStateInvalid;
// Now wait for the process to stop again:
bool got_event = listener.WaitForEvent (timeout_ptr, event_sp);
if (!got_event)
{
// Right now this is the only way to tell we've timed out...
// We should interrupt the process here...
// Not really sure what to do if Halt fails here...
if (log) {
if (try_all_threads)
log->Printf ("Running function with timeout: %d timed out, trying with all threads enabled.",
single_thread_timeout_usec);
else
log->Printf ("Running function with timeout: %d timed out, abandoning execution.",
single_thread_timeout_usec);
}
Error halt_error = exe_ctx.process->Halt();
if (halt_error.Success())
{
timeout_ptr = NULL;
if (log)
log->Printf ("Halt succeeded.");
// Between the time that we got the timeout and the time we halted, but target
// might have actually completed the plan. If so, we're done. Note, I call WFE here with a short
// timeout to
got_event = listener.WaitForEvent(NULL, event_sp);
if (got_event)
{
stop_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
if (log)
{
log->Printf ("Stopped with event: %s", StateAsCString(stop_state));
if (stop_state == lldb::eStateStopped && Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get()))
log->Printf (" Event was the Halt interruption event.");
}
if (exe_ctx.thread->IsThreadPlanDone (thread_plan_sp.get()))
{
if (log)
log->Printf ("Even though we timed out, the call plan was done. Exiting wait loop.");
return_value = lldb::eExecutionCompleted;
break;
}
if (try_all_threads
&& (stop_state == lldb::eStateStopped && Process::ProcessEventData::GetInterruptedFromEvent (event_sp.get())))
{
thread_plan_sp->SetStopOthers (false);
if (log)
log->Printf ("About to resume.");
exe_ctx.process->Resume();
continue;
}
else
{
exe_ctx.process->RestoreProcessEvents ();
return lldb::eExecutionInterrupted;
}
}
}
else
{
if (log)
log->Printf ("Halt failed: \"%s\", I'm just going to wait a little longer and see if the world gets nicer to me.",
halt_error.AsCString());
if (single_thread_timeout_usec != 0)
{
real_timeout = TimeValue::Now();
real_timeout.OffsetWithMicroSeconds(single_thread_timeout_usec);
timeout_ptr = &real_timeout;
}
continue;
}
}
stop_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
if (log)
log->Printf("Got event: %s.", StateAsCString(stop_state));
if (stop_state == lldb::eStateRunning || stop_state == lldb::eStateStepping)
continue;
if (exe_ctx.thread->IsThreadPlanDone (thread_plan_sp.get()))
{
return_value = lldb::eExecutionCompleted;
break;
}
else if (exe_ctx.thread->WasThreadPlanDiscarded (thread_plan_sp.get()))
{
return_value = lldb::eExecutionDiscarded;
break;
}
else
{
if (log)
{
StreamString s;
if (event_sp)
event_sp->Dump (&s);
else
{
log->Printf ("Stop event that interrupted us is NULL.");
}
StreamString ts;
const char *event_explanation;
do
{
const Process::ProcessEventData *event_data = Process::ProcessEventData::GetEventDataFromEvent (event_sp.get());
if (!event_data)
{
event_explanation = "<no event data>";
break;
}
Process *process = event_data->GetProcessSP().get();
if (!process)
{
event_explanation = "<no process>";
break;
}
ThreadList &thread_list = process->GetThreadList();
uint32_t num_threads = thread_list.GetSize();
uint32_t thread_index;
ts.Printf("<%u threads> ", num_threads);
for (thread_index = 0;
thread_index < num_threads;
++thread_index)
{
Thread *thread = thread_list.GetThreadAtIndex(thread_index).get();
if (!thread)
{
ts.Printf("<?> ");
continue;
}
ts.Printf("<0x%4.4x ", thread->GetID());
RegisterContext *register_context = thread->GetRegisterContext().get();
if (register_context)
ts.Printf("[ip 0x%llx] ", register_context->GetPC());
else
ts.Printf("[ip unknown] ");
lldb::StopInfoSP stop_info_sp = thread->GetStopInfo();
if (stop_info_sp)
{
const char *stop_desc = stop_info_sp->GetDescription();
if (stop_desc)
ts.PutCString (stop_desc);
}
ts.Printf(">");
}
event_explanation = ts.GetData();
} while (0);
// See if any of the threads that stopped think we ought to stop. Otherwise continue on.
if (!GetThreadList().ShouldStop(event_sp.get()))
{
if (log)
log->Printf("Execution interrupted, but nobody wanted to stop, so we continued: %s %s",
s.GetData(), event_explanation);
if (single_thread_timeout_usec != 0)
{
real_timeout = TimeValue::Now();
real_timeout.OffsetWithMicroSeconds(single_thread_timeout_usec);
timeout_ptr = &real_timeout;
}
continue;
}
else
{
if (log)
log->Printf("Execution interrupted: %s %s", s.GetData(), event_explanation);
}
}
if (discard_on_error && thread_plan_sp)
{
exe_ctx.thread->DiscardThreadPlansUpToPlan (thread_plan_sp);
}
return_value = lldb::eExecutionInterrupted;
break;
}
}
if (exe_ctx.process)
exe_ctx.process->RestoreProcessEvents ();
// Thread we ran the function in may have gone away because we ran the target
// Check that it's still there.
exe_ctx.thread = exe_ctx.process->GetThreadList().FindThreadByIndexID(tid, true).get();
if (exe_ctx.thread)
exe_ctx.frame = exe_ctx.thread->GetStackFrameAtIndex(0).get();
// Also restore the current process'es selected frame & thread, since this function calling may
// be done behind the user's back.
if (selected_tid != LLDB_INVALID_THREAD_ID)
{
if (exe_ctx.process->GetThreadList().SetSelectedThreadByIndexID (selected_tid))
{
// We were able to restore the selected thread, now restore the frame:
exe_ctx.process->GetThreadList().GetSelectedThread()->SetSelectedFrame(selected_frame_sp.get());
}
}
return return_value;
}
const char *
Process::ExecutionResultAsCString (ExecutionResults result)
{
const char *result_name;
switch (result)
{
case lldb::eExecutionCompleted:
result_name = "eExecutionCompleted";
break;
case lldb::eExecutionDiscarded:
result_name = "eExecutionDiscarded";
break;
case lldb::eExecutionInterrupted:
result_name = "eExecutionInterrupted";
break;
case lldb::eExecutionSetupError:
result_name = "eExecutionSetupError";
break;
case lldb::eExecutionTimedOut:
result_name = "eExecutionTimedOut";
break;
}
return result_name;
}
//--------------------------------------------------------------
// class Process::SettingsController
//--------------------------------------------------------------
Process::SettingsController::SettingsController () :
UserSettingsController ("process", Target::GetSettingsController())
{
m_default_settings.reset (new ProcessInstanceSettings (*this,
false,
InstanceSettings::GetDefaultName().AsCString()));
}
Process::SettingsController::~SettingsController ()
{
}
lldb::InstanceSettingsSP
Process::SettingsController::CreateInstanceSettings (const char *instance_name)
{
ProcessInstanceSettings *new_settings = new ProcessInstanceSettings (*GetSettingsController(),
false,
instance_name);
lldb::InstanceSettingsSP new_settings_sp (new_settings);
return new_settings_sp;
}
//--------------------------------------------------------------
// class ProcessInstanceSettings
//--------------------------------------------------------------
ProcessInstanceSettings::ProcessInstanceSettings
(
UserSettingsController &owner,
bool live_instance,
const char *name
) :
InstanceSettings (owner, name ? name : InstanceSettings::InvalidName().AsCString(), live_instance),
m_run_args (),
m_env_vars (),
m_input_path (),
m_output_path (),
m_error_path (),
m_plugin (),
m_disable_aslr (true),
m_disable_stdio (false),
m_inherit_host_env (true),
m_got_host_env (false)
{
// CopyInstanceSettings is a pure virtual function in InstanceSettings; it therefore cannot be called
// until the vtables for ProcessInstanceSettings are properly set up, i.e. AFTER all the initializers.
// For this reason it has to be called here, rather than in the initializer or in the parent constructor.
// This is true for CreateInstanceName() too.
if (GetInstanceName () == InstanceSettings::InvalidName())
{
ChangeInstanceName (std::string (CreateInstanceName().AsCString()));
m_owner.RegisterInstanceSettings (this);
}
if (live_instance)
{
const lldb::InstanceSettingsSP &pending_settings = m_owner.FindPendingSettings (m_instance_name);
CopyInstanceSettings (pending_settings,false);
//m_owner.RemovePendingSettings (m_instance_name);
}
}
ProcessInstanceSettings::ProcessInstanceSettings (const ProcessInstanceSettings &rhs) :
InstanceSettings (*Process::GetSettingsController(), CreateInstanceName().AsCString()),
m_run_args (rhs.m_run_args),
m_env_vars (rhs.m_env_vars),
m_input_path (rhs.m_input_path),
m_output_path (rhs.m_output_path),
m_error_path (rhs.m_error_path),
m_plugin (rhs.m_plugin),
m_disable_aslr (rhs.m_disable_aslr),
m_disable_stdio (rhs.m_disable_stdio)
{
if (m_instance_name != InstanceSettings::GetDefaultName())
{
const lldb::InstanceSettingsSP &pending_settings = m_owner.FindPendingSettings (m_instance_name);
CopyInstanceSettings (pending_settings,false);
m_owner.RemovePendingSettings (m_instance_name);
}
}
ProcessInstanceSettings::~ProcessInstanceSettings ()
{
}
ProcessInstanceSettings&
ProcessInstanceSettings::operator= (const ProcessInstanceSettings &rhs)
{
if (this != &rhs)
{
m_run_args = rhs.m_run_args;
m_env_vars = rhs.m_env_vars;
m_input_path = rhs.m_input_path;
m_output_path = rhs.m_output_path;
m_error_path = rhs.m_error_path;
m_plugin = rhs.m_plugin;
m_disable_aslr = rhs.m_disable_aslr;
m_disable_stdio = rhs.m_disable_stdio;
m_inherit_host_env = rhs.m_inherit_host_env;
}
return *this;
}
void
ProcessInstanceSettings::UpdateInstanceSettingsVariable (const ConstString &var_name,
const char *index_value,
const char *value,
const ConstString &instance_name,
const SettingEntry &entry,
lldb::VarSetOperationType op,
Error &err,
bool pending)
{
if (var_name == RunArgsVarName())
UserSettingsController::UpdateStringArrayVariable (op, index_value, m_run_args, value, err);
else if (var_name == EnvVarsVarName())
{
GetHostEnvironmentIfNeeded ();
UserSettingsController::UpdateDictionaryVariable (op, index_value, m_env_vars, value, err);
}
else if (var_name == InputPathVarName())
UserSettingsController::UpdateStringVariable (op, m_input_path, value, err);
else if (var_name == OutputPathVarName())
UserSettingsController::UpdateStringVariable (op, m_output_path, value, err);
else if (var_name == ErrorPathVarName())
UserSettingsController::UpdateStringVariable (op, m_error_path, value, err);
else if (var_name == PluginVarName())
UserSettingsController::UpdateEnumVariable (entry.enum_values, (int *) &m_plugin, value, err);
else if (var_name == InheritHostEnvVarName())
UserSettingsController::UpdateBooleanVariable (op, m_inherit_host_env, value, err);
else if (var_name == DisableASLRVarName())
UserSettingsController::UpdateBooleanVariable (op, m_disable_aslr, value, err);
else if (var_name == DisableSTDIOVarName ())
UserSettingsController::UpdateBooleanVariable (op, m_disable_stdio, value, err);
}
void
ProcessInstanceSettings::CopyInstanceSettings (const lldb::InstanceSettingsSP &new_settings,
bool pending)
{
if (new_settings.get() == NULL)
return;
ProcessInstanceSettings *new_process_settings = (ProcessInstanceSettings *) new_settings.get();
m_run_args = new_process_settings->m_run_args;
m_env_vars = new_process_settings->m_env_vars;
m_input_path = new_process_settings->m_input_path;
m_output_path = new_process_settings->m_output_path;
m_error_path = new_process_settings->m_error_path;
m_plugin = new_process_settings->m_plugin;
m_disable_aslr = new_process_settings->m_disable_aslr;
m_disable_stdio = new_process_settings->m_disable_stdio;
}
bool
ProcessInstanceSettings::GetInstanceSettingsValue (const SettingEntry &entry,
const ConstString &var_name,
StringList &value,
Error *err)
{
if (var_name == RunArgsVarName())
{
if (m_run_args.GetArgumentCount() > 0)
{
for (int i = 0; i < m_run_args.GetArgumentCount(); ++i)
value.AppendString (m_run_args.GetArgumentAtIndex (i));
}
}
else if (var_name == EnvVarsVarName())
{
GetHostEnvironmentIfNeeded ();
if (m_env_vars.size() > 0)
{
std::map<std::string, std::string>::iterator pos;
for (pos = m_env_vars.begin(); pos != m_env_vars.end(); ++pos)
{
StreamString value_str;
value_str.Printf ("%s=%s", pos->first.c_str(), pos->second.c_str());
value.AppendString (value_str.GetData());
}
}
}
else if (var_name == InputPathVarName())
{
value.AppendString (m_input_path.c_str());
}
else if (var_name == OutputPathVarName())
{
value.AppendString (m_output_path.c_str());
}
else if (var_name == ErrorPathVarName())
{
value.AppendString (m_error_path.c_str());
}
else if (var_name == PluginVarName())
{
value.AppendString (UserSettingsController::EnumToString (entry.enum_values, (int) m_plugin));
}
else if (var_name == InheritHostEnvVarName())
{
if (m_inherit_host_env)
value.AppendString ("true");
else
value.AppendString ("false");
}
else if (var_name == DisableASLRVarName())
{
if (m_disable_aslr)
value.AppendString ("true");
else
value.AppendString ("false");
}
else if (var_name == DisableSTDIOVarName())
{
if (m_disable_stdio)
value.AppendString ("true");
else
value.AppendString ("false");
}
else
{
if (err)
err->SetErrorStringWithFormat ("unrecognized variable name '%s'", var_name.AsCString());
return false;
}
return true;
}
const ConstString
ProcessInstanceSettings::CreateInstanceName ()
{
static int instance_count = 1;
StreamString sstr;
sstr.Printf ("process_%d", instance_count);
++instance_count;
const ConstString ret_val (sstr.GetData());
return ret_val;
}
const ConstString &
ProcessInstanceSettings::RunArgsVarName ()
{
static ConstString run_args_var_name ("run-args");
return run_args_var_name;
}
const ConstString &
ProcessInstanceSettings::EnvVarsVarName ()
{
static ConstString env_vars_var_name ("env-vars");
return env_vars_var_name;
}
const ConstString &
ProcessInstanceSettings::InheritHostEnvVarName ()
{
static ConstString g_name ("inherit-env");
return g_name;
}
const ConstString &
ProcessInstanceSettings::InputPathVarName ()
{
static ConstString input_path_var_name ("input-path");
return input_path_var_name;
}
const ConstString &
ProcessInstanceSettings::OutputPathVarName ()
{
static ConstString output_path_var_name ("output-path");
return output_path_var_name;
}
const ConstString &
ProcessInstanceSettings::ErrorPathVarName ()
{
static ConstString error_path_var_name ("error-path");
return error_path_var_name;
}
const ConstString &
ProcessInstanceSettings::PluginVarName ()
{
static ConstString plugin_var_name ("plugin");
return plugin_var_name;
}
const ConstString &
ProcessInstanceSettings::DisableASLRVarName ()
{
static ConstString disable_aslr_var_name ("disable-aslr");
return disable_aslr_var_name;
}
const ConstString &
ProcessInstanceSettings::DisableSTDIOVarName ()
{
static ConstString disable_stdio_var_name ("disable-stdio");
return disable_stdio_var_name;
}
//--------------------------------------------------
// SettingsController Variable Tables
//--------------------------------------------------
SettingEntry
Process::SettingsController::global_settings_table[] =
{
//{ "var-name", var-type , "default", enum-table, init'd, hidden, "help-text"},
{ NULL, eSetVarTypeNone, NULL, NULL, 0, 0, NULL }
};
lldb::OptionEnumValueElement
Process::SettingsController::g_plugins[] =
{
{ eMacosx, "process.macosx", "Use the native MacOSX debugger plugin" },
{ eRemoteDebugger, "process.gdb-remote" , "Use the GDB Remote protocol based debugger plugin" },
{ 0, NULL, NULL }
};
SettingEntry
Process::SettingsController::instance_settings_table[] =
{
//{ "var-name", var-type, "default", enum-table, init'd, hidden, "help-text"},
{ "run-args", eSetVarTypeArray, NULL, NULL, false, false, "A list containing all the arguments to be passed to the executable when it is run." },
{ "env-vars", eSetVarTypeDictionary, NULL, NULL, false, false, "A list of all the environment variables to be passed to the executable's environment, and their values." },
{ "inherit-env", eSetVarTypeBoolean, "true", NULL, false, false, "Inherit the environment from the process that is running LLDB." },
{ "input-path", eSetVarTypeString, "/dev/stdin", NULL, false, false, "The file/path to be used by the executable program for reading its input." },
{ "output-path", eSetVarTypeString, "/dev/stdout", NULL, false, false, "The file/path to be used by the executable program for writing its output." },
{ "error-path", eSetVarTypeString, "/dev/stderr", NULL, false, false, "The file/path to be used by the executable program for writings its error messages." },
{ "plugin", eSetVarTypeEnum, NULL , g_plugins, false, false, "The plugin to be used to run the process." },
{ "disable-aslr", eSetVarTypeBoolean, "true", NULL, false, false, "Disable Address Space Layout Randomization (ASLR)" },
{ "disable-stdio", eSetVarTypeBoolean, "false", NULL, false, false, "Disable stdin/stdout for process (e.g. for a GUI application)" },
{ NULL, eSetVarTypeNone, NULL, NULL, false, false, NULL }
};