forked from OSchip/llvm-project
1096 lines
42 KiB
C++
1096 lines
42 KiB
C++
//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the interfaces that X86 uses to lower LLVM code into a
|
|
// selection DAG.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
|
|
#define LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
|
|
|
|
#include "llvm/CodeGen/CallingConvLower.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
|
|
namespace llvm {
|
|
class X86Subtarget;
|
|
class X86TargetMachine;
|
|
|
|
namespace X86ISD {
|
|
// X86 Specific DAG Nodes
|
|
enum NodeType : unsigned {
|
|
// Start the numbering where the builtin ops leave off.
|
|
FIRST_NUMBER = ISD::BUILTIN_OP_END,
|
|
|
|
/// Bit scan forward.
|
|
BSF,
|
|
/// Bit scan reverse.
|
|
BSR,
|
|
|
|
/// Double shift instructions. These correspond to
|
|
/// X86::SHLDxx and X86::SHRDxx instructions.
|
|
SHLD,
|
|
SHRD,
|
|
|
|
/// Bitwise logical AND of floating point values. This corresponds
|
|
/// to X86::ANDPS or X86::ANDPD.
|
|
FAND,
|
|
|
|
/// Bitwise logical OR of floating point values. This corresponds
|
|
/// to X86::ORPS or X86::ORPD.
|
|
FOR,
|
|
|
|
/// Bitwise logical XOR of floating point values. This corresponds
|
|
/// to X86::XORPS or X86::XORPD.
|
|
FXOR,
|
|
|
|
/// Bitwise logical ANDNOT of floating point values. This
|
|
/// corresponds to X86::ANDNPS or X86::ANDNPD.
|
|
FANDN,
|
|
|
|
/// Bitwise logical right shift of floating point values. This
|
|
/// corresponds to X86::PSRLDQ.
|
|
FSRL,
|
|
|
|
/// These operations represent an abstract X86 call
|
|
/// instruction, which includes a bunch of information. In particular the
|
|
/// operands of these node are:
|
|
///
|
|
/// #0 - The incoming token chain
|
|
/// #1 - The callee
|
|
/// #2 - The number of arg bytes the caller pushes on the stack.
|
|
/// #3 - The number of arg bytes the callee pops off the stack.
|
|
/// #4 - The value to pass in AL/AX/EAX (optional)
|
|
/// #5 - The value to pass in DL/DX/EDX (optional)
|
|
///
|
|
/// The result values of these nodes are:
|
|
///
|
|
/// #0 - The outgoing token chain
|
|
/// #1 - The first register result value (optional)
|
|
/// #2 - The second register result value (optional)
|
|
///
|
|
CALL,
|
|
|
|
/// This operation implements the lowering for readcyclecounter
|
|
RDTSC_DAG,
|
|
|
|
/// X86 Read Time-Stamp Counter and Processor ID.
|
|
RDTSCP_DAG,
|
|
|
|
/// X86 Read Performance Monitoring Counters.
|
|
RDPMC_DAG,
|
|
|
|
/// X86 compare and logical compare instructions.
|
|
CMP, COMI, UCOMI,
|
|
|
|
/// X86 bit-test instructions.
|
|
BT,
|
|
|
|
/// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
|
|
/// operand, usually produced by a CMP instruction.
|
|
SETCC,
|
|
|
|
/// X86 Select
|
|
SELECT,
|
|
|
|
// Same as SETCC except it's materialized with a sbb and the value is all
|
|
// one's or all zero's.
|
|
SETCC_CARRY, // R = carry_bit ? ~0 : 0
|
|
|
|
/// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
|
|
/// Operands are two FP values to compare; result is a mask of
|
|
/// 0s or 1s. Generally DTRT for C/C++ with NaNs.
|
|
FSETCC,
|
|
|
|
/// X86 MOVMSK{pd|ps}, extracts sign bits of two or four FP values,
|
|
/// result in an integer GPR. Needs masking for scalar result.
|
|
FGETSIGNx86,
|
|
|
|
/// X86 conditional moves. Operand 0 and operand 1 are the two values
|
|
/// to select from. Operand 2 is the condition code, and operand 3 is the
|
|
/// flag operand produced by a CMP or TEST instruction. It also writes a
|
|
/// flag result.
|
|
CMOV,
|
|
|
|
/// X86 conditional branches. Operand 0 is the chain operand, operand 1
|
|
/// is the block to branch if condition is true, operand 2 is the
|
|
/// condition code, and operand 3 is the flag operand produced by a CMP
|
|
/// or TEST instruction.
|
|
BRCOND,
|
|
|
|
/// Return with a flag operand. Operand 0 is the chain operand, operand
|
|
/// 1 is the number of bytes of stack to pop.
|
|
RET_FLAG,
|
|
|
|
/// Repeat fill, corresponds to X86::REP_STOSx.
|
|
REP_STOS,
|
|
|
|
/// Repeat move, corresponds to X86::REP_MOVSx.
|
|
REP_MOVS,
|
|
|
|
/// On Darwin, this node represents the result of the popl
|
|
/// at function entry, used for PIC code.
|
|
GlobalBaseReg,
|
|
|
|
/// A wrapper node for TargetConstantPool,
|
|
/// TargetExternalSymbol, and TargetGlobalAddress.
|
|
Wrapper,
|
|
|
|
/// Special wrapper used under X86-64 PIC mode for RIP
|
|
/// relative displacements.
|
|
WrapperRIP,
|
|
|
|
/// Copies a 64-bit value from the low word of an XMM vector
|
|
/// to an MMX vector. If you think this is too close to the previous
|
|
/// mnemonic, so do I; blame Intel.
|
|
MOVDQ2Q,
|
|
|
|
/// Copies a 32-bit value from the low word of a MMX
|
|
/// vector to a GPR.
|
|
MMX_MOVD2W,
|
|
|
|
/// Copies a GPR into the low 32-bit word of a MMX vector
|
|
/// and zero out the high word.
|
|
MMX_MOVW2D,
|
|
|
|
/// Extract an 8-bit value from a vector and zero extend it to
|
|
/// i32, corresponds to X86::PEXTRB.
|
|
PEXTRB,
|
|
|
|
/// Extract a 16-bit value from a vector and zero extend it to
|
|
/// i32, corresponds to X86::PEXTRW.
|
|
PEXTRW,
|
|
|
|
/// Insert any element of a 4 x float vector into any element
|
|
/// of a destination 4 x floatvector.
|
|
INSERTPS,
|
|
|
|
/// Insert the lower 8-bits of a 32-bit value to a vector,
|
|
/// corresponds to X86::PINSRB.
|
|
PINSRB,
|
|
|
|
/// Insert the lower 16-bits of a 32-bit value to a vector,
|
|
/// corresponds to X86::PINSRW.
|
|
PINSRW, MMX_PINSRW,
|
|
|
|
/// Shuffle 16 8-bit values within a vector.
|
|
PSHUFB,
|
|
|
|
/// Bitwise Logical AND NOT of Packed FP values.
|
|
ANDNP,
|
|
|
|
/// Copy integer sign.
|
|
PSIGN,
|
|
|
|
/// Blend where the selector is an immediate.
|
|
BLENDI,
|
|
|
|
/// Blend where the condition has been shrunk.
|
|
/// This is used to emphasize that the condition mask is
|
|
/// no more valid for generic VSELECT optimizations.
|
|
SHRUNKBLEND,
|
|
|
|
/// Combined add and sub on an FP vector.
|
|
ADDSUB,
|
|
// FP vector ops with rounding mode.
|
|
FADD_RND,
|
|
FSUB_RND,
|
|
FMUL_RND,
|
|
FDIV_RND,
|
|
FMAX_RND,
|
|
FMIN_RND,
|
|
|
|
// Integer add/sub with unsigned saturation.
|
|
ADDUS,
|
|
SUBUS,
|
|
// Integer add/sub with signed saturation.
|
|
ADDS,
|
|
SUBS,
|
|
|
|
/// Integer horizontal add.
|
|
HADD,
|
|
|
|
/// Integer horizontal sub.
|
|
HSUB,
|
|
|
|
/// Floating point horizontal add.
|
|
FHADD,
|
|
|
|
/// Floating point horizontal sub.
|
|
FHSUB,
|
|
|
|
/// Unsigned integer max and min.
|
|
UMAX, UMIN,
|
|
|
|
/// Signed integer max and min.
|
|
SMAX, SMIN,
|
|
|
|
/// Floating point max and min.
|
|
FMAX, FMIN,
|
|
|
|
/// Commutative FMIN and FMAX.
|
|
FMAXC, FMINC,
|
|
|
|
/// Floating point reciprocal-sqrt and reciprocal approximation.
|
|
/// Note that these typically require refinement
|
|
/// in order to obtain suitable precision.
|
|
FRSQRT, FRCP,
|
|
|
|
// Thread Local Storage.
|
|
TLSADDR,
|
|
|
|
// Thread Local Storage. A call to get the start address
|
|
// of the TLS block for the current module.
|
|
TLSBASEADDR,
|
|
|
|
// Thread Local Storage. When calling to an OS provided
|
|
// thunk at the address from an earlier relocation.
|
|
TLSCALL,
|
|
|
|
// Exception Handling helpers.
|
|
EH_RETURN,
|
|
|
|
// SjLj exception handling setjmp.
|
|
EH_SJLJ_SETJMP,
|
|
|
|
// SjLj exception handling longjmp.
|
|
EH_SJLJ_LONGJMP,
|
|
|
|
/// Tail call return. See X86TargetLowering::LowerCall for
|
|
/// the list of operands.
|
|
TC_RETURN,
|
|
|
|
// Vector move to low scalar and zero higher vector elements.
|
|
VZEXT_MOVL,
|
|
|
|
// Vector integer zero-extend.
|
|
VZEXT,
|
|
|
|
// Vector integer signed-extend.
|
|
VSEXT,
|
|
|
|
// Vector integer truncate.
|
|
VTRUNC,
|
|
|
|
// Vector integer truncate with mask.
|
|
VTRUNCM,
|
|
|
|
// Vector FP extend.
|
|
VFPEXT,
|
|
|
|
// Vector FP round.
|
|
VFPROUND,
|
|
|
|
// 128-bit vector logical left / right shift
|
|
VSHLDQ, VSRLDQ,
|
|
|
|
// Vector shift elements
|
|
VSHL, VSRL, VSRA,
|
|
|
|
// Vector shift elements by immediate
|
|
VSHLI, VSRLI, VSRAI,
|
|
|
|
// Vector packed double/float comparison.
|
|
CMPP,
|
|
|
|
// Vector integer comparisons.
|
|
PCMPEQ, PCMPGT,
|
|
// Vector integer comparisons, the result is in a mask vector.
|
|
PCMPEQM, PCMPGTM,
|
|
|
|
/// Vector comparison generating mask bits for fp and
|
|
/// integer signed and unsigned data types.
|
|
CMPM,
|
|
CMPMU,
|
|
// Vector comparison with rounding mode for FP values
|
|
CMPM_RND,
|
|
|
|
// Arithmetic operations with FLAGS results.
|
|
ADD, SUB, ADC, SBB, SMUL,
|
|
INC, DEC, OR, XOR, AND,
|
|
|
|
BEXTR, // Bit field extract
|
|
|
|
UMUL, // LOW, HI, FLAGS = umul LHS, RHS
|
|
|
|
// 8-bit SMUL/UMUL - AX, FLAGS = smul8/umul8 AL, RHS
|
|
SMUL8, UMUL8,
|
|
|
|
// 8-bit divrem that zero-extend the high result (AH).
|
|
UDIVREM8_ZEXT_HREG,
|
|
SDIVREM8_SEXT_HREG,
|
|
|
|
// X86-specific multiply by immediate.
|
|
MUL_IMM,
|
|
|
|
// Vector bitwise comparisons.
|
|
PTEST,
|
|
|
|
// Vector packed fp sign bitwise comparisons.
|
|
TESTP,
|
|
|
|
// Vector "test" in AVX-512, the result is in a mask vector.
|
|
TESTM,
|
|
TESTNM,
|
|
|
|
// OR/AND test for masks
|
|
KORTEST,
|
|
|
|
// Several flavors of instructions with vector shuffle behaviors.
|
|
PACKSS,
|
|
PACKUS,
|
|
// Intra-lane alignr
|
|
PALIGNR,
|
|
// AVX512 inter-lane alignr
|
|
VALIGN,
|
|
PSHUFD,
|
|
PSHUFHW,
|
|
PSHUFLW,
|
|
SHUFP,
|
|
MOVDDUP,
|
|
MOVSHDUP,
|
|
MOVSLDUP,
|
|
MOVLHPS,
|
|
MOVLHPD,
|
|
MOVHLPS,
|
|
MOVLPS,
|
|
MOVLPD,
|
|
MOVSD,
|
|
MOVSS,
|
|
UNPCKL,
|
|
UNPCKH,
|
|
VPERMILPV,
|
|
VPERMILPI,
|
|
VPERMV,
|
|
VPERMV3,
|
|
VPERMIV3,
|
|
VPERMI,
|
|
VPERM2X128,
|
|
VBROADCAST,
|
|
// Insert/Extract vector element
|
|
VINSERT,
|
|
VEXTRACT,
|
|
|
|
// Vector multiply packed unsigned doubleword integers
|
|
PMULUDQ,
|
|
// Vector multiply packed signed doubleword integers
|
|
PMULDQ,
|
|
|
|
// FMA nodes
|
|
FMADD,
|
|
FNMADD,
|
|
FMSUB,
|
|
FNMSUB,
|
|
FMADDSUB,
|
|
FMSUBADD,
|
|
// FMA with rounding mode
|
|
FMADD_RND,
|
|
FNMADD_RND,
|
|
FMSUB_RND,
|
|
FNMSUB_RND,
|
|
FMADDSUB_RND,
|
|
FMSUBADD_RND,
|
|
RNDSCALE,
|
|
|
|
// Compress and expand
|
|
COMPRESS,
|
|
EXPAND,
|
|
|
|
// Save xmm argument registers to the stack, according to %al. An operator
|
|
// is needed so that this can be expanded with control flow.
|
|
VASTART_SAVE_XMM_REGS,
|
|
|
|
// Windows's _chkstk call to do stack probing.
|
|
WIN_ALLOCA,
|
|
|
|
// For allocating variable amounts of stack space when using
|
|
// segmented stacks. Check if the current stacklet has enough space, and
|
|
// falls back to heap allocation if not.
|
|
SEG_ALLOCA,
|
|
|
|
// Windows's _ftol2 runtime routine to do fptoui.
|
|
WIN_FTOL,
|
|
|
|
// Memory barrier
|
|
MEMBARRIER,
|
|
MFENCE,
|
|
SFENCE,
|
|
LFENCE,
|
|
|
|
// Store FP status word into i16 register.
|
|
FNSTSW16r,
|
|
|
|
// Store contents of %ah into %eflags.
|
|
SAHF,
|
|
|
|
// Get a random integer and indicate whether it is valid in CF.
|
|
RDRAND,
|
|
|
|
// Get a NIST SP800-90B & C compliant random integer and
|
|
// indicate whether it is valid in CF.
|
|
RDSEED,
|
|
|
|
PCMPISTRI,
|
|
PCMPESTRI,
|
|
|
|
// Test if in transactional execution.
|
|
XTEST,
|
|
|
|
// ERI instructions
|
|
RSQRT28, RCP28, EXP2,
|
|
|
|
// Compare and swap.
|
|
LCMPXCHG_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
|
|
LCMPXCHG8_DAG,
|
|
LCMPXCHG16_DAG,
|
|
|
|
// Load, scalar_to_vector, and zero extend.
|
|
VZEXT_LOAD,
|
|
|
|
// Store FP control world into i16 memory.
|
|
FNSTCW16m,
|
|
|
|
/// This instruction implements FP_TO_SINT with the
|
|
/// integer destination in memory and a FP reg source. This corresponds
|
|
/// to the X86::FIST*m instructions and the rounding mode change stuff. It
|
|
/// has two inputs (token chain and address) and two outputs (int value
|
|
/// and token chain).
|
|
FP_TO_INT16_IN_MEM,
|
|
FP_TO_INT32_IN_MEM,
|
|
FP_TO_INT64_IN_MEM,
|
|
|
|
/// This instruction implements SINT_TO_FP with the
|
|
/// integer source in memory and FP reg result. This corresponds to the
|
|
/// X86::FILD*m instructions. It has three inputs (token chain, address,
|
|
/// and source type) and two outputs (FP value and token chain). FILD_FLAG
|
|
/// also produces a flag).
|
|
FILD,
|
|
FILD_FLAG,
|
|
|
|
/// This instruction implements an extending load to FP stack slots.
|
|
/// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
|
|
/// operand, ptr to load from, and a ValueType node indicating the type
|
|
/// to load to.
|
|
FLD,
|
|
|
|
/// This instruction implements a truncating store to FP stack
|
|
/// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
|
|
/// chain operand, value to store, address, and a ValueType to store it
|
|
/// as.
|
|
FST,
|
|
|
|
/// This instruction grabs the address of the next argument
|
|
/// from a va_list. (reads and modifies the va_list in memory)
|
|
VAARG_64
|
|
|
|
// WARNING: Do not add anything in the end unless you want the node to
|
|
// have memop! In fact, starting from ATOMADD64_DAG all opcodes will be
|
|
// thought as target memory ops!
|
|
};
|
|
}
|
|
|
|
/// Define some predicates that are used for node matching.
|
|
namespace X86 {
|
|
/// Return true if the specified
|
|
/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
|
|
/// suitable for input to VEXTRACTF128, VEXTRACTI128 instructions.
|
|
bool isVEXTRACT128Index(SDNode *N);
|
|
|
|
/// Return true if the specified
|
|
/// INSERT_SUBVECTOR operand specifies a subvector insert that is
|
|
/// suitable for input to VINSERTF128, VINSERTI128 instructions.
|
|
bool isVINSERT128Index(SDNode *N);
|
|
|
|
/// Return true if the specified
|
|
/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
|
|
/// suitable for input to VEXTRACTF64X4, VEXTRACTI64X4 instructions.
|
|
bool isVEXTRACT256Index(SDNode *N);
|
|
|
|
/// Return true if the specified
|
|
/// INSERT_SUBVECTOR operand specifies a subvector insert that is
|
|
/// suitable for input to VINSERTF64X4, VINSERTI64X4 instructions.
|
|
bool isVINSERT256Index(SDNode *N);
|
|
|
|
/// Return the appropriate
|
|
/// immediate to extract the specified EXTRACT_SUBVECTOR index
|
|
/// with VEXTRACTF128, VEXTRACTI128 instructions.
|
|
unsigned getExtractVEXTRACT128Immediate(SDNode *N);
|
|
|
|
/// Return the appropriate
|
|
/// immediate to insert at the specified INSERT_SUBVECTOR index
|
|
/// with VINSERTF128, VINSERT128 instructions.
|
|
unsigned getInsertVINSERT128Immediate(SDNode *N);
|
|
|
|
/// Return the appropriate
|
|
/// immediate to extract the specified EXTRACT_SUBVECTOR index
|
|
/// with VEXTRACTF64X4, VEXTRACTI64x4 instructions.
|
|
unsigned getExtractVEXTRACT256Immediate(SDNode *N);
|
|
|
|
/// Return the appropriate
|
|
/// immediate to insert at the specified INSERT_SUBVECTOR index
|
|
/// with VINSERTF64x4, VINSERTI64x4 instructions.
|
|
unsigned getInsertVINSERT256Immediate(SDNode *N);
|
|
|
|
/// Returns true if Elt is a constant zero or floating point constant +0.0.
|
|
bool isZeroNode(SDValue Elt);
|
|
|
|
/// Returns true of the given offset can be
|
|
/// fit into displacement field of the instruction.
|
|
bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
|
|
bool hasSymbolicDisplacement = true);
|
|
|
|
|
|
/// Determines whether the callee is required to pop its
|
|
/// own arguments. Callee pop is necessary to support tail calls.
|
|
bool isCalleePop(CallingConv::ID CallingConv,
|
|
bool is64Bit, bool IsVarArg, bool TailCallOpt);
|
|
|
|
/// AVX512 static rounding constants. These need to match the values in
|
|
/// avx512fintrin.h.
|
|
enum STATIC_ROUNDING {
|
|
TO_NEAREST_INT = 0,
|
|
TO_NEG_INF = 1,
|
|
TO_POS_INF = 2,
|
|
TO_ZERO = 3,
|
|
CUR_DIRECTION = 4
|
|
};
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// X86 Implementation of the TargetLowering interface
|
|
class X86TargetLowering final : public TargetLowering {
|
|
public:
|
|
explicit X86TargetLowering(const X86TargetMachine &TM,
|
|
const X86Subtarget &STI);
|
|
|
|
unsigned getJumpTableEncoding() const override;
|
|
bool useSoftFloat() const override;
|
|
|
|
MVT getScalarShiftAmountTy(EVT LHSTy) const override { return MVT::i8; }
|
|
|
|
const MCExpr *
|
|
LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
|
|
const MachineBasicBlock *MBB, unsigned uid,
|
|
MCContext &Ctx) const override;
|
|
|
|
/// Returns relocation base for the given PIC jumptable.
|
|
SDValue getPICJumpTableRelocBase(SDValue Table,
|
|
SelectionDAG &DAG) const override;
|
|
const MCExpr *
|
|
getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
|
|
unsigned JTI, MCContext &Ctx) const override;
|
|
|
|
/// Return the desired alignment for ByVal aggregate
|
|
/// function arguments in the caller parameter area. For X86, aggregates
|
|
/// that contains are placed at 16-byte boundaries while the rest are at
|
|
/// 4-byte boundaries.
|
|
unsigned getByValTypeAlignment(Type *Ty) const override;
|
|
|
|
/// Returns the target specific optimal type for load
|
|
/// and store operations as a result of memset, memcpy, and memmove
|
|
/// lowering. If DstAlign is zero that means it's safe to destination
|
|
/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
|
|
/// means there isn't a need to check it against alignment requirement,
|
|
/// probably because the source does not need to be loaded. If 'IsMemset' is
|
|
/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
|
|
/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
|
|
/// source is constant so it does not need to be loaded.
|
|
/// It returns EVT::Other if the type should be determined using generic
|
|
/// target-independent logic.
|
|
EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
|
|
bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
|
|
MachineFunction &MF) const override;
|
|
|
|
/// Returns true if it's safe to use load / store of the
|
|
/// specified type to expand memcpy / memset inline. This is mostly true
|
|
/// for all types except for some special cases. For example, on X86
|
|
/// targets without SSE2 f64 load / store are done with fldl / fstpl which
|
|
/// also does type conversion. Note the specified type doesn't have to be
|
|
/// legal as the hook is used before type legalization.
|
|
bool isSafeMemOpType(MVT VT) const override;
|
|
|
|
/// Returns true if the target allows
|
|
/// unaligned memory accesses. of the specified type. Returns whether it
|
|
/// is "fast" by reference in the second argument.
|
|
bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, unsigned Align,
|
|
bool *Fast) const override;
|
|
|
|
/// Provide custom lowering hooks for some operations.
|
|
///
|
|
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
|
|
|
|
/// Replace the results of node with an illegal result
|
|
/// type with new values built out of custom code.
|
|
///
|
|
void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
|
|
SelectionDAG &DAG) const override;
|
|
|
|
|
|
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
|
|
|
|
/// Return true if the target has native support for
|
|
/// the specified value type and it is 'desirable' to use the type for the
|
|
/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
|
|
/// instruction encodings are longer and some i16 instructions are slow.
|
|
bool isTypeDesirableForOp(unsigned Opc, EVT VT) const override;
|
|
|
|
/// Return true if the target has native support for the
|
|
/// specified value type and it is 'desirable' to use the type. e.g. On x86
|
|
/// i16 is legal, but undesirable since i16 instruction encodings are longer
|
|
/// and some i16 instructions are slow.
|
|
bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const override;
|
|
|
|
MachineBasicBlock *
|
|
EmitInstrWithCustomInserter(MachineInstr *MI,
|
|
MachineBasicBlock *MBB) const override;
|
|
|
|
|
|
/// This method returns the name of a target specific DAG node.
|
|
const char *getTargetNodeName(unsigned Opcode) const override;
|
|
|
|
bool isCheapToSpeculateCttz() const override;
|
|
|
|
bool isCheapToSpeculateCtlz() const override;
|
|
|
|
/// Return the value type to use for ISD::SETCC.
|
|
EVT getSetCCResultType(LLVMContext &Context, EVT VT) const override;
|
|
|
|
/// Determine which of the bits specified in Mask are known to be either
|
|
/// zero or one and return them in the KnownZero/KnownOne bitsets.
|
|
void computeKnownBitsForTargetNode(const SDValue Op,
|
|
APInt &KnownZero,
|
|
APInt &KnownOne,
|
|
const SelectionDAG &DAG,
|
|
unsigned Depth = 0) const override;
|
|
|
|
/// Determine the number of bits in the operation that are sign bits.
|
|
unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
|
|
const SelectionDAG &DAG,
|
|
unsigned Depth) const override;
|
|
|
|
bool isGAPlusOffset(SDNode *N, const GlobalValue* &GA,
|
|
int64_t &Offset) const override;
|
|
|
|
SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;
|
|
|
|
bool ExpandInlineAsm(CallInst *CI) const override;
|
|
|
|
ConstraintType
|
|
getConstraintType(const std::string &Constraint) const override;
|
|
|
|
/// Examine constraint string and operand type and determine a weight value.
|
|
/// The operand object must already have been set up with the operand type.
|
|
ConstraintWeight
|
|
getSingleConstraintMatchWeight(AsmOperandInfo &info,
|
|
const char *constraint) const override;
|
|
|
|
const char *LowerXConstraint(EVT ConstraintVT) const override;
|
|
|
|
/// Lower the specified operand into the Ops vector. If it is invalid, don't
|
|
/// add anything to Ops. If hasMemory is true it means one of the asm
|
|
/// constraint of the inline asm instruction being processed is 'm'.
|
|
void LowerAsmOperandForConstraint(SDValue Op,
|
|
std::string &Constraint,
|
|
std::vector<SDValue> &Ops,
|
|
SelectionDAG &DAG) const override;
|
|
|
|
unsigned getInlineAsmMemConstraint(
|
|
const std::string &ConstraintCode) const override {
|
|
// FIXME: Map different constraints differently.
|
|
return InlineAsm::Constraint_m;
|
|
}
|
|
|
|
/// Given a physical register constraint
|
|
/// (e.g. {edx}), return the register number and the register class for the
|
|
/// register. This should only be used for C_Register constraints. On
|
|
/// error, this returns a register number of 0.
|
|
std::pair<unsigned, const TargetRegisterClass *>
|
|
getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
|
|
const std::string &Constraint,
|
|
MVT VT) const override;
|
|
|
|
/// Return true if the addressing mode represented
|
|
/// by AM is legal for this target, for a load/store of the specified type.
|
|
bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const override;
|
|
|
|
/// Return true if the specified immediate is legal
|
|
/// icmp immediate, that is the target has icmp instructions which can
|
|
/// compare a register against the immediate without having to materialize
|
|
/// the immediate into a register.
|
|
bool isLegalICmpImmediate(int64_t Imm) const override;
|
|
|
|
/// Return true if the specified immediate is legal
|
|
/// add immediate, that is the target has add instructions which can
|
|
/// add a register and the immediate without having to materialize
|
|
/// the immediate into a register.
|
|
bool isLegalAddImmediate(int64_t Imm) const override;
|
|
|
|
/// \brief Return the cost of the scaling factor used in the addressing
|
|
/// mode represented by AM for this target, for a load/store
|
|
/// of the specified type.
|
|
/// If the AM is supported, the return value must be >= 0.
|
|
/// If the AM is not supported, it returns a negative value.
|
|
int getScalingFactorCost(const AddrMode &AM, Type *Ty) const override;
|
|
|
|
bool isVectorShiftByScalarCheap(Type *Ty) const override;
|
|
|
|
/// Return true if it's free to truncate a value of
|
|
/// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
|
|
/// register EAX to i16 by referencing its sub-register AX.
|
|
bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
|
|
bool isTruncateFree(EVT VT1, EVT VT2) const override;
|
|
|
|
bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override;
|
|
|
|
/// Return true if any actual instruction that defines a
|
|
/// value of type Ty1 implicit zero-extends the value to Ty2 in the result
|
|
/// register. This does not necessarily include registers defined in
|
|
/// unknown ways, such as incoming arguments, or copies from unknown
|
|
/// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
|
|
/// does not necessarily apply to truncate instructions. e.g. on x86-64,
|
|
/// all instructions that define 32-bit values implicit zero-extend the
|
|
/// result out to 64 bits.
|
|
bool isZExtFree(Type *Ty1, Type *Ty2) const override;
|
|
bool isZExtFree(EVT VT1, EVT VT2) const override;
|
|
bool isZExtFree(SDValue Val, EVT VT2) const override;
|
|
|
|
/// Return true if folding a vector load into ExtVal (a sign, zero, or any
|
|
/// extend node) is profitable.
|
|
bool isVectorLoadExtDesirable(SDValue) const override;
|
|
|
|
/// Return true if an FMA operation is faster than a pair of fmul and fadd
|
|
/// instructions. fmuladd intrinsics will be expanded to FMAs when this
|
|
/// method returns true, otherwise fmuladd is expanded to fmul + fadd.
|
|
bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
|
|
|
|
/// Return true if it's profitable to narrow
|
|
/// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
|
|
/// from i32 to i8 but not from i32 to i16.
|
|
bool isNarrowingProfitable(EVT VT1, EVT VT2) const override;
|
|
|
|
/// Returns true if the target can instruction select the
|
|
/// specified FP immediate natively. If false, the legalizer will
|
|
/// materialize the FP immediate as a load from a constant pool.
|
|
bool isFPImmLegal(const APFloat &Imm, EVT VT) const override;
|
|
|
|
/// Targets can use this to indicate that they only support *some*
|
|
/// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
|
|
/// target supports the VECTOR_SHUFFLE node, all mask values are assumed to
|
|
/// be legal.
|
|
bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
|
|
EVT VT) const override;
|
|
|
|
/// Similar to isShuffleMaskLegal. This is used by Targets can use this to
|
|
/// indicate if there is a suitable VECTOR_SHUFFLE that can be used to
|
|
/// replace a VAND with a constant pool entry.
|
|
bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
|
|
EVT VT) const override;
|
|
|
|
/// If true, then instruction selection should
|
|
/// seek to shrink the FP constant of the specified type to a smaller type
|
|
/// in order to save space and / or reduce runtime.
|
|
bool ShouldShrinkFPConstant(EVT VT) const override {
|
|
// Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
|
|
// expensive than a straight movsd. On the other hand, it's important to
|
|
// shrink long double fp constant since fldt is very slow.
|
|
return !X86ScalarSSEf64 || VT == MVT::f80;
|
|
}
|
|
|
|
/// Return true if we believe it is correct and profitable to reduce the
|
|
/// load node to a smaller type.
|
|
bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy,
|
|
EVT NewVT) const override;
|
|
|
|
/// Return true if the specified scalar FP type is computed in an SSE
|
|
/// register, not on the X87 floating point stack.
|
|
bool isScalarFPTypeInSSEReg(EVT VT) const {
|
|
return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
|
|
(VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
|
|
}
|
|
|
|
/// Return true if the target uses the MSVC _ftol2 routine for fptoui.
|
|
bool isTargetFTOL() const;
|
|
|
|
/// Return true if the MSVC _ftol2 routine should be used for fptoui to the
|
|
/// given type.
|
|
bool isIntegerTypeFTOL(EVT VT) const {
|
|
return isTargetFTOL() && VT == MVT::i64;
|
|
}
|
|
|
|
/// \brief Returns true if it is beneficial to convert a load of a constant
|
|
/// to just the constant itself.
|
|
bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
|
|
Type *Ty) const override;
|
|
|
|
/// Return true if EXTRACT_SUBVECTOR is cheap for this result type
|
|
/// with this index.
|
|
bool isExtractSubvectorCheap(EVT ResVT, unsigned Index) const override;
|
|
|
|
/// Intel processors have a unified instruction and data cache
|
|
const char * getClearCacheBuiltinName() const override {
|
|
return nullptr; // nothing to do, move along.
|
|
}
|
|
|
|
unsigned getRegisterByName(const char* RegName, EVT VT) const override;
|
|
|
|
/// This method returns a target specific FastISel object,
|
|
/// or null if the target does not support "fast" ISel.
|
|
FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
|
|
const TargetLibraryInfo *libInfo) const override;
|
|
|
|
/// Return true if the target stores stack protector cookies at a fixed
|
|
/// offset in some non-standard address space, and populates the address
|
|
/// space and offset as appropriate.
|
|
bool getStackCookieLocation(unsigned &AddressSpace,
|
|
unsigned &Offset) const override;
|
|
|
|
SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
|
|
SelectionDAG &DAG) const;
|
|
|
|
bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override;
|
|
|
|
bool useLoadStackGuardNode() const override;
|
|
/// \brief Customize the preferred legalization strategy for certain types.
|
|
LegalizeTypeAction getPreferredVectorAction(EVT VT) const override;
|
|
|
|
protected:
|
|
std::pair<const TargetRegisterClass *, uint8_t>
|
|
findRepresentativeClass(const TargetRegisterInfo *TRI,
|
|
MVT VT) const override;
|
|
|
|
private:
|
|
/// Keep a pointer to the X86Subtarget around so that we can
|
|
/// make the right decision when generating code for different targets.
|
|
const X86Subtarget *Subtarget;
|
|
const DataLayout *TD;
|
|
|
|
/// Select between SSE or x87 floating point ops.
|
|
/// When SSE is available, use it for f32 operations.
|
|
/// When SSE2 is available, use it for f64 operations.
|
|
bool X86ScalarSSEf32;
|
|
bool X86ScalarSSEf64;
|
|
|
|
/// A list of legal FP immediates.
|
|
std::vector<APFloat> LegalFPImmediates;
|
|
|
|
/// Indicate that this x86 target can instruction
|
|
/// select the specified FP immediate natively.
|
|
void addLegalFPImmediate(const APFloat& Imm) {
|
|
LegalFPImmediates.push_back(Imm);
|
|
}
|
|
|
|
SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SDLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) const;
|
|
SDValue LowerMemArgument(SDValue Chain,
|
|
CallingConv::ID CallConv,
|
|
const SmallVectorImpl<ISD::InputArg> &ArgInfo,
|
|
SDLoc dl, SelectionDAG &DAG,
|
|
const CCValAssign &VA, MachineFrameInfo *MFI,
|
|
unsigned i) const;
|
|
SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
|
|
SDLoc dl, SelectionDAG &DAG,
|
|
const CCValAssign &VA,
|
|
ISD::ArgFlagsTy Flags) const;
|
|
|
|
// Call lowering helpers.
|
|
|
|
/// Check whether the call is eligible for tail call optimization. Targets
|
|
/// that want to do tail call optimization should implement this function.
|
|
bool IsEligibleForTailCallOptimization(SDValue Callee,
|
|
CallingConv::ID CalleeCC,
|
|
bool isVarArg,
|
|
bool isCalleeStructRet,
|
|
bool isCallerStructRet,
|
|
Type *RetTy,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SelectionDAG& DAG) const;
|
|
bool IsCalleePop(bool isVarArg, CallingConv::ID CallConv) const;
|
|
SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
|
|
SDValue Chain, bool IsTailCall, bool Is64Bit,
|
|
int FPDiff, SDLoc dl) const;
|
|
|
|
unsigned GetAlignedArgumentStackSize(unsigned StackSize,
|
|
SelectionDAG &DAG) const;
|
|
|
|
std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
|
|
bool isSigned,
|
|
bool isReplace) const;
|
|
|
|
SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerVSELECT(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue ExtractBitFromMaskVector(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue InsertBitToMaskVector(SDValue Op, SelectionDAG &DAG) const;
|
|
|
|
SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerGlobalAddress(const GlobalValue *GV, SDLoc dl,
|
|
int64_t Offset, SelectionDAG &DAG) const;
|
|
SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerUINT_TO_FP_vec(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerToBT(SDValue And, ISD::CondCode CC,
|
|
SDLoc dl, SelectionDAG &DAG) const;
|
|
SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerGC_TRANSITION_START(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerGC_TRANSITION_END(SDValue Op, SelectionDAG &DAG) const;
|
|
|
|
SDValue
|
|
LowerFormalArguments(SDValue Chain,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SDLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) const override;
|
|
SDValue LowerCall(CallLoweringInfo &CLI,
|
|
SmallVectorImpl<SDValue> &InVals) const override;
|
|
|
|
SDValue LowerReturn(SDValue Chain,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
SDLoc dl, SelectionDAG &DAG) const override;
|
|
|
|
bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override;
|
|
|
|
bool mayBeEmittedAsTailCall(CallInst *CI) const override;
|
|
|
|
EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
|
|
ISD::NodeType ExtendKind) const override;
|
|
|
|
bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
|
|
bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
LLVMContext &Context) const override;
|
|
|
|
const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
|
|
|
|
bool shouldExpandAtomicLoadInIR(LoadInst *SI) const override;
|
|
bool shouldExpandAtomicStoreInIR(StoreInst *SI) const override;
|
|
TargetLoweringBase::AtomicRMWExpansionKind
|
|
shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;
|
|
|
|
LoadInst *
|
|
lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const override;
|
|
|
|
bool needsCmpXchgNb(const Type *MemType) const;
|
|
|
|
/// Utility function to emit atomic-load-arith operations (and, or, xor,
|
|
/// nand, max, min, umax, umin). It takes the corresponding instruction to
|
|
/// expand, the associated machine basic block, and the associated X86
|
|
/// opcodes for reg/reg.
|
|
MachineBasicBlock *EmitAtomicLoadArith(MachineInstr *MI,
|
|
MachineBasicBlock *MBB) const;
|
|
|
|
/// Utility function to emit atomic-load-arith operations (and, or, xor,
|
|
/// nand, add, sub, swap) for 64-bit operands on 32-bit target.
|
|
MachineBasicBlock *EmitAtomicLoadArith6432(MachineInstr *MI,
|
|
MachineBasicBlock *MBB) const;
|
|
|
|
// Utility function to emit the low-level va_arg code for X86-64.
|
|
MachineBasicBlock *EmitVAARG64WithCustomInserter(
|
|
MachineInstr *MI,
|
|
MachineBasicBlock *MBB) const;
|
|
|
|
/// Utility function to emit the xmm reg save portion of va_start.
|
|
MachineBasicBlock *EmitVAStartSaveXMMRegsWithCustomInserter(
|
|
MachineInstr *BInstr,
|
|
MachineBasicBlock *BB) const;
|
|
|
|
MachineBasicBlock *EmitLoweredSelect(MachineInstr *I,
|
|
MachineBasicBlock *BB) const;
|
|
|
|
MachineBasicBlock *EmitLoweredWinAlloca(MachineInstr *MI,
|
|
MachineBasicBlock *BB) const;
|
|
|
|
MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr *MI,
|
|
MachineBasicBlock *BB) const;
|
|
|
|
MachineBasicBlock *EmitLoweredTLSCall(MachineInstr *MI,
|
|
MachineBasicBlock *BB) const;
|
|
|
|
MachineBasicBlock *emitLoweredTLSAddr(MachineInstr *MI,
|
|
MachineBasicBlock *BB) const;
|
|
|
|
MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr *MI,
|
|
MachineBasicBlock *MBB) const;
|
|
|
|
MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr *MI,
|
|
MachineBasicBlock *MBB) const;
|
|
|
|
MachineBasicBlock *emitFMA3Instr(MachineInstr *MI,
|
|
MachineBasicBlock *MBB) const;
|
|
|
|
/// Emit nodes that will be selected as "test Op0,Op0", or something
|
|
/// equivalent, for use with the given x86 condition code.
|
|
SDValue EmitTest(SDValue Op0, unsigned X86CC, SDLoc dl,
|
|
SelectionDAG &DAG) const;
|
|
|
|
/// Emit nodes that will be selected as "cmp Op0,Op1", or something
|
|
/// equivalent, for use with the given x86 condition code.
|
|
SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, SDLoc dl,
|
|
SelectionDAG &DAG) const;
|
|
|
|
/// Convert a comparison if required by the subtarget.
|
|
SDValue ConvertCmpIfNecessary(SDValue Cmp, SelectionDAG &DAG) const;
|
|
|
|
/// Use rsqrt* to speed up sqrt calculations.
|
|
SDValue getRsqrtEstimate(SDValue Operand, DAGCombinerInfo &DCI,
|
|
unsigned &RefinementSteps,
|
|
bool &UseOneConstNR) const override;
|
|
|
|
/// Use rcp* to speed up fdiv calculations.
|
|
SDValue getRecipEstimate(SDValue Operand, DAGCombinerInfo &DCI,
|
|
unsigned &RefinementSteps) const override;
|
|
|
|
/// Reassociate floating point divisions into multiply by reciprocal.
|
|
bool combineRepeatedFPDivisors(unsigned NumUsers) const override;
|
|
};
|
|
|
|
namespace X86 {
|
|
FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
|
|
const TargetLibraryInfo *libInfo);
|
|
}
|
|
}
|
|
|
|
#endif // X86ISELLOWERING_H
|