forked from OSchip/llvm-project
342 lines
11 KiB
C++
342 lines
11 KiB
C++
//===--------------------- Scheduler.cpp ------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// A scheduler for processor resource units and processor resource groups.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/MCA/HardwareUnits/Scheduler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
namespace llvm {
|
|
namespace mca {
|
|
|
|
#define DEBUG_TYPE "llvm-mca"
|
|
|
|
void Scheduler::initializeStrategy(std::unique_ptr<SchedulerStrategy> S) {
|
|
// Ensure we have a valid (non-null) strategy object.
|
|
Strategy = S ? std::move(S) : std::make_unique<DefaultSchedulerStrategy>();
|
|
}
|
|
|
|
// Anchor the vtable of SchedulerStrategy and DefaultSchedulerStrategy.
|
|
SchedulerStrategy::~SchedulerStrategy() = default;
|
|
DefaultSchedulerStrategy::~DefaultSchedulerStrategy() = default;
|
|
|
|
#ifndef NDEBUG
|
|
void Scheduler::dump() const {
|
|
dbgs() << "[SCHEDULER]: WaitSet size is: " << WaitSet.size() << '\n';
|
|
dbgs() << "[SCHEDULER]: ReadySet size is: " << ReadySet.size() << '\n';
|
|
dbgs() << "[SCHEDULER]: IssuedSet size is: " << IssuedSet.size() << '\n';
|
|
Resources->dump();
|
|
}
|
|
#endif
|
|
|
|
Scheduler::Status Scheduler::isAvailable(const InstRef &IR) {
|
|
ResourceStateEvent RSE =
|
|
Resources->canBeDispatched(IR.getInstruction()->getUsedBuffers());
|
|
HadTokenStall = RSE != RS_BUFFER_AVAILABLE;
|
|
|
|
switch (RSE) {
|
|
case ResourceStateEvent::RS_BUFFER_UNAVAILABLE:
|
|
return Scheduler::SC_BUFFERS_FULL;
|
|
case ResourceStateEvent::RS_RESERVED:
|
|
return Scheduler::SC_DISPATCH_GROUP_STALL;
|
|
case ResourceStateEvent::RS_BUFFER_AVAILABLE:
|
|
break;
|
|
}
|
|
|
|
// Give lower priority to LSUnit stall events.
|
|
LSUnit::Status LSS = LSU.isAvailable(IR);
|
|
HadTokenStall = LSS != LSUnit::LSU_AVAILABLE;
|
|
|
|
switch (LSS) {
|
|
case LSUnit::LSU_LQUEUE_FULL:
|
|
return Scheduler::SC_LOAD_QUEUE_FULL;
|
|
case LSUnit::LSU_SQUEUE_FULL:
|
|
return Scheduler::SC_STORE_QUEUE_FULL;
|
|
case LSUnit::LSU_AVAILABLE:
|
|
return Scheduler::SC_AVAILABLE;
|
|
}
|
|
|
|
llvm_unreachable("Don't know how to process this LSU state result!");
|
|
}
|
|
|
|
void Scheduler::issueInstructionImpl(
|
|
InstRef &IR,
|
|
SmallVectorImpl<std::pair<ResourceRef, ResourceCycles>> &UsedResources) {
|
|
Instruction *IS = IR.getInstruction();
|
|
const InstrDesc &D = IS->getDesc();
|
|
|
|
// Issue the instruction and collect all the consumed resources
|
|
// into a vector. That vector is then used to notify the listener.
|
|
Resources->issueInstruction(D, UsedResources);
|
|
|
|
// Notify the instruction that it started executing.
|
|
// This updates the internal state of each write.
|
|
IS->execute(IR.getSourceIndex());
|
|
|
|
IS->computeCriticalRegDep();
|
|
|
|
if (IS->isMemOp()) {
|
|
LSU.onInstructionIssued(IR);
|
|
const MemoryGroup &Group = LSU.getGroup(IS->getLSUTokenID());
|
|
IS->setCriticalMemDep(Group.getCriticalPredecessor());
|
|
}
|
|
|
|
if (IS->isExecuting())
|
|
IssuedSet.emplace_back(IR);
|
|
else if (IS->isExecuted())
|
|
LSU.onInstructionExecuted(IR);
|
|
}
|
|
|
|
// Release the buffered resources and issue the instruction.
|
|
void Scheduler::issueInstruction(
|
|
InstRef &IR,
|
|
SmallVectorImpl<std::pair<ResourceRef, ResourceCycles>> &UsedResources,
|
|
SmallVectorImpl<InstRef> &PendingInstructions,
|
|
SmallVectorImpl<InstRef> &ReadyInstructions) {
|
|
const Instruction &Inst = *IR.getInstruction();
|
|
bool HasDependentUsers = Inst.hasDependentUsers();
|
|
HasDependentUsers |= Inst.isMemOp() && LSU.hasDependentUsers(IR);
|
|
|
|
Resources->releaseBuffers(Inst.getUsedBuffers());
|
|
issueInstructionImpl(IR, UsedResources);
|
|
// Instructions that have been issued during this cycle might have unblocked
|
|
// other dependent instructions. Dependent instructions may be issued during
|
|
// this same cycle if operands have ReadAdvance entries. Promote those
|
|
// instructions to the ReadySet and notify the caller that those are ready.
|
|
if (HasDependentUsers)
|
|
if (promoteToPendingSet(PendingInstructions))
|
|
promoteToReadySet(ReadyInstructions);
|
|
}
|
|
|
|
bool Scheduler::promoteToReadySet(SmallVectorImpl<InstRef> &Ready) {
|
|
// Scan the set of waiting instructions and promote them to the
|
|
// ready set if operands are all ready.
|
|
unsigned PromotedElements = 0;
|
|
for (auto I = PendingSet.begin(), E = PendingSet.end(); I != E;) {
|
|
InstRef &IR = *I;
|
|
if (!IR)
|
|
break;
|
|
|
|
// Check if there are unsolved register dependencies.
|
|
Instruction &IS = *IR.getInstruction();
|
|
if (!IS.isReady() && !IS.updatePending()) {
|
|
++I;
|
|
continue;
|
|
}
|
|
// Check if there are unsolved memory dependencies.
|
|
if (IS.isMemOp() && !LSU.isReady(IR)) {
|
|
++I;
|
|
continue;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "[SCHEDULER]: Instruction #" << IR
|
|
<< " promoted to the READY set.\n");
|
|
|
|
Ready.emplace_back(IR);
|
|
ReadySet.emplace_back(IR);
|
|
|
|
IR.invalidate();
|
|
++PromotedElements;
|
|
std::iter_swap(I, E - PromotedElements);
|
|
}
|
|
|
|
PendingSet.resize(PendingSet.size() - PromotedElements);
|
|
return PromotedElements;
|
|
}
|
|
|
|
bool Scheduler::promoteToPendingSet(SmallVectorImpl<InstRef> &Pending) {
|
|
// Scan the set of waiting instructions and promote them to the
|
|
// pending set if operands are all ready.
|
|
unsigned RemovedElements = 0;
|
|
for (auto I = WaitSet.begin(), E = WaitSet.end(); I != E;) {
|
|
InstRef &IR = *I;
|
|
if (!IR)
|
|
break;
|
|
|
|
// Check if this instruction is now ready. In case, force
|
|
// a transition in state using method 'updateDispatched()'.
|
|
Instruction &IS = *IR.getInstruction();
|
|
if (IS.isDispatched() && !IS.updateDispatched()) {
|
|
++I;
|
|
continue;
|
|
}
|
|
|
|
if (IS.isMemOp() && LSU.isWaiting(IR)) {
|
|
++I;
|
|
continue;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "[SCHEDULER]: Instruction #" << IR
|
|
<< " promoted to the PENDING set.\n");
|
|
|
|
Pending.emplace_back(IR);
|
|
PendingSet.emplace_back(IR);
|
|
|
|
IR.invalidate();
|
|
++RemovedElements;
|
|
std::iter_swap(I, E - RemovedElements);
|
|
}
|
|
|
|
WaitSet.resize(WaitSet.size() - RemovedElements);
|
|
return RemovedElements;
|
|
}
|
|
|
|
InstRef Scheduler::select() {
|
|
unsigned QueueIndex = ReadySet.size();
|
|
for (unsigned I = 0, E = ReadySet.size(); I != E; ++I) {
|
|
InstRef &IR = ReadySet[I];
|
|
if (QueueIndex == ReadySet.size() ||
|
|
Strategy->compare(IR, ReadySet[QueueIndex])) {
|
|
Instruction &IS = *IR.getInstruction();
|
|
uint64_t BusyResourceMask = Resources->checkAvailability(IS.getDesc());
|
|
if (BusyResourceMask)
|
|
IS.setCriticalResourceMask(BusyResourceMask);
|
|
BusyResourceUnits |= BusyResourceMask;
|
|
if (!BusyResourceMask)
|
|
QueueIndex = I;
|
|
}
|
|
}
|
|
|
|
if (QueueIndex == ReadySet.size())
|
|
return InstRef();
|
|
|
|
// We found an instruction to issue.
|
|
InstRef IR = ReadySet[QueueIndex];
|
|
std::swap(ReadySet[QueueIndex], ReadySet[ReadySet.size() - 1]);
|
|
ReadySet.pop_back();
|
|
return IR;
|
|
}
|
|
|
|
void Scheduler::updateIssuedSet(SmallVectorImpl<InstRef> &Executed) {
|
|
unsigned RemovedElements = 0;
|
|
for (auto I = IssuedSet.begin(), E = IssuedSet.end(); I != E;) {
|
|
InstRef &IR = *I;
|
|
if (!IR)
|
|
break;
|
|
Instruction &IS = *IR.getInstruction();
|
|
if (!IS.isExecuted()) {
|
|
LLVM_DEBUG(dbgs() << "[SCHEDULER]: Instruction #" << IR
|
|
<< " is still executing.\n");
|
|
++I;
|
|
continue;
|
|
}
|
|
|
|
// Instruction IR has completed execution.
|
|
LSU.onInstructionExecuted(IR);
|
|
Executed.emplace_back(IR);
|
|
++RemovedElements;
|
|
IR.invalidate();
|
|
std::iter_swap(I, E - RemovedElements);
|
|
}
|
|
|
|
IssuedSet.resize(IssuedSet.size() - RemovedElements);
|
|
}
|
|
|
|
uint64_t Scheduler::analyzeResourcePressure(SmallVectorImpl<InstRef> &Insts) {
|
|
Insts.insert(Insts.end(), ReadySet.begin(), ReadySet.end());
|
|
return BusyResourceUnits;
|
|
}
|
|
|
|
void Scheduler::analyzeDataDependencies(SmallVectorImpl<InstRef> &RegDeps,
|
|
SmallVectorImpl<InstRef> &MemDeps) {
|
|
const auto EndIt = PendingSet.end() - NumDispatchedToThePendingSet;
|
|
for (const InstRef &IR : make_range(PendingSet.begin(), EndIt)) {
|
|
const Instruction &IS = *IR.getInstruction();
|
|
if (Resources->checkAvailability(IS.getDesc()))
|
|
continue;
|
|
|
|
if (IS.isMemOp() && LSU.isPending(IR))
|
|
MemDeps.emplace_back(IR);
|
|
|
|
if (IS.isPending())
|
|
RegDeps.emplace_back(IR);
|
|
}
|
|
}
|
|
|
|
void Scheduler::cycleEvent(SmallVectorImpl<ResourceRef> &Freed,
|
|
SmallVectorImpl<InstRef> &Executed,
|
|
SmallVectorImpl<InstRef> &Pending,
|
|
SmallVectorImpl<InstRef> &Ready) {
|
|
LSU.cycleEvent();
|
|
|
|
// Release consumed resources.
|
|
Resources->cycleEvent(Freed);
|
|
|
|
for (InstRef &IR : IssuedSet)
|
|
IR.getInstruction()->cycleEvent();
|
|
updateIssuedSet(Executed);
|
|
|
|
for (InstRef &IR : PendingSet)
|
|
IR.getInstruction()->cycleEvent();
|
|
|
|
for (InstRef &IR : WaitSet)
|
|
IR.getInstruction()->cycleEvent();
|
|
|
|
promoteToPendingSet(Pending);
|
|
promoteToReadySet(Ready);
|
|
|
|
NumDispatchedToThePendingSet = 0;
|
|
BusyResourceUnits = 0;
|
|
}
|
|
|
|
bool Scheduler::mustIssueImmediately(const InstRef &IR) const {
|
|
const InstrDesc &Desc = IR.getInstruction()->getDesc();
|
|
if (Desc.isZeroLatency())
|
|
return true;
|
|
// Instructions that use an in-order dispatch/issue processor resource must be
|
|
// issued immediately to the pipeline(s). Any other in-order buffered
|
|
// resources (i.e. BufferSize=1) is consumed.
|
|
return Desc.MustIssueImmediately;
|
|
}
|
|
|
|
bool Scheduler::dispatch(InstRef &IR) {
|
|
Instruction &IS = *IR.getInstruction();
|
|
Resources->reserveBuffers(IS.getUsedBuffers());
|
|
|
|
// If necessary, reserve queue entries in the load-store unit (LSU).
|
|
if (IS.isMemOp())
|
|
IS.setLSUTokenID(LSU.dispatch(IR));
|
|
|
|
if (IS.isDispatched() || (IS.isMemOp() && LSU.isWaiting(IR))) {
|
|
LLVM_DEBUG(dbgs() << "[SCHEDULER] Adding #" << IR << " to the WaitSet\n");
|
|
WaitSet.push_back(IR);
|
|
return false;
|
|
}
|
|
|
|
if (IS.isPending() || (IS.isMemOp() && LSU.isPending(IR))) {
|
|
LLVM_DEBUG(dbgs() << "[SCHEDULER] Adding #" << IR
|
|
<< " to the PendingSet\n");
|
|
PendingSet.push_back(IR);
|
|
++NumDispatchedToThePendingSet;
|
|
return false;
|
|
}
|
|
|
|
assert(IS.isReady() && (!IS.isMemOp() || LSU.isReady(IR)) &&
|
|
"Unexpected internal state found!");
|
|
// Don't add a zero-latency instruction to the Ready queue.
|
|
// A zero-latency instruction doesn't consume any scheduler resources. That is
|
|
// because it doesn't need to be executed, and it is often removed at register
|
|
// renaming stage. For example, register-register moves are often optimized at
|
|
// register renaming stage by simply updating register aliases. On some
|
|
// targets, zero-idiom instructions (for example: a xor that clears the value
|
|
// of a register) are treated specially, and are often eliminated at register
|
|
// renaming stage.
|
|
if (!mustIssueImmediately(IR)) {
|
|
LLVM_DEBUG(dbgs() << "[SCHEDULER] Adding #" << IR << " to the ReadySet\n");
|
|
ReadySet.push_back(IR);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
} // namespace mca
|
|
} // namespace llvm
|