forked from OSchip/llvm-project
578 lines
22 KiB
C++
578 lines
22 KiB
C++
//===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//===----------------------------------------------------------------------===/
|
|
//
|
|
// This file implements C++ template argument deduction.
|
|
//
|
|
//===----------------------------------------------------------------------===/
|
|
|
|
#include "Sema.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/StmtVisitor.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/Parse/DeclSpec.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
using namespace clang;
|
|
|
|
static bool
|
|
DeduceTemplateArguments(ASTContext &Context, const TemplateArgument &Param,
|
|
const TemplateArgument &Arg,
|
|
llvm::SmallVectorImpl<TemplateArgument> &Deduced);
|
|
|
|
/// \brief If the given expression is of a form that permits the deduction
|
|
/// of a non-type template parameter, return the declaration of that
|
|
/// non-type template parameter.
|
|
static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
|
|
if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
|
|
E = IC->getSubExpr();
|
|
|
|
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
|
|
return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// \brief Deduce the value of the given non-type template parameter
|
|
/// from the given constant.
|
|
///
|
|
/// \returns true if deduction succeeded, false otherwise.
|
|
static bool DeduceNonTypeTemplateArgument(ASTContext &Context,
|
|
NonTypeTemplateParmDecl *NTTP,
|
|
llvm::APInt Value,
|
|
llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
|
|
assert(NTTP->getDepth() == 0 &&
|
|
"Cannot deduce non-type template argument with depth > 0");
|
|
|
|
if (Deduced[NTTP->getIndex()].isNull()) {
|
|
Deduced[NTTP->getIndex()] = TemplateArgument(SourceLocation(),
|
|
llvm::APSInt(Value),
|
|
NTTP->getType());
|
|
return true;
|
|
}
|
|
|
|
if (Deduced[NTTP->getIndex()].getKind() != TemplateArgument::Integral)
|
|
return false;
|
|
|
|
// If the template argument was previously deduced to a negative value,
|
|
// then our deduction fails.
|
|
const llvm::APSInt *PrevValuePtr = Deduced[NTTP->getIndex()].getAsIntegral();
|
|
assert(PrevValuePtr && "Not an integral template argument?");
|
|
if (PrevValuePtr->isSigned() && PrevValuePtr->isNegative())
|
|
return false;
|
|
|
|
llvm::APInt PrevValue = *PrevValuePtr;
|
|
if (Value.getBitWidth() > PrevValue.getBitWidth())
|
|
PrevValue.zext(Value.getBitWidth());
|
|
else if (Value.getBitWidth() < PrevValue.getBitWidth())
|
|
Value.zext(PrevValue.getBitWidth());
|
|
return Value == PrevValue;
|
|
}
|
|
|
|
/// \brief Deduce the value of the given non-type template parameter
|
|
/// from the given type- or value-dependent expression.
|
|
///
|
|
/// \returns true if deduction succeeded, false otherwise.
|
|
|
|
static bool DeduceNonTypeTemplateArgument(ASTContext &Context,
|
|
NonTypeTemplateParmDecl *NTTP,
|
|
Expr *Value,
|
|
llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
|
|
assert(NTTP->getDepth() == 0 &&
|
|
"Cannot deduce non-type template argument with depth > 0");
|
|
assert((Value->isTypeDependent() || Value->isValueDependent()) &&
|
|
"Expression template argument must be type- or value-dependent.");
|
|
|
|
if (Deduced[NTTP->getIndex()].isNull()) {
|
|
// FIXME: Clone the Value?
|
|
Deduced[NTTP->getIndex()] = TemplateArgument(Value);
|
|
return true;
|
|
}
|
|
|
|
if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Integral) {
|
|
// Okay, we deduced a constant in one case and a dependent expression
|
|
// in another case. FIXME: Later, we will check that instantiating the
|
|
// dependent expression gives us the constant value.
|
|
return true;
|
|
}
|
|
|
|
// FIXME: Compare the expressions for equality!
|
|
return true;
|
|
}
|
|
|
|
static bool DeduceTemplateArguments(ASTContext &Context,
|
|
TemplateName Param,
|
|
TemplateName Arg,
|
|
llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
|
|
// FIXME: Implement template argument deduction for template
|
|
// template parameters.
|
|
|
|
TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
|
|
TemplateDecl *ArgDecl = Arg.getAsTemplateDecl();
|
|
|
|
if (!ParamDecl || !ArgDecl)
|
|
return false;
|
|
|
|
ParamDecl = cast<TemplateDecl>(Context.getCanonicalDecl(ParamDecl));
|
|
ArgDecl = cast<TemplateDecl>(Context.getCanonicalDecl(ArgDecl));
|
|
return ParamDecl == ArgDecl;
|
|
}
|
|
|
|
static bool DeduceTemplateArguments(ASTContext &Context, QualType Param,
|
|
QualType Arg,
|
|
llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
|
|
// We only want to look at the canonical types, since typedefs and
|
|
// sugar are not part of template argument deduction.
|
|
Param = Context.getCanonicalType(Param);
|
|
Arg = Context.getCanonicalType(Arg);
|
|
|
|
// If the parameter type is not dependent, just compare the types
|
|
// directly.
|
|
if (!Param->isDependentType())
|
|
return Param == Arg;
|
|
|
|
// C++ [temp.deduct.type]p9:
|
|
//
|
|
// A template type argument T, a template template argument TT or a
|
|
// template non-type argument i can be deduced if P and A have one of
|
|
// the following forms:
|
|
//
|
|
// T
|
|
// cv-list T
|
|
if (const TemplateTypeParmType *TemplateTypeParm
|
|
= Param->getAsTemplateTypeParmType()) {
|
|
// The argument type can not be less qualified than the parameter
|
|
// type.
|
|
if (Param.isMoreQualifiedThan(Arg))
|
|
return false;
|
|
|
|
assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
|
|
|
|
unsigned Quals = Arg.getCVRQualifiers() & ~Param.getCVRQualifiers();
|
|
QualType DeducedType = Arg.getQualifiedType(Quals);
|
|
unsigned Index = TemplateTypeParm->getIndex();
|
|
|
|
if (Deduced[Index].isNull())
|
|
Deduced[Index] = TemplateArgument(SourceLocation(), DeducedType);
|
|
else {
|
|
// C++ [temp.deduct.type]p2:
|
|
// [...] If type deduction cannot be done for any P/A pair, or if for
|
|
// any pair the deduction leads to more than one possible set of
|
|
// deduced values, or if different pairs yield different deduced
|
|
// values, or if any template argument remains neither deduced nor
|
|
// explicitly specified, template argument deduction fails.
|
|
if (Deduced[Index].getAsType() != DeducedType)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
|
|
return false;
|
|
|
|
switch (Param->getTypeClass()) {
|
|
// No deduction possible for these types
|
|
case Type::Builtin:
|
|
return false;
|
|
|
|
|
|
// T *
|
|
case Type::Pointer: {
|
|
const PointerType *PointerArg = Arg->getAsPointerType();
|
|
if (!PointerArg)
|
|
return false;
|
|
|
|
return DeduceTemplateArguments(Context,
|
|
cast<PointerType>(Param)->getPointeeType(),
|
|
PointerArg->getPointeeType(),
|
|
Deduced);
|
|
}
|
|
|
|
// T &
|
|
case Type::LValueReference: {
|
|
const LValueReferenceType *ReferenceArg = Arg->getAsLValueReferenceType();
|
|
if (!ReferenceArg)
|
|
return false;
|
|
|
|
return DeduceTemplateArguments(Context,
|
|
cast<LValueReferenceType>(Param)->getPointeeType(),
|
|
ReferenceArg->getPointeeType(),
|
|
Deduced);
|
|
}
|
|
|
|
// T && [C++0x]
|
|
case Type::RValueReference: {
|
|
const RValueReferenceType *ReferenceArg = Arg->getAsRValueReferenceType();
|
|
if (!ReferenceArg)
|
|
return false;
|
|
|
|
return DeduceTemplateArguments(Context,
|
|
cast<RValueReferenceType>(Param)->getPointeeType(),
|
|
ReferenceArg->getPointeeType(),
|
|
Deduced);
|
|
}
|
|
|
|
// T [] (implied, but not stated explicitly)
|
|
case Type::IncompleteArray: {
|
|
const IncompleteArrayType *IncompleteArrayArg =
|
|
Context.getAsIncompleteArrayType(Arg);
|
|
if (!IncompleteArrayArg)
|
|
return false;
|
|
|
|
return DeduceTemplateArguments(Context,
|
|
Context.getAsIncompleteArrayType(Param)->getElementType(),
|
|
IncompleteArrayArg->getElementType(),
|
|
Deduced);
|
|
}
|
|
|
|
// T [integer-constant]
|
|
case Type::ConstantArray: {
|
|
const ConstantArrayType *ConstantArrayArg =
|
|
Context.getAsConstantArrayType(Arg);
|
|
if (!ConstantArrayArg)
|
|
return false;
|
|
|
|
const ConstantArrayType *ConstantArrayParm =
|
|
Context.getAsConstantArrayType(Param);
|
|
if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
|
|
return false;
|
|
|
|
return DeduceTemplateArguments(Context,
|
|
ConstantArrayParm->getElementType(),
|
|
ConstantArrayArg->getElementType(),
|
|
Deduced);
|
|
}
|
|
|
|
// type [i]
|
|
case Type::DependentSizedArray: {
|
|
const ArrayType *ArrayArg = dyn_cast<ArrayType>(Arg);
|
|
if (!ArrayArg)
|
|
return false;
|
|
|
|
// Check the element type of the arrays
|
|
const DependentSizedArrayType *DependentArrayParm
|
|
= cast<DependentSizedArrayType>(Param);
|
|
if (!DeduceTemplateArguments(Context,
|
|
DependentArrayParm->getElementType(),
|
|
ArrayArg->getElementType(),
|
|
Deduced))
|
|
return false;
|
|
|
|
// Determine the array bound is something we can deduce.
|
|
NonTypeTemplateParmDecl *NTTP
|
|
= getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
|
|
if (!NTTP)
|
|
return true;
|
|
|
|
// We can perform template argument deduction for the given non-type
|
|
// template parameter.
|
|
assert(NTTP->getDepth() == 0 &&
|
|
"Cannot deduce non-type template argument at depth > 0");
|
|
if (const ConstantArrayType *ConstantArrayArg
|
|
= dyn_cast<ConstantArrayType>(ArrayArg))
|
|
return DeduceNonTypeTemplateArgument(Context, NTTP,
|
|
ConstantArrayArg->getSize(),
|
|
Deduced);
|
|
if (const DependentSizedArrayType *DependentArrayArg
|
|
= dyn_cast<DependentSizedArrayType>(ArrayArg))
|
|
return DeduceNonTypeTemplateArgument(Context, NTTP,
|
|
DependentArrayArg->getSizeExpr(),
|
|
Deduced);
|
|
|
|
// Incomplete type does not match a dependently-sized array type
|
|
return false;
|
|
}
|
|
|
|
// type(*)(T)
|
|
// T(*)()
|
|
// T(*)(T)
|
|
case Type::FunctionProto: {
|
|
const FunctionProtoType *FunctionProtoArg =
|
|
dyn_cast<FunctionProtoType>(Arg);
|
|
if (!FunctionProtoArg)
|
|
return false;
|
|
|
|
const FunctionProtoType *FunctionProtoParam =
|
|
cast<FunctionProtoType>(Param);
|
|
|
|
if (FunctionProtoParam->getTypeQuals() !=
|
|
FunctionProtoArg->getTypeQuals())
|
|
return false;
|
|
|
|
if (FunctionProtoParam->getNumArgs() != FunctionProtoArg->getNumArgs())
|
|
return false;
|
|
|
|
if (FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
|
|
return false;
|
|
|
|
// Check return types.
|
|
if (!DeduceTemplateArguments(Context,
|
|
FunctionProtoParam->getResultType(),
|
|
FunctionProtoArg->getResultType(),
|
|
Deduced))
|
|
return false;
|
|
|
|
for (unsigned I = 0, N = FunctionProtoParam->getNumArgs(); I != N; ++I) {
|
|
// Check argument types.
|
|
if (!DeduceTemplateArguments(Context,
|
|
FunctionProtoParam->getArgType(I),
|
|
FunctionProtoArg->getArgType(I),
|
|
Deduced))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// template-name<T> (wheretemplate-name refers to a class template)
|
|
// template-name<i>
|
|
// TT<T> (TODO)
|
|
// TT<i> (TODO)
|
|
// TT<> (TODO)
|
|
case Type::TemplateSpecialization: {
|
|
const TemplateSpecializationType *SpecParam
|
|
= cast<TemplateSpecializationType>(Param);
|
|
|
|
// Check whether the template argument is a dependent template-id.
|
|
// FIXME: This is untested code; it can be tested when we implement
|
|
// partial ordering of class template partial specializations.
|
|
if (const TemplateSpecializationType *SpecArg
|
|
= dyn_cast<TemplateSpecializationType>(Arg)) {
|
|
// Perform template argument deduction for the template name.
|
|
if (!DeduceTemplateArguments(Context,
|
|
SpecParam->getTemplateName(),
|
|
SpecArg->getTemplateName(),
|
|
Deduced))
|
|
return false;
|
|
|
|
unsigned NumArgs = SpecParam->getNumArgs();
|
|
|
|
// FIXME: When one of the template-names refers to a
|
|
// declaration with default template arguments, do we need to
|
|
// fill in those default template arguments here? Most likely,
|
|
// the answer is "yes", but I don't see any references. This
|
|
// issue may be resolved elsewhere, because we may want to
|
|
// instantiate default template arguments when
|
|
if (SpecArg->getNumArgs() != NumArgs)
|
|
return false;
|
|
|
|
// Perform template argument deduction on each template
|
|
// argument.
|
|
for (unsigned I = 0; I != NumArgs; ++I)
|
|
if (!DeduceTemplateArguments(Context,
|
|
SpecParam->getArg(I),
|
|
SpecArg->getArg(I),
|
|
Deduced))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// If the argument type is a class template specialization, we
|
|
// perform template argument deduction using its template
|
|
// arguments.
|
|
const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
|
|
if (!RecordArg)
|
|
return false;
|
|
|
|
ClassTemplateSpecializationDecl *SpecArg
|
|
= dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
|
|
if (!SpecArg)
|
|
return false;
|
|
|
|
// Perform template argument deduction for the template name.
|
|
if (!DeduceTemplateArguments(Context,
|
|
SpecParam->getTemplateName(),
|
|
TemplateName(SpecArg->getSpecializedTemplate()),
|
|
Deduced))
|
|
return false;
|
|
|
|
// FIXME: Can the # of arguments in the parameter and the argument differ?
|
|
unsigned NumArgs = SpecParam->getNumArgs();
|
|
const TemplateArgumentList &ArgArgs = SpecArg->getTemplateArgs();
|
|
if (NumArgs != ArgArgs.size())
|
|
return false;
|
|
|
|
for (unsigned I = 0; I != NumArgs; ++I)
|
|
if (!DeduceTemplateArguments(Context,
|
|
SpecParam->getArg(I),
|
|
ArgArgs.get(I),
|
|
Deduced))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// T type::*
|
|
// T T::*
|
|
// T (type::*)()
|
|
// type (T::*)()
|
|
// type (type::*)(T)
|
|
// type (T::*)(T)
|
|
// T (type::*)(T)
|
|
// T (T::*)()
|
|
// T (T::*)(T)
|
|
case Type::MemberPointer: {
|
|
const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
|
|
const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
|
|
if (!MemPtrArg)
|
|
return false;
|
|
|
|
return DeduceTemplateArguments(Context,
|
|
MemPtrParam->getPointeeType(),
|
|
MemPtrArg->getPointeeType(),
|
|
Deduced) &&
|
|
DeduceTemplateArguments(Context,
|
|
QualType(MemPtrParam->getClass(), 0),
|
|
QualType(MemPtrArg->getClass(), 0),
|
|
Deduced);
|
|
}
|
|
|
|
case Type::TypeOfExpr:
|
|
case Type::TypeOf:
|
|
case Type::Typename:
|
|
// No template argument deduction for these types
|
|
return true;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// FIXME: Many more cases to go (to go).
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
DeduceTemplateArguments(ASTContext &Context, const TemplateArgument &Param,
|
|
const TemplateArgument &Arg,
|
|
llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
|
|
switch (Param.getKind()) {
|
|
case TemplateArgument::Null:
|
|
assert(false && "Null template argument in parameter list");
|
|
break;
|
|
|
|
case TemplateArgument::Type:
|
|
assert(Arg.getKind() == TemplateArgument::Type && "Type/value mismatch");
|
|
return DeduceTemplateArguments(Context, Param.getAsType(),
|
|
Arg.getAsType(), Deduced);
|
|
|
|
case TemplateArgument::Declaration:
|
|
// FIXME: Implement this check
|
|
assert(false && "Unimplemented template argument deduction case");
|
|
return false;
|
|
|
|
case TemplateArgument::Integral:
|
|
if (Arg.getKind() == TemplateArgument::Integral) {
|
|
// FIXME: Zero extension + sign checking here?
|
|
return *Param.getAsIntegral() == *Arg.getAsIntegral();
|
|
}
|
|
if (Arg.getKind() == TemplateArgument::Expression)
|
|
return false;
|
|
|
|
assert(false && "Type/value mismatch");
|
|
return false;
|
|
|
|
case TemplateArgument::Expression: {
|
|
if (NonTypeTemplateParmDecl *NTTP
|
|
= getDeducedParameterFromExpr(Param.getAsExpr())) {
|
|
if (Arg.getKind() == TemplateArgument::Integral)
|
|
// FIXME: Sign problems here
|
|
return DeduceNonTypeTemplateArgument(Context, NTTP,
|
|
*Arg.getAsIntegral(), Deduced);
|
|
if (Arg.getKind() == TemplateArgument::Expression)
|
|
return DeduceNonTypeTemplateArgument(Context, NTTP, Arg.getAsExpr(),
|
|
Deduced);
|
|
|
|
assert(false && "Type/value mismatch");
|
|
return false;
|
|
}
|
|
|
|
// Can't deduce anything, but that's okay.
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
DeduceTemplateArguments(ASTContext &Context,
|
|
const TemplateArgumentList &ParamList,
|
|
const TemplateArgumentList &ArgList,
|
|
llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
|
|
assert(ParamList.size() == ArgList.size());
|
|
for (unsigned I = 0, N = ParamList.size(); I != N; ++I) {
|
|
if (!DeduceTemplateArguments(Context, ParamList[I], ArgList[I], Deduced))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
TemplateArgumentList *
|
|
Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
|
|
const TemplateArgumentList &TemplateArgs) {
|
|
// Deduce the template arguments for the partial specialization
|
|
llvm::SmallVector<TemplateArgument, 4> Deduced;
|
|
Deduced.resize(Partial->getTemplateParameters()->size());
|
|
if (! ::DeduceTemplateArguments(Context, Partial->getTemplateArgs(),
|
|
TemplateArgs, Deduced))
|
|
return 0;
|
|
|
|
// FIXME: It isn't clear whether we want the diagnostic to point at
|
|
// the partial specialization itself or at the actual point of
|
|
// instantiation.
|
|
InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
|
|
Deduced.data(), Deduced.size());
|
|
if (Inst)
|
|
return 0;
|
|
|
|
// FIXME: Substitute the deduced template arguments into the template
|
|
// arguments of the class template partial specialization; the resulting
|
|
// template arguments should match TemplateArgs exactly.
|
|
|
|
for (unsigned I = 0, N = Deduced.size(); I != N; ++I) {
|
|
TemplateArgument &Arg = Deduced[I];
|
|
|
|
// FIXME: If this template argument was not deduced, but the corresponding
|
|
// template parameter has a default argument, instantiate the default
|
|
// argument.
|
|
if (Arg.isNull()) // FIXME: Result->Destroy(Context);
|
|
return 0;
|
|
|
|
if (Arg.getKind() == TemplateArgument::Integral) {
|
|
// FIXME: Instantiate the type, but we need some context!
|
|
const NonTypeTemplateParmDecl *Parm
|
|
= cast<NonTypeTemplateParmDecl>(Partial->getTemplateParameters()
|
|
->getParam(I));
|
|
// QualType T = InstantiateType(Parm->getType(), *Result,
|
|
// Parm->getLocation(), Parm->getDeclName());
|
|
// if (T.isNull()) // FIXME: Result->Destroy(Context);
|
|
// return 0;
|
|
QualType T = Parm->getType();
|
|
|
|
// FIXME: Make sure we didn't overflow our data type!
|
|
llvm::APSInt &Value = *Arg.getAsIntegral();
|
|
unsigned AllowedBits = Context.getTypeSize(T);
|
|
if (Value.getBitWidth() != AllowedBits)
|
|
Value.extOrTrunc(AllowedBits);
|
|
Value.setIsSigned(T->isSignedIntegerType());
|
|
Arg.setIntegralType(T);
|
|
}
|
|
}
|
|
|
|
// FIXME: This is terrible. DeduceTemplateArguments should use a
|
|
// TemplateArgumentListBuilder directly.
|
|
TemplateArgumentListBuilder Builder(Context);
|
|
for (unsigned I = 0, N = Deduced.size(); I != N; ++I)
|
|
Builder.push_back(Deduced[I]);
|
|
|
|
return new (Context) TemplateArgumentList(Context, Builder, /*CopyArgs=*/true,
|
|
/*FlattenArgs=*/true);
|
|
}
|