forked from OSchip/llvm-project
2665 lines
88 KiB
C++
2665 lines
88 KiB
C++
// BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines BugReporter, a utility class for generating
|
|
// PathDiagnostics.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "BugReporter"
|
|
|
|
#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ParentMap.h"
|
|
#include "clang/AST/StmtObjC.h"
|
|
#include "clang/Analysis/CFG.h"
|
|
#include "clang/Analysis/ProgramPoint.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
|
|
#include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/IntrusiveRefCntPtr.h"
|
|
#include "llvm/ADT/OwningPtr.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <queue>
|
|
|
|
using namespace clang;
|
|
using namespace ento;
|
|
|
|
STATISTIC(MaxBugClassSize,
|
|
"The maximum number of bug reports in the same equivalence class");
|
|
STATISTIC(MaxValidBugClassSize,
|
|
"The maximum number of bug reports in the same equivalence class "
|
|
"where at least one report is valid (not suppressed)");
|
|
|
|
BugReporterVisitor::~BugReporterVisitor() {}
|
|
|
|
void BugReporterContext::anchor() {}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper routines for walking the ExplodedGraph and fetching statements.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static const Stmt *GetPreviousStmt(const ExplodedNode *N) {
|
|
for (N = N->getFirstPred(); N; N = N->getFirstPred())
|
|
if (const Stmt *S = PathDiagnosticLocation::getStmt(N))
|
|
return S;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline const Stmt*
|
|
GetCurrentOrPreviousStmt(const ExplodedNode *N) {
|
|
if (const Stmt *S = PathDiagnosticLocation::getStmt(N))
|
|
return S;
|
|
|
|
return GetPreviousStmt(N);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Diagnostic cleanup.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static PathDiagnosticEventPiece *
|
|
eventsDescribeSameCondition(PathDiagnosticEventPiece *X,
|
|
PathDiagnosticEventPiece *Y) {
|
|
// Prefer diagnostics that come from ConditionBRVisitor over
|
|
// those that came from TrackConstraintBRVisitor.
|
|
const void *tagPreferred = ConditionBRVisitor::getTag();
|
|
const void *tagLesser = TrackConstraintBRVisitor::getTag();
|
|
|
|
if (X->getLocation() != Y->getLocation())
|
|
return 0;
|
|
|
|
if (X->getTag() == tagPreferred && Y->getTag() == tagLesser)
|
|
return X;
|
|
|
|
if (Y->getTag() == tagPreferred && X->getTag() == tagLesser)
|
|
return Y;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// An optimization pass over PathPieces that removes redundant diagnostics
|
|
/// generated by both ConditionBRVisitor and TrackConstraintBRVisitor. Both
|
|
/// BugReporterVisitors use different methods to generate diagnostics, with
|
|
/// one capable of emitting diagnostics in some cases but not in others. This
|
|
/// can lead to redundant diagnostic pieces at the same point in a path.
|
|
static void removeRedundantMsgs(PathPieces &path) {
|
|
unsigned N = path.size();
|
|
if (N < 2)
|
|
return;
|
|
// NOTE: this loop intentionally is not using an iterator. Instead, we
|
|
// are streaming the path and modifying it in place. This is done by
|
|
// grabbing the front, processing it, and if we decide to keep it append
|
|
// it to the end of the path. The entire path is processed in this way.
|
|
for (unsigned i = 0; i < N; ++i) {
|
|
IntrusiveRefCntPtr<PathDiagnosticPiece> piece(path.front());
|
|
path.pop_front();
|
|
|
|
switch (piece->getKind()) {
|
|
case clang::ento::PathDiagnosticPiece::Call:
|
|
removeRedundantMsgs(cast<PathDiagnosticCallPiece>(piece)->path);
|
|
break;
|
|
case clang::ento::PathDiagnosticPiece::Macro:
|
|
removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(piece)->subPieces);
|
|
break;
|
|
case clang::ento::PathDiagnosticPiece::ControlFlow:
|
|
break;
|
|
case clang::ento::PathDiagnosticPiece::Event: {
|
|
if (i == N-1)
|
|
break;
|
|
|
|
if (PathDiagnosticEventPiece *nextEvent =
|
|
dyn_cast<PathDiagnosticEventPiece>(path.front().getPtr())) {
|
|
PathDiagnosticEventPiece *event =
|
|
cast<PathDiagnosticEventPiece>(piece);
|
|
// Check to see if we should keep one of the two pieces. If we
|
|
// come up with a preference, record which piece to keep, and consume
|
|
// another piece from the path.
|
|
if (PathDiagnosticEventPiece *pieceToKeep =
|
|
eventsDescribeSameCondition(event, nextEvent)) {
|
|
piece = pieceToKeep;
|
|
path.pop_front();
|
|
++i;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
path.push_back(piece);
|
|
}
|
|
}
|
|
|
|
/// A map from PathDiagnosticPiece to the LocationContext of the inlined
|
|
/// function call it represents.
|
|
typedef llvm::DenseMap<const PathDiagnosticCallPiece*, const LocationContext*>
|
|
LocationContextMap;
|
|
|
|
/// Recursively scan through a path and prune out calls and macros pieces
|
|
/// that aren't needed. Return true if afterwards the path contains
|
|
/// "interesting stuff" which means it shouldn't be pruned from the parent path.
|
|
static bool removeUnneededCalls(PathPieces &pieces, BugReport *R,
|
|
LocationContextMap &LCM) {
|
|
bool containsSomethingInteresting = false;
|
|
const unsigned N = pieces.size();
|
|
|
|
for (unsigned i = 0 ; i < N ; ++i) {
|
|
// Remove the front piece from the path. If it is still something we
|
|
// want to keep once we are done, we will push it back on the end.
|
|
IntrusiveRefCntPtr<PathDiagnosticPiece> piece(pieces.front());
|
|
pieces.pop_front();
|
|
|
|
// Throw away pieces with invalid locations. Note that we can't throw away
|
|
// calls just yet because they might have something interesting inside them.
|
|
// If so, their locations will be adjusted as necessary later.
|
|
if (piece->getKind() != PathDiagnosticPiece::Call &&
|
|
piece->getLocation().asLocation().isInvalid())
|
|
continue;
|
|
|
|
switch (piece->getKind()) {
|
|
case PathDiagnosticPiece::Call: {
|
|
PathDiagnosticCallPiece *call = cast<PathDiagnosticCallPiece>(piece);
|
|
// Check if the location context is interesting.
|
|
assert(LCM.count(call));
|
|
if (R->isInteresting(LCM[call])) {
|
|
containsSomethingInteresting = true;
|
|
break;
|
|
}
|
|
|
|
if (!removeUnneededCalls(call->path, R, LCM))
|
|
continue;
|
|
|
|
containsSomethingInteresting = true;
|
|
break;
|
|
}
|
|
case PathDiagnosticPiece::Macro: {
|
|
PathDiagnosticMacroPiece *macro = cast<PathDiagnosticMacroPiece>(piece);
|
|
if (!removeUnneededCalls(macro->subPieces, R, LCM))
|
|
continue;
|
|
containsSomethingInteresting = true;
|
|
break;
|
|
}
|
|
case PathDiagnosticPiece::Event: {
|
|
PathDiagnosticEventPiece *event = cast<PathDiagnosticEventPiece>(piece);
|
|
|
|
// We never throw away an event, but we do throw it away wholesale
|
|
// as part of a path if we throw the entire path away.
|
|
containsSomethingInteresting |= !event->isPrunable();
|
|
break;
|
|
}
|
|
case PathDiagnosticPiece::ControlFlow:
|
|
break;
|
|
}
|
|
|
|
pieces.push_back(piece);
|
|
}
|
|
|
|
return containsSomethingInteresting;
|
|
}
|
|
|
|
/// Recursively scan through a path and make sure that all call pieces have
|
|
/// valid locations. Note that all other pieces with invalid locations should
|
|
/// have already been pruned out.
|
|
static void adjustCallLocations(PathPieces &Pieces,
|
|
PathDiagnosticLocation *LastCallLocation = 0) {
|
|
for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E; ++I) {
|
|
PathDiagnosticCallPiece *Call = dyn_cast<PathDiagnosticCallPiece>(*I);
|
|
|
|
if (!Call) {
|
|
assert((*I)->getLocation().asLocation().isValid());
|
|
continue;
|
|
}
|
|
|
|
if (LastCallLocation) {
|
|
if (!Call->callEnter.asLocation().isValid() ||
|
|
Call->getCaller()->isImplicit())
|
|
Call->callEnter = *LastCallLocation;
|
|
if (!Call->callReturn.asLocation().isValid() ||
|
|
Call->getCaller()->isImplicit())
|
|
Call->callReturn = *LastCallLocation;
|
|
}
|
|
|
|
// Recursively clean out the subclass. Keep this call around if
|
|
// it contains any informative diagnostics.
|
|
PathDiagnosticLocation *ThisCallLocation;
|
|
if (Call->callEnterWithin.asLocation().isValid() &&
|
|
!Call->getCallee()->isImplicit())
|
|
ThisCallLocation = &Call->callEnterWithin;
|
|
else
|
|
ThisCallLocation = &Call->callEnter;
|
|
|
|
assert(ThisCallLocation && "Outermost call has an invalid location");
|
|
adjustCallLocations(Call->path, ThisCallLocation);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PathDiagnosticBuilder and its associated routines and helper objects.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class NodeMapClosure : public BugReport::NodeResolver {
|
|
InterExplodedGraphMap &M;
|
|
public:
|
|
NodeMapClosure(InterExplodedGraphMap &m) : M(m) {}
|
|
|
|
const ExplodedNode *getOriginalNode(const ExplodedNode *N) {
|
|
return M.lookup(N);
|
|
}
|
|
};
|
|
|
|
class PathDiagnosticBuilder : public BugReporterContext {
|
|
BugReport *R;
|
|
PathDiagnosticConsumer *PDC;
|
|
NodeMapClosure NMC;
|
|
public:
|
|
const LocationContext *LC;
|
|
|
|
PathDiagnosticBuilder(GRBugReporter &br,
|
|
BugReport *r, InterExplodedGraphMap &Backmap,
|
|
PathDiagnosticConsumer *pdc)
|
|
: BugReporterContext(br),
|
|
R(r), PDC(pdc), NMC(Backmap), LC(r->getErrorNode()->getLocationContext())
|
|
{}
|
|
|
|
PathDiagnosticLocation ExecutionContinues(const ExplodedNode *N);
|
|
|
|
PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream &os,
|
|
const ExplodedNode *N);
|
|
|
|
BugReport *getBugReport() { return R; }
|
|
|
|
Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); }
|
|
|
|
ParentMap& getParentMap() { return LC->getParentMap(); }
|
|
|
|
const Stmt *getParent(const Stmt *S) {
|
|
return getParentMap().getParent(S);
|
|
}
|
|
|
|
virtual NodeMapClosure& getNodeResolver() { return NMC; }
|
|
|
|
PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S);
|
|
|
|
PathDiagnosticConsumer::PathGenerationScheme getGenerationScheme() const {
|
|
return PDC ? PDC->getGenerationScheme() : PathDiagnosticConsumer::Extensive;
|
|
}
|
|
|
|
bool supportsLogicalOpControlFlow() const {
|
|
return PDC ? PDC->supportsLogicalOpControlFlow() : true;
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
PathDiagnosticLocation
|
|
PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode *N) {
|
|
if (const Stmt *S = PathDiagnosticLocation::getNextStmt(N))
|
|
return PathDiagnosticLocation(S, getSourceManager(), LC);
|
|
|
|
return PathDiagnosticLocation::createDeclEnd(N->getLocationContext(),
|
|
getSourceManager());
|
|
}
|
|
|
|
PathDiagnosticLocation
|
|
PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream &os,
|
|
const ExplodedNode *N) {
|
|
|
|
// Slow, but probably doesn't matter.
|
|
if (os.str().empty())
|
|
os << ' ';
|
|
|
|
const PathDiagnosticLocation &Loc = ExecutionContinues(N);
|
|
|
|
if (Loc.asStmt())
|
|
os << "Execution continues on line "
|
|
<< getSourceManager().getExpansionLineNumber(Loc.asLocation())
|
|
<< '.';
|
|
else {
|
|
os << "Execution jumps to the end of the ";
|
|
const Decl *D = N->getLocationContext()->getDecl();
|
|
if (isa<ObjCMethodDecl>(D))
|
|
os << "method";
|
|
else if (isa<FunctionDecl>(D))
|
|
os << "function";
|
|
else {
|
|
assert(isa<BlockDecl>(D));
|
|
os << "anonymous block";
|
|
}
|
|
os << '.';
|
|
}
|
|
|
|
return Loc;
|
|
}
|
|
|
|
static bool IsNested(const Stmt *S, ParentMap &PM) {
|
|
if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
|
|
return true;
|
|
|
|
const Stmt *Parent = PM.getParentIgnoreParens(S);
|
|
|
|
if (Parent)
|
|
switch (Parent->getStmtClass()) {
|
|
case Stmt::ForStmtClass:
|
|
case Stmt::DoStmtClass:
|
|
case Stmt::WhileStmtClass:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
PathDiagnosticLocation
|
|
PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) {
|
|
assert(S && "Null Stmt *passed to getEnclosingStmtLocation");
|
|
ParentMap &P = getParentMap();
|
|
SourceManager &SMgr = getSourceManager();
|
|
|
|
while (IsNested(S, P)) {
|
|
const Stmt *Parent = P.getParentIgnoreParens(S);
|
|
|
|
if (!Parent)
|
|
break;
|
|
|
|
switch (Parent->getStmtClass()) {
|
|
case Stmt::BinaryOperatorClass: {
|
|
const BinaryOperator *B = cast<BinaryOperator>(Parent);
|
|
if (B->isLogicalOp())
|
|
return PathDiagnosticLocation(S, SMgr, LC);
|
|
break;
|
|
}
|
|
case Stmt::CompoundStmtClass:
|
|
case Stmt::StmtExprClass:
|
|
return PathDiagnosticLocation(S, SMgr, LC);
|
|
case Stmt::ChooseExprClass:
|
|
// Similar to '?' if we are referring to condition, just have the edge
|
|
// point to the entire choose expression.
|
|
if (cast<ChooseExpr>(Parent)->getCond() == S)
|
|
return PathDiagnosticLocation(Parent, SMgr, LC);
|
|
else
|
|
return PathDiagnosticLocation(S, SMgr, LC);
|
|
case Stmt::BinaryConditionalOperatorClass:
|
|
case Stmt::ConditionalOperatorClass:
|
|
// For '?', if we are referring to condition, just have the edge point
|
|
// to the entire '?' expression.
|
|
if (cast<AbstractConditionalOperator>(Parent)->getCond() == S)
|
|
return PathDiagnosticLocation(Parent, SMgr, LC);
|
|
else
|
|
return PathDiagnosticLocation(S, SMgr, LC);
|
|
case Stmt::DoStmtClass:
|
|
return PathDiagnosticLocation(S, SMgr, LC);
|
|
case Stmt::ForStmtClass:
|
|
if (cast<ForStmt>(Parent)->getBody() == S)
|
|
return PathDiagnosticLocation(S, SMgr, LC);
|
|
break;
|
|
case Stmt::IfStmtClass:
|
|
if (cast<IfStmt>(Parent)->getCond() != S)
|
|
return PathDiagnosticLocation(S, SMgr, LC);
|
|
break;
|
|
case Stmt::ObjCForCollectionStmtClass:
|
|
if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
|
|
return PathDiagnosticLocation(S, SMgr, LC);
|
|
break;
|
|
case Stmt::WhileStmtClass:
|
|
if (cast<WhileStmt>(Parent)->getCond() != S)
|
|
return PathDiagnosticLocation(S, SMgr, LC);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
S = Parent;
|
|
}
|
|
|
|
assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
|
|
|
|
// Special case: DeclStmts can appear in for statement declarations, in which
|
|
// case the ForStmt is the context.
|
|
if (isa<DeclStmt>(S)) {
|
|
if (const Stmt *Parent = P.getParent(S)) {
|
|
switch (Parent->getStmtClass()) {
|
|
case Stmt::ForStmtClass:
|
|
case Stmt::ObjCForCollectionStmtClass:
|
|
return PathDiagnosticLocation(Parent, SMgr, LC);
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else if (isa<BinaryOperator>(S)) {
|
|
// Special case: the binary operator represents the initialization
|
|
// code in a for statement (this can happen when the variable being
|
|
// initialized is an old variable.
|
|
if (const ForStmt *FS =
|
|
dyn_cast_or_null<ForStmt>(P.getParentIgnoreParens(S))) {
|
|
if (FS->getInit() == S)
|
|
return PathDiagnosticLocation(FS, SMgr, LC);
|
|
}
|
|
}
|
|
|
|
return PathDiagnosticLocation(S, SMgr, LC);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// "Visitors only" path diagnostic generation algorithm.
|
|
//===----------------------------------------------------------------------===//
|
|
static bool GenerateVisitorsOnlyPathDiagnostic(PathDiagnostic &PD,
|
|
PathDiagnosticBuilder &PDB,
|
|
const ExplodedNode *N,
|
|
ArrayRef<BugReporterVisitor *> visitors) {
|
|
// All path generation skips the very first node (the error node).
|
|
// This is because there is special handling for the end-of-path note.
|
|
N = N->getFirstPred();
|
|
if (!N)
|
|
return true;
|
|
|
|
BugReport *R = PDB.getBugReport();
|
|
while (const ExplodedNode *Pred = N->getFirstPred()) {
|
|
for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
|
|
E = visitors.end();
|
|
I != E; ++I) {
|
|
// Visit all the node pairs, but throw the path pieces away.
|
|
PathDiagnosticPiece *Piece = (*I)->VisitNode(N, Pred, PDB, *R);
|
|
delete Piece;
|
|
}
|
|
|
|
N = Pred;
|
|
}
|
|
|
|
return R->isValid();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// "Minimal" path diagnostic generation algorithm.
|
|
//===----------------------------------------------------------------------===//
|
|
typedef std::pair<PathDiagnosticCallPiece*, const ExplodedNode*> StackDiagPair;
|
|
typedef SmallVector<StackDiagPair, 6> StackDiagVector;
|
|
|
|
static void updateStackPiecesWithMessage(PathDiagnosticPiece *P,
|
|
StackDiagVector &CallStack) {
|
|
// If the piece contains a special message, add it to all the call
|
|
// pieces on the active stack.
|
|
if (PathDiagnosticEventPiece *ep =
|
|
dyn_cast<PathDiagnosticEventPiece>(P)) {
|
|
|
|
if (ep->hasCallStackHint())
|
|
for (StackDiagVector::iterator I = CallStack.begin(),
|
|
E = CallStack.end(); I != E; ++I) {
|
|
PathDiagnosticCallPiece *CP = I->first;
|
|
const ExplodedNode *N = I->second;
|
|
std::string stackMsg = ep->getCallStackMessage(N);
|
|
|
|
// The last message on the path to final bug is the most important
|
|
// one. Since we traverse the path backwards, do not add the message
|
|
// if one has been previously added.
|
|
if (!CP->hasCallStackMessage())
|
|
CP->setCallStackMessage(stackMsg);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM);
|
|
|
|
static bool GenerateMinimalPathDiagnostic(PathDiagnostic& PD,
|
|
PathDiagnosticBuilder &PDB,
|
|
const ExplodedNode *N,
|
|
LocationContextMap &LCM,
|
|
ArrayRef<BugReporterVisitor *> visitors) {
|
|
|
|
SourceManager& SMgr = PDB.getSourceManager();
|
|
const LocationContext *LC = PDB.LC;
|
|
const ExplodedNode *NextNode = N->pred_empty()
|
|
? NULL : *(N->pred_begin());
|
|
|
|
StackDiagVector CallStack;
|
|
|
|
while (NextNode) {
|
|
N = NextNode;
|
|
PDB.LC = N->getLocationContext();
|
|
NextNode = N->getFirstPred();
|
|
|
|
ProgramPoint P = N->getLocation();
|
|
|
|
do {
|
|
if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
|
|
PathDiagnosticCallPiece *C =
|
|
PathDiagnosticCallPiece::construct(N, *CE, SMgr);
|
|
// Record the mapping from call piece to LocationContext.
|
|
LCM[C] = CE->getCalleeContext();
|
|
PD.getActivePath().push_front(C);
|
|
PD.pushActivePath(&C->path);
|
|
CallStack.push_back(StackDiagPair(C, N));
|
|
break;
|
|
}
|
|
|
|
if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
|
|
// Flush all locations, and pop the active path.
|
|
bool VisitedEntireCall = PD.isWithinCall();
|
|
PD.popActivePath();
|
|
|
|
// Either we just added a bunch of stuff to the top-level path, or
|
|
// we have a previous CallExitEnd. If the former, it means that the
|
|
// path terminated within a function call. We must then take the
|
|
// current contents of the active path and place it within
|
|
// a new PathDiagnosticCallPiece.
|
|
PathDiagnosticCallPiece *C;
|
|
if (VisitedEntireCall) {
|
|
C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
|
|
} else {
|
|
const Decl *Caller = CE->getLocationContext()->getDecl();
|
|
C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
|
|
// Record the mapping from call piece to LocationContext.
|
|
LCM[C] = CE->getCalleeContext();
|
|
}
|
|
|
|
C->setCallee(*CE, SMgr);
|
|
if (!CallStack.empty()) {
|
|
assert(CallStack.back().first == C);
|
|
CallStack.pop_back();
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
|
|
const CFGBlock *Src = BE->getSrc();
|
|
const CFGBlock *Dst = BE->getDst();
|
|
const Stmt *T = Src->getTerminator();
|
|
|
|
if (!T)
|
|
break;
|
|
|
|
PathDiagnosticLocation Start =
|
|
PathDiagnosticLocation::createBegin(T, SMgr,
|
|
N->getLocationContext());
|
|
|
|
switch (T->getStmtClass()) {
|
|
default:
|
|
break;
|
|
|
|
case Stmt::GotoStmtClass:
|
|
case Stmt::IndirectGotoStmtClass: {
|
|
const Stmt *S = PathDiagnosticLocation::getNextStmt(N);
|
|
|
|
if (!S)
|
|
break;
|
|
|
|
std::string sbuf;
|
|
llvm::raw_string_ostream os(sbuf);
|
|
const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S);
|
|
|
|
os << "Control jumps to line "
|
|
<< End.asLocation().getExpansionLineNumber();
|
|
PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
|
|
Start, End, os.str()));
|
|
break;
|
|
}
|
|
|
|
case Stmt::SwitchStmtClass: {
|
|
// Figure out what case arm we took.
|
|
std::string sbuf;
|
|
llvm::raw_string_ostream os(sbuf);
|
|
|
|
if (const Stmt *S = Dst->getLabel()) {
|
|
PathDiagnosticLocation End(S, SMgr, LC);
|
|
|
|
switch (S->getStmtClass()) {
|
|
default:
|
|
os << "No cases match in the switch statement. "
|
|
"Control jumps to line "
|
|
<< End.asLocation().getExpansionLineNumber();
|
|
break;
|
|
case Stmt::DefaultStmtClass:
|
|
os << "Control jumps to the 'default' case at line "
|
|
<< End.asLocation().getExpansionLineNumber();
|
|
break;
|
|
|
|
case Stmt::CaseStmtClass: {
|
|
os << "Control jumps to 'case ";
|
|
const CaseStmt *Case = cast<CaseStmt>(S);
|
|
const Expr *LHS = Case->getLHS()->IgnoreParenCasts();
|
|
|
|
// Determine if it is an enum.
|
|
bool GetRawInt = true;
|
|
|
|
if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(LHS)) {
|
|
// FIXME: Maybe this should be an assertion. Are there cases
|
|
// were it is not an EnumConstantDecl?
|
|
const EnumConstantDecl *D =
|
|
dyn_cast<EnumConstantDecl>(DR->getDecl());
|
|
|
|
if (D) {
|
|
GetRawInt = false;
|
|
os << *D;
|
|
}
|
|
}
|
|
|
|
if (GetRawInt)
|
|
os << LHS->EvaluateKnownConstInt(PDB.getASTContext());
|
|
|
|
os << ":' at line "
|
|
<< End.asLocation().getExpansionLineNumber();
|
|
break;
|
|
}
|
|
}
|
|
PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
|
|
Start, End, os.str()));
|
|
}
|
|
else {
|
|
os << "'Default' branch taken. ";
|
|
const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N);
|
|
PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
|
|
Start, End, os.str()));
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case Stmt::BreakStmtClass:
|
|
case Stmt::ContinueStmtClass: {
|
|
std::string sbuf;
|
|
llvm::raw_string_ostream os(sbuf);
|
|
PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
|
|
PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
|
|
Start, End, os.str()));
|
|
break;
|
|
}
|
|
|
|
// Determine control-flow for ternary '?'.
|
|
case Stmt::BinaryConditionalOperatorClass:
|
|
case Stmt::ConditionalOperatorClass: {
|
|
std::string sbuf;
|
|
llvm::raw_string_ostream os(sbuf);
|
|
os << "'?' condition is ";
|
|
|
|
if (*(Src->succ_begin()+1) == Dst)
|
|
os << "false";
|
|
else
|
|
os << "true";
|
|
|
|
PathDiagnosticLocation End = PDB.ExecutionContinues(N);
|
|
|
|
if (const Stmt *S = End.asStmt())
|
|
End = PDB.getEnclosingStmtLocation(S);
|
|
|
|
PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
|
|
Start, End, os.str()));
|
|
break;
|
|
}
|
|
|
|
// Determine control-flow for short-circuited '&&' and '||'.
|
|
case Stmt::BinaryOperatorClass: {
|
|
if (!PDB.supportsLogicalOpControlFlow())
|
|
break;
|
|
|
|
const BinaryOperator *B = cast<BinaryOperator>(T);
|
|
std::string sbuf;
|
|
llvm::raw_string_ostream os(sbuf);
|
|
os << "Left side of '";
|
|
|
|
if (B->getOpcode() == BO_LAnd) {
|
|
os << "&&" << "' is ";
|
|
|
|
if (*(Src->succ_begin()+1) == Dst) {
|
|
os << "false";
|
|
PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
|
|
PathDiagnosticLocation Start =
|
|
PathDiagnosticLocation::createOperatorLoc(B, SMgr);
|
|
PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
|
|
Start, End, os.str()));
|
|
}
|
|
else {
|
|
os << "true";
|
|
PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
|
|
PathDiagnosticLocation End = PDB.ExecutionContinues(N);
|
|
PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
|
|
Start, End, os.str()));
|
|
}
|
|
}
|
|
else {
|
|
assert(B->getOpcode() == BO_LOr);
|
|
os << "||" << "' is ";
|
|
|
|
if (*(Src->succ_begin()+1) == Dst) {
|
|
os << "false";
|
|
PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
|
|
PathDiagnosticLocation End = PDB.ExecutionContinues(N);
|
|
PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
|
|
Start, End, os.str()));
|
|
}
|
|
else {
|
|
os << "true";
|
|
PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
|
|
PathDiagnosticLocation Start =
|
|
PathDiagnosticLocation::createOperatorLoc(B, SMgr);
|
|
PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
|
|
Start, End, os.str()));
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case Stmt::DoStmtClass: {
|
|
if (*(Src->succ_begin()) == Dst) {
|
|
std::string sbuf;
|
|
llvm::raw_string_ostream os(sbuf);
|
|
|
|
os << "Loop condition is true. ";
|
|
PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
|
|
|
|
if (const Stmt *S = End.asStmt())
|
|
End = PDB.getEnclosingStmtLocation(S);
|
|
|
|
PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
|
|
Start, End, os.str()));
|
|
}
|
|
else {
|
|
PathDiagnosticLocation End = PDB.ExecutionContinues(N);
|
|
|
|
if (const Stmt *S = End.asStmt())
|
|
End = PDB.getEnclosingStmtLocation(S);
|
|
|
|
PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
|
|
Start, End, "Loop condition is false. Exiting loop"));
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case Stmt::WhileStmtClass:
|
|
case Stmt::ForStmtClass: {
|
|
if (*(Src->succ_begin()+1) == Dst) {
|
|
std::string sbuf;
|
|
llvm::raw_string_ostream os(sbuf);
|
|
|
|
os << "Loop condition is false. ";
|
|
PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
|
|
if (const Stmt *S = End.asStmt())
|
|
End = PDB.getEnclosingStmtLocation(S);
|
|
|
|
PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
|
|
Start, End, os.str()));
|
|
}
|
|
else {
|
|
PathDiagnosticLocation End = PDB.ExecutionContinues(N);
|
|
if (const Stmt *S = End.asStmt())
|
|
End = PDB.getEnclosingStmtLocation(S);
|
|
|
|
PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
|
|
Start, End, "Loop condition is true. Entering loop body"));
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case Stmt::IfStmtClass: {
|
|
PathDiagnosticLocation End = PDB.ExecutionContinues(N);
|
|
|
|
if (const Stmt *S = End.asStmt())
|
|
End = PDB.getEnclosingStmtLocation(S);
|
|
|
|
if (*(Src->succ_begin()+1) == Dst)
|
|
PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
|
|
Start, End, "Taking false branch"));
|
|
else
|
|
PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
|
|
Start, End, "Taking true branch"));
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
} while(0);
|
|
|
|
if (NextNode) {
|
|
// Add diagnostic pieces from custom visitors.
|
|
BugReport *R = PDB.getBugReport();
|
|
for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
|
|
E = visitors.end();
|
|
I != E; ++I) {
|
|
if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
|
|
PD.getActivePath().push_front(p);
|
|
updateStackPiecesWithMessage(p, CallStack);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!PDB.getBugReport()->isValid())
|
|
return false;
|
|
|
|
// After constructing the full PathDiagnostic, do a pass over it to compact
|
|
// PathDiagnosticPieces that occur within a macro.
|
|
CompactPathDiagnostic(PD.getMutablePieces(), PDB.getSourceManager());
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// "Extensive" PathDiagnostic generation.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool IsControlFlowExpr(const Stmt *S) {
|
|
const Expr *E = dyn_cast<Expr>(S);
|
|
|
|
if (!E)
|
|
return false;
|
|
|
|
E = E->IgnoreParenCasts();
|
|
|
|
if (isa<AbstractConditionalOperator>(E))
|
|
return true;
|
|
|
|
if (const BinaryOperator *B = dyn_cast<BinaryOperator>(E))
|
|
if (B->isLogicalOp())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
class ContextLocation : public PathDiagnosticLocation {
|
|
bool IsDead;
|
|
public:
|
|
ContextLocation(const PathDiagnosticLocation &L, bool isdead = false)
|
|
: PathDiagnosticLocation(L), IsDead(isdead) {}
|
|
|
|
void markDead() { IsDead = true; }
|
|
bool isDead() const { return IsDead; }
|
|
};
|
|
|
|
static PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L,
|
|
const LocationContext *LC,
|
|
bool firstCharOnly = false) {
|
|
if (const Stmt *S = L.asStmt()) {
|
|
const Stmt *Original = S;
|
|
while (1) {
|
|
// Adjust the location for some expressions that are best referenced
|
|
// by one of their subexpressions.
|
|
switch (S->getStmtClass()) {
|
|
default:
|
|
break;
|
|
case Stmt::ParenExprClass:
|
|
case Stmt::GenericSelectionExprClass:
|
|
S = cast<Expr>(S)->IgnoreParens();
|
|
firstCharOnly = true;
|
|
continue;
|
|
case Stmt::BinaryConditionalOperatorClass:
|
|
case Stmt::ConditionalOperatorClass:
|
|
S = cast<AbstractConditionalOperator>(S)->getCond();
|
|
firstCharOnly = true;
|
|
continue;
|
|
case Stmt::ChooseExprClass:
|
|
S = cast<ChooseExpr>(S)->getCond();
|
|
firstCharOnly = true;
|
|
continue;
|
|
case Stmt::BinaryOperatorClass:
|
|
S = cast<BinaryOperator>(S)->getLHS();
|
|
firstCharOnly = true;
|
|
continue;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
if (S != Original)
|
|
L = PathDiagnosticLocation(S, L.getManager(), LC);
|
|
}
|
|
|
|
if (firstCharOnly)
|
|
L = PathDiagnosticLocation::createSingleLocation(L);
|
|
|
|
return L;
|
|
}
|
|
|
|
class EdgeBuilder {
|
|
std::vector<ContextLocation> CLocs;
|
|
typedef std::vector<ContextLocation>::iterator iterator;
|
|
PathDiagnostic &PD;
|
|
PathDiagnosticBuilder &PDB;
|
|
PathDiagnosticLocation PrevLoc;
|
|
|
|
bool IsConsumedExpr(const PathDiagnosticLocation &L);
|
|
|
|
bool containsLocation(const PathDiagnosticLocation &Container,
|
|
const PathDiagnosticLocation &Containee);
|
|
|
|
PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L);
|
|
|
|
|
|
|
|
void popLocation() {
|
|
if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) {
|
|
// For contexts, we only one the first character as the range.
|
|
rawAddEdge(cleanUpLocation(CLocs.back(), PDB.LC, true));
|
|
}
|
|
CLocs.pop_back();
|
|
}
|
|
|
|
public:
|
|
EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb)
|
|
: PD(pd), PDB(pdb) {
|
|
|
|
// If the PathDiagnostic already has pieces, add the enclosing statement
|
|
// of the first piece as a context as well.
|
|
if (!PD.path.empty()) {
|
|
PrevLoc = (*PD.path.begin())->getLocation();
|
|
|
|
if (const Stmt *S = PrevLoc.asStmt())
|
|
addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
|
|
}
|
|
}
|
|
|
|
~EdgeBuilder() {
|
|
while (!CLocs.empty()) popLocation();
|
|
|
|
// Finally, add an initial edge from the start location of the first
|
|
// statement (if it doesn't already exist).
|
|
PathDiagnosticLocation L = PathDiagnosticLocation::createDeclBegin(
|
|
PDB.LC,
|
|
PDB.getSourceManager());
|
|
if (L.isValid())
|
|
rawAddEdge(L);
|
|
}
|
|
|
|
void flushLocations() {
|
|
while (!CLocs.empty())
|
|
popLocation();
|
|
PrevLoc = PathDiagnosticLocation();
|
|
}
|
|
|
|
void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false,
|
|
bool IsPostJump = false);
|
|
|
|
void rawAddEdge(PathDiagnosticLocation NewLoc);
|
|
|
|
void addContext(const Stmt *S);
|
|
void addContext(const PathDiagnosticLocation &L);
|
|
void addExtendedContext(const Stmt *S);
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
|
|
PathDiagnosticLocation
|
|
EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) {
|
|
if (const Stmt *S = L.asStmt()) {
|
|
if (IsControlFlowExpr(S))
|
|
return L;
|
|
|
|
return PDB.getEnclosingStmtLocation(S);
|
|
}
|
|
|
|
return L;
|
|
}
|
|
|
|
bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container,
|
|
const PathDiagnosticLocation &Containee) {
|
|
|
|
if (Container == Containee)
|
|
return true;
|
|
|
|
if (Container.asDecl())
|
|
return true;
|
|
|
|
if (const Stmt *S = Containee.asStmt())
|
|
if (const Stmt *ContainerS = Container.asStmt()) {
|
|
while (S) {
|
|
if (S == ContainerS)
|
|
return true;
|
|
S = PDB.getParent(S);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Less accurate: compare using source ranges.
|
|
SourceRange ContainerR = Container.asRange();
|
|
SourceRange ContaineeR = Containee.asRange();
|
|
|
|
SourceManager &SM = PDB.getSourceManager();
|
|
SourceLocation ContainerRBeg = SM.getExpansionLoc(ContainerR.getBegin());
|
|
SourceLocation ContainerREnd = SM.getExpansionLoc(ContainerR.getEnd());
|
|
SourceLocation ContaineeRBeg = SM.getExpansionLoc(ContaineeR.getBegin());
|
|
SourceLocation ContaineeREnd = SM.getExpansionLoc(ContaineeR.getEnd());
|
|
|
|
unsigned ContainerBegLine = SM.getExpansionLineNumber(ContainerRBeg);
|
|
unsigned ContainerEndLine = SM.getExpansionLineNumber(ContainerREnd);
|
|
unsigned ContaineeBegLine = SM.getExpansionLineNumber(ContaineeRBeg);
|
|
unsigned ContaineeEndLine = SM.getExpansionLineNumber(ContaineeREnd);
|
|
|
|
assert(ContainerBegLine <= ContainerEndLine);
|
|
assert(ContaineeBegLine <= ContaineeEndLine);
|
|
|
|
return (ContainerBegLine <= ContaineeBegLine &&
|
|
ContainerEndLine >= ContaineeEndLine &&
|
|
(ContainerBegLine != ContaineeBegLine ||
|
|
SM.getExpansionColumnNumber(ContainerRBeg) <=
|
|
SM.getExpansionColumnNumber(ContaineeRBeg)) &&
|
|
(ContainerEndLine != ContaineeEndLine ||
|
|
SM.getExpansionColumnNumber(ContainerREnd) >=
|
|
SM.getExpansionColumnNumber(ContaineeREnd)));
|
|
}
|
|
|
|
void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) {
|
|
if (!PrevLoc.isValid()) {
|
|
PrevLoc = NewLoc;
|
|
return;
|
|
}
|
|
|
|
const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc, PDB.LC);
|
|
const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc, PDB.LC);
|
|
|
|
if (PrevLocClean.asLocation().isInvalid()) {
|
|
PrevLoc = NewLoc;
|
|
return;
|
|
}
|
|
|
|
if (NewLocClean.asLocation() == PrevLocClean.asLocation())
|
|
return;
|
|
|
|
// FIXME: Ignore intra-macro edges for now.
|
|
if (NewLocClean.asLocation().getExpansionLoc() ==
|
|
PrevLocClean.asLocation().getExpansionLoc())
|
|
return;
|
|
|
|
PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(NewLocClean, PrevLocClean));
|
|
PrevLoc = NewLoc;
|
|
}
|
|
|
|
void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd,
|
|
bool IsPostJump) {
|
|
|
|
if (!alwaysAdd && NewLoc.asLocation().isMacroID())
|
|
return;
|
|
|
|
const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc);
|
|
|
|
while (!CLocs.empty()) {
|
|
ContextLocation &TopContextLoc = CLocs.back();
|
|
|
|
// Is the top location context the same as the one for the new location?
|
|
if (TopContextLoc == CLoc) {
|
|
if (alwaysAdd) {
|
|
if (IsConsumedExpr(TopContextLoc))
|
|
TopContextLoc.markDead();
|
|
|
|
rawAddEdge(NewLoc);
|
|
}
|
|
|
|
if (IsPostJump)
|
|
TopContextLoc.markDead();
|
|
return;
|
|
}
|
|
|
|
if (containsLocation(TopContextLoc, CLoc)) {
|
|
if (alwaysAdd) {
|
|
rawAddEdge(NewLoc);
|
|
|
|
if (IsConsumedExpr(CLoc)) {
|
|
CLocs.push_back(ContextLocation(CLoc, /*IsDead=*/true));
|
|
return;
|
|
}
|
|
}
|
|
|
|
CLocs.push_back(ContextLocation(CLoc, /*IsDead=*/IsPostJump));
|
|
return;
|
|
}
|
|
|
|
// Context does not contain the location. Flush it.
|
|
popLocation();
|
|
}
|
|
|
|
// If we reach here, there is no enclosing context. Just add the edge.
|
|
rawAddEdge(NewLoc);
|
|
}
|
|
|
|
bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) {
|
|
if (const Expr *X = dyn_cast_or_null<Expr>(L.asStmt()))
|
|
return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X);
|
|
|
|
return false;
|
|
}
|
|
|
|
void EdgeBuilder::addExtendedContext(const Stmt *S) {
|
|
if (!S)
|
|
return;
|
|
|
|
const Stmt *Parent = PDB.getParent(S);
|
|
while (Parent) {
|
|
if (isa<CompoundStmt>(Parent))
|
|
Parent = PDB.getParent(Parent);
|
|
else
|
|
break;
|
|
}
|
|
|
|
if (Parent) {
|
|
switch (Parent->getStmtClass()) {
|
|
case Stmt::DoStmtClass:
|
|
case Stmt::ObjCAtSynchronizedStmtClass:
|
|
addContext(Parent);
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
addContext(S);
|
|
}
|
|
|
|
void EdgeBuilder::addContext(const Stmt *S) {
|
|
if (!S)
|
|
return;
|
|
|
|
PathDiagnosticLocation L(S, PDB.getSourceManager(), PDB.LC);
|
|
addContext(L);
|
|
}
|
|
|
|
void EdgeBuilder::addContext(const PathDiagnosticLocation &L) {
|
|
while (!CLocs.empty()) {
|
|
const PathDiagnosticLocation &TopContextLoc = CLocs.back();
|
|
|
|
// Is the top location context the same as the one for the new location?
|
|
if (TopContextLoc == L)
|
|
return;
|
|
|
|
if (containsLocation(TopContextLoc, L)) {
|
|
CLocs.push_back(L);
|
|
return;
|
|
}
|
|
|
|
// Context does not contain the location. Flush it.
|
|
popLocation();
|
|
}
|
|
|
|
CLocs.push_back(L);
|
|
}
|
|
|
|
// Cone-of-influence: support the reverse propagation of "interesting" symbols
|
|
// and values by tracing interesting calculations backwards through evaluated
|
|
// expressions along a path. This is probably overly complicated, but the idea
|
|
// is that if an expression computed an "interesting" value, the child
|
|
// expressions are are also likely to be "interesting" as well (which then
|
|
// propagates to the values they in turn compute). This reverse propagation
|
|
// is needed to track interesting correlations across function call boundaries,
|
|
// where formal arguments bind to actual arguments, etc. This is also needed
|
|
// because the constraint solver sometimes simplifies certain symbolic values
|
|
// into constants when appropriate, and this complicates reasoning about
|
|
// interesting values.
|
|
typedef llvm::DenseSet<const Expr *> InterestingExprs;
|
|
|
|
static void reversePropagateIntererstingSymbols(BugReport &R,
|
|
InterestingExprs &IE,
|
|
const ProgramState *State,
|
|
const Expr *Ex,
|
|
const LocationContext *LCtx) {
|
|
SVal V = State->getSVal(Ex, LCtx);
|
|
if (!(R.isInteresting(V) || IE.count(Ex)))
|
|
return;
|
|
|
|
switch (Ex->getStmtClass()) {
|
|
default:
|
|
if (!isa<CastExpr>(Ex))
|
|
break;
|
|
// Fall through.
|
|
case Stmt::BinaryOperatorClass:
|
|
case Stmt::UnaryOperatorClass: {
|
|
for (Stmt::const_child_iterator CI = Ex->child_begin(),
|
|
CE = Ex->child_end();
|
|
CI != CE; ++CI) {
|
|
if (const Expr *child = dyn_cast_or_null<Expr>(*CI)) {
|
|
IE.insert(child);
|
|
SVal ChildV = State->getSVal(child, LCtx);
|
|
R.markInteresting(ChildV);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
R.markInteresting(V);
|
|
}
|
|
|
|
static void reversePropagateInterestingSymbols(BugReport &R,
|
|
InterestingExprs &IE,
|
|
const ProgramState *State,
|
|
const LocationContext *CalleeCtx,
|
|
const LocationContext *CallerCtx)
|
|
{
|
|
// FIXME: Handle non-CallExpr-based CallEvents.
|
|
const StackFrameContext *Callee = CalleeCtx->getCurrentStackFrame();
|
|
const Stmt *CallSite = Callee->getCallSite();
|
|
if (const CallExpr *CE = dyn_cast_or_null<CallExpr>(CallSite)) {
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeCtx->getDecl())) {
|
|
FunctionDecl::param_const_iterator PI = FD->param_begin(),
|
|
PE = FD->param_end();
|
|
CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
|
|
for (; AI != AE && PI != PE; ++AI, ++PI) {
|
|
if (const Expr *ArgE = *AI) {
|
|
if (const ParmVarDecl *PD = *PI) {
|
|
Loc LV = State->getLValue(PD, CalleeCtx);
|
|
if (R.isInteresting(LV) || R.isInteresting(State->getRawSVal(LV)))
|
|
IE.insert(ArgE);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Functions for determining if a loop was executed 0 times.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Return true if the terminator is a loop and the destination is the
|
|
/// false branch.
|
|
static bool isLoopJumpPastBody(const Stmt *Term, const BlockEdge *BE) {
|
|
switch (Term->getStmtClass()) {
|
|
case Stmt::ForStmtClass:
|
|
case Stmt::WhileStmtClass:
|
|
case Stmt::ObjCForCollectionStmtClass:
|
|
break;
|
|
default:
|
|
// Note that we intentionally do not include do..while here.
|
|
return false;
|
|
}
|
|
|
|
// Did we take the false branch?
|
|
const CFGBlock *Src = BE->getSrc();
|
|
assert(Src->succ_size() == 2);
|
|
return (*(Src->succ_begin()+1) == BE->getDst());
|
|
}
|
|
|
|
static bool isContainedByStmt(ParentMap &PM, const Stmt *S, const Stmt *SubS) {
|
|
while (SubS) {
|
|
if (SubS == S)
|
|
return true;
|
|
SubS = PM.getParent(SubS);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static const Stmt *getStmtBeforeCond(ParentMap &PM, const Stmt *Term,
|
|
const ExplodedNode *N) {
|
|
while (N) {
|
|
Optional<StmtPoint> SP = N->getLocation().getAs<StmtPoint>();
|
|
if (SP) {
|
|
const Stmt *S = SP->getStmt();
|
|
if (!isContainedByStmt(PM, Term, S))
|
|
return S;
|
|
}
|
|
N = N->getFirstPred();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static bool isInLoopBody(ParentMap &PM, const Stmt *S, const Stmt *Term) {
|
|
const Stmt *LoopBody = 0;
|
|
switch (Term->getStmtClass()) {
|
|
case Stmt::ForStmtClass: {
|
|
const ForStmt *FS = cast<ForStmt>(Term);
|
|
if (isContainedByStmt(PM, FS->getInc(), S))
|
|
return true;
|
|
LoopBody = FS->getBody();
|
|
break;
|
|
}
|
|
case Stmt::ObjCForCollectionStmtClass: {
|
|
const ObjCForCollectionStmt *FC = cast<ObjCForCollectionStmt>(Term);
|
|
LoopBody = FC->getBody();
|
|
break;
|
|
}
|
|
case Stmt::WhileStmtClass:
|
|
LoopBody = cast<WhileStmt>(Term)->getBody();
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
return isContainedByStmt(PM, LoopBody, S);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top-level logic for generating extensive path diagnostics.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool GenerateExtensivePathDiagnostic(PathDiagnostic& PD,
|
|
PathDiagnosticBuilder &PDB,
|
|
const ExplodedNode *N,
|
|
LocationContextMap &LCM,
|
|
ArrayRef<BugReporterVisitor *> visitors) {
|
|
EdgeBuilder EB(PD, PDB);
|
|
const SourceManager& SM = PDB.getSourceManager();
|
|
StackDiagVector CallStack;
|
|
InterestingExprs IE;
|
|
|
|
const ExplodedNode *NextNode = N->pred_empty() ? NULL : *(N->pred_begin());
|
|
while (NextNode) {
|
|
N = NextNode;
|
|
NextNode = N->getFirstPred();
|
|
ProgramPoint P = N->getLocation();
|
|
|
|
do {
|
|
if (Optional<PostStmt> PS = P.getAs<PostStmt>()) {
|
|
if (const Expr *Ex = PS->getStmtAs<Expr>())
|
|
reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
|
|
N->getState().getPtr(), Ex,
|
|
N->getLocationContext());
|
|
}
|
|
|
|
if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
|
|
const Stmt *S = CE->getCalleeContext()->getCallSite();
|
|
if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) {
|
|
reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
|
|
N->getState().getPtr(), Ex,
|
|
N->getLocationContext());
|
|
}
|
|
|
|
PathDiagnosticCallPiece *C =
|
|
PathDiagnosticCallPiece::construct(N, *CE, SM);
|
|
LCM[C] = CE->getCalleeContext();
|
|
|
|
EB.addEdge(C->callReturn, /*AlwaysAdd=*/true, /*IsPostJump=*/true);
|
|
EB.flushLocations();
|
|
|
|
PD.getActivePath().push_front(C);
|
|
PD.pushActivePath(&C->path);
|
|
CallStack.push_back(StackDiagPair(C, N));
|
|
break;
|
|
}
|
|
|
|
// Pop the call hierarchy if we are done walking the contents
|
|
// of a function call.
|
|
if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
|
|
// Add an edge to the start of the function.
|
|
const Decl *D = CE->getCalleeContext()->getDecl();
|
|
PathDiagnosticLocation pos =
|
|
PathDiagnosticLocation::createBegin(D, SM);
|
|
EB.addEdge(pos);
|
|
|
|
// Flush all locations, and pop the active path.
|
|
bool VisitedEntireCall = PD.isWithinCall();
|
|
EB.flushLocations();
|
|
PD.popActivePath();
|
|
PDB.LC = N->getLocationContext();
|
|
|
|
// Either we just added a bunch of stuff to the top-level path, or
|
|
// we have a previous CallExitEnd. If the former, it means that the
|
|
// path terminated within a function call. We must then take the
|
|
// current contents of the active path and place it within
|
|
// a new PathDiagnosticCallPiece.
|
|
PathDiagnosticCallPiece *C;
|
|
if (VisitedEntireCall) {
|
|
C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
|
|
} else {
|
|
const Decl *Caller = CE->getLocationContext()->getDecl();
|
|
C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
|
|
LCM[C] = CE->getCalleeContext();
|
|
}
|
|
|
|
C->setCallee(*CE, SM);
|
|
EB.addContext(C->getLocation());
|
|
|
|
if (!CallStack.empty()) {
|
|
assert(CallStack.back().first == C);
|
|
CallStack.pop_back();
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Note that is important that we update the LocationContext
|
|
// after looking at CallExits. CallExit basically adds an
|
|
// edge in the *caller*, so we don't want to update the LocationContext
|
|
// too soon.
|
|
PDB.LC = N->getLocationContext();
|
|
|
|
// Block edges.
|
|
if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
|
|
// Does this represent entering a call? If so, look at propagating
|
|
// interesting symbols across call boundaries.
|
|
if (NextNode) {
|
|
const LocationContext *CallerCtx = NextNode->getLocationContext();
|
|
const LocationContext *CalleeCtx = PDB.LC;
|
|
if (CallerCtx != CalleeCtx) {
|
|
reversePropagateInterestingSymbols(*PDB.getBugReport(), IE,
|
|
N->getState().getPtr(),
|
|
CalleeCtx, CallerCtx);
|
|
}
|
|
}
|
|
|
|
// Are we jumping to the head of a loop? Add a special diagnostic.
|
|
if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
|
|
PathDiagnosticLocation L(Loop, SM, PDB.LC);
|
|
const CompoundStmt *CS = NULL;
|
|
|
|
if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
|
|
CS = dyn_cast<CompoundStmt>(FS->getBody());
|
|
else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
|
|
CS = dyn_cast<CompoundStmt>(WS->getBody());
|
|
|
|
PathDiagnosticEventPiece *p =
|
|
new PathDiagnosticEventPiece(L,
|
|
"Looping back to the head of the loop");
|
|
p->setPrunable(true);
|
|
|
|
EB.addEdge(p->getLocation(), true);
|
|
PD.getActivePath().push_front(p);
|
|
|
|
if (CS) {
|
|
PathDiagnosticLocation BL =
|
|
PathDiagnosticLocation::createEndBrace(CS, SM);
|
|
EB.addEdge(BL);
|
|
}
|
|
}
|
|
|
|
const CFGBlock *BSrc = BE->getSrc();
|
|
ParentMap &PM = PDB.getParentMap();
|
|
|
|
if (const Stmt *Term = BSrc->getTerminator()) {
|
|
// Are we jumping past the loop body without ever executing the
|
|
// loop (because the condition was false)?
|
|
if (isLoopJumpPastBody(Term, &*BE) &&
|
|
!isInLoopBody(PM,
|
|
getStmtBeforeCond(PM,
|
|
BSrc->getTerminatorCondition(),
|
|
N),
|
|
Term)) {
|
|
PathDiagnosticLocation L(Term, SM, PDB.LC);
|
|
PathDiagnosticEventPiece *PE =
|
|
new PathDiagnosticEventPiece(L, "Loop body executed 0 times");
|
|
PE->setPrunable(true);
|
|
|
|
EB.addEdge(PE->getLocation(), true);
|
|
PD.getActivePath().push_front(PE);
|
|
}
|
|
|
|
// In any case, add the terminator as the current statement
|
|
// context for control edges.
|
|
EB.addContext(Term);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
if (Optional<BlockEntrance> BE = P.getAs<BlockEntrance>()) {
|
|
Optional<CFGElement> First = BE->getFirstElement();
|
|
if (Optional<CFGStmt> S = First ? First->getAs<CFGStmt>() : None) {
|
|
const Stmt *stmt = S->getStmt();
|
|
if (IsControlFlowExpr(stmt)) {
|
|
// Add the proper context for '&&', '||', and '?'.
|
|
EB.addContext(stmt);
|
|
}
|
|
else
|
|
EB.addExtendedContext(PDB.getEnclosingStmtLocation(stmt).asStmt());
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
|
|
} while (0);
|
|
|
|
if (!NextNode)
|
|
continue;
|
|
|
|
// Add pieces from custom visitors.
|
|
BugReport *R = PDB.getBugReport();
|
|
for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
|
|
E = visitors.end();
|
|
I != E; ++I) {
|
|
if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
|
|
const PathDiagnosticLocation &Loc = p->getLocation();
|
|
EB.addEdge(Loc, true);
|
|
PD.getActivePath().push_front(p);
|
|
updateStackPiecesWithMessage(p, CallStack);
|
|
|
|
if (const Stmt *S = Loc.asStmt())
|
|
EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
|
|
}
|
|
}
|
|
}
|
|
|
|
return PDB.getBugReport()->isValid();
|
|
}
|
|
|
|
/// \brief Adds a sanitized control-flow diagnostic edge to a path.
|
|
static void addEdgeToPath(PathPieces &path,
|
|
PathDiagnosticLocation &PrevLoc,
|
|
PathDiagnosticLocation NewLoc,
|
|
const LocationContext *LC) {
|
|
if (NewLoc.asLocation().isMacroID())
|
|
return;
|
|
|
|
if (!PrevLoc.isValid()) {
|
|
PrevLoc = NewLoc;
|
|
return;
|
|
}
|
|
|
|
const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc, LC);
|
|
if (PrevLocClean.asLocation().isInvalid()) {
|
|
PrevLoc = NewLoc;
|
|
return;
|
|
}
|
|
|
|
const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc, LC);
|
|
if (NewLocClean.asLocation() == PrevLocClean.asLocation())
|
|
return;
|
|
|
|
// FIXME: ignore intra-macro edges for now.
|
|
if (NewLocClean.asLocation().getExpansionLoc() ==
|
|
PrevLocClean.asLocation().getExpansionLoc())
|
|
return;
|
|
|
|
path.push_front(new PathDiagnosticControlFlowPiece(NewLocClean,
|
|
PrevLocClean));
|
|
PrevLoc = NewLoc;
|
|
}
|
|
|
|
static bool
|
|
GenerateAlternateExtensivePathDiagnostic(PathDiagnostic& PD,
|
|
PathDiagnosticBuilder &PDB,
|
|
const ExplodedNode *N,
|
|
LocationContextMap &LCM,
|
|
ArrayRef<BugReporterVisitor *> visitors) {
|
|
|
|
BugReport *report = PDB.getBugReport();
|
|
const SourceManager& SM = PDB.getSourceManager();
|
|
StackDiagVector CallStack;
|
|
InterestingExprs IE;
|
|
|
|
// Record the last location for a given visited stack frame.
|
|
llvm::DenseMap<const StackFrameContext *, PathDiagnosticLocation>
|
|
PrevLocMap;
|
|
|
|
const ExplodedNode *NextNode = N->getFirstPred();
|
|
while (NextNode) {
|
|
N = NextNode;
|
|
NextNode = N->getFirstPred();
|
|
ProgramPoint P = N->getLocation();
|
|
const LocationContext *LC = N->getLocationContext();
|
|
PathDiagnosticLocation &PrevLoc = PrevLocMap[LC->getCurrentStackFrame()];
|
|
|
|
do {
|
|
if (Optional<PostStmt> PS = P.getAs<PostStmt>()) {
|
|
// For expressions, make sure we propagate the
|
|
// interesting symbols correctly.
|
|
if (const Expr *Ex = PS->getStmtAs<Expr>())
|
|
reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
|
|
N->getState().getPtr(), Ex,
|
|
N->getLocationContext());
|
|
break;
|
|
}
|
|
|
|
// Have we encountered an exit from a function call?
|
|
if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
|
|
const Stmt *S = CE->getCalleeContext()->getCallSite();
|
|
// Propagate the interesting symbols accordingly.
|
|
if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) {
|
|
reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
|
|
N->getState().getPtr(), Ex,
|
|
N->getLocationContext());
|
|
}
|
|
|
|
// We are descending into a call (backwards). Construct
|
|
// a new call piece to contain the path pieces for that call.
|
|
PathDiagnosticCallPiece *C =
|
|
PathDiagnosticCallPiece::construct(N, *CE, SM);
|
|
|
|
// Record the location context for this call piece.
|
|
LCM[C] = CE->getCalleeContext();
|
|
|
|
// Add the edge to the return site.
|
|
addEdgeToPath(PD.getActivePath(), PrevLoc, C->callReturn, LC);
|
|
|
|
// Make the contents of the call the active path for now.
|
|
PD.pushActivePath(&C->path);
|
|
CallStack.push_back(StackDiagPair(C, N));
|
|
break;
|
|
}
|
|
|
|
// Have we encountered an entrance to a call? It may be
|
|
// the case that we have not encountered a matching
|
|
// call exit before this point. This means that the path
|
|
// terminated within the call itself.
|
|
if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
|
|
// Add an edge to the start of the function.
|
|
const Decl *D = CE->getCalleeContext()->getDecl();
|
|
addEdgeToPath(PD.getActivePath(), PrevLoc,
|
|
PathDiagnosticLocation::createBegin(D, SM), LC);
|
|
|
|
// Did we visit an entire call?
|
|
bool VisitedEntireCall = PD.isWithinCall();
|
|
PD.popActivePath();
|
|
|
|
PathDiagnosticCallPiece *C;
|
|
if (VisitedEntireCall) {
|
|
C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
|
|
} else {
|
|
const Decl *Caller = CE->getLocationContext()->getDecl();
|
|
C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
|
|
LCM[C] = CE->getCalleeContext();
|
|
}
|
|
C->setCallee(*CE, SM);
|
|
|
|
if (!CallStack.empty()) {
|
|
assert(CallStack.back().first == C);
|
|
CallStack.pop_back();
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Block edges.
|
|
if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
|
|
// Does this represent entering a call? If so, look at propagating
|
|
// interesting symbols across call boundaries.
|
|
if (NextNode) {
|
|
const LocationContext *CallerCtx = NextNode->getLocationContext();
|
|
const LocationContext *CalleeCtx = PDB.LC;
|
|
if (CallerCtx != CalleeCtx) {
|
|
reversePropagateInterestingSymbols(*PDB.getBugReport(), IE,
|
|
N->getState().getPtr(),
|
|
CalleeCtx, CallerCtx);
|
|
}
|
|
}
|
|
|
|
// Are we jumping to the head of a loop? Add a special diagnostic.
|
|
if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
|
|
PathDiagnosticLocation L(Loop, SM, PDB.LC);
|
|
const CompoundStmt *CS = NULL;
|
|
|
|
if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
|
|
CS = dyn_cast<CompoundStmt>(FS->getBody());
|
|
else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
|
|
CS = dyn_cast<CompoundStmt>(WS->getBody());
|
|
|
|
PathDiagnosticEventPiece *p =
|
|
new PathDiagnosticEventPiece(L, "Looping back to the head "
|
|
"of the loop");
|
|
p->setPrunable(true);
|
|
|
|
addEdgeToPath(PD.getActivePath(), PrevLoc, p->getLocation(), LC);
|
|
|
|
if (CS) {
|
|
addEdgeToPath(PD.getActivePath(), PrevLoc,
|
|
PathDiagnosticLocation::createEndBrace(CS, SM), LC);
|
|
}
|
|
}
|
|
|
|
const CFGBlock *BSrc = BE->getSrc();
|
|
ParentMap &PM = PDB.getParentMap();
|
|
|
|
if (const Stmt *Term = BSrc->getTerminator()) {
|
|
// Are we jumping past the loop body without ever executing the
|
|
// loop (because the condition was false)?
|
|
if (isLoopJumpPastBody(Term, &*BE) &&
|
|
!isInLoopBody(PM,
|
|
getStmtBeforeCond(PM,
|
|
BSrc->getTerminatorCondition(),
|
|
N),
|
|
Term))
|
|
{
|
|
PathDiagnosticLocation L(Term, SM, PDB.LC);
|
|
PathDiagnosticEventPiece *PE =
|
|
new PathDiagnosticEventPiece(L, "Loop body executed 0 times");
|
|
PE->setPrunable(true);
|
|
addEdgeToPath(PD.getActivePath(), PrevLoc,
|
|
PE->getLocation(), LC);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
} while (0);
|
|
|
|
if (!NextNode)
|
|
continue;
|
|
|
|
// Add pieces from custom visitors.
|
|
BugReport *R = PDB.getBugReport();
|
|
for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
|
|
E = visitors.end();
|
|
I != E; ++I) {
|
|
if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
|
|
addEdgeToPath(PD.getActivePath(), PrevLoc, p->getLocation(), LC);
|
|
updateStackPiecesWithMessage(p, CallStack);
|
|
}
|
|
}
|
|
}
|
|
|
|
return report->isValid();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Methods for BugType and subclasses.
|
|
//===----------------------------------------------------------------------===//
|
|
BugType::~BugType() { }
|
|
|
|
void BugType::FlushReports(BugReporter &BR) {}
|
|
|
|
void BuiltinBug::anchor() {}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Methods for BugReport and subclasses.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void BugReport::NodeResolver::anchor() {}
|
|
|
|
void BugReport::addVisitor(BugReporterVisitor* visitor) {
|
|
if (!visitor)
|
|
return;
|
|
|
|
llvm::FoldingSetNodeID ID;
|
|
visitor->Profile(ID);
|
|
void *InsertPos;
|
|
|
|
if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
|
|
delete visitor;
|
|
return;
|
|
}
|
|
|
|
CallbacksSet.InsertNode(visitor, InsertPos);
|
|
Callbacks.push_back(visitor);
|
|
++ConfigurationChangeToken;
|
|
}
|
|
|
|
BugReport::~BugReport() {
|
|
for (visitor_iterator I = visitor_begin(), E = visitor_end(); I != E; ++I) {
|
|
delete *I;
|
|
}
|
|
while (!interestingSymbols.empty()) {
|
|
popInterestingSymbolsAndRegions();
|
|
}
|
|
}
|
|
|
|
const Decl *BugReport::getDeclWithIssue() const {
|
|
if (DeclWithIssue)
|
|
return DeclWithIssue;
|
|
|
|
const ExplodedNode *N = getErrorNode();
|
|
if (!N)
|
|
return 0;
|
|
|
|
const LocationContext *LC = N->getLocationContext();
|
|
return LC->getCurrentStackFrame()->getDecl();
|
|
}
|
|
|
|
void BugReport::Profile(llvm::FoldingSetNodeID& hash) const {
|
|
hash.AddPointer(&BT);
|
|
hash.AddString(Description);
|
|
PathDiagnosticLocation UL = getUniqueingLocation();
|
|
if (UL.isValid()) {
|
|
UL.Profile(hash);
|
|
} else if (Location.isValid()) {
|
|
Location.Profile(hash);
|
|
} else {
|
|
assert(ErrorNode);
|
|
hash.AddPointer(GetCurrentOrPreviousStmt(ErrorNode));
|
|
}
|
|
|
|
for (SmallVectorImpl<SourceRange>::const_iterator I =
|
|
Ranges.begin(), E = Ranges.end(); I != E; ++I) {
|
|
const SourceRange range = *I;
|
|
if (!range.isValid())
|
|
continue;
|
|
hash.AddInteger(range.getBegin().getRawEncoding());
|
|
hash.AddInteger(range.getEnd().getRawEncoding());
|
|
}
|
|
}
|
|
|
|
void BugReport::markInteresting(SymbolRef sym) {
|
|
if (!sym)
|
|
return;
|
|
|
|
// If the symbol wasn't already in our set, note a configuration change.
|
|
if (getInterestingSymbols().insert(sym).second)
|
|
++ConfigurationChangeToken;
|
|
|
|
if (const SymbolMetadata *meta = dyn_cast<SymbolMetadata>(sym))
|
|
getInterestingRegions().insert(meta->getRegion());
|
|
}
|
|
|
|
void BugReport::markInteresting(const MemRegion *R) {
|
|
if (!R)
|
|
return;
|
|
|
|
// If the base region wasn't already in our set, note a configuration change.
|
|
R = R->getBaseRegion();
|
|
if (getInterestingRegions().insert(R).second)
|
|
++ConfigurationChangeToken;
|
|
|
|
if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
|
|
getInterestingSymbols().insert(SR->getSymbol());
|
|
}
|
|
|
|
void BugReport::markInteresting(SVal V) {
|
|
markInteresting(V.getAsRegion());
|
|
markInteresting(V.getAsSymbol());
|
|
}
|
|
|
|
void BugReport::markInteresting(const LocationContext *LC) {
|
|
if (!LC)
|
|
return;
|
|
InterestingLocationContexts.insert(LC);
|
|
}
|
|
|
|
bool BugReport::isInteresting(SVal V) {
|
|
return isInteresting(V.getAsRegion()) || isInteresting(V.getAsSymbol());
|
|
}
|
|
|
|
bool BugReport::isInteresting(SymbolRef sym) {
|
|
if (!sym)
|
|
return false;
|
|
// We don't currently consider metadata symbols to be interesting
|
|
// even if we know their region is interesting. Is that correct behavior?
|
|
return getInterestingSymbols().count(sym);
|
|
}
|
|
|
|
bool BugReport::isInteresting(const MemRegion *R) {
|
|
if (!R)
|
|
return false;
|
|
R = R->getBaseRegion();
|
|
bool b = getInterestingRegions().count(R);
|
|
if (b)
|
|
return true;
|
|
if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
|
|
return getInterestingSymbols().count(SR->getSymbol());
|
|
return false;
|
|
}
|
|
|
|
bool BugReport::isInteresting(const LocationContext *LC) {
|
|
if (!LC)
|
|
return false;
|
|
return InterestingLocationContexts.count(LC);
|
|
}
|
|
|
|
void BugReport::lazyInitializeInterestingSets() {
|
|
if (interestingSymbols.empty()) {
|
|
interestingSymbols.push_back(new Symbols());
|
|
interestingRegions.push_back(new Regions());
|
|
}
|
|
}
|
|
|
|
BugReport::Symbols &BugReport::getInterestingSymbols() {
|
|
lazyInitializeInterestingSets();
|
|
return *interestingSymbols.back();
|
|
}
|
|
|
|
BugReport::Regions &BugReport::getInterestingRegions() {
|
|
lazyInitializeInterestingSets();
|
|
return *interestingRegions.back();
|
|
}
|
|
|
|
void BugReport::pushInterestingSymbolsAndRegions() {
|
|
interestingSymbols.push_back(new Symbols(getInterestingSymbols()));
|
|
interestingRegions.push_back(new Regions(getInterestingRegions()));
|
|
}
|
|
|
|
void BugReport::popInterestingSymbolsAndRegions() {
|
|
delete interestingSymbols.back();
|
|
interestingSymbols.pop_back();
|
|
delete interestingRegions.back();
|
|
interestingRegions.pop_back();
|
|
}
|
|
|
|
const Stmt *BugReport::getStmt() const {
|
|
if (!ErrorNode)
|
|
return 0;
|
|
|
|
ProgramPoint ProgP = ErrorNode->getLocation();
|
|
const Stmt *S = NULL;
|
|
|
|
if (Optional<BlockEntrance> BE = ProgP.getAs<BlockEntrance>()) {
|
|
CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
|
|
if (BE->getBlock() == &Exit)
|
|
S = GetPreviousStmt(ErrorNode);
|
|
}
|
|
if (!S)
|
|
S = PathDiagnosticLocation::getStmt(ErrorNode);
|
|
|
|
return S;
|
|
}
|
|
|
|
std::pair<BugReport::ranges_iterator, BugReport::ranges_iterator>
|
|
BugReport::getRanges() {
|
|
// If no custom ranges, add the range of the statement corresponding to
|
|
// the error node.
|
|
if (Ranges.empty()) {
|
|
if (const Expr *E = dyn_cast_or_null<Expr>(getStmt()))
|
|
addRange(E->getSourceRange());
|
|
else
|
|
return std::make_pair(ranges_iterator(), ranges_iterator());
|
|
}
|
|
|
|
// User-specified absence of range info.
|
|
if (Ranges.size() == 1 && !Ranges.begin()->isValid())
|
|
return std::make_pair(ranges_iterator(), ranges_iterator());
|
|
|
|
return std::make_pair(Ranges.begin(), Ranges.end());
|
|
}
|
|
|
|
PathDiagnosticLocation BugReport::getLocation(const SourceManager &SM) const {
|
|
if (ErrorNode) {
|
|
assert(!Location.isValid() &&
|
|
"Either Location or ErrorNode should be specified but not both.");
|
|
return PathDiagnosticLocation::createEndOfPath(ErrorNode, SM);
|
|
} else {
|
|
assert(Location.isValid());
|
|
return Location;
|
|
}
|
|
|
|
return PathDiagnosticLocation();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Methods for BugReporter and subclasses.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
BugReportEquivClass::~BugReportEquivClass() { }
|
|
GRBugReporter::~GRBugReporter() { }
|
|
BugReporterData::~BugReporterData() {}
|
|
|
|
ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); }
|
|
|
|
ProgramStateManager&
|
|
GRBugReporter::getStateManager() { return Eng.getStateManager(); }
|
|
|
|
BugReporter::~BugReporter() {
|
|
FlushReports();
|
|
|
|
// Free the bug reports we are tracking.
|
|
typedef std::vector<BugReportEquivClass *> ContTy;
|
|
for (ContTy::iterator I = EQClassesVector.begin(), E = EQClassesVector.end();
|
|
I != E; ++I) {
|
|
delete *I;
|
|
}
|
|
}
|
|
|
|
void BugReporter::FlushReports() {
|
|
if (BugTypes.isEmpty())
|
|
return;
|
|
|
|
// First flush the warnings for each BugType. This may end up creating new
|
|
// warnings and new BugTypes.
|
|
// FIXME: Only NSErrorChecker needs BugType's FlushReports.
|
|
// Turn NSErrorChecker into a proper checker and remove this.
|
|
SmallVector<const BugType*, 16> bugTypes;
|
|
for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I)
|
|
bugTypes.push_back(*I);
|
|
for (SmallVector<const BugType*, 16>::iterator
|
|
I = bugTypes.begin(), E = bugTypes.end(); I != E; ++I)
|
|
const_cast<BugType*>(*I)->FlushReports(*this);
|
|
|
|
// We need to flush reports in deterministic order to ensure the order
|
|
// of the reports is consistent between runs.
|
|
typedef std::vector<BugReportEquivClass *> ContVecTy;
|
|
for (ContVecTy::iterator EI=EQClassesVector.begin(), EE=EQClassesVector.end();
|
|
EI != EE; ++EI){
|
|
BugReportEquivClass& EQ = **EI;
|
|
FlushReport(EQ);
|
|
}
|
|
|
|
// BugReporter owns and deletes only BugTypes created implicitly through
|
|
// EmitBasicReport.
|
|
// FIXME: There are leaks from checkers that assume that the BugTypes they
|
|
// create will be destroyed by the BugReporter.
|
|
for (llvm::StringMap<BugType*>::iterator
|
|
I = StrBugTypes.begin(), E = StrBugTypes.end(); I != E; ++I)
|
|
delete I->second;
|
|
|
|
// Remove all references to the BugType objects.
|
|
BugTypes = F.getEmptySet();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PathDiagnostics generation.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// A wrapper around a report graph, which contains only a single path, and its
|
|
/// node maps.
|
|
class ReportGraph {
|
|
public:
|
|
InterExplodedGraphMap BackMap;
|
|
OwningPtr<ExplodedGraph> Graph;
|
|
const ExplodedNode *ErrorNode;
|
|
size_t Index;
|
|
};
|
|
|
|
/// A wrapper around a trimmed graph and its node maps.
|
|
class TrimmedGraph {
|
|
InterExplodedGraphMap InverseMap;
|
|
|
|
typedef llvm::DenseMap<const ExplodedNode *, unsigned> PriorityMapTy;
|
|
PriorityMapTy PriorityMap;
|
|
|
|
typedef std::pair<const ExplodedNode *, size_t> NodeIndexPair;
|
|
SmallVector<NodeIndexPair, 32> ReportNodes;
|
|
|
|
OwningPtr<ExplodedGraph> G;
|
|
|
|
/// A helper class for sorting ExplodedNodes by priority.
|
|
template <bool Descending>
|
|
class PriorityCompare {
|
|
const PriorityMapTy &PriorityMap;
|
|
|
|
public:
|
|
PriorityCompare(const PriorityMapTy &M) : PriorityMap(M) {}
|
|
|
|
bool operator()(const ExplodedNode *LHS, const ExplodedNode *RHS) const {
|
|
PriorityMapTy::const_iterator LI = PriorityMap.find(LHS);
|
|
PriorityMapTy::const_iterator RI = PriorityMap.find(RHS);
|
|
PriorityMapTy::const_iterator E = PriorityMap.end();
|
|
|
|
if (LI == E)
|
|
return Descending;
|
|
if (RI == E)
|
|
return !Descending;
|
|
|
|
return Descending ? LI->second > RI->second
|
|
: LI->second < RI->second;
|
|
}
|
|
|
|
bool operator()(const NodeIndexPair &LHS, const NodeIndexPair &RHS) const {
|
|
return (*this)(LHS.first, RHS.first);
|
|
}
|
|
};
|
|
|
|
public:
|
|
TrimmedGraph(const ExplodedGraph *OriginalGraph,
|
|
ArrayRef<const ExplodedNode *> Nodes);
|
|
|
|
bool popNextReportGraph(ReportGraph &GraphWrapper);
|
|
};
|
|
}
|
|
|
|
TrimmedGraph::TrimmedGraph(const ExplodedGraph *OriginalGraph,
|
|
ArrayRef<const ExplodedNode *> Nodes) {
|
|
// The trimmed graph is created in the body of the constructor to ensure
|
|
// that the DenseMaps have been initialized already.
|
|
InterExplodedGraphMap ForwardMap;
|
|
G.reset(OriginalGraph->trim(Nodes, &ForwardMap, &InverseMap));
|
|
|
|
// Find the (first) error node in the trimmed graph. We just need to consult
|
|
// the node map which maps from nodes in the original graph to nodes
|
|
// in the new graph.
|
|
llvm::SmallPtrSet<const ExplodedNode *, 32> RemainingNodes;
|
|
|
|
for (unsigned i = 0, count = Nodes.size(); i < count; ++i) {
|
|
if (const ExplodedNode *NewNode = ForwardMap.lookup(Nodes[i])) {
|
|
ReportNodes.push_back(std::make_pair(NewNode, i));
|
|
RemainingNodes.insert(NewNode);
|
|
}
|
|
}
|
|
|
|
assert(!RemainingNodes.empty() && "No error node found in the trimmed graph");
|
|
|
|
// Perform a forward BFS to find all the shortest paths.
|
|
std::queue<const ExplodedNode *> WS;
|
|
|
|
assert(G->num_roots() == 1);
|
|
WS.push(*G->roots_begin());
|
|
unsigned Priority = 0;
|
|
|
|
while (!WS.empty()) {
|
|
const ExplodedNode *Node = WS.front();
|
|
WS.pop();
|
|
|
|
PriorityMapTy::iterator PriorityEntry;
|
|
bool IsNew;
|
|
llvm::tie(PriorityEntry, IsNew) =
|
|
PriorityMap.insert(std::make_pair(Node, Priority));
|
|
++Priority;
|
|
|
|
if (!IsNew) {
|
|
assert(PriorityEntry->second <= Priority);
|
|
continue;
|
|
}
|
|
|
|
if (RemainingNodes.erase(Node))
|
|
if (RemainingNodes.empty())
|
|
break;
|
|
|
|
for (ExplodedNode::const_pred_iterator I = Node->succ_begin(),
|
|
E = Node->succ_end();
|
|
I != E; ++I)
|
|
WS.push(*I);
|
|
}
|
|
|
|
// Sort the error paths from longest to shortest.
|
|
std::sort(ReportNodes.begin(), ReportNodes.end(),
|
|
PriorityCompare<true>(PriorityMap));
|
|
}
|
|
|
|
bool TrimmedGraph::popNextReportGraph(ReportGraph &GraphWrapper) {
|
|
if (ReportNodes.empty())
|
|
return false;
|
|
|
|
const ExplodedNode *OrigN;
|
|
llvm::tie(OrigN, GraphWrapper.Index) = ReportNodes.pop_back_val();
|
|
assert(PriorityMap.find(OrigN) != PriorityMap.end() &&
|
|
"error node not accessible from root");
|
|
|
|
// Create a new graph with a single path. This is the graph
|
|
// that will be returned to the caller.
|
|
ExplodedGraph *GNew = new ExplodedGraph();
|
|
GraphWrapper.Graph.reset(GNew);
|
|
GraphWrapper.BackMap.clear();
|
|
|
|
// Now walk from the error node up the BFS path, always taking the
|
|
// predeccessor with the lowest number.
|
|
ExplodedNode *Succ = 0;
|
|
while (true) {
|
|
// Create the equivalent node in the new graph with the same state
|
|
// and location.
|
|
ExplodedNode *NewN = GNew->getNode(OrigN->getLocation(), OrigN->getState(),
|
|
OrigN->isSink());
|
|
|
|
// Store the mapping to the original node.
|
|
InterExplodedGraphMap::const_iterator IMitr = InverseMap.find(OrigN);
|
|
assert(IMitr != InverseMap.end() && "No mapping to original node.");
|
|
GraphWrapper.BackMap[NewN] = IMitr->second;
|
|
|
|
// Link up the new node with the previous node.
|
|
if (Succ)
|
|
Succ->addPredecessor(NewN, *GNew);
|
|
else
|
|
GraphWrapper.ErrorNode = NewN;
|
|
|
|
Succ = NewN;
|
|
|
|
// Are we at the final node?
|
|
if (OrigN->pred_empty()) {
|
|
GNew->addRoot(NewN);
|
|
break;
|
|
}
|
|
|
|
// Find the next predeccessor node. We choose the node that is marked
|
|
// with the lowest BFS number.
|
|
OrigN = *std::min_element(OrigN->pred_begin(), OrigN->pred_end(),
|
|
PriorityCompare<false>(PriorityMap));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object
|
|
/// and collapses PathDiagosticPieces that are expanded by macros.
|
|
static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM) {
|
|
typedef std::vector<std::pair<IntrusiveRefCntPtr<PathDiagnosticMacroPiece>,
|
|
SourceLocation> > MacroStackTy;
|
|
|
|
typedef std::vector<IntrusiveRefCntPtr<PathDiagnosticPiece> >
|
|
PiecesTy;
|
|
|
|
MacroStackTy MacroStack;
|
|
PiecesTy Pieces;
|
|
|
|
for (PathPieces::const_iterator I = path.begin(), E = path.end();
|
|
I!=E; ++I) {
|
|
|
|
PathDiagnosticPiece *piece = I->getPtr();
|
|
|
|
// Recursively compact calls.
|
|
if (PathDiagnosticCallPiece *call=dyn_cast<PathDiagnosticCallPiece>(piece)){
|
|
CompactPathDiagnostic(call->path, SM);
|
|
}
|
|
|
|
// Get the location of the PathDiagnosticPiece.
|
|
const FullSourceLoc Loc = piece->getLocation().asLocation();
|
|
|
|
// Determine the instantiation location, which is the location we group
|
|
// related PathDiagnosticPieces.
|
|
SourceLocation InstantiationLoc = Loc.isMacroID() ?
|
|
SM.getExpansionLoc(Loc) :
|
|
SourceLocation();
|
|
|
|
if (Loc.isFileID()) {
|
|
MacroStack.clear();
|
|
Pieces.push_back(piece);
|
|
continue;
|
|
}
|
|
|
|
assert(Loc.isMacroID());
|
|
|
|
// Is the PathDiagnosticPiece within the same macro group?
|
|
if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
|
|
MacroStack.back().first->subPieces.push_back(piece);
|
|
continue;
|
|
}
|
|
|
|
// We aren't in the same group. Are we descending into a new macro
|
|
// or are part of an old one?
|
|
IntrusiveRefCntPtr<PathDiagnosticMacroPiece> MacroGroup;
|
|
|
|
SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
|
|
SM.getExpansionLoc(Loc) :
|
|
SourceLocation();
|
|
|
|
// Walk the entire macro stack.
|
|
while (!MacroStack.empty()) {
|
|
if (InstantiationLoc == MacroStack.back().second) {
|
|
MacroGroup = MacroStack.back().first;
|
|
break;
|
|
}
|
|
|
|
if (ParentInstantiationLoc == MacroStack.back().second) {
|
|
MacroGroup = MacroStack.back().first;
|
|
break;
|
|
}
|
|
|
|
MacroStack.pop_back();
|
|
}
|
|
|
|
if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
|
|
// Create a new macro group and add it to the stack.
|
|
PathDiagnosticMacroPiece *NewGroup =
|
|
new PathDiagnosticMacroPiece(
|
|
PathDiagnosticLocation::createSingleLocation(piece->getLocation()));
|
|
|
|
if (MacroGroup)
|
|
MacroGroup->subPieces.push_back(NewGroup);
|
|
else {
|
|
assert(InstantiationLoc.isFileID());
|
|
Pieces.push_back(NewGroup);
|
|
}
|
|
|
|
MacroGroup = NewGroup;
|
|
MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
|
|
}
|
|
|
|
// Finally, add the PathDiagnosticPiece to the group.
|
|
MacroGroup->subPieces.push_back(piece);
|
|
}
|
|
|
|
// Now take the pieces and construct a new PathDiagnostic.
|
|
path.clear();
|
|
|
|
for (PiecesTy::iterator I=Pieces.begin(), E=Pieces.end(); I!=E; ++I)
|
|
path.push_back(*I);
|
|
}
|
|
|
|
bool GRBugReporter::generatePathDiagnostic(PathDiagnostic& PD,
|
|
PathDiagnosticConsumer &PC,
|
|
ArrayRef<BugReport *> &bugReports) {
|
|
assert(!bugReports.empty());
|
|
|
|
bool HasValid = false;
|
|
bool HasInvalid = false;
|
|
SmallVector<const ExplodedNode *, 32> errorNodes;
|
|
for (ArrayRef<BugReport*>::iterator I = bugReports.begin(),
|
|
E = bugReports.end(); I != E; ++I) {
|
|
if ((*I)->isValid()) {
|
|
HasValid = true;
|
|
errorNodes.push_back((*I)->getErrorNode());
|
|
} else {
|
|
// Keep the errorNodes list in sync with the bugReports list.
|
|
HasInvalid = true;
|
|
errorNodes.push_back(0);
|
|
}
|
|
}
|
|
|
|
// If all the reports have been marked invalid by a previous path generation,
|
|
// we're done.
|
|
if (!HasValid)
|
|
return false;
|
|
|
|
typedef PathDiagnosticConsumer::PathGenerationScheme PathGenerationScheme;
|
|
PathGenerationScheme ActiveScheme = PC.getGenerationScheme();
|
|
|
|
if (ActiveScheme == PathDiagnosticConsumer::Extensive) {
|
|
AnalyzerOptions &options = getEngine().getAnalysisManager().options;
|
|
if (options.getBooleanOption("path-diagnostics-alternate", false)) {
|
|
ActiveScheme = PathDiagnosticConsumer::AlternateExtensive;
|
|
}
|
|
}
|
|
|
|
TrimmedGraph TrimG(&getGraph(), errorNodes);
|
|
ReportGraph ErrorGraph;
|
|
|
|
while (TrimG.popNextReportGraph(ErrorGraph)) {
|
|
// Find the BugReport with the original location.
|
|
assert(ErrorGraph.Index < bugReports.size());
|
|
BugReport *R = bugReports[ErrorGraph.Index];
|
|
assert(R && "No original report found for sliced graph.");
|
|
assert(R->isValid() && "Report selected by trimmed graph marked invalid.");
|
|
|
|
// Start building the path diagnostic...
|
|
PathDiagnosticBuilder PDB(*this, R, ErrorGraph.BackMap, &PC);
|
|
const ExplodedNode *N = ErrorGraph.ErrorNode;
|
|
|
|
// Register additional node visitors.
|
|
R->addVisitor(new NilReceiverBRVisitor());
|
|
R->addVisitor(new ConditionBRVisitor());
|
|
R->addVisitor(new LikelyFalsePositiveSuppressionBRVisitor());
|
|
|
|
BugReport::VisitorList visitors;
|
|
unsigned origReportConfigToken, finalReportConfigToken;
|
|
LocationContextMap LCM;
|
|
|
|
// While generating diagnostics, it's possible the visitors will decide
|
|
// new symbols and regions are interesting, or add other visitors based on
|
|
// the information they find. If they do, we need to regenerate the path
|
|
// based on our new report configuration.
|
|
do {
|
|
// Get a clean copy of all the visitors.
|
|
for (BugReport::visitor_iterator I = R->visitor_begin(),
|
|
E = R->visitor_end(); I != E; ++I)
|
|
visitors.push_back((*I)->clone());
|
|
|
|
// Clear out the active path from any previous work.
|
|
PD.resetPath();
|
|
origReportConfigToken = R->getConfigurationChangeToken();
|
|
|
|
// Generate the very last diagnostic piece - the piece is visible before
|
|
// the trace is expanded.
|
|
PathDiagnosticPiece *LastPiece = 0;
|
|
for (BugReport::visitor_iterator I = visitors.begin(), E = visitors.end();
|
|
I != E; ++I) {
|
|
if (PathDiagnosticPiece *Piece = (*I)->getEndPath(PDB, N, *R)) {
|
|
assert (!LastPiece &&
|
|
"There can only be one final piece in a diagnostic.");
|
|
LastPiece = Piece;
|
|
}
|
|
}
|
|
|
|
if (ActiveScheme != PathDiagnosticConsumer::None) {
|
|
if (!LastPiece)
|
|
LastPiece = BugReporterVisitor::getDefaultEndPath(PDB, N, *R);
|
|
assert(LastPiece);
|
|
PD.setEndOfPath(LastPiece);
|
|
}
|
|
|
|
// Make sure we get a clean location context map so we don't
|
|
// hold onto old mappings.
|
|
LCM.clear();
|
|
|
|
switch (ActiveScheme) {
|
|
case PathDiagnosticConsumer::AlternateExtensive:
|
|
GenerateAlternateExtensivePathDiagnostic(PD, PDB, N, LCM, visitors);
|
|
break;
|
|
case PathDiagnosticConsumer::Extensive:
|
|
GenerateExtensivePathDiagnostic(PD, PDB, N, LCM, visitors);
|
|
break;
|
|
case PathDiagnosticConsumer::Minimal:
|
|
GenerateMinimalPathDiagnostic(PD, PDB, N, LCM, visitors);
|
|
break;
|
|
case PathDiagnosticConsumer::None:
|
|
GenerateVisitorsOnlyPathDiagnostic(PD, PDB, N, visitors);
|
|
break;
|
|
}
|
|
|
|
// Clean up the visitors we used.
|
|
llvm::DeleteContainerPointers(visitors);
|
|
|
|
// Did anything change while generating this path?
|
|
finalReportConfigToken = R->getConfigurationChangeToken();
|
|
} while (finalReportConfigToken != origReportConfigToken);
|
|
|
|
if (!R->isValid())
|
|
continue;
|
|
|
|
// Finally, prune the diagnostic path of uninteresting stuff.
|
|
if (!PD.path.empty()) {
|
|
// Remove messages that are basically the same.
|
|
removeRedundantMsgs(PD.getMutablePieces());
|
|
|
|
if (R->shouldPrunePath() &&
|
|
getEngine().getAnalysisManager().options.shouldPrunePaths()) {
|
|
bool stillHasNotes = removeUnneededCalls(PD.getMutablePieces(), R, LCM);
|
|
assert(stillHasNotes);
|
|
(void)stillHasNotes;
|
|
}
|
|
|
|
adjustCallLocations(PD.getMutablePieces());
|
|
}
|
|
|
|
// We found a report and didn't suppress it.
|
|
return true;
|
|
}
|
|
|
|
// We suppressed all the reports in this equivalence class.
|
|
assert(!HasInvalid && "Inconsistent suppression");
|
|
(void)HasInvalid;
|
|
return false;
|
|
}
|
|
|
|
void BugReporter::Register(BugType *BT) {
|
|
BugTypes = F.add(BugTypes, BT);
|
|
}
|
|
|
|
void BugReporter::emitReport(BugReport* R) {
|
|
// Compute the bug report's hash to determine its equivalence class.
|
|
llvm::FoldingSetNodeID ID;
|
|
R->Profile(ID);
|
|
|
|
// Lookup the equivance class. If there isn't one, create it.
|
|
BugType& BT = R->getBugType();
|
|
Register(&BT);
|
|
void *InsertPos;
|
|
BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
|
|
|
|
if (!EQ) {
|
|
EQ = new BugReportEquivClass(R);
|
|
EQClasses.InsertNode(EQ, InsertPos);
|
|
EQClassesVector.push_back(EQ);
|
|
}
|
|
else
|
|
EQ->AddReport(R);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Emitting reports in equivalence classes.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
struct FRIEC_WLItem {
|
|
const ExplodedNode *N;
|
|
ExplodedNode::const_succ_iterator I, E;
|
|
|
|
FRIEC_WLItem(const ExplodedNode *n)
|
|
: N(n), I(N->succ_begin()), E(N->succ_end()) {}
|
|
};
|
|
}
|
|
|
|
static BugReport *
|
|
FindReportInEquivalenceClass(BugReportEquivClass& EQ,
|
|
SmallVectorImpl<BugReport*> &bugReports) {
|
|
|
|
BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end();
|
|
assert(I != E);
|
|
BugType& BT = I->getBugType();
|
|
|
|
// If we don't need to suppress any of the nodes because they are
|
|
// post-dominated by a sink, simply add all the nodes in the equivalence class
|
|
// to 'Nodes'. Any of the reports will serve as a "representative" report.
|
|
if (!BT.isSuppressOnSink()) {
|
|
BugReport *R = I;
|
|
for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) {
|
|
const ExplodedNode *N = I->getErrorNode();
|
|
if (N) {
|
|
R = I;
|
|
bugReports.push_back(R);
|
|
}
|
|
}
|
|
return R;
|
|
}
|
|
|
|
// For bug reports that should be suppressed when all paths are post-dominated
|
|
// by a sink node, iterate through the reports in the equivalence class
|
|
// until we find one that isn't post-dominated (if one exists). We use a
|
|
// DFS traversal of the ExplodedGraph to find a non-sink node. We could write
|
|
// this as a recursive function, but we don't want to risk blowing out the
|
|
// stack for very long paths.
|
|
BugReport *exampleReport = 0;
|
|
|
|
for (; I != E; ++I) {
|
|
const ExplodedNode *errorNode = I->getErrorNode();
|
|
|
|
if (!errorNode)
|
|
continue;
|
|
if (errorNode->isSink()) {
|
|
llvm_unreachable(
|
|
"BugType::isSuppressSink() should not be 'true' for sink end nodes");
|
|
}
|
|
// No successors? By definition this nodes isn't post-dominated by a sink.
|
|
if (errorNode->succ_empty()) {
|
|
bugReports.push_back(I);
|
|
if (!exampleReport)
|
|
exampleReport = I;
|
|
continue;
|
|
}
|
|
|
|
// At this point we know that 'N' is not a sink and it has at least one
|
|
// successor. Use a DFS worklist to find a non-sink end-of-path node.
|
|
typedef FRIEC_WLItem WLItem;
|
|
typedef SmallVector<WLItem, 10> DFSWorkList;
|
|
llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
|
|
|
|
DFSWorkList WL;
|
|
WL.push_back(errorNode);
|
|
Visited[errorNode] = 1;
|
|
|
|
while (!WL.empty()) {
|
|
WLItem &WI = WL.back();
|
|
assert(!WI.N->succ_empty());
|
|
|
|
for (; WI.I != WI.E; ++WI.I) {
|
|
const ExplodedNode *Succ = *WI.I;
|
|
// End-of-path node?
|
|
if (Succ->succ_empty()) {
|
|
// If we found an end-of-path node that is not a sink.
|
|
if (!Succ->isSink()) {
|
|
bugReports.push_back(I);
|
|
if (!exampleReport)
|
|
exampleReport = I;
|
|
WL.clear();
|
|
break;
|
|
}
|
|
// Found a sink? Continue on to the next successor.
|
|
continue;
|
|
}
|
|
// Mark the successor as visited. If it hasn't been explored,
|
|
// enqueue it to the DFS worklist.
|
|
unsigned &mark = Visited[Succ];
|
|
if (!mark) {
|
|
mark = 1;
|
|
WL.push_back(Succ);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// The worklist may have been cleared at this point. First
|
|
// check if it is empty before checking the last item.
|
|
if (!WL.empty() && &WL.back() == &WI)
|
|
WL.pop_back();
|
|
}
|
|
}
|
|
|
|
// ExampleReport will be NULL if all the nodes in the equivalence class
|
|
// were post-dominated by sinks.
|
|
return exampleReport;
|
|
}
|
|
|
|
void BugReporter::FlushReport(BugReportEquivClass& EQ) {
|
|
SmallVector<BugReport*, 10> bugReports;
|
|
BugReport *exampleReport = FindReportInEquivalenceClass(EQ, bugReports);
|
|
if (exampleReport) {
|
|
const PathDiagnosticConsumers &C = getPathDiagnosticConsumers();
|
|
for (PathDiagnosticConsumers::const_iterator I=C.begin(),
|
|
E=C.end(); I != E; ++I) {
|
|
FlushReport(exampleReport, **I, bugReports);
|
|
}
|
|
}
|
|
}
|
|
|
|
void BugReporter::FlushReport(BugReport *exampleReport,
|
|
PathDiagnosticConsumer &PD,
|
|
ArrayRef<BugReport*> bugReports) {
|
|
|
|
// FIXME: Make sure we use the 'R' for the path that was actually used.
|
|
// Probably doesn't make a difference in practice.
|
|
BugType& BT = exampleReport->getBugType();
|
|
|
|
OwningPtr<PathDiagnostic>
|
|
D(new PathDiagnostic(exampleReport->getDeclWithIssue(),
|
|
exampleReport->getBugType().getName(),
|
|
exampleReport->getDescription(),
|
|
exampleReport->getShortDescription(/*Fallback=*/false),
|
|
BT.getCategory(),
|
|
exampleReport->getUniqueingLocation(),
|
|
exampleReport->getUniqueingDecl()));
|
|
|
|
MaxBugClassSize = std::max(bugReports.size(),
|
|
static_cast<size_t>(MaxBugClassSize));
|
|
|
|
// Generate the full path diagnostic, using the generation scheme
|
|
// specified by the PathDiagnosticConsumer. Note that we have to generate
|
|
// path diagnostics even for consumers which do not support paths, because
|
|
// the BugReporterVisitors may mark this bug as a false positive.
|
|
if (!bugReports.empty())
|
|
if (!generatePathDiagnostic(*D.get(), PD, bugReports))
|
|
return;
|
|
|
|
MaxValidBugClassSize = std::max(bugReports.size(),
|
|
static_cast<size_t>(MaxValidBugClassSize));
|
|
|
|
// If the path is empty, generate a single step path with the location
|
|
// of the issue.
|
|
if (D->path.empty()) {
|
|
PathDiagnosticLocation L = exampleReport->getLocation(getSourceManager());
|
|
PathDiagnosticPiece *piece =
|
|
new PathDiagnosticEventPiece(L, exampleReport->getDescription());
|
|
BugReport::ranges_iterator Beg, End;
|
|
llvm::tie(Beg, End) = exampleReport->getRanges();
|
|
for ( ; Beg != End; ++Beg)
|
|
piece->addRange(*Beg);
|
|
D->setEndOfPath(piece);
|
|
}
|
|
|
|
// Get the meta data.
|
|
const BugReport::ExtraTextList &Meta = exampleReport->getExtraText();
|
|
for (BugReport::ExtraTextList::const_iterator i = Meta.begin(),
|
|
e = Meta.end(); i != e; ++i) {
|
|
D->addMeta(*i);
|
|
}
|
|
|
|
PD.HandlePathDiagnostic(D.take());
|
|
}
|
|
|
|
void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
|
|
StringRef name,
|
|
StringRef category,
|
|
StringRef str, PathDiagnosticLocation Loc,
|
|
SourceRange* RBeg, unsigned NumRanges) {
|
|
|
|
// 'BT' is owned by BugReporter.
|
|
BugType *BT = getBugTypeForName(name, category);
|
|
BugReport *R = new BugReport(*BT, str, Loc);
|
|
R->setDeclWithIssue(DeclWithIssue);
|
|
for ( ; NumRanges > 0 ; --NumRanges, ++RBeg) R->addRange(*RBeg);
|
|
emitReport(R);
|
|
}
|
|
|
|
BugType *BugReporter::getBugTypeForName(StringRef name,
|
|
StringRef category) {
|
|
SmallString<136> fullDesc;
|
|
llvm::raw_svector_ostream(fullDesc) << name << ":" << category;
|
|
llvm::StringMapEntry<BugType *> &
|
|
entry = StrBugTypes.GetOrCreateValue(fullDesc);
|
|
BugType *BT = entry.getValue();
|
|
if (!BT) {
|
|
BT = new BugType(name, category);
|
|
entry.setValue(BT);
|
|
}
|
|
return BT;
|
|
}
|