llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp

770 lines
24 KiB
C++

//===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//===----------------------------------------------------------------------===//
//
/// \file
///
/// This file contains definition for AMDGPU ISA disassembler
//
//===----------------------------------------------------------------------===//
// ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
#include "Disassembler/AMDGPUDisassembler.h"
#include "AMDGPU.h"
#include "AMDGPURegisterInfo.h"
#include "SIDefines.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm-c/Disassembler.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixedLenDisassembler.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <tuple>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "amdgpu-disassembler"
using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
inline static MCDisassembler::DecodeStatus
addOperand(MCInst &Inst, const MCOperand& Opnd) {
Inst.addOperand(Opnd);
return Opnd.isValid() ?
MCDisassembler::Success :
MCDisassembler::SoftFail;
}
static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
uint16_t NameIdx) {
int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
if (OpIdx != -1) {
auto I = MI.begin();
std::advance(I, OpIdx);
MI.insert(I, Op);
}
return OpIdx;
}
static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
uint64_t Addr, const void *Decoder) {
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
APInt SignedOffset(18, Imm * 4, true);
int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2))
return MCDisassembler::Success;
return addOperand(Inst, MCOperand::createImm(Imm));
}
#define DECODE_OPERAND(StaticDecoderName, DecoderName) \
static DecodeStatus StaticDecoderName(MCInst &Inst, \
unsigned Imm, \
uint64_t /*Addr*/, \
const void *Decoder) { \
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); \
return addOperand(Inst, DAsm->DecoderName(Imm)); \
}
#define DECODE_OPERAND_REG(RegClass) \
DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass)
DECODE_OPERAND_REG(VGPR_32)
DECODE_OPERAND_REG(VS_32)
DECODE_OPERAND_REG(VS_64)
DECODE_OPERAND_REG(VS_128)
DECODE_OPERAND_REG(VReg_64)
DECODE_OPERAND_REG(VReg_96)
DECODE_OPERAND_REG(VReg_128)
DECODE_OPERAND_REG(SReg_32)
DECODE_OPERAND_REG(SReg_32_XM0_XEXEC)
DECODE_OPERAND_REG(SReg_32_XEXEC_HI)
DECODE_OPERAND_REG(SReg_64)
DECODE_OPERAND_REG(SReg_64_XEXEC)
DECODE_OPERAND_REG(SReg_128)
DECODE_OPERAND_REG(SReg_256)
DECODE_OPERAND_REG(SReg_512)
static DecodeStatus decodeOperand_VSrc16(MCInst &Inst,
unsigned Imm,
uint64_t Addr,
const void *Decoder) {
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
}
static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst,
unsigned Imm,
uint64_t Addr,
const void *Decoder) {
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm));
}
#define DECODE_SDWA(DecName) \
DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
DECODE_SDWA(Src32)
DECODE_SDWA(Src16)
DECODE_SDWA(VopcDst)
#include "AMDGPUGenDisassemblerTables.inc"
//===----------------------------------------------------------------------===//
//
//===----------------------------------------------------------------------===//
template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
assert(Bytes.size() >= sizeof(T));
const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
Bytes = Bytes.slice(sizeof(T));
return Res;
}
DecodeStatus AMDGPUDisassembler::tryDecodeInst(const uint8_t* Table,
MCInst &MI,
uint64_t Inst,
uint64_t Address) const {
assert(MI.getOpcode() == 0);
assert(MI.getNumOperands() == 0);
MCInst TmpInst;
HasLiteral = false;
const auto SavedBytes = Bytes;
if (decodeInstruction(Table, TmpInst, Inst, Address, this, STI)) {
MI = TmpInst;
return MCDisassembler::Success;
}
Bytes = SavedBytes;
return MCDisassembler::Fail;
}
DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
ArrayRef<uint8_t> Bytes_,
uint64_t Address,
raw_ostream &WS,
raw_ostream &CS) const {
CommentStream = &CS;
bool IsSDWA = false;
// ToDo: AMDGPUDisassembler supports only VI ISA.
if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding])
report_fatal_error("Disassembly not yet supported for subtarget");
const unsigned MaxInstBytesNum = (std::min)((size_t)8, Bytes_.size());
Bytes = Bytes_.slice(0, MaxInstBytesNum);
DecodeStatus Res = MCDisassembler::Fail;
do {
// ToDo: better to switch encoding length using some bit predicate
// but it is unknown yet, so try all we can
// Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
// encodings
if (Bytes.size() >= 8) {
const uint64_t QW = eatBytes<uint64_t>(Bytes);
Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address);
if (Res) break;
Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address);
if (Res) { IsSDWA = true; break; }
Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address);
if (Res) { IsSDWA = true; break; }
}
// Reinitialize Bytes as DPP64 could have eaten too much
Bytes = Bytes_.slice(0, MaxInstBytesNum);
// Try decode 32-bit instruction
if (Bytes.size() < 4) break;
const uint32_t DW = eatBytes<uint32_t>(Bytes);
Res = tryDecodeInst(DecoderTableVI32, MI, DW, Address);
if (Res) break;
Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address);
if (Res) break;
Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address);
if (Res) break;
if (Bytes.size() < 4) break;
const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
Res = tryDecodeInst(DecoderTableVI64, MI, QW, Address);
if (Res) break;
Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address);
if (Res) break;
Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address);
} while (false);
if (Res && (MI.getOpcode() == AMDGPU::V_MAC_F32_e64_vi ||
MI.getOpcode() == AMDGPU::V_MAC_F32_e64_si ||
MI.getOpcode() == AMDGPU::V_MAC_F16_e64_vi)) {
// Insert dummy unused src2_modifiers.
insertNamedMCOperand(MI, MCOperand::createImm(0),
AMDGPU::OpName::src2_modifiers);
}
if (Res && IsSDWA)
Res = convertSDWAInst(MI);
Size = Res ? (MaxInstBytesNum - Bytes.size()) : 0;
return Res;
}
DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
if (STI.getFeatureBits()[AMDGPU::FeatureGFX9]) {
if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst) != -1)
// VOPC - insert clamp
insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
} else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
if (SDst != -1) {
// VOPC - insert VCC register as sdst
insertNamedMCOperand(MI, MCOperand::createReg(AMDGPU::VCC),
AMDGPU::OpName::sdst);
} else {
// VOP1/2 - insert omod if present in instruction
insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
}
}
return MCDisassembler::Success;
}
const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
return getContext().getRegisterInfo()->
getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
}
inline
MCOperand AMDGPUDisassembler::errOperand(unsigned V,
const Twine& ErrMsg) const {
*CommentStream << "Error: " + ErrMsg;
// ToDo: add support for error operands to MCInst.h
// return MCOperand::createError(V);
return MCOperand();
}
inline
MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
return MCOperand::createReg(RegId);
}
inline
MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
unsigned Val) const {
const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
if (Val >= RegCl.getNumRegs())
return errOperand(Val, Twine(getRegClassName(RegClassID)) +
": unknown register " + Twine(Val));
return createRegOperand(RegCl.getRegister(Val));
}
inline
MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
unsigned Val) const {
// ToDo: SI/CI have 104 SGPRs, VI - 102
// Valery: here we accepting as much as we can, let assembler sort it out
int shift = 0;
switch (SRegClassID) {
case AMDGPU::SGPR_32RegClassID:
case AMDGPU::TTMP_32RegClassID:
break;
case AMDGPU::SGPR_64RegClassID:
case AMDGPU::TTMP_64RegClassID:
shift = 1;
break;
case AMDGPU::SGPR_128RegClassID:
case AMDGPU::TTMP_128RegClassID:
// ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
// this bundle?
case AMDGPU::SReg_256RegClassID:
// ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
// this bundle?
case AMDGPU::SReg_512RegClassID:
shift = 2;
break;
// ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
// this bundle?
default:
llvm_unreachable("unhandled register class");
}
if (Val % (1 << shift)) {
*CommentStream << "Warning: " << getRegClassName(SRegClassID)
<< ": scalar reg isn't aligned " << Val;
}
return createRegOperand(SRegClassID, Val >> shift);
}
MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const {
return decodeSrcOp(OPW32, Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const {
return decodeSrcOp(OPW64, Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const {
return decodeSrcOp(OPW128, Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const {
return decodeSrcOp(OPW16, Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const {
return decodeSrcOp(OPWV216, Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const {
// Some instructions have operand restrictions beyond what the encoding
// allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra
// high bit.
Val &= 255;
return createRegOperand(AMDGPU::VGPR_32RegClassID, Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const {
return createRegOperand(AMDGPU::VReg_64RegClassID, Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const {
return createRegOperand(AMDGPU::VReg_96RegClassID, Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const {
return createRegOperand(AMDGPU::VReg_128RegClassID, Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const {
// table-gen generated disassembler doesn't care about operand types
// leaving only registry class so SSrc_32 operand turns into SReg_32
// and therefore we accept immediates and literals here as well
return decodeSrcOp(OPW32, Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC(
unsigned Val) const {
// SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI
return decodeOperand_SReg_32(Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI(
unsigned Val) const {
// SReg_32_XM0 is SReg_32 without EXEC_HI
return decodeOperand_SReg_32(Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const {
return decodeSrcOp(OPW64, Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const {
return decodeSrcOp(OPW64, Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const {
return decodeSrcOp(OPW128, Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const {
return createSRegOperand(AMDGPU::SReg_256RegClassID, Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const {
return createSRegOperand(AMDGPU::SReg_512RegClassID, Val);
}
MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
// For now all literal constants are supposed to be unsigned integer
// ToDo: deal with signed/unsigned 64-bit integer constants
// ToDo: deal with float/double constants
if (!HasLiteral) {
if (Bytes.size() < 4) {
return errOperand(0, "cannot read literal, inst bytes left " +
Twine(Bytes.size()));
}
HasLiteral = true;
Literal = eatBytes<uint32_t>(Bytes);
}
return MCOperand::createImm(Literal);
}
MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
using namespace AMDGPU::EncValues;
assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
(static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
(INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
// Cast prevents negative overflow.
}
static int64_t getInlineImmVal32(unsigned Imm) {
switch (Imm) {
case 240:
return FloatToBits(0.5f);
case 241:
return FloatToBits(-0.5f);
case 242:
return FloatToBits(1.0f);
case 243:
return FloatToBits(-1.0f);
case 244:
return FloatToBits(2.0f);
case 245:
return FloatToBits(-2.0f);
case 246:
return FloatToBits(4.0f);
case 247:
return FloatToBits(-4.0f);
case 248: // 1 / (2 * PI)
return 0x3e22f983;
default:
llvm_unreachable("invalid fp inline imm");
}
}
static int64_t getInlineImmVal64(unsigned Imm) {
switch (Imm) {
case 240:
return DoubleToBits(0.5);
case 241:
return DoubleToBits(-0.5);
case 242:
return DoubleToBits(1.0);
case 243:
return DoubleToBits(-1.0);
case 244:
return DoubleToBits(2.0);
case 245:
return DoubleToBits(-2.0);
case 246:
return DoubleToBits(4.0);
case 247:
return DoubleToBits(-4.0);
case 248: // 1 / (2 * PI)
return 0x3fc45f306dc9c882;
default:
llvm_unreachable("invalid fp inline imm");
}
}
static int64_t getInlineImmVal16(unsigned Imm) {
switch (Imm) {
case 240:
return 0x3800;
case 241:
return 0xB800;
case 242:
return 0x3C00;
case 243:
return 0xBC00;
case 244:
return 0x4000;
case 245:
return 0xC000;
case 246:
return 0x4400;
case 247:
return 0xC400;
case 248: // 1 / (2 * PI)
return 0x3118;
default:
llvm_unreachable("invalid fp inline imm");
}
}
MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) {
assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
&& Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
// ToDo: case 248: 1/(2*PI) - is allowed only on VI
switch (Width) {
case OPW32:
return MCOperand::createImm(getInlineImmVal32(Imm));
case OPW64:
return MCOperand::createImm(getInlineImmVal64(Imm));
case OPW16:
case OPWV216:
return MCOperand::createImm(getInlineImmVal16(Imm));
default:
llvm_unreachable("implement me");
}
}
unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
using namespace AMDGPU;
assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
switch (Width) {
default: // fall
case OPW32:
case OPW16:
case OPWV216:
return VGPR_32RegClassID;
case OPW64: return VReg_64RegClassID;
case OPW128: return VReg_128RegClassID;
}
}
unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
using namespace AMDGPU;
assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
switch (Width) {
default: // fall
case OPW32:
case OPW16:
case OPWV216:
return SGPR_32RegClassID;
case OPW64: return SGPR_64RegClassID;
case OPW128: return SGPR_128RegClassID;
}
}
unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
using namespace AMDGPU;
assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
switch (Width) {
default: // fall
case OPW32:
case OPW16:
case OPWV216:
return TTMP_32RegClassID;
case OPW64: return TTMP_64RegClassID;
case OPW128: return TTMP_128RegClassID;
}
}
MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val) const {
using namespace AMDGPU::EncValues;
assert(Val < 512); // enum9
if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
return createRegOperand(getVgprClassId(Width), Val - VGPR_MIN);
}
if (Val <= SGPR_MAX) {
assert(SGPR_MIN == 0); // "SGPR_MIN <= Val" is always true and causes compilation warning.
return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
}
if (TTMP_MIN <= Val && Val <= TTMP_MAX) {
return createSRegOperand(getTtmpClassId(Width), Val - TTMP_MIN);
}
if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
return decodeIntImmed(Val);
if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
return decodeFPImmed(Width, Val);
if (Val == LITERAL_CONST)
return decodeLiteralConstant();
switch (Width) {
case OPW32:
case OPW16:
case OPWV216:
return decodeSpecialReg32(Val);
case OPW64:
return decodeSpecialReg64(Val);
default:
llvm_unreachable("unexpected immediate type");
}
}
MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
using namespace AMDGPU;
switch (Val) {
case 102: return createRegOperand(getMCReg(FLAT_SCR_LO, STI));
case 103: return createRegOperand(getMCReg(FLAT_SCR_HI, STI));
// ToDo: no support for xnack_mask_lo/_hi register
case 104:
case 105: break;
case 106: return createRegOperand(VCC_LO);
case 107: return createRegOperand(VCC_HI);
case 108: return createRegOperand(TBA_LO);
case 109: return createRegOperand(TBA_HI);
case 110: return createRegOperand(TMA_LO);
case 111: return createRegOperand(TMA_HI);
case 124: return createRegOperand(M0);
case 126: return createRegOperand(EXEC_LO);
case 127: return createRegOperand(EXEC_HI);
case 235: return createRegOperand(SRC_SHARED_BASE);
case 236: return createRegOperand(SRC_SHARED_LIMIT);
case 237: return createRegOperand(SRC_PRIVATE_BASE);
case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
// TODO: SRC_POPS_EXITING_WAVE_ID
// ToDo: no support for vccz register
case 251: break;
// ToDo: no support for execz register
case 252: break;
case 253: return createRegOperand(SCC);
default: break;
}
return errOperand(Val, "unknown operand encoding " + Twine(Val));
}
MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
using namespace AMDGPU;
switch (Val) {
case 102: return createRegOperand(getMCReg(FLAT_SCR, STI));
case 106: return createRegOperand(VCC);
case 108: return createRegOperand(TBA);
case 110: return createRegOperand(TMA);
case 126: return createRegOperand(EXEC);
default: break;
}
return errOperand(Val, "unknown operand encoding " + Twine(Val));
}
MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
unsigned Val) const {
using namespace AMDGPU::SDWA;
if (STI.getFeatureBits()[AMDGPU::FeatureGFX9]) {
// XXX: static_cast<int> is needed to avoid stupid warning:
// compare with unsigned is always true
if (SDWA9EncValues::SRC_VGPR_MIN <= static_cast<int>(Val) &&
Val <= SDWA9EncValues::SRC_VGPR_MAX) {
return createRegOperand(getVgprClassId(Width),
Val - SDWA9EncValues::SRC_VGPR_MIN);
}
if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
Val <= SDWA9EncValues::SRC_SGPR_MAX) {
return createSRegOperand(getSgprClassId(Width),
Val - SDWA9EncValues::SRC_SGPR_MIN);
}
return decodeSpecialReg32(Val - SDWA9EncValues::SRC_SGPR_MIN);
} else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
return createRegOperand(getVgprClassId(Width), Val);
}
llvm_unreachable("unsupported target");
}
MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
return decodeSDWASrc(OPW16, Val);
}
MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
return decodeSDWASrc(OPW32, Val);
}
MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
using namespace AMDGPU::SDWA;
assert(STI.getFeatureBits()[AMDGPU::FeatureGFX9] &&
"SDWAVopcDst should be present only on GFX9");
if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
if (Val > AMDGPU::EncValues::SGPR_MAX) {
return decodeSpecialReg64(Val);
} else {
return createSRegOperand(getSgprClassId(OPW64), Val);
}
} else {
return createRegOperand(AMDGPU::VCC);
}
}
//===----------------------------------------------------------------------===//
// AMDGPUSymbolizer
//===----------------------------------------------------------------------===//
// Try to find symbol name for specified label
bool AMDGPUSymbolizer::tryAddingSymbolicOperand(MCInst &Inst,
raw_ostream &/*cStream*/, int64_t Value,
uint64_t /*Address*/, bool IsBranch,
uint64_t /*Offset*/, uint64_t /*InstSize*/) {
using SymbolInfoTy = std::tuple<uint64_t, StringRef, uint8_t>;
using SectionSymbolsTy = std::vector<SymbolInfoTy>;
if (!IsBranch) {
return false;
}
auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
auto Result = std::find_if(Symbols->begin(), Symbols->end(),
[Value](const SymbolInfoTy& Val) {
return std::get<0>(Val) == static_cast<uint64_t>(Value)
&& std::get<2>(Val) == ELF::STT_NOTYPE;
});
if (Result != Symbols->end()) {
auto *Sym = Ctx.getOrCreateSymbol(std::get<1>(*Result));
const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
Inst.addOperand(MCOperand::createExpr(Add));
return true;
}
return false;
}
void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
int64_t Value,
uint64_t Address) {
llvm_unreachable("unimplemented");
}
//===----------------------------------------------------------------------===//
// Initialization
//===----------------------------------------------------------------------===//
static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
LLVMOpInfoCallback /*GetOpInfo*/,
LLVMSymbolLookupCallback /*SymbolLookUp*/,
void *DisInfo,
MCContext *Ctx,
std::unique_ptr<MCRelocationInfo> &&RelInfo) {
return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
}
static MCDisassembler *createAMDGPUDisassembler(const Target &T,
const MCSubtargetInfo &STI,
MCContext &Ctx) {
return new AMDGPUDisassembler(STI, Ctx);
}
extern "C" void LLVMInitializeAMDGPUDisassembler() {
TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
createAMDGPUDisassembler);
TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
createAMDGPUSymbolizer);
}