Go to file
Scott Linder 60b1967c39 [AMDGPU] Add Scratch Wave Offset to Scratch Buffer Descriptor in entry functions
Add the scratch wave offset to the scratch buffer descriptor (SRSrc) in
the entry function prologue. This allows us to removes the scratch wave
offset register from the calling convention ABI.

As part of this change, allow the use of an inline constant zero for the
SOffset of MUBUF instructions accessing the stack in entry functions
when a frame pointer is not requested/required. Entry functions with
calls still need to set up the calling convention ABI stack pointer
register, and reference it in order to address arguments of called
functions. The ABI stack pointer register remains unswizzled, but is now
wave-relative instead of queue-relative.

Non-entry functions also use an inline constant zero SOffset for
wave-relative scratch access, but continue to use the stack and frame
pointers as before. When the stack or frame pointer is converted to a
swizzled offset it is now scaled directly, as the scratch wave offset no
longer needs to be subtracted first.

Update llvm/docs/AMDGPUUsage.rst to reflect these changes to the calling
convention.

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D75138
2020-03-19 15:35:16 -04:00
clang [Hexagon] Enable linux #defines 2020-03-19 14:33:49 -05:00
clang-tools-extra [clangd] Fix elog message when preamble build fails. 2020-03-19 15:09:46 +01:00
compiler-rt [TSan] Support pointer authentication in setjmp/longjmp interceptors 2020-03-18 11:46:23 -07:00
debuginfo-tests [DexTer] Add step.UNKNOWN check for NoneType line numbers. 2020-03-16 16:38:41 +00:00
libc [libc] Add a missing deps to the linux syscalls target. 2020-03-18 12:48:53 -07:00
libclc libclc: cmake configure should depend on file list 2020-02-25 04:43:14 -05:00
libcxx [libc++] fix non-builtin is_void implementation 2020-03-19 11:25:41 -07:00
libcxxabi [libc++abi] NFC: Move AtomicInt to cxa_guard_impl.h 2020-03-12 18:27:03 -04:00
libunwind [libunwind] Silence warnings when __mips_hard_float is not defined 2020-03-13 09:19:56 +01:00
lld [LLD][ELF] - Disambiguate "=fillexp" with a primary expression to allow =0x90 /DISCARD/ 2020-03-19 12:49:25 +03:00
lldb [debugserver] Implement hardware breakpoints for ARM64 2020-03-19 11:55:48 -07:00
llvm [AMDGPU] Add Scratch Wave Offset to Scratch Buffer Descriptor in entry functions 2020-03-19 15:35:16 -04:00
mlir Add Builder::get{I32,I64}TensorAttr. 2020-03-19 11:37:59 -07:00
openmp openmp: fix memcpy memory leak 2020-03-12 23:24:16 -05:00
parallel-libs [arcconfig] Delete subproject arcconfigs 2020-02-24 16:20:36 -08:00
polly [Polly] Replace use of std::stringstream. NFC. 2020-03-09 11:35:34 -05:00
pstl [pstl] A hot fix for exclusive_scan (+ lost enable_if in declaration) 2020-03-17 16:22:24 -04:00
.arcconfig [arcconfig] Default base to previous revision 2020-02-24 16:20:25 -08:00
.clang-format
.clang-tidy - Update .clang-tidy to ignore parameters of main like functions for naming violations in clang and llvm directory 2020-01-31 16:49:45 +00:00
.git-blame-ignore-revs Add some libc++ revisions to .git-blame-ignore-revs 2020-03-17 17:30:20 -04:00
.gitignore Add a newline at the end of the file 2019-09-04 06:33:46 +00:00
CONTRIBUTING.md Add contributing info to CONTRIBUTING.md and README.md 2019-12-02 15:47:15 +00:00
README.md [README] Add note on using cmake to perform the build 2020-02-12 14:51:24 -06:00

README.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and converts it into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective C, and Objective C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • mkdir build

    • cd build

    • cmake -G <generator> [options] ../llvm

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some Common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM sub-projects you'd like to additionally build. Can include any of: clang, clang-tools-extra, libcxx, libcxxabi, libunwind, lldb, compiler-rt, lld, polly, or debuginfo-tests.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build . [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs, e.g. the number of CPUs you have.

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.