forked from OSchip/llvm-project
2979 lines
108 KiB
C++
2979 lines
108 KiB
C++
//===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Pass to verify generated machine code. The following is checked:
|
|
//
|
|
// Operand counts: All explicit operands must be present.
|
|
//
|
|
// Register classes: All physical and virtual register operands must be
|
|
// compatible with the register class required by the instruction descriptor.
|
|
//
|
|
// Register live intervals: Registers must be defined only once, and must be
|
|
// defined before use.
|
|
//
|
|
// The machine code verifier is enabled with the command-line option
|
|
// -verify-machineinstrs.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SetOperations.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Analysis/EHPersonalities.h"
|
|
#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
|
|
#include "llvm/CodeGen/LiveInterval.h"
|
|
#include "llvm/CodeGen/LiveIntervalCalc.h"
|
|
#include "llvm/CodeGen/LiveIntervals.h"
|
|
#include "llvm/CodeGen/LiveStacks.h"
|
|
#include "llvm/CodeGen/LiveVariables.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBundle.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/PseudoSourceValue.h"
|
|
#include "llvm/CodeGen/SlotIndexes.h"
|
|
#include "llvm/CodeGen/StackMaps.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetOpcodes.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/MC/LaneBitmask.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/MC/MCTargetOptions.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/LowLevelTypeImpl.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <string>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
struct MachineVerifier {
|
|
MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
|
|
|
|
unsigned verify(MachineFunction &MF);
|
|
|
|
Pass *const PASS;
|
|
const char *Banner;
|
|
const MachineFunction *MF;
|
|
const TargetMachine *TM;
|
|
const TargetInstrInfo *TII;
|
|
const TargetRegisterInfo *TRI;
|
|
const MachineRegisterInfo *MRI;
|
|
|
|
unsigned foundErrors;
|
|
|
|
// Avoid querying the MachineFunctionProperties for each operand.
|
|
bool isFunctionRegBankSelected;
|
|
bool isFunctionSelected;
|
|
|
|
using RegVector = SmallVector<unsigned, 16>;
|
|
using RegMaskVector = SmallVector<const uint32_t *, 4>;
|
|
using RegSet = DenseSet<unsigned>;
|
|
using RegMap = DenseMap<unsigned, const MachineInstr *>;
|
|
using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
|
|
|
|
const MachineInstr *FirstNonPHI;
|
|
const MachineInstr *FirstTerminator;
|
|
BlockSet FunctionBlocks;
|
|
|
|
BitVector regsReserved;
|
|
RegSet regsLive;
|
|
RegVector regsDefined, regsDead, regsKilled;
|
|
RegMaskVector regMasks;
|
|
|
|
SlotIndex lastIndex;
|
|
|
|
// Add Reg and any sub-registers to RV
|
|
void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
|
|
RV.push_back(Reg);
|
|
if (Register::isPhysicalRegister(Reg))
|
|
for (const MCPhysReg &SubReg : TRI->subregs(Reg))
|
|
RV.push_back(SubReg);
|
|
}
|
|
|
|
struct BBInfo {
|
|
// Is this MBB reachable from the MF entry point?
|
|
bool reachable = false;
|
|
|
|
// Vregs that must be live in because they are used without being
|
|
// defined. Map value is the user.
|
|
RegMap vregsLiveIn;
|
|
|
|
// Regs killed in MBB. They may be defined again, and will then be in both
|
|
// regsKilled and regsLiveOut.
|
|
RegSet regsKilled;
|
|
|
|
// Regs defined in MBB and live out. Note that vregs passing through may
|
|
// be live out without being mentioned here.
|
|
RegSet regsLiveOut;
|
|
|
|
// Vregs that pass through MBB untouched. This set is disjoint from
|
|
// regsKilled and regsLiveOut.
|
|
RegSet vregsPassed;
|
|
|
|
// Vregs that must pass through MBB because they are needed by a successor
|
|
// block. This set is disjoint from regsLiveOut.
|
|
RegSet vregsRequired;
|
|
|
|
// Set versions of block's predecessor and successor lists.
|
|
BlockSet Preds, Succs;
|
|
|
|
BBInfo() = default;
|
|
|
|
// Add register to vregsRequired if it belongs there. Return true if
|
|
// anything changed.
|
|
bool addRequired(unsigned Reg) {
|
|
if (!Register::isVirtualRegister(Reg))
|
|
return false;
|
|
if (regsLiveOut.count(Reg))
|
|
return false;
|
|
return vregsRequired.insert(Reg).second;
|
|
}
|
|
|
|
// Same for a full set.
|
|
bool addRequired(const RegSet &RS) {
|
|
bool Changed = false;
|
|
for (unsigned Reg : RS)
|
|
Changed |= addRequired(Reg);
|
|
return Changed;
|
|
}
|
|
|
|
// Same for a full map.
|
|
bool addRequired(const RegMap &RM) {
|
|
bool Changed = false;
|
|
for (const auto &I : RM)
|
|
Changed |= addRequired(I.first);
|
|
return Changed;
|
|
}
|
|
|
|
// Live-out registers are either in regsLiveOut or vregsPassed.
|
|
bool isLiveOut(unsigned Reg) const {
|
|
return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
|
|
}
|
|
};
|
|
|
|
// Extra register info per MBB.
|
|
DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
|
|
|
|
bool isReserved(unsigned Reg) {
|
|
return Reg < regsReserved.size() && regsReserved.test(Reg);
|
|
}
|
|
|
|
bool isAllocatable(unsigned Reg) const {
|
|
return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
|
|
!regsReserved.test(Reg);
|
|
}
|
|
|
|
// Analysis information if available
|
|
LiveVariables *LiveVars;
|
|
LiveIntervals *LiveInts;
|
|
LiveStacks *LiveStks;
|
|
SlotIndexes *Indexes;
|
|
|
|
void visitMachineFunctionBefore();
|
|
void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
|
|
void visitMachineBundleBefore(const MachineInstr *MI);
|
|
|
|
bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
|
|
void verifyPreISelGenericInstruction(const MachineInstr *MI);
|
|
void visitMachineInstrBefore(const MachineInstr *MI);
|
|
void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
|
|
void visitMachineBundleAfter(const MachineInstr *MI);
|
|
void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
|
|
void visitMachineFunctionAfter();
|
|
|
|
void report(const char *msg, const MachineFunction *MF);
|
|
void report(const char *msg, const MachineBasicBlock *MBB);
|
|
void report(const char *msg, const MachineInstr *MI);
|
|
void report(const char *msg, const MachineOperand *MO, unsigned MONum,
|
|
LLT MOVRegType = LLT{});
|
|
|
|
void report_context(const LiveInterval &LI) const;
|
|
void report_context(const LiveRange &LR, unsigned VRegUnit,
|
|
LaneBitmask LaneMask) const;
|
|
void report_context(const LiveRange::Segment &S) const;
|
|
void report_context(const VNInfo &VNI) const;
|
|
void report_context(SlotIndex Pos) const;
|
|
void report_context(MCPhysReg PhysReg) const;
|
|
void report_context_liverange(const LiveRange &LR) const;
|
|
void report_context_lanemask(LaneBitmask LaneMask) const;
|
|
void report_context_vreg(unsigned VReg) const;
|
|
void report_context_vreg_regunit(unsigned VRegOrUnit) const;
|
|
|
|
void verifyInlineAsm(const MachineInstr *MI);
|
|
|
|
void checkLiveness(const MachineOperand *MO, unsigned MONum);
|
|
void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
|
|
SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
|
|
LaneBitmask LaneMask = LaneBitmask::getNone());
|
|
void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
|
|
SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
|
|
bool SubRangeCheck = false,
|
|
LaneBitmask LaneMask = LaneBitmask::getNone());
|
|
|
|
void markReachable(const MachineBasicBlock *MBB);
|
|
void calcRegsPassed();
|
|
void checkPHIOps(const MachineBasicBlock &MBB);
|
|
|
|
void calcRegsRequired();
|
|
void verifyLiveVariables();
|
|
void verifyLiveIntervals();
|
|
void verifyLiveInterval(const LiveInterval&);
|
|
void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
|
|
LaneBitmask);
|
|
void verifyLiveRangeSegment(const LiveRange&,
|
|
const LiveRange::const_iterator I, unsigned,
|
|
LaneBitmask);
|
|
void verifyLiveRange(const LiveRange&, unsigned,
|
|
LaneBitmask LaneMask = LaneBitmask::getNone());
|
|
|
|
void verifyStackFrame();
|
|
|
|
void verifySlotIndexes() const;
|
|
void verifyProperties(const MachineFunction &MF);
|
|
};
|
|
|
|
struct MachineVerifierPass : public MachineFunctionPass {
|
|
static char ID; // Pass ID, replacement for typeid
|
|
|
|
const std::string Banner;
|
|
|
|
MachineVerifierPass(std::string banner = std::string())
|
|
: MachineFunctionPass(ID), Banner(std::move(banner)) {
|
|
initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesAll();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override {
|
|
unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
|
|
if (FoundErrors)
|
|
report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
|
|
return false;
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char MachineVerifierPass::ID = 0;
|
|
|
|
INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
|
|
"Verify generated machine code", false, false)
|
|
|
|
FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
|
|
return new MachineVerifierPass(Banner);
|
|
}
|
|
|
|
bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
|
|
const {
|
|
MachineFunction &MF = const_cast<MachineFunction&>(*this);
|
|
unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
|
|
if (AbortOnErrors && FoundErrors)
|
|
report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
|
|
return FoundErrors == 0;
|
|
}
|
|
|
|
void MachineVerifier::verifySlotIndexes() const {
|
|
if (Indexes == nullptr)
|
|
return;
|
|
|
|
// Ensure the IdxMBB list is sorted by slot indexes.
|
|
SlotIndex Last;
|
|
for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
|
|
E = Indexes->MBBIndexEnd(); I != E; ++I) {
|
|
assert(!Last.isValid() || I->first > Last);
|
|
Last = I->first;
|
|
}
|
|
}
|
|
|
|
void MachineVerifier::verifyProperties(const MachineFunction &MF) {
|
|
// If a pass has introduced virtual registers without clearing the
|
|
// NoVRegs property (or set it without allocating the vregs)
|
|
// then report an error.
|
|
if (MF.getProperties().hasProperty(
|
|
MachineFunctionProperties::Property::NoVRegs) &&
|
|
MRI->getNumVirtRegs())
|
|
report("Function has NoVRegs property but there are VReg operands", &MF);
|
|
}
|
|
|
|
unsigned MachineVerifier::verify(MachineFunction &MF) {
|
|
foundErrors = 0;
|
|
|
|
this->MF = &MF;
|
|
TM = &MF.getTarget();
|
|
TII = MF.getSubtarget().getInstrInfo();
|
|
TRI = MF.getSubtarget().getRegisterInfo();
|
|
MRI = &MF.getRegInfo();
|
|
|
|
const bool isFunctionFailedISel = MF.getProperties().hasProperty(
|
|
MachineFunctionProperties::Property::FailedISel);
|
|
|
|
// If we're mid-GlobalISel and we already triggered the fallback path then
|
|
// it's expected that the MIR is somewhat broken but that's ok since we'll
|
|
// reset it and clear the FailedISel attribute in ResetMachineFunctions.
|
|
if (isFunctionFailedISel)
|
|
return foundErrors;
|
|
|
|
isFunctionRegBankSelected = MF.getProperties().hasProperty(
|
|
MachineFunctionProperties::Property::RegBankSelected);
|
|
isFunctionSelected = MF.getProperties().hasProperty(
|
|
MachineFunctionProperties::Property::Selected);
|
|
|
|
LiveVars = nullptr;
|
|
LiveInts = nullptr;
|
|
LiveStks = nullptr;
|
|
Indexes = nullptr;
|
|
if (PASS) {
|
|
LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
|
|
// We don't want to verify LiveVariables if LiveIntervals is available.
|
|
if (!LiveInts)
|
|
LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
|
|
LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
|
|
Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
|
|
}
|
|
|
|
verifySlotIndexes();
|
|
|
|
verifyProperties(MF);
|
|
|
|
visitMachineFunctionBefore();
|
|
for (const MachineBasicBlock &MBB : MF) {
|
|
visitMachineBasicBlockBefore(&MBB);
|
|
// Keep track of the current bundle header.
|
|
const MachineInstr *CurBundle = nullptr;
|
|
// Do we expect the next instruction to be part of the same bundle?
|
|
bool InBundle = false;
|
|
|
|
for (const MachineInstr &MI : MBB.instrs()) {
|
|
if (MI.getParent() != &MBB) {
|
|
report("Bad instruction parent pointer", &MBB);
|
|
errs() << "Instruction: " << MI;
|
|
continue;
|
|
}
|
|
|
|
// Check for consistent bundle flags.
|
|
if (InBundle && !MI.isBundledWithPred())
|
|
report("Missing BundledPred flag, "
|
|
"BundledSucc was set on predecessor",
|
|
&MI);
|
|
if (!InBundle && MI.isBundledWithPred())
|
|
report("BundledPred flag is set, "
|
|
"but BundledSucc not set on predecessor",
|
|
&MI);
|
|
|
|
// Is this a bundle header?
|
|
if (!MI.isInsideBundle()) {
|
|
if (CurBundle)
|
|
visitMachineBundleAfter(CurBundle);
|
|
CurBundle = &MI;
|
|
visitMachineBundleBefore(CurBundle);
|
|
} else if (!CurBundle)
|
|
report("No bundle header", &MI);
|
|
visitMachineInstrBefore(&MI);
|
|
for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
|
|
const MachineOperand &Op = MI.getOperand(I);
|
|
if (Op.getParent() != &MI) {
|
|
// Make sure to use correct addOperand / RemoveOperand / ChangeTo
|
|
// functions when replacing operands of a MachineInstr.
|
|
report("Instruction has operand with wrong parent set", &MI);
|
|
}
|
|
|
|
visitMachineOperand(&Op, I);
|
|
}
|
|
|
|
// Was this the last bundled instruction?
|
|
InBundle = MI.isBundledWithSucc();
|
|
}
|
|
if (CurBundle)
|
|
visitMachineBundleAfter(CurBundle);
|
|
if (InBundle)
|
|
report("BundledSucc flag set on last instruction in block", &MBB.back());
|
|
visitMachineBasicBlockAfter(&MBB);
|
|
}
|
|
visitMachineFunctionAfter();
|
|
|
|
// Clean up.
|
|
regsLive.clear();
|
|
regsDefined.clear();
|
|
regsDead.clear();
|
|
regsKilled.clear();
|
|
regMasks.clear();
|
|
MBBInfoMap.clear();
|
|
|
|
return foundErrors;
|
|
}
|
|
|
|
void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
|
|
assert(MF);
|
|
errs() << '\n';
|
|
if (!foundErrors++) {
|
|
if (Banner)
|
|
errs() << "# " << Banner << '\n';
|
|
if (LiveInts != nullptr)
|
|
LiveInts->print(errs());
|
|
else
|
|
MF->print(errs(), Indexes);
|
|
}
|
|
errs() << "*** Bad machine code: " << msg << " ***\n"
|
|
<< "- function: " << MF->getName() << "\n";
|
|
}
|
|
|
|
void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
|
|
assert(MBB);
|
|
report(msg, MBB->getParent());
|
|
errs() << "- basic block: " << printMBBReference(*MBB) << ' '
|
|
<< MBB->getName() << " (" << (const void *)MBB << ')';
|
|
if (Indexes)
|
|
errs() << " [" << Indexes->getMBBStartIdx(MBB)
|
|
<< ';' << Indexes->getMBBEndIdx(MBB) << ')';
|
|
errs() << '\n';
|
|
}
|
|
|
|
void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
|
|
assert(MI);
|
|
report(msg, MI->getParent());
|
|
errs() << "- instruction: ";
|
|
if (Indexes && Indexes->hasIndex(*MI))
|
|
errs() << Indexes->getInstructionIndex(*MI) << '\t';
|
|
MI->print(errs(), /*SkipOpers=*/true);
|
|
}
|
|
|
|
void MachineVerifier::report(const char *msg, const MachineOperand *MO,
|
|
unsigned MONum, LLT MOVRegType) {
|
|
assert(MO);
|
|
report(msg, MO->getParent());
|
|
errs() << "- operand " << MONum << ": ";
|
|
MO->print(errs(), MOVRegType, TRI);
|
|
errs() << "\n";
|
|
}
|
|
|
|
void MachineVerifier::report_context(SlotIndex Pos) const {
|
|
errs() << "- at: " << Pos << '\n';
|
|
}
|
|
|
|
void MachineVerifier::report_context(const LiveInterval &LI) const {
|
|
errs() << "- interval: " << LI << '\n';
|
|
}
|
|
|
|
void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
|
|
LaneBitmask LaneMask) const {
|
|
report_context_liverange(LR);
|
|
report_context_vreg_regunit(VRegUnit);
|
|
if (LaneMask.any())
|
|
report_context_lanemask(LaneMask);
|
|
}
|
|
|
|
void MachineVerifier::report_context(const LiveRange::Segment &S) const {
|
|
errs() << "- segment: " << S << '\n';
|
|
}
|
|
|
|
void MachineVerifier::report_context(const VNInfo &VNI) const {
|
|
errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n";
|
|
}
|
|
|
|
void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
|
|
errs() << "- liverange: " << LR << '\n';
|
|
}
|
|
|
|
void MachineVerifier::report_context(MCPhysReg PReg) const {
|
|
errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
|
|
}
|
|
|
|
void MachineVerifier::report_context_vreg(unsigned VReg) const {
|
|
errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
|
|
}
|
|
|
|
void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
|
|
if (Register::isVirtualRegister(VRegOrUnit)) {
|
|
report_context_vreg(VRegOrUnit);
|
|
} else {
|
|
errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n';
|
|
}
|
|
}
|
|
|
|
void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
|
|
errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n';
|
|
}
|
|
|
|
void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
|
|
BBInfo &MInfo = MBBInfoMap[MBB];
|
|
if (!MInfo.reachable) {
|
|
MInfo.reachable = true;
|
|
for (const MachineBasicBlock *Succ : MBB->successors())
|
|
markReachable(Succ);
|
|
}
|
|
}
|
|
|
|
void MachineVerifier::visitMachineFunctionBefore() {
|
|
lastIndex = SlotIndex();
|
|
regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
|
|
: TRI->getReservedRegs(*MF);
|
|
|
|
if (!MF->empty())
|
|
markReachable(&MF->front());
|
|
|
|
// Build a set of the basic blocks in the function.
|
|
FunctionBlocks.clear();
|
|
for (const auto &MBB : *MF) {
|
|
FunctionBlocks.insert(&MBB);
|
|
BBInfo &MInfo = MBBInfoMap[&MBB];
|
|
|
|
MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
|
|
if (MInfo.Preds.size() != MBB.pred_size())
|
|
report("MBB has duplicate entries in its predecessor list.", &MBB);
|
|
|
|
MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
|
|
if (MInfo.Succs.size() != MBB.succ_size())
|
|
report("MBB has duplicate entries in its successor list.", &MBB);
|
|
}
|
|
|
|
// Check that the register use lists are sane.
|
|
MRI->verifyUseLists();
|
|
|
|
if (!MF->empty())
|
|
verifyStackFrame();
|
|
}
|
|
|
|
void
|
|
MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
|
|
FirstTerminator = nullptr;
|
|
FirstNonPHI = nullptr;
|
|
|
|
if (!MF->getProperties().hasProperty(
|
|
MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
|
|
// If this block has allocatable physical registers live-in, check that
|
|
// it is an entry block or landing pad.
|
|
for (const auto &LI : MBB->liveins()) {
|
|
if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
|
|
MBB->getIterator() != MBB->getParent()->begin()) {
|
|
report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
|
|
report_context(LI.PhysReg);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Count the number of landing pad successors.
|
|
SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
|
|
for (const auto *succ : MBB->successors()) {
|
|
if (succ->isEHPad())
|
|
LandingPadSuccs.insert(succ);
|
|
if (!FunctionBlocks.count(succ))
|
|
report("MBB has successor that isn't part of the function.", MBB);
|
|
if (!MBBInfoMap[succ].Preds.count(MBB)) {
|
|
report("Inconsistent CFG", MBB);
|
|
errs() << "MBB is not in the predecessor list of the successor "
|
|
<< printMBBReference(*succ) << ".\n";
|
|
}
|
|
}
|
|
|
|
// Check the predecessor list.
|
|
for (const MachineBasicBlock *Pred : MBB->predecessors()) {
|
|
if (!FunctionBlocks.count(Pred))
|
|
report("MBB has predecessor that isn't part of the function.", MBB);
|
|
if (!MBBInfoMap[Pred].Succs.count(MBB)) {
|
|
report("Inconsistent CFG", MBB);
|
|
errs() << "MBB is not in the successor list of the predecessor "
|
|
<< printMBBReference(*Pred) << ".\n";
|
|
}
|
|
}
|
|
|
|
const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
|
|
const BasicBlock *BB = MBB->getBasicBlock();
|
|
const Function &F = MF->getFunction();
|
|
if (LandingPadSuccs.size() > 1 &&
|
|
!(AsmInfo &&
|
|
AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
|
|
BB && isa<SwitchInst>(BB->getTerminator())) &&
|
|
!isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
|
|
report("MBB has more than one landing pad successor", MBB);
|
|
|
|
// Call analyzeBranch. If it succeeds, there several more conditions to check.
|
|
MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
|
|
SmallVector<MachineOperand, 4> Cond;
|
|
if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
|
|
Cond)) {
|
|
// Ok, analyzeBranch thinks it knows what's going on with this block. Let's
|
|
// check whether its answers match up with reality.
|
|
if (!TBB && !FBB) {
|
|
// Block falls through to its successor.
|
|
if (!MBB->empty() && MBB->back().isBarrier() &&
|
|
!TII->isPredicated(MBB->back())) {
|
|
report("MBB exits via unconditional fall-through but ends with a "
|
|
"barrier instruction!", MBB);
|
|
}
|
|
if (!Cond.empty()) {
|
|
report("MBB exits via unconditional fall-through but has a condition!",
|
|
MBB);
|
|
}
|
|
} else if (TBB && !FBB && Cond.empty()) {
|
|
// Block unconditionally branches somewhere.
|
|
if (MBB->empty()) {
|
|
report("MBB exits via unconditional branch but doesn't contain "
|
|
"any instructions!", MBB);
|
|
} else if (!MBB->back().isBarrier()) {
|
|
report("MBB exits via unconditional branch but doesn't end with a "
|
|
"barrier instruction!", MBB);
|
|
} else if (!MBB->back().isTerminator()) {
|
|
report("MBB exits via unconditional branch but the branch isn't a "
|
|
"terminator instruction!", MBB);
|
|
}
|
|
} else if (TBB && !FBB && !Cond.empty()) {
|
|
// Block conditionally branches somewhere, otherwise falls through.
|
|
if (MBB->empty()) {
|
|
report("MBB exits via conditional branch/fall-through but doesn't "
|
|
"contain any instructions!", MBB);
|
|
} else if (MBB->back().isBarrier()) {
|
|
report("MBB exits via conditional branch/fall-through but ends with a "
|
|
"barrier instruction!", MBB);
|
|
} else if (!MBB->back().isTerminator()) {
|
|
report("MBB exits via conditional branch/fall-through but the branch "
|
|
"isn't a terminator instruction!", MBB);
|
|
}
|
|
} else if (TBB && FBB) {
|
|
// Block conditionally branches somewhere, otherwise branches
|
|
// somewhere else.
|
|
if (MBB->empty()) {
|
|
report("MBB exits via conditional branch/branch but doesn't "
|
|
"contain any instructions!", MBB);
|
|
} else if (!MBB->back().isBarrier()) {
|
|
report("MBB exits via conditional branch/branch but doesn't end with a "
|
|
"barrier instruction!", MBB);
|
|
} else if (!MBB->back().isTerminator()) {
|
|
report("MBB exits via conditional branch/branch but the branch "
|
|
"isn't a terminator instruction!", MBB);
|
|
}
|
|
if (Cond.empty()) {
|
|
report("MBB exits via conditional branch/branch but there's no "
|
|
"condition!", MBB);
|
|
}
|
|
} else {
|
|
report("analyzeBranch returned invalid data!", MBB);
|
|
}
|
|
|
|
// Now check that the successors match up with the answers reported by
|
|
// analyzeBranch.
|
|
if (TBB && !MBB->isSuccessor(TBB))
|
|
report("MBB exits via jump or conditional branch, but its target isn't a "
|
|
"CFG successor!",
|
|
MBB);
|
|
if (FBB && !MBB->isSuccessor(FBB))
|
|
report("MBB exits via conditional branch, but its target isn't a CFG "
|
|
"successor!",
|
|
MBB);
|
|
|
|
// There might be a fallthrough to the next block if there's either no
|
|
// unconditional true branch, or if there's a condition, and one of the
|
|
// branches is missing.
|
|
bool Fallthrough = !TBB || (!Cond.empty() && !FBB);
|
|
|
|
// A conditional fallthrough must be an actual CFG successor, not
|
|
// unreachable. (Conversely, an unconditional fallthrough might not really
|
|
// be a successor, because the block might end in unreachable.)
|
|
if (!Cond.empty() && !FBB) {
|
|
MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
|
|
if (MBBI == MF->end()) {
|
|
report("MBB conditionally falls through out of function!", MBB);
|
|
} else if (!MBB->isSuccessor(&*MBBI))
|
|
report("MBB exits via conditional branch/fall-through but the CFG "
|
|
"successors don't match the actual successors!",
|
|
MBB);
|
|
}
|
|
|
|
// Verify that there aren't any extra un-accounted-for successors.
|
|
for (const MachineBasicBlock *SuccMBB : MBB->successors()) {
|
|
// If this successor is one of the branch targets, it's okay.
|
|
if (SuccMBB == TBB || SuccMBB == FBB)
|
|
continue;
|
|
// If we might have a fallthrough, and the successor is the fallthrough
|
|
// block, that's also ok.
|
|
if (Fallthrough && SuccMBB == MBB->getNextNode())
|
|
continue;
|
|
// Also accept successors which are for exception-handling or might be
|
|
// inlineasm_br targets.
|
|
if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget())
|
|
continue;
|
|
report("MBB has unexpected successors which are not branch targets, "
|
|
"fallthrough, EHPads, or inlineasm_br targets.",
|
|
MBB);
|
|
}
|
|
}
|
|
|
|
regsLive.clear();
|
|
if (MRI->tracksLiveness()) {
|
|
for (const auto &LI : MBB->liveins()) {
|
|
if (!Register::isPhysicalRegister(LI.PhysReg)) {
|
|
report("MBB live-in list contains non-physical register", MBB);
|
|
continue;
|
|
}
|
|
for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg))
|
|
regsLive.insert(SubReg);
|
|
}
|
|
}
|
|
|
|
const MachineFrameInfo &MFI = MF->getFrameInfo();
|
|
BitVector PR = MFI.getPristineRegs(*MF);
|
|
for (unsigned I : PR.set_bits()) {
|
|
for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I))
|
|
regsLive.insert(SubReg);
|
|
}
|
|
|
|
regsKilled.clear();
|
|
regsDefined.clear();
|
|
|
|
if (Indexes)
|
|
lastIndex = Indexes->getMBBStartIdx(MBB);
|
|
}
|
|
|
|
// This function gets called for all bundle headers, including normal
|
|
// stand-alone unbundled instructions.
|
|
void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
|
|
if (Indexes && Indexes->hasIndex(*MI)) {
|
|
SlotIndex idx = Indexes->getInstructionIndex(*MI);
|
|
if (!(idx > lastIndex)) {
|
|
report("Instruction index out of order", MI);
|
|
errs() << "Last instruction was at " << lastIndex << '\n';
|
|
}
|
|
lastIndex = idx;
|
|
}
|
|
|
|
// Ensure non-terminators don't follow terminators.
|
|
// Ignore predicated terminators formed by if conversion.
|
|
// FIXME: If conversion shouldn't need to violate this rule.
|
|
if (MI->isTerminator() && !TII->isPredicated(*MI)) {
|
|
if (!FirstTerminator)
|
|
FirstTerminator = MI;
|
|
} else if (FirstTerminator) {
|
|
report("Non-terminator instruction after the first terminator", MI);
|
|
errs() << "First terminator was:\t" << *FirstTerminator;
|
|
}
|
|
}
|
|
|
|
// The operands on an INLINEASM instruction must follow a template.
|
|
// Verify that the flag operands make sense.
|
|
void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
|
|
// The first two operands on INLINEASM are the asm string and global flags.
|
|
if (MI->getNumOperands() < 2) {
|
|
report("Too few operands on inline asm", MI);
|
|
return;
|
|
}
|
|
if (!MI->getOperand(0).isSymbol())
|
|
report("Asm string must be an external symbol", MI);
|
|
if (!MI->getOperand(1).isImm())
|
|
report("Asm flags must be an immediate", MI);
|
|
// Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
|
|
// Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
|
|
// and Extra_IsConvergent = 32.
|
|
if (!isUInt<6>(MI->getOperand(1).getImm()))
|
|
report("Unknown asm flags", &MI->getOperand(1), 1);
|
|
|
|
static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
|
|
|
|
unsigned OpNo = InlineAsm::MIOp_FirstOperand;
|
|
unsigned NumOps;
|
|
for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
|
|
const MachineOperand &MO = MI->getOperand(OpNo);
|
|
// There may be implicit ops after the fixed operands.
|
|
if (!MO.isImm())
|
|
break;
|
|
NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
|
|
}
|
|
|
|
if (OpNo > MI->getNumOperands())
|
|
report("Missing operands in last group", MI);
|
|
|
|
// An optional MDNode follows the groups.
|
|
if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
|
|
++OpNo;
|
|
|
|
// All trailing operands must be implicit registers.
|
|
for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
|
|
const MachineOperand &MO = MI->getOperand(OpNo);
|
|
if (!MO.isReg() || !MO.isImplicit())
|
|
report("Expected implicit register after groups", &MO, OpNo);
|
|
}
|
|
}
|
|
|
|
/// Check that types are consistent when two operands need to have the same
|
|
/// number of vector elements.
|
|
/// \return true if the types are valid.
|
|
bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
|
|
const MachineInstr *MI) {
|
|
if (Ty0.isVector() != Ty1.isVector()) {
|
|
report("operand types must be all-vector or all-scalar", MI);
|
|
// Generally we try to report as many issues as possible at once, but in
|
|
// this case it's not clear what should we be comparing the size of the
|
|
// scalar with: the size of the whole vector or its lane. Instead of
|
|
// making an arbitrary choice and emitting not so helpful message, let's
|
|
// avoid the extra noise and stop here.
|
|
return false;
|
|
}
|
|
|
|
if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
|
|
report("operand types must preserve number of vector elements", MI);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
|
|
if (isFunctionSelected)
|
|
report("Unexpected generic instruction in a Selected function", MI);
|
|
|
|
const MCInstrDesc &MCID = MI->getDesc();
|
|
unsigned NumOps = MI->getNumOperands();
|
|
|
|
// Branches must reference a basic block if they are not indirect
|
|
if (MI->isBranch() && !MI->isIndirectBranch()) {
|
|
bool HasMBB = false;
|
|
for (const MachineOperand &Op : MI->operands()) {
|
|
if (Op.isMBB()) {
|
|
HasMBB = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!HasMBB) {
|
|
report("Branch instruction is missing a basic block operand or "
|
|
"isIndirectBranch property",
|
|
MI);
|
|
}
|
|
}
|
|
|
|
// Check types.
|
|
SmallVector<LLT, 4> Types;
|
|
for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
|
|
I != E; ++I) {
|
|
if (!MCID.OpInfo[I].isGenericType())
|
|
continue;
|
|
// Generic instructions specify type equality constraints between some of
|
|
// their operands. Make sure these are consistent.
|
|
size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
|
|
Types.resize(std::max(TypeIdx + 1, Types.size()));
|
|
|
|
const MachineOperand *MO = &MI->getOperand(I);
|
|
if (!MO->isReg()) {
|
|
report("generic instruction must use register operands", MI);
|
|
continue;
|
|
}
|
|
|
|
LLT OpTy = MRI->getType(MO->getReg());
|
|
// Don't report a type mismatch if there is no actual mismatch, only a
|
|
// type missing, to reduce noise:
|
|
if (OpTy.isValid()) {
|
|
// Only the first valid type for a type index will be printed: don't
|
|
// overwrite it later so it's always clear which type was expected:
|
|
if (!Types[TypeIdx].isValid())
|
|
Types[TypeIdx] = OpTy;
|
|
else if (Types[TypeIdx] != OpTy)
|
|
report("Type mismatch in generic instruction", MO, I, OpTy);
|
|
} else {
|
|
// Generic instructions must have types attached to their operands.
|
|
report("Generic instruction is missing a virtual register type", MO, I);
|
|
}
|
|
}
|
|
|
|
// Generic opcodes must not have physical register operands.
|
|
for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
|
|
const MachineOperand *MO = &MI->getOperand(I);
|
|
if (MO->isReg() && Register::isPhysicalRegister(MO->getReg()))
|
|
report("Generic instruction cannot have physical register", MO, I);
|
|
}
|
|
|
|
// Avoid out of bounds in checks below. This was already reported earlier.
|
|
if (MI->getNumOperands() < MCID.getNumOperands())
|
|
return;
|
|
|
|
StringRef ErrorInfo;
|
|
if (!TII->verifyInstruction(*MI, ErrorInfo))
|
|
report(ErrorInfo.data(), MI);
|
|
|
|
// Verify properties of various specific instruction types
|
|
switch (MI->getOpcode()) {
|
|
case TargetOpcode::G_CONSTANT:
|
|
case TargetOpcode::G_FCONSTANT: {
|
|
LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
|
|
if (DstTy.isVector())
|
|
report("Instruction cannot use a vector result type", MI);
|
|
|
|
if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
|
|
if (!MI->getOperand(1).isCImm()) {
|
|
report("G_CONSTANT operand must be cimm", MI);
|
|
break;
|
|
}
|
|
|
|
const ConstantInt *CI = MI->getOperand(1).getCImm();
|
|
if (CI->getBitWidth() != DstTy.getSizeInBits())
|
|
report("inconsistent constant size", MI);
|
|
} else {
|
|
if (!MI->getOperand(1).isFPImm()) {
|
|
report("G_FCONSTANT operand must be fpimm", MI);
|
|
break;
|
|
}
|
|
const ConstantFP *CF = MI->getOperand(1).getFPImm();
|
|
|
|
if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
|
|
DstTy.getSizeInBits()) {
|
|
report("inconsistent constant size", MI);
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
case TargetOpcode::G_LOAD:
|
|
case TargetOpcode::G_STORE:
|
|
case TargetOpcode::G_ZEXTLOAD:
|
|
case TargetOpcode::G_SEXTLOAD: {
|
|
LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
|
|
LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
|
|
if (!PtrTy.isPointer())
|
|
report("Generic memory instruction must access a pointer", MI);
|
|
|
|
// Generic loads and stores must have a single MachineMemOperand
|
|
// describing that access.
|
|
if (!MI->hasOneMemOperand()) {
|
|
report("Generic instruction accessing memory must have one mem operand",
|
|
MI);
|
|
} else {
|
|
const MachineMemOperand &MMO = **MI->memoperands_begin();
|
|
if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
|
|
MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
|
|
if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
|
|
report("Generic extload must have a narrower memory type", MI);
|
|
} else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
|
|
if (MMO.getSize() > ValTy.getSizeInBytes())
|
|
report("load memory size cannot exceed result size", MI);
|
|
} else if (MI->getOpcode() == TargetOpcode::G_STORE) {
|
|
if (ValTy.getSizeInBytes() < MMO.getSize())
|
|
report("store memory size cannot exceed value size", MI);
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
case TargetOpcode::G_PHI: {
|
|
LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
|
|
if (!DstTy.isValid() ||
|
|
!std::all_of(MI->operands_begin() + 1, MI->operands_end(),
|
|
[this, &DstTy](const MachineOperand &MO) {
|
|
if (!MO.isReg())
|
|
return true;
|
|
LLT Ty = MRI->getType(MO.getReg());
|
|
if (!Ty.isValid() || (Ty != DstTy))
|
|
return false;
|
|
return true;
|
|
}))
|
|
report("Generic Instruction G_PHI has operands with incompatible/missing "
|
|
"types",
|
|
MI);
|
|
break;
|
|
}
|
|
case TargetOpcode::G_BITCAST: {
|
|
LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
|
|
LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
|
|
if (!DstTy.isValid() || !SrcTy.isValid())
|
|
break;
|
|
|
|
if (SrcTy.isPointer() != DstTy.isPointer())
|
|
report("bitcast cannot convert between pointers and other types", MI);
|
|
|
|
if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
|
|
report("bitcast sizes must match", MI);
|
|
break;
|
|
}
|
|
case TargetOpcode::G_INTTOPTR:
|
|
case TargetOpcode::G_PTRTOINT:
|
|
case TargetOpcode::G_ADDRSPACE_CAST: {
|
|
LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
|
|
LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
|
|
if (!DstTy.isValid() || !SrcTy.isValid())
|
|
break;
|
|
|
|
verifyVectorElementMatch(DstTy, SrcTy, MI);
|
|
|
|
DstTy = DstTy.getScalarType();
|
|
SrcTy = SrcTy.getScalarType();
|
|
|
|
if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
|
|
if (!DstTy.isPointer())
|
|
report("inttoptr result type must be a pointer", MI);
|
|
if (SrcTy.isPointer())
|
|
report("inttoptr source type must not be a pointer", MI);
|
|
} else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
|
|
if (!SrcTy.isPointer())
|
|
report("ptrtoint source type must be a pointer", MI);
|
|
if (DstTy.isPointer())
|
|
report("ptrtoint result type must not be a pointer", MI);
|
|
} else {
|
|
assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
|
|
if (!SrcTy.isPointer() || !DstTy.isPointer())
|
|
report("addrspacecast types must be pointers", MI);
|
|
else {
|
|
if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
|
|
report("addrspacecast must convert different address spaces", MI);
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
case TargetOpcode::G_PTR_ADD: {
|
|
LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
|
|
LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
|
|
LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
|
|
if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
|
|
break;
|
|
|
|
if (!PtrTy.getScalarType().isPointer())
|
|
report("gep first operand must be a pointer", MI);
|
|
|
|
if (OffsetTy.getScalarType().isPointer())
|
|
report("gep offset operand must not be a pointer", MI);
|
|
|
|
// TODO: Is the offset allowed to be a scalar with a vector?
|
|
break;
|
|
}
|
|
case TargetOpcode::G_PTRMASK: {
|
|
LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
|
|
LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
|
|
LLT MaskTy = MRI->getType(MI->getOperand(2).getReg());
|
|
if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid())
|
|
break;
|
|
|
|
if (!DstTy.getScalarType().isPointer())
|
|
report("ptrmask result type must be a pointer", MI);
|
|
|
|
if (!MaskTy.getScalarType().isScalar())
|
|
report("ptrmask mask type must be an integer", MI);
|
|
|
|
verifyVectorElementMatch(DstTy, MaskTy, MI);
|
|
break;
|
|
}
|
|
case TargetOpcode::G_SEXT:
|
|
case TargetOpcode::G_ZEXT:
|
|
case TargetOpcode::G_ANYEXT:
|
|
case TargetOpcode::G_TRUNC:
|
|
case TargetOpcode::G_FPEXT:
|
|
case TargetOpcode::G_FPTRUNC: {
|
|
// Number of operands and presense of types is already checked (and
|
|
// reported in case of any issues), so no need to report them again. As
|
|
// we're trying to report as many issues as possible at once, however, the
|
|
// instructions aren't guaranteed to have the right number of operands or
|
|
// types attached to them at this point
|
|
assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
|
|
LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
|
|
LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
|
|
if (!DstTy.isValid() || !SrcTy.isValid())
|
|
break;
|
|
|
|
LLT DstElTy = DstTy.getScalarType();
|
|
LLT SrcElTy = SrcTy.getScalarType();
|
|
if (DstElTy.isPointer() || SrcElTy.isPointer())
|
|
report("Generic extend/truncate can not operate on pointers", MI);
|
|
|
|
verifyVectorElementMatch(DstTy, SrcTy, MI);
|
|
|
|
unsigned DstSize = DstElTy.getSizeInBits();
|
|
unsigned SrcSize = SrcElTy.getSizeInBits();
|
|
switch (MI->getOpcode()) {
|
|
default:
|
|
if (DstSize <= SrcSize)
|
|
report("Generic extend has destination type no larger than source", MI);
|
|
break;
|
|
case TargetOpcode::G_TRUNC:
|
|
case TargetOpcode::G_FPTRUNC:
|
|
if (DstSize >= SrcSize)
|
|
report("Generic truncate has destination type no smaller than source",
|
|
MI);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case TargetOpcode::G_SELECT: {
|
|
LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
|
|
LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
|
|
if (!SelTy.isValid() || !CondTy.isValid())
|
|
break;
|
|
|
|
// Scalar condition select on a vector is valid.
|
|
if (CondTy.isVector())
|
|
verifyVectorElementMatch(SelTy, CondTy, MI);
|
|
break;
|
|
}
|
|
case TargetOpcode::G_MERGE_VALUES: {
|
|
// G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
|
|
// e.g. s2N = MERGE sN, sN
|
|
// Merging multiple scalars into a vector is not allowed, should use
|
|
// G_BUILD_VECTOR for that.
|
|
LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
|
|
LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
|
|
if (DstTy.isVector() || SrcTy.isVector())
|
|
report("G_MERGE_VALUES cannot operate on vectors", MI);
|
|
|
|
const unsigned NumOps = MI->getNumOperands();
|
|
if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
|
|
report("G_MERGE_VALUES result size is inconsistent", MI);
|
|
|
|
for (unsigned I = 2; I != NumOps; ++I) {
|
|
if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
|
|
report("G_MERGE_VALUES source types do not match", MI);
|
|
}
|
|
|
|
break;
|
|
}
|
|
case TargetOpcode::G_UNMERGE_VALUES: {
|
|
LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
|
|
LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
|
|
// For now G_UNMERGE can split vectors.
|
|
for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
|
|
if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
|
|
report("G_UNMERGE_VALUES destination types do not match", MI);
|
|
}
|
|
if (SrcTy.getSizeInBits() !=
|
|
(DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
|
|
report("G_UNMERGE_VALUES source operand does not cover dest operands",
|
|
MI);
|
|
}
|
|
break;
|
|
}
|
|
case TargetOpcode::G_BUILD_VECTOR: {
|
|
// Source types must be scalars, dest type a vector. Total size of scalars
|
|
// must match the dest vector size.
|
|
LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
|
|
LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
|
|
if (!DstTy.isVector() || SrcEltTy.isVector()) {
|
|
report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
|
|
break;
|
|
}
|
|
|
|
if (DstTy.getElementType() != SrcEltTy)
|
|
report("G_BUILD_VECTOR result element type must match source type", MI);
|
|
|
|
if (DstTy.getNumElements() != MI->getNumOperands() - 1)
|
|
report("G_BUILD_VECTOR must have an operand for each elemement", MI);
|
|
|
|
for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
|
|
if (MRI->getType(MI->getOperand(1).getReg()) !=
|
|
MRI->getType(MI->getOperand(i).getReg()))
|
|
report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
|
|
}
|
|
|
|
break;
|
|
}
|
|
case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
|
|
// Source types must be scalars, dest type a vector. Scalar types must be
|
|
// larger than the dest vector elt type, as this is a truncating operation.
|
|
LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
|
|
LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
|
|
if (!DstTy.isVector() || SrcEltTy.isVector())
|
|
report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
|
|
MI);
|
|
for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
|
|
if (MRI->getType(MI->getOperand(1).getReg()) !=
|
|
MRI->getType(MI->getOperand(i).getReg()))
|
|
report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
|
|
MI);
|
|
}
|
|
if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
|
|
report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
|
|
"dest elt type",
|
|
MI);
|
|
break;
|
|
}
|
|
case TargetOpcode::G_CONCAT_VECTORS: {
|
|
// Source types should be vectors, and total size should match the dest
|
|
// vector size.
|
|
LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
|
|
LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
|
|
if (!DstTy.isVector() || !SrcTy.isVector())
|
|
report("G_CONCAT_VECTOR requires vector source and destination operands",
|
|
MI);
|
|
for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
|
|
if (MRI->getType(MI->getOperand(1).getReg()) !=
|
|
MRI->getType(MI->getOperand(i).getReg()))
|
|
report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
|
|
}
|
|
if (DstTy.getNumElements() !=
|
|
SrcTy.getNumElements() * (MI->getNumOperands() - 1))
|
|
report("G_CONCAT_VECTOR num dest and source elements should match", MI);
|
|
break;
|
|
}
|
|
case TargetOpcode::G_ICMP:
|
|
case TargetOpcode::G_FCMP: {
|
|
LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
|
|
LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
|
|
|
|
if ((DstTy.isVector() != SrcTy.isVector()) ||
|
|
(DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
|
|
report("Generic vector icmp/fcmp must preserve number of lanes", MI);
|
|
|
|
break;
|
|
}
|
|
case TargetOpcode::G_EXTRACT: {
|
|
const MachineOperand &SrcOp = MI->getOperand(1);
|
|
if (!SrcOp.isReg()) {
|
|
report("extract source must be a register", MI);
|
|
break;
|
|
}
|
|
|
|
const MachineOperand &OffsetOp = MI->getOperand(2);
|
|
if (!OffsetOp.isImm()) {
|
|
report("extract offset must be a constant", MI);
|
|
break;
|
|
}
|
|
|
|
unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
|
|
unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
|
|
if (SrcSize == DstSize)
|
|
report("extract source must be larger than result", MI);
|
|
|
|
if (DstSize + OffsetOp.getImm() > SrcSize)
|
|
report("extract reads past end of register", MI);
|
|
break;
|
|
}
|
|
case TargetOpcode::G_INSERT: {
|
|
const MachineOperand &SrcOp = MI->getOperand(2);
|
|
if (!SrcOp.isReg()) {
|
|
report("insert source must be a register", MI);
|
|
break;
|
|
}
|
|
|
|
const MachineOperand &OffsetOp = MI->getOperand(3);
|
|
if (!OffsetOp.isImm()) {
|
|
report("insert offset must be a constant", MI);
|
|
break;
|
|
}
|
|
|
|
unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
|
|
unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
|
|
|
|
if (DstSize <= SrcSize)
|
|
report("inserted size must be smaller than total register", MI);
|
|
|
|
if (SrcSize + OffsetOp.getImm() > DstSize)
|
|
report("insert writes past end of register", MI);
|
|
|
|
break;
|
|
}
|
|
case TargetOpcode::G_JUMP_TABLE: {
|
|
if (!MI->getOperand(1).isJTI())
|
|
report("G_JUMP_TABLE source operand must be a jump table index", MI);
|
|
LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
|
|
if (!DstTy.isPointer())
|
|
report("G_JUMP_TABLE dest operand must have a pointer type", MI);
|
|
break;
|
|
}
|
|
case TargetOpcode::G_BRJT: {
|
|
if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
|
|
report("G_BRJT src operand 0 must be a pointer type", MI);
|
|
|
|
if (!MI->getOperand(1).isJTI())
|
|
report("G_BRJT src operand 1 must be a jump table index", MI);
|
|
|
|
const auto &IdxOp = MI->getOperand(2);
|
|
if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
|
|
report("G_BRJT src operand 2 must be a scalar reg type", MI);
|
|
break;
|
|
}
|
|
case TargetOpcode::G_INTRINSIC:
|
|
case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
|
|
// TODO: Should verify number of def and use operands, but the current
|
|
// interface requires passing in IR types for mangling.
|
|
const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
|
|
if (!IntrIDOp.isIntrinsicID()) {
|
|
report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
|
|
break;
|
|
}
|
|
|
|
bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
|
|
unsigned IntrID = IntrIDOp.getIntrinsicID();
|
|
if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
|
|
AttributeList Attrs
|
|
= Intrinsic::getAttributes(MF->getFunction().getContext(),
|
|
static_cast<Intrinsic::ID>(IntrID));
|
|
bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone);
|
|
if (NoSideEffects && DeclHasSideEffects) {
|
|
report("G_INTRINSIC used with intrinsic that accesses memory", MI);
|
|
break;
|
|
}
|
|
if (!NoSideEffects && !DeclHasSideEffects) {
|
|
report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
|
|
break;
|
|
}
|
|
}
|
|
switch (IntrID) {
|
|
case Intrinsic::memcpy:
|
|
if (MI->getNumOperands() != 5)
|
|
report("Expected memcpy intrinsic to have 5 operands", MI);
|
|
break;
|
|
case Intrinsic::memmove:
|
|
if (MI->getNumOperands() != 5)
|
|
report("Expected memmove intrinsic to have 5 operands", MI);
|
|
break;
|
|
case Intrinsic::memset:
|
|
if (MI->getNumOperands() != 5)
|
|
report("Expected memset intrinsic to have 5 operands", MI);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case TargetOpcode::G_SEXT_INREG: {
|
|
if (!MI->getOperand(2).isImm()) {
|
|
report("G_SEXT_INREG expects an immediate operand #2", MI);
|
|
break;
|
|
}
|
|
|
|
LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
|
|
LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
|
|
verifyVectorElementMatch(DstTy, SrcTy, MI);
|
|
|
|
int64_t Imm = MI->getOperand(2).getImm();
|
|
if (Imm <= 0)
|
|
report("G_SEXT_INREG size must be >= 1", MI);
|
|
if (Imm >= SrcTy.getScalarSizeInBits())
|
|
report("G_SEXT_INREG size must be less than source bit width", MI);
|
|
break;
|
|
}
|
|
case TargetOpcode::G_SHUFFLE_VECTOR: {
|
|
const MachineOperand &MaskOp = MI->getOperand(3);
|
|
if (!MaskOp.isShuffleMask()) {
|
|
report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
|
|
break;
|
|
}
|
|
|
|
LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
|
|
LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
|
|
LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
|
|
|
|
if (Src0Ty != Src1Ty)
|
|
report("Source operands must be the same type", MI);
|
|
|
|
if (Src0Ty.getScalarType() != DstTy.getScalarType())
|
|
report("G_SHUFFLE_VECTOR cannot change element type", MI);
|
|
|
|
// Don't check that all operands are vector because scalars are used in
|
|
// place of 1 element vectors.
|
|
int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
|
|
int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
|
|
|
|
ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();
|
|
|
|
if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
|
|
report("Wrong result type for shufflemask", MI);
|
|
|
|
for (int Idx : MaskIdxes) {
|
|
if (Idx < 0)
|
|
continue;
|
|
|
|
if (Idx >= 2 * SrcNumElts)
|
|
report("Out of bounds shuffle index", MI);
|
|
}
|
|
|
|
break;
|
|
}
|
|
case TargetOpcode::G_DYN_STACKALLOC: {
|
|
const MachineOperand &DstOp = MI->getOperand(0);
|
|
const MachineOperand &AllocOp = MI->getOperand(1);
|
|
const MachineOperand &AlignOp = MI->getOperand(2);
|
|
|
|
if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
|
|
report("dst operand 0 must be a pointer type", MI);
|
|
break;
|
|
}
|
|
|
|
if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
|
|
report("src operand 1 must be a scalar reg type", MI);
|
|
break;
|
|
}
|
|
|
|
if (!AlignOp.isImm()) {
|
|
report("src operand 2 must be an immediate type", MI);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
|
|
const MCInstrDesc &MCID = MI->getDesc();
|
|
if (MI->getNumOperands() < MCID.getNumOperands()) {
|
|
report("Too few operands", MI);
|
|
errs() << MCID.getNumOperands() << " operands expected, but "
|
|
<< MI->getNumOperands() << " given.\n";
|
|
}
|
|
|
|
if (MI->isPHI()) {
|
|
if (MF->getProperties().hasProperty(
|
|
MachineFunctionProperties::Property::NoPHIs))
|
|
report("Found PHI instruction with NoPHIs property set", MI);
|
|
|
|
if (FirstNonPHI)
|
|
report("Found PHI instruction after non-PHI", MI);
|
|
} else if (FirstNonPHI == nullptr)
|
|
FirstNonPHI = MI;
|
|
|
|
// Check the tied operands.
|
|
if (MI->isInlineAsm())
|
|
verifyInlineAsm(MI);
|
|
|
|
// A fully-formed DBG_VALUE must have a location. Ignore partially formed
|
|
// DBG_VALUEs: these are convenient to use in tests, but should never get
|
|
// generated.
|
|
if (MI->isDebugValue() && MI->getNumOperands() == 4)
|
|
if (!MI->getDebugLoc())
|
|
report("Missing DebugLoc for debug instruction", MI);
|
|
|
|
// Check the MachineMemOperands for basic consistency.
|
|
for (MachineMemOperand *Op : MI->memoperands()) {
|
|
if (Op->isLoad() && !MI->mayLoad())
|
|
report("Missing mayLoad flag", MI);
|
|
if (Op->isStore() && !MI->mayStore())
|
|
report("Missing mayStore flag", MI);
|
|
}
|
|
|
|
// Debug values must not have a slot index.
|
|
// Other instructions must have one, unless they are inside a bundle.
|
|
if (LiveInts) {
|
|
bool mapped = !LiveInts->isNotInMIMap(*MI);
|
|
if (MI->isDebugInstr()) {
|
|
if (mapped)
|
|
report("Debug instruction has a slot index", MI);
|
|
} else if (MI->isInsideBundle()) {
|
|
if (mapped)
|
|
report("Instruction inside bundle has a slot index", MI);
|
|
} else {
|
|
if (!mapped)
|
|
report("Missing slot index", MI);
|
|
}
|
|
}
|
|
|
|
if (isPreISelGenericOpcode(MCID.getOpcode())) {
|
|
verifyPreISelGenericInstruction(MI);
|
|
return;
|
|
}
|
|
|
|
StringRef ErrorInfo;
|
|
if (!TII->verifyInstruction(*MI, ErrorInfo))
|
|
report(ErrorInfo.data(), MI);
|
|
|
|
// Verify properties of various specific instruction types
|
|
switch (MI->getOpcode()) {
|
|
case TargetOpcode::COPY: {
|
|
if (foundErrors)
|
|
break;
|
|
const MachineOperand &DstOp = MI->getOperand(0);
|
|
const MachineOperand &SrcOp = MI->getOperand(1);
|
|
LLT DstTy = MRI->getType(DstOp.getReg());
|
|
LLT SrcTy = MRI->getType(SrcOp.getReg());
|
|
if (SrcTy.isValid() && DstTy.isValid()) {
|
|
// If both types are valid, check that the types are the same.
|
|
if (SrcTy != DstTy) {
|
|
report("Copy Instruction is illegal with mismatching types", MI);
|
|
errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
|
|
}
|
|
}
|
|
if (SrcTy.isValid() || DstTy.isValid()) {
|
|
// If one of them have valid types, let's just check they have the same
|
|
// size.
|
|
unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
|
|
unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
|
|
assert(SrcSize && "Expecting size here");
|
|
assert(DstSize && "Expecting size here");
|
|
if (SrcSize != DstSize)
|
|
if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
|
|
report("Copy Instruction is illegal with mismatching sizes", MI);
|
|
errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
|
|
<< "\n";
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case TargetOpcode::STATEPOINT: {
|
|
StatepointOpers SO(MI);
|
|
if (!MI->getOperand(SO.getIDPos()).isImm() ||
|
|
!MI->getOperand(SO.getNBytesPos()).isImm() ||
|
|
!MI->getOperand(SO.getNCallArgsPos()).isImm()) {
|
|
report("meta operands to STATEPOINT not constant!", MI);
|
|
break;
|
|
}
|
|
|
|
auto VerifyStackMapConstant = [&](unsigned Offset) {
|
|
if (!MI->getOperand(Offset - 1).isImm() ||
|
|
MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp ||
|
|
!MI->getOperand(Offset).isImm())
|
|
report("stack map constant to STATEPOINT not well formed!", MI);
|
|
};
|
|
VerifyStackMapConstant(SO.getCCIdx());
|
|
VerifyStackMapConstant(SO.getFlagsIdx());
|
|
VerifyStackMapConstant(SO.getNumDeoptArgsIdx());
|
|
|
|
// TODO: verify we have properly encoded deopt arguments
|
|
} break;
|
|
}
|
|
}
|
|
|
|
void
|
|
MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
|
|
const MachineInstr *MI = MO->getParent();
|
|
const MCInstrDesc &MCID = MI->getDesc();
|
|
unsigned NumDefs = MCID.getNumDefs();
|
|
if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
|
|
NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
|
|
|
|
// The first MCID.NumDefs operands must be explicit register defines
|
|
if (MONum < NumDefs) {
|
|
const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
|
|
if (!MO->isReg())
|
|
report("Explicit definition must be a register", MO, MONum);
|
|
else if (!MO->isDef() && !MCOI.isOptionalDef())
|
|
report("Explicit definition marked as use", MO, MONum);
|
|
else if (MO->isImplicit())
|
|
report("Explicit definition marked as implicit", MO, MONum);
|
|
} else if (MONum < MCID.getNumOperands()) {
|
|
const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
|
|
// Don't check if it's the last operand in a variadic instruction. See,
|
|
// e.g., LDM_RET in the arm back end. Check non-variadic operands only.
|
|
bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
|
|
if (!IsOptional) {
|
|
if (MO->isReg()) {
|
|
if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
|
|
report("Explicit operand marked as def", MO, MONum);
|
|
if (MO->isImplicit())
|
|
report("Explicit operand marked as implicit", MO, MONum);
|
|
}
|
|
|
|
// Check that an instruction has register operands only as expected.
|
|
if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
|
|
!MO->isReg() && !MO->isFI())
|
|
report("Expected a register operand.", MO, MONum);
|
|
if ((MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
|
|
MCOI.OperandType == MCOI::OPERAND_PCREL) && MO->isReg())
|
|
report("Expected a non-register operand.", MO, MONum);
|
|
}
|
|
|
|
int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
|
|
if (TiedTo != -1) {
|
|
if (!MO->isReg())
|
|
report("Tied use must be a register", MO, MONum);
|
|
else if (!MO->isTied())
|
|
report("Operand should be tied", MO, MONum);
|
|
else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
|
|
report("Tied def doesn't match MCInstrDesc", MO, MONum);
|
|
else if (Register::isPhysicalRegister(MO->getReg())) {
|
|
const MachineOperand &MOTied = MI->getOperand(TiedTo);
|
|
if (!MOTied.isReg())
|
|
report("Tied counterpart must be a register", &MOTied, TiedTo);
|
|
else if (Register::isPhysicalRegister(MOTied.getReg()) &&
|
|
MO->getReg() != MOTied.getReg())
|
|
report("Tied physical registers must match.", &MOTied, TiedTo);
|
|
}
|
|
} else if (MO->isReg() && MO->isTied())
|
|
report("Explicit operand should not be tied", MO, MONum);
|
|
} else {
|
|
// ARM adds %reg0 operands to indicate predicates. We'll allow that.
|
|
if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
|
|
report("Extra explicit operand on non-variadic instruction", MO, MONum);
|
|
}
|
|
|
|
switch (MO->getType()) {
|
|
case MachineOperand::MO_Register: {
|
|
const Register Reg = MO->getReg();
|
|
if (!Reg)
|
|
return;
|
|
if (MRI->tracksLiveness() && !MI->isDebugValue())
|
|
checkLiveness(MO, MONum);
|
|
|
|
// Verify the consistency of tied operands.
|
|
if (MO->isTied()) {
|
|
unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
|
|
const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
|
|
if (!OtherMO.isReg())
|
|
report("Must be tied to a register", MO, MONum);
|
|
if (!OtherMO.isTied())
|
|
report("Missing tie flags on tied operand", MO, MONum);
|
|
if (MI->findTiedOperandIdx(OtherIdx) != MONum)
|
|
report("Inconsistent tie links", MO, MONum);
|
|
if (MONum < MCID.getNumDefs()) {
|
|
if (OtherIdx < MCID.getNumOperands()) {
|
|
if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
|
|
report("Explicit def tied to explicit use without tie constraint",
|
|
MO, MONum);
|
|
} else {
|
|
if (!OtherMO.isImplicit())
|
|
report("Explicit def should be tied to implicit use", MO, MONum);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Verify two-address constraints after the twoaddressinstruction pass.
|
|
// Both twoaddressinstruction pass and phi-node-elimination pass call
|
|
// MRI->leaveSSA() to set MF as NoSSA, we should do the verification after
|
|
// twoaddressinstruction pass not after phi-node-elimination pass. So we
|
|
// shouldn't use the NoSSA as the condition, we should based on
|
|
// TiedOpsRewritten property to verify two-address constraints, this
|
|
// property will be set in twoaddressinstruction pass.
|
|
unsigned DefIdx;
|
|
if (MF->getProperties().hasProperty(
|
|
MachineFunctionProperties::Property::TiedOpsRewritten) &&
|
|
MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
|
|
Reg != MI->getOperand(DefIdx).getReg())
|
|
report("Two-address instruction operands must be identical", MO, MONum);
|
|
|
|
// Check register classes.
|
|
unsigned SubIdx = MO->getSubReg();
|
|
|
|
if (Register::isPhysicalRegister(Reg)) {
|
|
if (SubIdx) {
|
|
report("Illegal subregister index for physical register", MO, MONum);
|
|
return;
|
|
}
|
|
if (MONum < MCID.getNumOperands()) {
|
|
if (const TargetRegisterClass *DRC =
|
|
TII->getRegClass(MCID, MONum, TRI, *MF)) {
|
|
if (!DRC->contains(Reg)) {
|
|
report("Illegal physical register for instruction", MO, MONum);
|
|
errs() << printReg(Reg, TRI) << " is not a "
|
|
<< TRI->getRegClassName(DRC) << " register.\n";
|
|
}
|
|
}
|
|
}
|
|
if (MO->isRenamable()) {
|
|
if (MRI->isReserved(Reg)) {
|
|
report("isRenamable set on reserved register", MO, MONum);
|
|
return;
|
|
}
|
|
}
|
|
if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
|
|
report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
|
|
return;
|
|
}
|
|
} else {
|
|
// Virtual register.
|
|
const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
|
|
if (!RC) {
|
|
// This is a generic virtual register.
|
|
|
|
// Do not allow undef uses for generic virtual registers. This ensures
|
|
// getVRegDef can never fail and return null on a generic register.
|
|
//
|
|
// FIXME: This restriction should probably be broadened to all SSA
|
|
// MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still
|
|
// run on the SSA function just before phi elimination.
|
|
if (MO->isUndef())
|
|
report("Generic virtual register use cannot be undef", MO, MONum);
|
|
|
|
// If we're post-Select, we can't have gvregs anymore.
|
|
if (isFunctionSelected) {
|
|
report("Generic virtual register invalid in a Selected function",
|
|
MO, MONum);
|
|
return;
|
|
}
|
|
|
|
// The gvreg must have a type and it must not have a SubIdx.
|
|
LLT Ty = MRI->getType(Reg);
|
|
if (!Ty.isValid()) {
|
|
report("Generic virtual register must have a valid type", MO,
|
|
MONum);
|
|
return;
|
|
}
|
|
|
|
const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
|
|
|
|
// If we're post-RegBankSelect, the gvreg must have a bank.
|
|
if (!RegBank && isFunctionRegBankSelected) {
|
|
report("Generic virtual register must have a bank in a "
|
|
"RegBankSelected function",
|
|
MO, MONum);
|
|
return;
|
|
}
|
|
|
|
// Make sure the register fits into its register bank if any.
|
|
if (RegBank && Ty.isValid() &&
|
|
RegBank->getSize() < Ty.getSizeInBits()) {
|
|
report("Register bank is too small for virtual register", MO,
|
|
MONum);
|
|
errs() << "Register bank " << RegBank->getName() << " too small("
|
|
<< RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
|
|
<< "-bits\n";
|
|
return;
|
|
}
|
|
if (SubIdx) {
|
|
report("Generic virtual register does not allow subregister index", MO,
|
|
MONum);
|
|
return;
|
|
}
|
|
|
|
// If this is a target specific instruction and this operand
|
|
// has register class constraint, the virtual register must
|
|
// comply to it.
|
|
if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
|
|
MONum < MCID.getNumOperands() &&
|
|
TII->getRegClass(MCID, MONum, TRI, *MF)) {
|
|
report("Virtual register does not match instruction constraint", MO,
|
|
MONum);
|
|
errs() << "Expect register class "
|
|
<< TRI->getRegClassName(
|
|
TII->getRegClass(MCID, MONum, TRI, *MF))
|
|
<< " but got nothing\n";
|
|
return;
|
|
}
|
|
|
|
break;
|
|
}
|
|
if (SubIdx) {
|
|
const TargetRegisterClass *SRC =
|
|
TRI->getSubClassWithSubReg(RC, SubIdx);
|
|
if (!SRC) {
|
|
report("Invalid subregister index for virtual register", MO, MONum);
|
|
errs() << "Register class " << TRI->getRegClassName(RC)
|
|
<< " does not support subreg index " << SubIdx << "\n";
|
|
return;
|
|
}
|
|
if (RC != SRC) {
|
|
report("Invalid register class for subregister index", MO, MONum);
|
|
errs() << "Register class " << TRI->getRegClassName(RC)
|
|
<< " does not fully support subreg index " << SubIdx << "\n";
|
|
return;
|
|
}
|
|
}
|
|
if (MONum < MCID.getNumOperands()) {
|
|
if (const TargetRegisterClass *DRC =
|
|
TII->getRegClass(MCID, MONum, TRI, *MF)) {
|
|
if (SubIdx) {
|
|
const TargetRegisterClass *SuperRC =
|
|
TRI->getLargestLegalSuperClass(RC, *MF);
|
|
if (!SuperRC) {
|
|
report("No largest legal super class exists.", MO, MONum);
|
|
return;
|
|
}
|
|
DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
|
|
if (!DRC) {
|
|
report("No matching super-reg register class.", MO, MONum);
|
|
return;
|
|
}
|
|
}
|
|
if (!RC->hasSuperClassEq(DRC)) {
|
|
report("Illegal virtual register for instruction", MO, MONum);
|
|
errs() << "Expected a " << TRI->getRegClassName(DRC)
|
|
<< " register, but got a " << TRI->getRegClassName(RC)
|
|
<< " register\n";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case MachineOperand::MO_RegisterMask:
|
|
regMasks.push_back(MO->getRegMask());
|
|
break;
|
|
|
|
case MachineOperand::MO_MachineBasicBlock:
|
|
if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
|
|
report("PHI operand is not in the CFG", MO, MONum);
|
|
break;
|
|
|
|
case MachineOperand::MO_FrameIndex:
|
|
if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
|
|
LiveInts && !LiveInts->isNotInMIMap(*MI)) {
|
|
int FI = MO->getIndex();
|
|
LiveInterval &LI = LiveStks->getInterval(FI);
|
|
SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
|
|
|
|
bool stores = MI->mayStore();
|
|
bool loads = MI->mayLoad();
|
|
// For a memory-to-memory move, we need to check if the frame
|
|
// index is used for storing or loading, by inspecting the
|
|
// memory operands.
|
|
if (stores && loads) {
|
|
for (auto *MMO : MI->memoperands()) {
|
|
const PseudoSourceValue *PSV = MMO->getPseudoValue();
|
|
if (PSV == nullptr) continue;
|
|
const FixedStackPseudoSourceValue *Value =
|
|
dyn_cast<FixedStackPseudoSourceValue>(PSV);
|
|
if (Value == nullptr) continue;
|
|
if (Value->getFrameIndex() != FI) continue;
|
|
|
|
if (MMO->isStore())
|
|
loads = false;
|
|
else
|
|
stores = false;
|
|
break;
|
|
}
|
|
if (loads == stores)
|
|
report("Missing fixed stack memoperand.", MI);
|
|
}
|
|
if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
|
|
report("Instruction loads from dead spill slot", MO, MONum);
|
|
errs() << "Live stack: " << LI << '\n';
|
|
}
|
|
if (stores && !LI.liveAt(Idx.getRegSlot())) {
|
|
report("Instruction stores to dead spill slot", MO, MONum);
|
|
errs() << "Live stack: " << LI << '\n';
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
|
|
unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
|
|
LaneBitmask LaneMask) {
|
|
LiveQueryResult LRQ = LR.Query(UseIdx);
|
|
// Check if we have a segment at the use, note however that we only need one
|
|
// live subregister range, the others may be dead.
|
|
if (!LRQ.valueIn() && LaneMask.none()) {
|
|
report("No live segment at use", MO, MONum);
|
|
report_context_liverange(LR);
|
|
report_context_vreg_regunit(VRegOrUnit);
|
|
report_context(UseIdx);
|
|
}
|
|
if (MO->isKill() && !LRQ.isKill()) {
|
|
report("Live range continues after kill flag", MO, MONum);
|
|
report_context_liverange(LR);
|
|
report_context_vreg_regunit(VRegOrUnit);
|
|
if (LaneMask.any())
|
|
report_context_lanemask(LaneMask);
|
|
report_context(UseIdx);
|
|
}
|
|
}
|
|
|
|
void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
|
|
unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
|
|
bool SubRangeCheck, LaneBitmask LaneMask) {
|
|
if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
|
|
assert(VNI && "NULL valno is not allowed");
|
|
if (VNI->def != DefIdx) {
|
|
report("Inconsistent valno->def", MO, MONum);
|
|
report_context_liverange(LR);
|
|
report_context_vreg_regunit(VRegOrUnit);
|
|
if (LaneMask.any())
|
|
report_context_lanemask(LaneMask);
|
|
report_context(*VNI);
|
|
report_context(DefIdx);
|
|
}
|
|
} else {
|
|
report("No live segment at def", MO, MONum);
|
|
report_context_liverange(LR);
|
|
report_context_vreg_regunit(VRegOrUnit);
|
|
if (LaneMask.any())
|
|
report_context_lanemask(LaneMask);
|
|
report_context(DefIdx);
|
|
}
|
|
// Check that, if the dead def flag is present, LiveInts agree.
|
|
if (MO->isDead()) {
|
|
LiveQueryResult LRQ = LR.Query(DefIdx);
|
|
if (!LRQ.isDeadDef()) {
|
|
assert(Register::isVirtualRegister(VRegOrUnit) &&
|
|
"Expecting a virtual register.");
|
|
// A dead subreg def only tells us that the specific subreg is dead. There
|
|
// could be other non-dead defs of other subregs, or we could have other
|
|
// parts of the register being live through the instruction. So unless we
|
|
// are checking liveness for a subrange it is ok for the live range to
|
|
// continue, given that we have a dead def of a subregister.
|
|
if (SubRangeCheck || MO->getSubReg() == 0) {
|
|
report("Live range continues after dead def flag", MO, MONum);
|
|
report_context_liverange(LR);
|
|
report_context_vreg_regunit(VRegOrUnit);
|
|
if (LaneMask.any())
|
|
report_context_lanemask(LaneMask);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
|
|
const MachineInstr *MI = MO->getParent();
|
|
const unsigned Reg = MO->getReg();
|
|
|
|
// Both use and def operands can read a register.
|
|
if (MO->readsReg()) {
|
|
if (MO->isKill())
|
|
addRegWithSubRegs(regsKilled, Reg);
|
|
|
|
// Check that LiveVars knows this kill.
|
|
if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) {
|
|
LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
|
|
if (!is_contained(VI.Kills, MI))
|
|
report("Kill missing from LiveVariables", MO, MONum);
|
|
}
|
|
|
|
// Check LiveInts liveness and kill.
|
|
if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
|
|
SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
|
|
// Check the cached regunit intervals.
|
|
if (Register::isPhysicalRegister(Reg) && !isReserved(Reg)) {
|
|
for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
|
|
if (MRI->isReservedRegUnit(*Units))
|
|
continue;
|
|
if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
|
|
checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
|
|
}
|
|
}
|
|
|
|
if (Register::isVirtualRegister(Reg)) {
|
|
if (LiveInts->hasInterval(Reg)) {
|
|
// This is a virtual register interval.
|
|
const LiveInterval &LI = LiveInts->getInterval(Reg);
|
|
checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
|
|
|
|
if (LI.hasSubRanges() && !MO->isDef()) {
|
|
unsigned SubRegIdx = MO->getSubReg();
|
|
LaneBitmask MOMask = SubRegIdx != 0
|
|
? TRI->getSubRegIndexLaneMask(SubRegIdx)
|
|
: MRI->getMaxLaneMaskForVReg(Reg);
|
|
LaneBitmask LiveInMask;
|
|
for (const LiveInterval::SubRange &SR : LI.subranges()) {
|
|
if ((MOMask & SR.LaneMask).none())
|
|
continue;
|
|
checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
|
|
LiveQueryResult LRQ = SR.Query(UseIdx);
|
|
if (LRQ.valueIn())
|
|
LiveInMask |= SR.LaneMask;
|
|
}
|
|
// At least parts of the register has to be live at the use.
|
|
if ((LiveInMask & MOMask).none()) {
|
|
report("No live subrange at use", MO, MONum);
|
|
report_context(LI);
|
|
report_context(UseIdx);
|
|
}
|
|
}
|
|
} else {
|
|
report("Virtual register has no live interval", MO, MONum);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Use of a dead register.
|
|
if (!regsLive.count(Reg)) {
|
|
if (Register::isPhysicalRegister(Reg)) {
|
|
// Reserved registers may be used even when 'dead'.
|
|
bool Bad = !isReserved(Reg);
|
|
// We are fine if just any subregister has a defined value.
|
|
if (Bad) {
|
|
|
|
for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
|
|
if (regsLive.count(SubReg)) {
|
|
Bad = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// If there is an additional implicit-use of a super register we stop
|
|
// here. By definition we are fine if the super register is not
|
|
// (completely) dead, if the complete super register is dead we will
|
|
// get a report for its operand.
|
|
if (Bad) {
|
|
for (const MachineOperand &MOP : MI->uses()) {
|
|
if (!MOP.isReg() || !MOP.isImplicit())
|
|
continue;
|
|
|
|
if (!Register::isPhysicalRegister(MOP.getReg()))
|
|
continue;
|
|
|
|
for (const MCPhysReg &SubReg : TRI->subregs(MOP.getReg())) {
|
|
if (SubReg == Reg) {
|
|
Bad = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (Bad)
|
|
report("Using an undefined physical register", MO, MONum);
|
|
} else if (MRI->def_empty(Reg)) {
|
|
report("Reading virtual register without a def", MO, MONum);
|
|
} else {
|
|
BBInfo &MInfo = MBBInfoMap[MI->getParent()];
|
|
// We don't know which virtual registers are live in, so only complain
|
|
// if vreg was killed in this MBB. Otherwise keep track of vregs that
|
|
// must be live in. PHI instructions are handled separately.
|
|
if (MInfo.regsKilled.count(Reg))
|
|
report("Using a killed virtual register", MO, MONum);
|
|
else if (!MI->isPHI())
|
|
MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (MO->isDef()) {
|
|
// Register defined.
|
|
// TODO: verify that earlyclobber ops are not used.
|
|
if (MO->isDead())
|
|
addRegWithSubRegs(regsDead, Reg);
|
|
else
|
|
addRegWithSubRegs(regsDefined, Reg);
|
|
|
|
// Verify SSA form.
|
|
if (MRI->isSSA() && Register::isVirtualRegister(Reg) &&
|
|
std::next(MRI->def_begin(Reg)) != MRI->def_end())
|
|
report("Multiple virtual register defs in SSA form", MO, MONum);
|
|
|
|
// Check LiveInts for a live segment, but only for virtual registers.
|
|
if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
|
|
SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
|
|
DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
|
|
|
|
if (Register::isVirtualRegister(Reg)) {
|
|
if (LiveInts->hasInterval(Reg)) {
|
|
const LiveInterval &LI = LiveInts->getInterval(Reg);
|
|
checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
|
|
|
|
if (LI.hasSubRanges()) {
|
|
unsigned SubRegIdx = MO->getSubReg();
|
|
LaneBitmask MOMask = SubRegIdx != 0
|
|
? TRI->getSubRegIndexLaneMask(SubRegIdx)
|
|
: MRI->getMaxLaneMaskForVReg(Reg);
|
|
for (const LiveInterval::SubRange &SR : LI.subranges()) {
|
|
if ((SR.LaneMask & MOMask).none())
|
|
continue;
|
|
checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
|
|
}
|
|
}
|
|
} else {
|
|
report("Virtual register has no Live interval", MO, MONum);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// This function gets called after visiting all instructions in a bundle. The
|
|
// argument points to the bundle header.
|
|
// Normal stand-alone instructions are also considered 'bundles', and this
|
|
// function is called for all of them.
|
|
void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
|
|
BBInfo &MInfo = MBBInfoMap[MI->getParent()];
|
|
set_union(MInfo.regsKilled, regsKilled);
|
|
set_subtract(regsLive, regsKilled); regsKilled.clear();
|
|
// Kill any masked registers.
|
|
while (!regMasks.empty()) {
|
|
const uint32_t *Mask = regMasks.pop_back_val();
|
|
for (unsigned Reg : regsLive)
|
|
if (Register::isPhysicalRegister(Reg) &&
|
|
MachineOperand::clobbersPhysReg(Mask, Reg))
|
|
regsDead.push_back(Reg);
|
|
}
|
|
set_subtract(regsLive, regsDead); regsDead.clear();
|
|
set_union(regsLive, regsDefined); regsDefined.clear();
|
|
}
|
|
|
|
void
|
|
MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
|
|
MBBInfoMap[MBB].regsLiveOut = regsLive;
|
|
regsLive.clear();
|
|
|
|
if (Indexes) {
|
|
SlotIndex stop = Indexes->getMBBEndIdx(MBB);
|
|
if (!(stop > lastIndex)) {
|
|
report("Block ends before last instruction index", MBB);
|
|
errs() << "Block ends at " << stop
|
|
<< " last instruction was at " << lastIndex << '\n';
|
|
}
|
|
lastIndex = stop;
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
// This implements a set of registers that serves as a filter: can filter other
|
|
// sets by passing through elements not in the filter and blocking those that
|
|
// are. Any filter implicitly includes the full set of physical registers upon
|
|
// creation, thus filtering them all out. The filter itself as a set only grows,
|
|
// and needs to be as efficient as possible.
|
|
struct VRegFilter {
|
|
// Add elements to the filter itself. \pre Input set \p FromRegSet must have
|
|
// no duplicates. Both virtual and physical registers are fine.
|
|
template <typename RegSetT> void add(const RegSetT &FromRegSet) {
|
|
SmallVector<unsigned, 0> VRegsBuffer;
|
|
filterAndAdd(FromRegSet, VRegsBuffer);
|
|
}
|
|
// Filter \p FromRegSet through the filter and append passed elements into \p
|
|
// ToVRegs. All elements appended are then added to the filter itself.
|
|
// \returns true if anything changed.
|
|
template <typename RegSetT>
|
|
bool filterAndAdd(const RegSetT &FromRegSet,
|
|
SmallVectorImpl<unsigned> &ToVRegs) {
|
|
unsigned SparseUniverse = Sparse.size();
|
|
unsigned NewSparseUniverse = SparseUniverse;
|
|
unsigned NewDenseSize = Dense.size();
|
|
size_t Begin = ToVRegs.size();
|
|
for (unsigned Reg : FromRegSet) {
|
|
if (!Register::isVirtualRegister(Reg))
|
|
continue;
|
|
unsigned Index = Register::virtReg2Index(Reg);
|
|
if (Index < SparseUniverseMax) {
|
|
if (Index < SparseUniverse && Sparse.test(Index))
|
|
continue;
|
|
NewSparseUniverse = std::max(NewSparseUniverse, Index + 1);
|
|
} else {
|
|
if (Dense.count(Reg))
|
|
continue;
|
|
++NewDenseSize;
|
|
}
|
|
ToVRegs.push_back(Reg);
|
|
}
|
|
size_t End = ToVRegs.size();
|
|
if (Begin == End)
|
|
return false;
|
|
// Reserving space in sets once performs better than doing so continuously
|
|
// and pays easily for double look-ups (even in Dense with SparseUniverseMax
|
|
// tuned all the way down) and double iteration (the second one is over a
|
|
// SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
|
|
Sparse.resize(NewSparseUniverse);
|
|
Dense.reserve(NewDenseSize);
|
|
for (unsigned I = Begin; I < End; ++I) {
|
|
unsigned Reg = ToVRegs[I];
|
|
unsigned Index = Register::virtReg2Index(Reg);
|
|
if (Index < SparseUniverseMax)
|
|
Sparse.set(Index);
|
|
else
|
|
Dense.insert(Reg);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
|
|
// VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
|
|
// are tracked by Dense. The only purpose of the threashold and the Dense set
|
|
// is to have a reasonably growing memory usage in pathological cases (large
|
|
// number of very sparse VRegFilter instances live at the same time). In
|
|
// practice even in the worst-by-execution time cases having all elements
|
|
// tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
|
|
// space efficient than if tracked by Dense. The threashold is set to keep the
|
|
// worst-case memory usage within 2x of figures determined empirically for
|
|
// "all Dense" scenario in such worst-by-execution-time cases.
|
|
BitVector Sparse;
|
|
DenseSet<unsigned> Dense;
|
|
};
|
|
|
|
// Implements both a transfer function and a (binary, in-place) join operator
|
|
// for a dataflow over register sets with set union join and filtering transfer
|
|
// (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
|
|
// Maintains out_b as its state, allowing for O(n) iteration over it at any
|
|
// time, where n is the size of the set (as opposed to O(U) where U is the
|
|
// universe). filter_b implicitly contains all physical registers at all times.
|
|
class FilteringVRegSet {
|
|
VRegFilter Filter;
|
|
SmallVector<unsigned, 0> VRegs;
|
|
|
|
public:
|
|
// Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
|
|
// Both virtual and physical registers are fine.
|
|
template <typename RegSetT> void addToFilter(const RegSetT &RS) {
|
|
Filter.add(RS);
|
|
}
|
|
// Passes \p RS through the filter_b (transfer function) and adds what's left
|
|
// to itself (out_b).
|
|
template <typename RegSetT> bool add(const RegSetT &RS) {
|
|
// Double-duty the Filter: to maintain VRegs a set (and the join operation
|
|
// a set union) just add everything being added here to the Filter as well.
|
|
return Filter.filterAndAdd(RS, VRegs);
|
|
}
|
|
using const_iterator = decltype(VRegs)::const_iterator;
|
|
const_iterator begin() const { return VRegs.begin(); }
|
|
const_iterator end() const { return VRegs.end(); }
|
|
size_t size() const { return VRegs.size(); }
|
|
};
|
|
} // namespace
|
|
|
|
// Calculate the largest possible vregsPassed sets. These are the registers that
|
|
// can pass through an MBB live, but may not be live every time. It is assumed
|
|
// that all vregsPassed sets are empty before the call.
|
|
void MachineVerifier::calcRegsPassed() {
|
|
// This is a forward dataflow, doing it in RPO. A standard map serves as a
|
|
// priority (sorting by RPO number) queue, deduplicating worklist, and an RPO
|
|
// number to MBB mapping all at once.
|
|
std::map<unsigned, const MachineBasicBlock *> RPOWorklist;
|
|
DenseMap<const MachineBasicBlock *, unsigned> RPONumbers;
|
|
if (MF->empty()) {
|
|
// ReversePostOrderTraversal doesn't handle empty functions.
|
|
return;
|
|
}
|
|
std::vector<FilteringVRegSet> VRegsPassedSets(MF->size());
|
|
for (const MachineBasicBlock *MBB :
|
|
ReversePostOrderTraversal<const MachineFunction *>(MF)) {
|
|
// Careful with the evaluation order, fetch next number before allocating.
|
|
unsigned Number = RPONumbers.size();
|
|
RPONumbers[MBB] = Number;
|
|
// Set-up the transfer functions for all blocks.
|
|
const BBInfo &MInfo = MBBInfoMap[MBB];
|
|
VRegsPassedSets[Number].addToFilter(MInfo.regsKilled);
|
|
VRegsPassedSets[Number].addToFilter(MInfo.regsLiveOut);
|
|
}
|
|
// First push live-out regs to successors' vregsPassed. Remember the MBBs that
|
|
// have any vregsPassed.
|
|
for (const MachineBasicBlock &MBB : *MF) {
|
|
const BBInfo &MInfo = MBBInfoMap[&MBB];
|
|
if (!MInfo.reachable)
|
|
continue;
|
|
for (const MachineBasicBlock *Succ : MBB.successors()) {
|
|
unsigned SuccNumber = RPONumbers[Succ];
|
|
FilteringVRegSet &SuccSet = VRegsPassedSets[SuccNumber];
|
|
if (SuccSet.add(MInfo.regsLiveOut))
|
|
RPOWorklist.emplace(SuccNumber, Succ);
|
|
}
|
|
}
|
|
|
|
// Iteratively push vregsPassed to successors.
|
|
while (!RPOWorklist.empty()) {
|
|
auto Next = RPOWorklist.begin();
|
|
const MachineBasicBlock *MBB = Next->second;
|
|
RPOWorklist.erase(Next);
|
|
FilteringVRegSet &MSet = VRegsPassedSets[RPONumbers[MBB]];
|
|
for (const MachineBasicBlock *Succ : MBB->successors()) {
|
|
if (Succ == MBB)
|
|
continue;
|
|
unsigned SuccNumber = RPONumbers[Succ];
|
|
FilteringVRegSet &SuccSet = VRegsPassedSets[SuccNumber];
|
|
if (SuccSet.add(MSet))
|
|
RPOWorklist.emplace(SuccNumber, Succ);
|
|
}
|
|
}
|
|
// Copy the results back to BBInfos.
|
|
for (const MachineBasicBlock &MBB : *MF) {
|
|
BBInfo &MInfo = MBBInfoMap[&MBB];
|
|
if (!MInfo.reachable)
|
|
continue;
|
|
const FilteringVRegSet &MSet = VRegsPassedSets[RPONumbers[&MBB]];
|
|
MInfo.vregsPassed.reserve(MSet.size());
|
|
MInfo.vregsPassed.insert(MSet.begin(), MSet.end());
|
|
}
|
|
}
|
|
|
|
// Calculate the set of virtual registers that must be passed through each basic
|
|
// block in order to satisfy the requirements of successor blocks. This is very
|
|
// similar to calcRegsPassed, only backwards.
|
|
void MachineVerifier::calcRegsRequired() {
|
|
// First push live-in regs to predecessors' vregsRequired.
|
|
SmallPtrSet<const MachineBasicBlock*, 8> todo;
|
|
for (const auto &MBB : *MF) {
|
|
BBInfo &MInfo = MBBInfoMap[&MBB];
|
|
for (const MachineBasicBlock *Pred : MBB.predecessors()) {
|
|
BBInfo &PInfo = MBBInfoMap[Pred];
|
|
if (PInfo.addRequired(MInfo.vregsLiveIn))
|
|
todo.insert(Pred);
|
|
}
|
|
}
|
|
|
|
// Iteratively push vregsRequired to predecessors. This will converge to the
|
|
// same final state regardless of DenseSet iteration order.
|
|
while (!todo.empty()) {
|
|
const MachineBasicBlock *MBB = *todo.begin();
|
|
todo.erase(MBB);
|
|
BBInfo &MInfo = MBBInfoMap[MBB];
|
|
for (const MachineBasicBlock *Pred : MBB->predecessors()) {
|
|
if (Pred == MBB)
|
|
continue;
|
|
BBInfo &SInfo = MBBInfoMap[Pred];
|
|
if (SInfo.addRequired(MInfo.vregsRequired))
|
|
todo.insert(Pred);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check PHI instructions at the beginning of MBB. It is assumed that
|
|
// calcRegsPassed has been run so BBInfo::isLiveOut is valid.
|
|
void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
|
|
BBInfo &MInfo = MBBInfoMap[&MBB];
|
|
|
|
SmallPtrSet<const MachineBasicBlock*, 8> seen;
|
|
for (const MachineInstr &Phi : MBB) {
|
|
if (!Phi.isPHI())
|
|
break;
|
|
seen.clear();
|
|
|
|
const MachineOperand &MODef = Phi.getOperand(0);
|
|
if (!MODef.isReg() || !MODef.isDef()) {
|
|
report("Expected first PHI operand to be a register def", &MODef, 0);
|
|
continue;
|
|
}
|
|
if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
|
|
MODef.isEarlyClobber() || MODef.isDebug())
|
|
report("Unexpected flag on PHI operand", &MODef, 0);
|
|
Register DefReg = MODef.getReg();
|
|
if (!Register::isVirtualRegister(DefReg))
|
|
report("Expected first PHI operand to be a virtual register", &MODef, 0);
|
|
|
|
for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
|
|
const MachineOperand &MO0 = Phi.getOperand(I);
|
|
if (!MO0.isReg()) {
|
|
report("Expected PHI operand to be a register", &MO0, I);
|
|
continue;
|
|
}
|
|
if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
|
|
MO0.isDebug() || MO0.isTied())
|
|
report("Unexpected flag on PHI operand", &MO0, I);
|
|
|
|
const MachineOperand &MO1 = Phi.getOperand(I + 1);
|
|
if (!MO1.isMBB()) {
|
|
report("Expected PHI operand to be a basic block", &MO1, I + 1);
|
|
continue;
|
|
}
|
|
|
|
const MachineBasicBlock &Pre = *MO1.getMBB();
|
|
if (!Pre.isSuccessor(&MBB)) {
|
|
report("PHI input is not a predecessor block", &MO1, I + 1);
|
|
continue;
|
|
}
|
|
|
|
if (MInfo.reachable) {
|
|
seen.insert(&Pre);
|
|
BBInfo &PrInfo = MBBInfoMap[&Pre];
|
|
if (!MO0.isUndef() && PrInfo.reachable &&
|
|
!PrInfo.isLiveOut(MO0.getReg()))
|
|
report("PHI operand is not live-out from predecessor", &MO0, I);
|
|
}
|
|
}
|
|
|
|
// Did we see all predecessors?
|
|
if (MInfo.reachable) {
|
|
for (MachineBasicBlock *Pred : MBB.predecessors()) {
|
|
if (!seen.count(Pred)) {
|
|
report("Missing PHI operand", &Phi);
|
|
errs() << printMBBReference(*Pred)
|
|
<< " is a predecessor according to the CFG.\n";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void MachineVerifier::visitMachineFunctionAfter() {
|
|
calcRegsPassed();
|
|
|
|
for (const MachineBasicBlock &MBB : *MF)
|
|
checkPHIOps(MBB);
|
|
|
|
// Now check liveness info if available
|
|
calcRegsRequired();
|
|
|
|
// Check for killed virtual registers that should be live out.
|
|
for (const auto &MBB : *MF) {
|
|
BBInfo &MInfo = MBBInfoMap[&MBB];
|
|
for (unsigned VReg : MInfo.vregsRequired)
|
|
if (MInfo.regsKilled.count(VReg)) {
|
|
report("Virtual register killed in block, but needed live out.", &MBB);
|
|
errs() << "Virtual register " << printReg(VReg)
|
|
<< " is used after the block.\n";
|
|
}
|
|
}
|
|
|
|
if (!MF->empty()) {
|
|
BBInfo &MInfo = MBBInfoMap[&MF->front()];
|
|
for (unsigned VReg : MInfo.vregsRequired) {
|
|
report("Virtual register defs don't dominate all uses.", MF);
|
|
report_context_vreg(VReg);
|
|
}
|
|
}
|
|
|
|
if (LiveVars)
|
|
verifyLiveVariables();
|
|
if (LiveInts)
|
|
verifyLiveIntervals();
|
|
|
|
// Check live-in list of each MBB. If a register is live into MBB, check
|
|
// that the register is in regsLiveOut of each predecessor block. Since
|
|
// this must come from a definition in the predecesssor or its live-in
|
|
// list, this will catch a live-through case where the predecessor does not
|
|
// have the register in its live-in list. This currently only checks
|
|
// registers that have no aliases, are not allocatable and are not
|
|
// reserved, which could mean a condition code register for instance.
|
|
if (MRI->tracksLiveness())
|
|
for (const auto &MBB : *MF)
|
|
for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
|
|
MCPhysReg LiveInReg = P.PhysReg;
|
|
bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
|
|
if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg))
|
|
continue;
|
|
for (const MachineBasicBlock *Pred : MBB.predecessors()) {
|
|
BBInfo &PInfo = MBBInfoMap[Pred];
|
|
if (!PInfo.regsLiveOut.count(LiveInReg)) {
|
|
report("Live in register not found to be live out from predecessor.",
|
|
&MBB);
|
|
errs() << TRI->getName(LiveInReg)
|
|
<< " not found to be live out from "
|
|
<< printMBBReference(*Pred) << "\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto CSInfo : MF->getCallSitesInfo())
|
|
if (!CSInfo.first->isCall())
|
|
report("Call site info referencing instruction that is not call", MF);
|
|
}
|
|
|
|
void MachineVerifier::verifyLiveVariables() {
|
|
assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
|
|
for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
|
|
unsigned Reg = Register::index2VirtReg(i);
|
|
LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
|
|
for (const auto &MBB : *MF) {
|
|
BBInfo &MInfo = MBBInfoMap[&MBB];
|
|
|
|
// Our vregsRequired should be identical to LiveVariables' AliveBlocks
|
|
if (MInfo.vregsRequired.count(Reg)) {
|
|
if (!VI.AliveBlocks.test(MBB.getNumber())) {
|
|
report("LiveVariables: Block missing from AliveBlocks", &MBB);
|
|
errs() << "Virtual register " << printReg(Reg)
|
|
<< " must be live through the block.\n";
|
|
}
|
|
} else {
|
|
if (VI.AliveBlocks.test(MBB.getNumber())) {
|
|
report("LiveVariables: Block should not be in AliveBlocks", &MBB);
|
|
errs() << "Virtual register " << printReg(Reg)
|
|
<< " is not needed live through the block.\n";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void MachineVerifier::verifyLiveIntervals() {
|
|
assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
|
|
for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
|
|
unsigned Reg = Register::index2VirtReg(i);
|
|
|
|
// Spilling and splitting may leave unused registers around. Skip them.
|
|
if (MRI->reg_nodbg_empty(Reg))
|
|
continue;
|
|
|
|
if (!LiveInts->hasInterval(Reg)) {
|
|
report("Missing live interval for virtual register", MF);
|
|
errs() << printReg(Reg, TRI) << " still has defs or uses\n";
|
|
continue;
|
|
}
|
|
|
|
const LiveInterval &LI = LiveInts->getInterval(Reg);
|
|
assert(Reg == LI.reg && "Invalid reg to interval mapping");
|
|
verifyLiveInterval(LI);
|
|
}
|
|
|
|
// Verify all the cached regunit intervals.
|
|
for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
|
|
if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
|
|
verifyLiveRange(*LR, i);
|
|
}
|
|
|
|
void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
|
|
const VNInfo *VNI, unsigned Reg,
|
|
LaneBitmask LaneMask) {
|
|
if (VNI->isUnused())
|
|
return;
|
|
|
|
const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
|
|
|
|
if (!DefVNI) {
|
|
report("Value not live at VNInfo def and not marked unused", MF);
|
|
report_context(LR, Reg, LaneMask);
|
|
report_context(*VNI);
|
|
return;
|
|
}
|
|
|
|
if (DefVNI != VNI) {
|
|
report("Live segment at def has different VNInfo", MF);
|
|
report_context(LR, Reg, LaneMask);
|
|
report_context(*VNI);
|
|
return;
|
|
}
|
|
|
|
const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
|
|
if (!MBB) {
|
|
report("Invalid VNInfo definition index", MF);
|
|
report_context(LR, Reg, LaneMask);
|
|
report_context(*VNI);
|
|
return;
|
|
}
|
|
|
|
if (VNI->isPHIDef()) {
|
|
if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
|
|
report("PHIDef VNInfo is not defined at MBB start", MBB);
|
|
report_context(LR, Reg, LaneMask);
|
|
report_context(*VNI);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Non-PHI def.
|
|
const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
|
|
if (!MI) {
|
|
report("No instruction at VNInfo def index", MBB);
|
|
report_context(LR, Reg, LaneMask);
|
|
report_context(*VNI);
|
|
return;
|
|
}
|
|
|
|
if (Reg != 0) {
|
|
bool hasDef = false;
|
|
bool isEarlyClobber = false;
|
|
for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
|
|
if (!MOI->isReg() || !MOI->isDef())
|
|
continue;
|
|
if (Register::isVirtualRegister(Reg)) {
|
|
if (MOI->getReg() != Reg)
|
|
continue;
|
|
} else {
|
|
if (!Register::isPhysicalRegister(MOI->getReg()) ||
|
|
!TRI->hasRegUnit(MOI->getReg(), Reg))
|
|
continue;
|
|
}
|
|
if (LaneMask.any() &&
|
|
(TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
|
|
continue;
|
|
hasDef = true;
|
|
if (MOI->isEarlyClobber())
|
|
isEarlyClobber = true;
|
|
}
|
|
|
|
if (!hasDef) {
|
|
report("Defining instruction does not modify register", MI);
|
|
report_context(LR, Reg, LaneMask);
|
|
report_context(*VNI);
|
|
}
|
|
|
|
// Early clobber defs begin at USE slots, but other defs must begin at
|
|
// DEF slots.
|
|
if (isEarlyClobber) {
|
|
if (!VNI->def.isEarlyClobber()) {
|
|
report("Early clobber def must be at an early-clobber slot", MBB);
|
|
report_context(LR, Reg, LaneMask);
|
|
report_context(*VNI);
|
|
}
|
|
} else if (!VNI->def.isRegister()) {
|
|
report("Non-PHI, non-early clobber def must be at a register slot", MBB);
|
|
report_context(LR, Reg, LaneMask);
|
|
report_context(*VNI);
|
|
}
|
|
}
|
|
}
|
|
|
|
void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
|
|
const LiveRange::const_iterator I,
|
|
unsigned Reg, LaneBitmask LaneMask)
|
|
{
|
|
const LiveRange::Segment &S = *I;
|
|
const VNInfo *VNI = S.valno;
|
|
assert(VNI && "Live segment has no valno");
|
|
|
|
if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
|
|
report("Foreign valno in live segment", MF);
|
|
report_context(LR, Reg, LaneMask);
|
|
report_context(S);
|
|
report_context(*VNI);
|
|
}
|
|
|
|
if (VNI->isUnused()) {
|
|
report("Live segment valno is marked unused", MF);
|
|
report_context(LR, Reg, LaneMask);
|
|
report_context(S);
|
|
}
|
|
|
|
const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
|
|
if (!MBB) {
|
|
report("Bad start of live segment, no basic block", MF);
|
|
report_context(LR, Reg, LaneMask);
|
|
report_context(S);
|
|
return;
|
|
}
|
|
SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
|
|
if (S.start != MBBStartIdx && S.start != VNI->def) {
|
|
report("Live segment must begin at MBB entry or valno def", MBB);
|
|
report_context(LR, Reg, LaneMask);
|
|
report_context(S);
|
|
}
|
|
|
|
const MachineBasicBlock *EndMBB =
|
|
LiveInts->getMBBFromIndex(S.end.getPrevSlot());
|
|
if (!EndMBB) {
|
|
report("Bad end of live segment, no basic block", MF);
|
|
report_context(LR, Reg, LaneMask);
|
|
report_context(S);
|
|
return;
|
|
}
|
|
|
|
// No more checks for live-out segments.
|
|
if (S.end == LiveInts->getMBBEndIdx(EndMBB))
|
|
return;
|
|
|
|
// RegUnit intervals are allowed dead phis.
|
|
if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() &&
|
|
S.start == VNI->def && S.end == VNI->def.getDeadSlot())
|
|
return;
|
|
|
|
// The live segment is ending inside EndMBB
|
|
const MachineInstr *MI =
|
|
LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
|
|
if (!MI) {
|
|
report("Live segment doesn't end at a valid instruction", EndMBB);
|
|
report_context(LR, Reg, LaneMask);
|
|
report_context(S);
|
|
return;
|
|
}
|
|
|
|
// The block slot must refer to a basic block boundary.
|
|
if (S.end.isBlock()) {
|
|
report("Live segment ends at B slot of an instruction", EndMBB);
|
|
report_context(LR, Reg, LaneMask);
|
|
report_context(S);
|
|
}
|
|
|
|
if (S.end.isDead()) {
|
|
// Segment ends on the dead slot.
|
|
// That means there must be a dead def.
|
|
if (!SlotIndex::isSameInstr(S.start, S.end)) {
|
|
report("Live segment ending at dead slot spans instructions", EndMBB);
|
|
report_context(LR, Reg, LaneMask);
|
|
report_context(S);
|
|
}
|
|
}
|
|
|
|
// A live segment can only end at an early-clobber slot if it is being
|
|
// redefined by an early-clobber def.
|
|
if (S.end.isEarlyClobber()) {
|
|
if (I+1 == LR.end() || (I+1)->start != S.end) {
|
|
report("Live segment ending at early clobber slot must be "
|
|
"redefined by an EC def in the same instruction", EndMBB);
|
|
report_context(LR, Reg, LaneMask);
|
|
report_context(S);
|
|
}
|
|
}
|
|
|
|
// The following checks only apply to virtual registers. Physreg liveness
|
|
// is too weird to check.
|
|
if (Register::isVirtualRegister(Reg)) {
|
|
// A live segment can end with either a redefinition, a kill flag on a
|
|
// use, or a dead flag on a def.
|
|
bool hasRead = false;
|
|
bool hasSubRegDef = false;
|
|
bool hasDeadDef = false;
|
|
for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
|
|
if (!MOI->isReg() || MOI->getReg() != Reg)
|
|
continue;
|
|
unsigned Sub = MOI->getSubReg();
|
|
LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
|
|
: LaneBitmask::getAll();
|
|
if (MOI->isDef()) {
|
|
if (Sub != 0) {
|
|
hasSubRegDef = true;
|
|
// An operand %0:sub0 reads %0:sub1..n. Invert the lane
|
|
// mask for subregister defs. Read-undef defs will be handled by
|
|
// readsReg below.
|
|
SLM = ~SLM;
|
|
}
|
|
if (MOI->isDead())
|
|
hasDeadDef = true;
|
|
}
|
|
if (LaneMask.any() && (LaneMask & SLM).none())
|
|
continue;
|
|
if (MOI->readsReg())
|
|
hasRead = true;
|
|
}
|
|
if (S.end.isDead()) {
|
|
// Make sure that the corresponding machine operand for a "dead" live
|
|
// range has the dead flag. We cannot perform this check for subregister
|
|
// liveranges as partially dead values are allowed.
|
|
if (LaneMask.none() && !hasDeadDef) {
|
|
report("Instruction ending live segment on dead slot has no dead flag",
|
|
MI);
|
|
report_context(LR, Reg, LaneMask);
|
|
report_context(S);
|
|
}
|
|
} else {
|
|
if (!hasRead) {
|
|
// When tracking subregister liveness, the main range must start new
|
|
// values on partial register writes, even if there is no read.
|
|
if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
|
|
!hasSubRegDef) {
|
|
report("Instruction ending live segment doesn't read the register",
|
|
MI);
|
|
report_context(LR, Reg, LaneMask);
|
|
report_context(S);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now check all the basic blocks in this live segment.
|
|
MachineFunction::const_iterator MFI = MBB->getIterator();
|
|
// Is this live segment the beginning of a non-PHIDef VN?
|
|
if (S.start == VNI->def && !VNI->isPHIDef()) {
|
|
// Not live-in to any blocks.
|
|
if (MBB == EndMBB)
|
|
return;
|
|
// Skip this block.
|
|
++MFI;
|
|
}
|
|
|
|
SmallVector<SlotIndex, 4> Undefs;
|
|
if (LaneMask.any()) {
|
|
LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
|
|
OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
|
|
}
|
|
|
|
while (true) {
|
|
assert(LiveInts->isLiveInToMBB(LR, &*MFI));
|
|
// We don't know how to track physregs into a landing pad.
|
|
if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) {
|
|
if (&*MFI == EndMBB)
|
|
break;
|
|
++MFI;
|
|
continue;
|
|
}
|
|
|
|
// Is VNI a PHI-def in the current block?
|
|
bool IsPHI = VNI->isPHIDef() &&
|
|
VNI->def == LiveInts->getMBBStartIdx(&*MFI);
|
|
|
|
// Check that VNI is live-out of all predecessors.
|
|
for (const MachineBasicBlock *Pred : MFI->predecessors()) {
|
|
SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred);
|
|
const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
|
|
|
|
// All predecessors must have a live-out value. However for a phi
|
|
// instruction with subregister intervals
|
|
// only one of the subregisters (not necessarily the current one) needs to
|
|
// be defined.
|
|
if (!PVNI && (LaneMask.none() || !IsPHI)) {
|
|
if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes))
|
|
continue;
|
|
report("Register not marked live out of predecessor", Pred);
|
|
report_context(LR, Reg, LaneMask);
|
|
report_context(*VNI);
|
|
errs() << " live into " << printMBBReference(*MFI) << '@'
|
|
<< LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
|
|
<< PEnd << '\n';
|
|
continue;
|
|
}
|
|
|
|
// Only PHI-defs can take different predecessor values.
|
|
if (!IsPHI && PVNI != VNI) {
|
|
report("Different value live out of predecessor", Pred);
|
|
report_context(LR, Reg, LaneMask);
|
|
errs() << "Valno #" << PVNI->id << " live out of "
|
|
<< printMBBReference(*Pred) << '@' << PEnd << "\nValno #"
|
|
<< VNI->id << " live into " << printMBBReference(*MFI) << '@'
|
|
<< LiveInts->getMBBStartIdx(&*MFI) << '\n';
|
|
}
|
|
}
|
|
if (&*MFI == EndMBB)
|
|
break;
|
|
++MFI;
|
|
}
|
|
}
|
|
|
|
void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
|
|
LaneBitmask LaneMask) {
|
|
for (const VNInfo *VNI : LR.valnos)
|
|
verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
|
|
|
|
for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
|
|
verifyLiveRangeSegment(LR, I, Reg, LaneMask);
|
|
}
|
|
|
|
void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
|
|
unsigned Reg = LI.reg;
|
|
assert(Register::isVirtualRegister(Reg));
|
|
verifyLiveRange(LI, Reg);
|
|
|
|
LaneBitmask Mask;
|
|
LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
|
|
for (const LiveInterval::SubRange &SR : LI.subranges()) {
|
|
if ((Mask & SR.LaneMask).any()) {
|
|
report("Lane masks of sub ranges overlap in live interval", MF);
|
|
report_context(LI);
|
|
}
|
|
if ((SR.LaneMask & ~MaxMask).any()) {
|
|
report("Subrange lanemask is invalid", MF);
|
|
report_context(LI);
|
|
}
|
|
if (SR.empty()) {
|
|
report("Subrange must not be empty", MF);
|
|
report_context(SR, LI.reg, SR.LaneMask);
|
|
}
|
|
Mask |= SR.LaneMask;
|
|
verifyLiveRange(SR, LI.reg, SR.LaneMask);
|
|
if (!LI.covers(SR)) {
|
|
report("A Subrange is not covered by the main range", MF);
|
|
report_context(LI);
|
|
}
|
|
}
|
|
|
|
// Check the LI only has one connected component.
|
|
ConnectedVNInfoEqClasses ConEQ(*LiveInts);
|
|
unsigned NumComp = ConEQ.Classify(LI);
|
|
if (NumComp > 1) {
|
|
report("Multiple connected components in live interval", MF);
|
|
report_context(LI);
|
|
for (unsigned comp = 0; comp != NumComp; ++comp) {
|
|
errs() << comp << ": valnos";
|
|
for (const VNInfo *I : LI.valnos)
|
|
if (comp == ConEQ.getEqClass(I))
|
|
errs() << ' ' << I->id;
|
|
errs() << '\n';
|
|
}
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
// FrameSetup and FrameDestroy can have zero adjustment, so using a single
|
|
// integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
|
|
// value is zero.
|
|
// We use a bool plus an integer to capture the stack state.
|
|
struct StackStateOfBB {
|
|
StackStateOfBB() = default;
|
|
StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
|
|
EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
|
|
ExitIsSetup(ExitSetup) {}
|
|
|
|
// Can be negative, which means we are setting up a frame.
|
|
int EntryValue = 0;
|
|
int ExitValue = 0;
|
|
bool EntryIsSetup = false;
|
|
bool ExitIsSetup = false;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// Make sure on every path through the CFG, a FrameSetup <n> is always followed
|
|
/// by a FrameDestroy <n>, stack adjustments are identical on all
|
|
/// CFG edges to a merge point, and frame is destroyed at end of a return block.
|
|
void MachineVerifier::verifyStackFrame() {
|
|
unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
|
|
unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
|
|
if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
|
|
return;
|
|
|
|
SmallVector<StackStateOfBB, 8> SPState;
|
|
SPState.resize(MF->getNumBlockIDs());
|
|
df_iterator_default_set<const MachineBasicBlock*> Reachable;
|
|
|
|
// Visit the MBBs in DFS order.
|
|
for (df_ext_iterator<const MachineFunction *,
|
|
df_iterator_default_set<const MachineBasicBlock *>>
|
|
DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
|
|
DFI != DFE; ++DFI) {
|
|
const MachineBasicBlock *MBB = *DFI;
|
|
|
|
StackStateOfBB BBState;
|
|
// Check the exit state of the DFS stack predecessor.
|
|
if (DFI.getPathLength() >= 2) {
|
|
const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
|
|
assert(Reachable.count(StackPred) &&
|
|
"DFS stack predecessor is already visited.\n");
|
|
BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
|
|
BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
|
|
BBState.ExitValue = BBState.EntryValue;
|
|
BBState.ExitIsSetup = BBState.EntryIsSetup;
|
|
}
|
|
|
|
// Update stack state by checking contents of MBB.
|
|
for (const auto &I : *MBB) {
|
|
if (I.getOpcode() == FrameSetupOpcode) {
|
|
if (BBState.ExitIsSetup)
|
|
report("FrameSetup is after another FrameSetup", &I);
|
|
BBState.ExitValue -= TII->getFrameTotalSize(I);
|
|
BBState.ExitIsSetup = true;
|
|
}
|
|
|
|
if (I.getOpcode() == FrameDestroyOpcode) {
|
|
int Size = TII->getFrameTotalSize(I);
|
|
if (!BBState.ExitIsSetup)
|
|
report("FrameDestroy is not after a FrameSetup", &I);
|
|
int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
|
|
BBState.ExitValue;
|
|
if (BBState.ExitIsSetup && AbsSPAdj != Size) {
|
|
report("FrameDestroy <n> is after FrameSetup <m>", &I);
|
|
errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
|
|
<< AbsSPAdj << ">.\n";
|
|
}
|
|
BBState.ExitValue += Size;
|
|
BBState.ExitIsSetup = false;
|
|
}
|
|
}
|
|
SPState[MBB->getNumber()] = BBState;
|
|
|
|
// Make sure the exit state of any predecessor is consistent with the entry
|
|
// state.
|
|
for (const MachineBasicBlock *Pred : MBB->predecessors()) {
|
|
if (Reachable.count(Pred) &&
|
|
(SPState[Pred->getNumber()].ExitValue != BBState.EntryValue ||
|
|
SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
|
|
report("The exit stack state of a predecessor is inconsistent.", MBB);
|
|
errs() << "Predecessor " << printMBBReference(*Pred)
|
|
<< " has exit state (" << SPState[Pred->getNumber()].ExitValue
|
|
<< ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while "
|
|
<< printMBBReference(*MBB) << " has entry state ("
|
|
<< BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
|
|
}
|
|
}
|
|
|
|
// Make sure the entry state of any successor is consistent with the exit
|
|
// state.
|
|
for (const MachineBasicBlock *Succ : MBB->successors()) {
|
|
if (Reachable.count(Succ) &&
|
|
(SPState[Succ->getNumber()].EntryValue != BBState.ExitValue ||
|
|
SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
|
|
report("The entry stack state of a successor is inconsistent.", MBB);
|
|
errs() << "Successor " << printMBBReference(*Succ)
|
|
<< " has entry state (" << SPState[Succ->getNumber()].EntryValue
|
|
<< ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while "
|
|
<< printMBBReference(*MBB) << " has exit state ("
|
|
<< BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
|
|
}
|
|
}
|
|
|
|
// Make sure a basic block with return ends with zero stack adjustment.
|
|
if (!MBB->empty() && MBB->back().isReturn()) {
|
|
if (BBState.ExitIsSetup)
|
|
report("A return block ends with a FrameSetup.", MBB);
|
|
if (BBState.ExitValue)
|
|
report("A return block ends with a nonzero stack adjustment.", MBB);
|
|
}
|
|
}
|
|
}
|