llvm-project/polly/lib/Support/VirtualInstruction.cpp

422 lines
14 KiB
C++

//===------ VirtualInstruction.cpp ------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Tools for determining which instructions are within a statement and the
// nature of their operands.
//
//===----------------------------------------------------------------------===//
#include "polly/Support/VirtualInstruction.h"
#include "polly/Support/SCEVValidator.h"
using namespace polly;
using namespace llvm;
VirtualUse VirtualUse::create(Scop *S, const Use &U, LoopInfo *LI,
bool Virtual) {
auto *UserBB = getUseBlock(U);
Loop *UserScope = LI->getLoopFor(UserBB);
Instruction *UI = dyn_cast<Instruction>(U.getUser());
ScopStmt *UserStmt = S->getStmtFor(UI);
// Uses by PHI nodes are always reading values written by other statements,
// except it is within a region statement.
if (PHINode *PHI = dyn_cast<PHINode>(UI)) {
// Handle PHI in exit block.
if (S->getRegion().getExit() == PHI->getParent())
return VirtualUse(UserStmt, U.get(), Inter, nullptr, nullptr);
if (UserStmt->getEntryBlock() != PHI->getParent())
return VirtualUse(UserStmt, U.get(), Intra, nullptr, nullptr);
// The MemoryAccess is expected to be set if @p Virtual is true.
MemoryAccess *IncomingMA = nullptr;
if (Virtual) {
if (const ScopArrayInfo *SAI =
S->getScopArrayInfoOrNull(PHI, MemoryKind::PHI)) {
IncomingMA = S->getPHIRead(SAI);
assert(IncomingMA->getStatement() == UserStmt);
}
}
return VirtualUse(UserStmt, U.get(), Inter, nullptr, IncomingMA);
}
return create(S, UserStmt, UserScope, U.get(), Virtual);
}
VirtualUse VirtualUse::create(Scop *S, ScopStmt *UserStmt, Loop *UserScope,
Value *Val, bool Virtual) {
assert(!isa<StoreInst>(Val) && "a StoreInst cannot be used");
if (isa<BasicBlock>(Val))
return VirtualUse(UserStmt, Val, Block, nullptr, nullptr);
if (isa<llvm::Constant>(Val) || isa<MetadataAsValue>(Val))
return VirtualUse(UserStmt, Val, Constant, nullptr, nullptr);
// Is the value synthesizable? If the user has been pruned
// (UserStmt == nullptr), it is either not used anywhere or is synthesizable.
// We assume synthesizable which practically should have the same effect.
auto *SE = S->getSE();
if (SE->isSCEVable(Val->getType())) {
auto *ScevExpr = SE->getSCEVAtScope(Val, UserScope);
if (!UserStmt || canSynthesize(Val, *UserStmt->getParent(), SE, UserScope))
return VirtualUse(UserStmt, Val, Synthesizable, ScevExpr, nullptr);
}
// FIXME: Inconsistency between lookupInvariantEquivClass and
// getRequiredInvariantLoads. Querying one of them should be enough.
auto &RIL = S->getRequiredInvariantLoads();
if (S->lookupInvariantEquivClass(Val) || RIL.count(dyn_cast<LoadInst>(Val)))
return VirtualUse(UserStmt, Val, Hoisted, nullptr, nullptr);
// ReadOnly uses may have MemoryAccesses that we want to associate with the
// use. This is why we look for a MemoryAccess here already.
MemoryAccess *InputMA = nullptr;
if (UserStmt && Virtual)
InputMA = UserStmt->lookupValueReadOf(Val);
// Uses are read-only if they have been defined before the SCoP, i.e., they
// cannot be written to inside the SCoP. Arguments are defined before any
// instructions, hence also before the SCoP. If the user has been pruned
// (UserStmt == nullptr) and is not SCEVable, assume it is read-only as it is
// neither an intra- nor an inter-use.
if (!UserStmt || isa<Argument>(Val))
return VirtualUse(UserStmt, Val, ReadOnly, nullptr, InputMA);
auto Inst = cast<Instruction>(Val);
if (!S->contains(Inst))
return VirtualUse(UserStmt, Val, ReadOnly, nullptr, InputMA);
// A use is inter-statement if either it is defined in another statement, or
// there is a MemoryAccess that reads its value that has been written by
// another statement.
if (InputMA || (!Virtual && UserStmt != S->getStmtFor(Inst)))
return VirtualUse(UserStmt, Val, Inter, nullptr, InputMA);
return VirtualUse(UserStmt, Val, Intra, nullptr, nullptr);
}
void VirtualUse::print(raw_ostream &OS, bool Reproducible) const {
OS << "User: [" << User->getBaseName() << "] ";
switch (Kind) {
case VirtualUse::Constant:
OS << "Constant Op:";
break;
case VirtualUse::Block:
OS << "BasicBlock Op:";
break;
case VirtualUse::Synthesizable:
OS << "Synthesizable Op:";
break;
case VirtualUse::Hoisted:
OS << "Hoisted load Op:";
break;
case VirtualUse::ReadOnly:
OS << "Read-Only Op:";
break;
case VirtualUse::Intra:
OS << "Intra Op:";
break;
case VirtualUse::Inter:
OS << "Inter Op:";
break;
}
if (Val) {
OS << ' ';
if (Reproducible)
OS << '"' << Val->getName() << '"';
else
Val->print(OS, true);
}
if (ScevExpr) {
OS << ' ';
ScevExpr->print(OS);
}
if (InputMA && !Reproducible)
OS << ' ' << InputMA;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void VirtualUse::dump() const {
print(errs(), false);
errs() << '\n';
}
#endif
void VirtualInstruction::print(raw_ostream &OS, bool Reproducible) const {
if (!Stmt || !Inst) {
OS << "[null VirtualInstruction]";
return;
}
OS << "[" << Stmt->getBaseName() << "]";
Inst->print(OS, !Reproducible);
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void VirtualInstruction::dump() const {
print(errs(), false);
errs() << '\n';
}
#endif
/// Return true if @p Inst cannot be removed, even if it is nowhere referenced.
static bool isRoot(const Instruction *Inst) {
// The store is handled by its MemoryAccess. The load must be reached from the
// roots in order to be marked as used.
if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
return false;
// Terminator instructions (in region statements) are required for control
// flow.
if (Inst->isTerminator())
return true;
// Writes to memory must be honored.
if (Inst->mayWriteToMemory())
return true;
return false;
}
/// Return true for MemoryAccesses that cannot be removed because it represents
/// an llvm::Value that is used after the SCoP.
static bool isEscaping(MemoryAccess *MA) {
assert(MA->isOriginalValueKind());
Scop *S = MA->getStatement()->getParent();
return S->isEscaping(cast<Instruction>(MA->getAccessValue()));
}
/// Add non-removable virtual instructions in @p Stmt to @p RootInsts.
static void
addInstructionRoots(ScopStmt *Stmt,
SmallVectorImpl<VirtualInstruction> &RootInsts) {
if (!Stmt->isBlockStmt()) {
// In region statements the terminator statement and all statements that
// are not in the entry block cannot be eliminated and consequently must
// be roots.
RootInsts.emplace_back(Stmt,
Stmt->getRegion()->getEntry()->getTerminator());
for (BasicBlock *BB : Stmt->getRegion()->blocks())
if (Stmt->getRegion()->getEntry() != BB)
for (Instruction &Inst : *BB)
RootInsts.emplace_back(Stmt, &Inst);
return;
}
for (Instruction *Inst : Stmt->getInstructions())
if (isRoot(Inst))
RootInsts.emplace_back(Stmt, Inst);
}
/// Add non-removable memory accesses in @p Stmt to @p RootInsts.
///
/// @param Local If true, all writes are assumed to escape. markAndSweep
/// algorithms can use this to be applicable to a single ScopStmt only without
/// the risk of removing definitions required by other statements.
/// If false, only writes for SCoP-escaping values are roots. This
/// is global mode, where such writes must be marked by theirs uses
/// in order to be reachable.
static void addAccessRoots(ScopStmt *Stmt,
SmallVectorImpl<MemoryAccess *> &RootAccs,
bool Local) {
for (auto *MA : *Stmt) {
if (!MA->isWrite())
continue;
// Writes to arrays are always used.
if (MA->isLatestArrayKind())
RootAccs.push_back(MA);
// Values are roots if they are escaping.
else if (MA->isLatestValueKind()) {
if (Local || isEscaping(MA))
RootAccs.push_back(MA);
}
// Exit phis are, by definition, escaping.
else if (MA->isLatestExitPHIKind())
RootAccs.push_back(MA);
// phi writes are only roots if we are not visiting the statement
// containing the PHINode.
else if (Local && MA->isLatestPHIKind())
RootAccs.push_back(MA);
}
}
/// Determine all instruction and access roots.
static void addRoots(ScopStmt *Stmt,
SmallVectorImpl<VirtualInstruction> &RootInsts,
SmallVectorImpl<MemoryAccess *> &RootAccs, bool Local) {
addInstructionRoots(Stmt, RootInsts);
addAccessRoots(Stmt, RootAccs, Local);
}
/// Mark accesses and instructions as used if they are reachable from a root,
/// walking the operand trees.
///
/// @param S The SCoP to walk.
/// @param LI The LoopInfo Analysis.
/// @param RootInsts List of root instructions.
/// @param RootAccs List of root accesses.
/// @param UsesInsts[out] Receives all reachable instructions, including the
/// roots.
/// @param UsedAccs[out] Receives all reachable accesses, including the roots.
/// @param OnlyLocal If non-nullptr, restricts walking to a single
/// statement.
static void walkReachable(Scop *S, LoopInfo *LI,
ArrayRef<VirtualInstruction> RootInsts,
ArrayRef<MemoryAccess *> RootAccs,
DenseSet<VirtualInstruction> &UsedInsts,
DenseSet<MemoryAccess *> &UsedAccs,
ScopStmt *OnlyLocal = nullptr) {
UsedInsts.clear();
UsedAccs.clear();
SmallVector<VirtualInstruction, 32> WorklistInsts;
SmallVector<MemoryAccess *, 32> WorklistAccs;
WorklistInsts.append(RootInsts.begin(), RootInsts.end());
WorklistAccs.append(RootAccs.begin(), RootAccs.end());
auto AddToWorklist = [&](VirtualUse VUse) {
switch (VUse.getKind()) {
case VirtualUse::Block:
case VirtualUse::Constant:
case VirtualUse::Synthesizable:
case VirtualUse::Hoisted:
break;
case VirtualUse::ReadOnly:
// Read-only scalars only have MemoryAccesses if ModelReadOnlyScalars is
// enabled.
if (!VUse.getMemoryAccess())
break;
LLVM_FALLTHROUGH;
case VirtualUse::Inter:
assert(VUse.getMemoryAccess());
WorklistAccs.push_back(VUse.getMemoryAccess());
break;
case VirtualUse::Intra:
WorklistInsts.emplace_back(VUse.getUser(),
cast<Instruction>(VUse.getValue()));
break;
}
};
while (true) {
// We have two worklists to process: Only when the MemoryAccess worklist is
// empty, we process the instruction worklist.
while (!WorklistAccs.empty()) {
auto *Acc = WorklistAccs.pop_back_val();
ScopStmt *Stmt = Acc->getStatement();
if (OnlyLocal && Stmt != OnlyLocal)
continue;
auto Inserted = UsedAccs.insert(Acc);
if (!Inserted.second)
continue;
if (Acc->isRead()) {
const ScopArrayInfo *SAI = Acc->getScopArrayInfo();
if (Acc->isLatestValueKind()) {
MemoryAccess *DefAcc = S->getValueDef(SAI);
// Accesses to read-only values do not have a definition.
if (DefAcc)
WorklistAccs.push_back(S->getValueDef(SAI));
}
if (Acc->isLatestAnyPHIKind()) {
auto IncomingMAs = S->getPHIIncomings(SAI);
WorklistAccs.append(IncomingMAs.begin(), IncomingMAs.end());
}
}
if (Acc->isWrite()) {
if (Acc->isOriginalValueKind() ||
(Acc->isOriginalArrayKind() && Acc->getAccessValue())) {
Loop *Scope = Stmt->getSurroundingLoop();
VirtualUse VUse =
VirtualUse::create(S, Stmt, Scope, Acc->getAccessValue(), true);
AddToWorklist(VUse);
}
if (Acc->isOriginalAnyPHIKind()) {
for (auto Incoming : Acc->getIncoming()) {
VirtualUse VUse = VirtualUse::create(
S, Stmt, LI->getLoopFor(Incoming.first), Incoming.second, true);
AddToWorklist(VUse);
}
}
if (Acc->isOriginalArrayKind())
WorklistInsts.emplace_back(Stmt, Acc->getAccessInstruction());
}
}
// If both worklists are empty, stop walking.
if (WorklistInsts.empty())
break;
VirtualInstruction VInst = WorklistInsts.pop_back_val();
ScopStmt *Stmt = VInst.getStmt();
Instruction *Inst = VInst.getInstruction();
// Do not process statements other than the local.
if (OnlyLocal && Stmt != OnlyLocal)
continue;
auto InsertResult = UsedInsts.insert(VInst);
if (!InsertResult.second)
continue;
// Add all operands to the worklists.
PHINode *PHI = dyn_cast<PHINode>(Inst);
if (PHI && PHI->getParent() == Stmt->getEntryBlock()) {
if (MemoryAccess *PHIRead = Stmt->lookupPHIReadOf(PHI))
WorklistAccs.push_back(PHIRead);
} else {
for (VirtualUse VUse : VInst.operands())
AddToWorklist(VUse);
}
// If there is an array access, also add its MemoryAccesses to the worklist.
const MemoryAccessList *Accs = Stmt->lookupArrayAccessesFor(Inst);
if (!Accs)
continue;
for (MemoryAccess *Acc : *Accs)
WorklistAccs.push_back(Acc);
}
}
void polly::markReachable(Scop *S, LoopInfo *LI,
DenseSet<VirtualInstruction> &UsedInsts,
DenseSet<MemoryAccess *> &UsedAccs,
ScopStmt *OnlyLocal) {
SmallVector<VirtualInstruction, 32> RootInsts;
SmallVector<MemoryAccess *, 32> RootAccs;
if (OnlyLocal) {
addRoots(OnlyLocal, RootInsts, RootAccs, true);
} else {
for (auto &Stmt : *S)
addRoots(&Stmt, RootInsts, RootAccs, false);
}
walkReachable(S, LI, RootInsts, RootAccs, UsedInsts, UsedAccs, OnlyLocal);
}