Go to file
Yonghong Song 61bd33e37b [BPF] explicit warning of not supporting dynamic stack allocation
Currently, BPF does not support dynamic static allocation.
For a program like below:
  extern void bar(int *);
  void foo(int n) {
    int a[n];
    bar(a);
  }

The current error message looks like:
  unimplemented operand
  UNREACHABLE executed at /.../llvm/lib/Target/BPF/BPFISelLowering.cpp:199!

Let us make error message explicit so it will be clear to the user
what is the problem. With this patch, the error message looks like:
  fatal error: error in backend: Unsupported dynamic stack allocation
  ...

Differential Revision: https://reviews.llvm.org/D74521
2020-02-12 20:43:06 -08:00
clang Reapply "[OpenMP][IRBuilder] Perform finalization (incl. outlining) late" 2020-02-12 22:29:07 -06:00
clang-tools-extra [clang-tidy] No misc-definitions-in-headers warning on C++14 variable templates. 2020-02-12 16:56:31 +01:00
compiler-rt Fix regression due to reviews.llvm.org/D74436 by adding option ffp-contract=off to RUN line 2020-02-12 19:05:18 -08:00
debuginfo-tests Replace CHECK-NEXT with CHECK-DAG. The order isn't relevant we just 2020-02-07 15:09:44 -08:00
libc Remove leftover artifacts from use of gtest. 2020-02-04 21:41:45 -08:00
libclc libclc/r600: Use target specific builtins to implement rsqrt and native_rsqrt 2020-02-09 14:42:15 -05:00
libcxx [libc++][Apple] Use CLOCK_MONOTONIC_RAW instead of CLOCK_UPTIME_RAW for steady_clock 2020-02-12 16:43:36 +01:00
libcxxabi [libcxxabi] Fix layout of __cxa_exception for win64 2020-02-03 09:55:02 +02:00
libunwind unwind: rename `__personality_routine` to `_Unwind_Personality_Fn` 2020-02-10 08:52:31 -08:00
lld [ELF] Support INSERT [AFTER|BEFORE] for orphan sections 2020-02-12 08:21:52 -08:00
lldb [lldb/Plugins] Move DynamicLoaderMacOS into DynamicLoaderMacOSXDYLD (NFCI) 2020-02-12 13:44:20 -08:00
llvm [BPF] explicit warning of not supporting dynamic stack allocation 2020-02-12 20:43:06 -08:00
mlir [MLIR][Affine] Add affine.parallel op 2020-02-12 18:00:24 -08:00
openmp Changed omp_get_max_threads() implementation to more closely match spec description. 2020-02-12 23:29:34 +00:00
parallel-libs Fix typos throughout the license files that somehow I and my reviewers 2019-01-21 09:52:34 +00:00
polly [NFC] Fix warning: comparison of integers of different signs. 2020-02-11 14:46:09 -08:00
pstl Bump the trunk major version to 11 2020-01-15 13:38:01 +01:00
.arcconfig Include phabricator.uri in .arcconfig 2020-01-23 11:50:18 -08:00
.clang-format Add .clang-tidy and .clang-format files to the toplevel of the 2019-01-29 16:43:16 +00:00
.clang-tidy - Update .clang-tidy to ignore parameters of main like functions for naming violations in clang and llvm directory 2020-01-31 16:49:45 +00:00
.git-blame-ignore-revs Add LLDB reformatting to .git-blame-ignore-revs 2019-09-04 09:31:55 +00:00
.gitignore Add a newline at the end of the file 2019-09-04 06:33:46 +00:00
CONTRIBUTING.md Add contributing info to CONTRIBUTING.md and README.md 2019-12-02 15:47:15 +00:00
README.md [README] Add note on using cmake to perform the build 2020-02-12 14:51:24 -06:00

README.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and converts it into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective C, and Objective C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • mkdir build

    • cd build

    • cmake -G <generator> [options] ../llvm

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some Common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM sub-projects you'd like to additionally build. Can include any of: clang, clang-tools-extra, libcxx, libcxxabi, libunwind, lldb, compiler-rt, lld, polly, or debuginfo-tests.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build . [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs, e.g. the number of CPUs you have.

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.