forked from OSchip/llvm-project
1180 lines
44 KiB
C++
1180 lines
44 KiB
C++
//===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the visit functions for load, store and alloca.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InstCombineInternal.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/Loads.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "instcombine"
|
|
|
|
STATISTIC(NumDeadStore, "Number of dead stores eliminated");
|
|
STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
|
|
|
|
/// pointsToConstantGlobal - Return true if V (possibly indirectly) points to
|
|
/// some part of a constant global variable. This intentionally only accepts
|
|
/// constant expressions because we can't rewrite arbitrary instructions.
|
|
static bool pointsToConstantGlobal(Value *V) {
|
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
|
|
return GV->isConstant();
|
|
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
|
|
if (CE->getOpcode() == Instruction::BitCast ||
|
|
CE->getOpcode() == Instruction::AddrSpaceCast ||
|
|
CE->getOpcode() == Instruction::GetElementPtr)
|
|
return pointsToConstantGlobal(CE->getOperand(0));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
|
|
/// pointer to an alloca. Ignore any reads of the pointer, return false if we
|
|
/// see any stores or other unknown uses. If we see pointer arithmetic, keep
|
|
/// track of whether it moves the pointer (with IsOffset) but otherwise traverse
|
|
/// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
|
|
/// the alloca, and if the source pointer is a pointer to a constant global, we
|
|
/// can optimize this.
|
|
static bool
|
|
isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
|
|
SmallVectorImpl<Instruction *> &ToDelete) {
|
|
// We track lifetime intrinsics as we encounter them. If we decide to go
|
|
// ahead and replace the value with the global, this lets the caller quickly
|
|
// eliminate the markers.
|
|
|
|
SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
|
|
ValuesToInspect.push_back(std::make_pair(V, false));
|
|
while (!ValuesToInspect.empty()) {
|
|
auto ValuePair = ValuesToInspect.pop_back_val();
|
|
const bool IsOffset = ValuePair.second;
|
|
for (auto &U : ValuePair.first->uses()) {
|
|
Instruction *I = cast<Instruction>(U.getUser());
|
|
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
|
|
// Ignore non-volatile loads, they are always ok.
|
|
if (!LI->isSimple()) return false;
|
|
continue;
|
|
}
|
|
|
|
if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
|
|
// If uses of the bitcast are ok, we are ok.
|
|
ValuesToInspect.push_back(std::make_pair(I, IsOffset));
|
|
continue;
|
|
}
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
|
|
// If the GEP has all zero indices, it doesn't offset the pointer. If it
|
|
// doesn't, it does.
|
|
ValuesToInspect.push_back(
|
|
std::make_pair(I, IsOffset || !GEP->hasAllZeroIndices()));
|
|
continue;
|
|
}
|
|
|
|
if (auto CS = CallSite(I)) {
|
|
// If this is the function being called then we treat it like a load and
|
|
// ignore it.
|
|
if (CS.isCallee(&U))
|
|
continue;
|
|
|
|
// Inalloca arguments are clobbered by the call.
|
|
unsigned ArgNo = CS.getArgumentNo(&U);
|
|
if (CS.isInAllocaArgument(ArgNo))
|
|
return false;
|
|
|
|
// If this is a readonly/readnone call site, then we know it is just a
|
|
// load (but one that potentially returns the value itself), so we can
|
|
// ignore it if we know that the value isn't captured.
|
|
if (CS.onlyReadsMemory() &&
|
|
(CS.getInstruction()->use_empty() || CS.doesNotCapture(ArgNo)))
|
|
continue;
|
|
|
|
// If this is being passed as a byval argument, the caller is making a
|
|
// copy, so it is only a read of the alloca.
|
|
if (CS.isByValArgument(ArgNo))
|
|
continue;
|
|
}
|
|
|
|
// Lifetime intrinsics can be handled by the caller.
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
|
|
if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
|
|
II->getIntrinsicID() == Intrinsic::lifetime_end) {
|
|
assert(II->use_empty() && "Lifetime markers have no result to use!");
|
|
ToDelete.push_back(II);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// If this is isn't our memcpy/memmove, reject it as something we can't
|
|
// handle.
|
|
MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
|
|
if (!MI)
|
|
return false;
|
|
|
|
// If the transfer is using the alloca as a source of the transfer, then
|
|
// ignore it since it is a load (unless the transfer is volatile).
|
|
if (U.getOperandNo() == 1) {
|
|
if (MI->isVolatile()) return false;
|
|
continue;
|
|
}
|
|
|
|
// If we already have seen a copy, reject the second one.
|
|
if (TheCopy) return false;
|
|
|
|
// If the pointer has been offset from the start of the alloca, we can't
|
|
// safely handle this.
|
|
if (IsOffset) return false;
|
|
|
|
// If the memintrinsic isn't using the alloca as the dest, reject it.
|
|
if (U.getOperandNo() != 0) return false;
|
|
|
|
// If the source of the memcpy/move is not a constant global, reject it.
|
|
if (!pointsToConstantGlobal(MI->getSource()))
|
|
return false;
|
|
|
|
// Otherwise, the transform is safe. Remember the copy instruction.
|
|
TheCopy = MI;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
|
|
/// modified by a copy from a constant global. If we can prove this, we can
|
|
/// replace any uses of the alloca with uses of the global directly.
|
|
static MemTransferInst *
|
|
isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
|
|
SmallVectorImpl<Instruction *> &ToDelete) {
|
|
MemTransferInst *TheCopy = nullptr;
|
|
if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete))
|
|
return TheCopy;
|
|
return nullptr;
|
|
}
|
|
|
|
static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) {
|
|
// Check for array size of 1 (scalar allocation).
|
|
if (!AI.isArrayAllocation()) {
|
|
// i32 1 is the canonical array size for scalar allocations.
|
|
if (AI.getArraySize()->getType()->isIntegerTy(32))
|
|
return nullptr;
|
|
|
|
// Canonicalize it.
|
|
Value *V = IC.Builder->getInt32(1);
|
|
AI.setOperand(0, V);
|
|
return &AI;
|
|
}
|
|
|
|
// Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
|
|
if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
|
|
Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
|
|
AllocaInst *New = IC.Builder->CreateAlloca(NewTy, nullptr, AI.getName());
|
|
New->setAlignment(AI.getAlignment());
|
|
|
|
// Scan to the end of the allocation instructions, to skip over a block of
|
|
// allocas if possible...also skip interleaved debug info
|
|
//
|
|
BasicBlock::iterator It = New;
|
|
while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
|
|
++It;
|
|
|
|
// Now that I is pointing to the first non-allocation-inst in the block,
|
|
// insert our getelementptr instruction...
|
|
//
|
|
Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
|
|
Value *NullIdx = Constant::getNullValue(IdxTy);
|
|
Value *Idx[2] = {NullIdx, NullIdx};
|
|
Instruction *GEP =
|
|
GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub");
|
|
IC.InsertNewInstBefore(GEP, *It);
|
|
|
|
// Now make everything use the getelementptr instead of the original
|
|
// allocation.
|
|
return IC.ReplaceInstUsesWith(AI, GEP);
|
|
}
|
|
|
|
if (isa<UndefValue>(AI.getArraySize()))
|
|
return IC.ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
|
|
|
|
// Ensure that the alloca array size argument has type intptr_t, so that
|
|
// any casting is exposed early.
|
|
Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
|
|
if (AI.getArraySize()->getType() != IntPtrTy) {
|
|
Value *V = IC.Builder->CreateIntCast(AI.getArraySize(), IntPtrTy, false);
|
|
AI.setOperand(0, V);
|
|
return &AI;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
|
|
if (auto *I = simplifyAllocaArraySize(*this, AI))
|
|
return I;
|
|
|
|
if (AI.getAllocatedType()->isSized()) {
|
|
// If the alignment is 0 (unspecified), assign it the preferred alignment.
|
|
if (AI.getAlignment() == 0)
|
|
AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType()));
|
|
|
|
// Move all alloca's of zero byte objects to the entry block and merge them
|
|
// together. Note that we only do this for alloca's, because malloc should
|
|
// allocate and return a unique pointer, even for a zero byte allocation.
|
|
if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) {
|
|
// For a zero sized alloca there is no point in doing an array allocation.
|
|
// This is helpful if the array size is a complicated expression not used
|
|
// elsewhere.
|
|
if (AI.isArrayAllocation()) {
|
|
AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1));
|
|
return &AI;
|
|
}
|
|
|
|
// Get the first instruction in the entry block.
|
|
BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
|
|
Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
|
|
if (FirstInst != &AI) {
|
|
// If the entry block doesn't start with a zero-size alloca then move
|
|
// this one to the start of the entry block. There is no problem with
|
|
// dominance as the array size was forced to a constant earlier already.
|
|
AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
|
|
if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
|
|
DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
|
|
AI.moveBefore(FirstInst);
|
|
return &AI;
|
|
}
|
|
|
|
// If the alignment of the entry block alloca is 0 (unspecified),
|
|
// assign it the preferred alignment.
|
|
if (EntryAI->getAlignment() == 0)
|
|
EntryAI->setAlignment(
|
|
DL.getPrefTypeAlignment(EntryAI->getAllocatedType()));
|
|
// Replace this zero-sized alloca with the one at the start of the entry
|
|
// block after ensuring that the address will be aligned enough for both
|
|
// types.
|
|
unsigned MaxAlign = std::max(EntryAI->getAlignment(),
|
|
AI.getAlignment());
|
|
EntryAI->setAlignment(MaxAlign);
|
|
if (AI.getType() != EntryAI->getType())
|
|
return new BitCastInst(EntryAI, AI.getType());
|
|
return ReplaceInstUsesWith(AI, EntryAI);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (AI.getAlignment()) {
|
|
// Check to see if this allocation is only modified by a memcpy/memmove from
|
|
// a constant global whose alignment is equal to or exceeds that of the
|
|
// allocation. If this is the case, we can change all users to use
|
|
// the constant global instead. This is commonly produced by the CFE by
|
|
// constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
|
|
// is only subsequently read.
|
|
SmallVector<Instruction *, 4> ToDelete;
|
|
if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
|
|
unsigned SourceAlign = getOrEnforceKnownAlignment(
|
|
Copy->getSource(), AI.getAlignment(), DL, &AI, AC, DT);
|
|
if (AI.getAlignment() <= SourceAlign) {
|
|
DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
|
|
DEBUG(dbgs() << " memcpy = " << *Copy << '\n');
|
|
for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
|
|
EraseInstFromFunction(*ToDelete[i]);
|
|
Constant *TheSrc = cast<Constant>(Copy->getSource());
|
|
Constant *Cast
|
|
= ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, AI.getType());
|
|
Instruction *NewI = ReplaceInstUsesWith(AI, Cast);
|
|
EraseInstFromFunction(*Copy);
|
|
++NumGlobalCopies;
|
|
return NewI;
|
|
}
|
|
}
|
|
}
|
|
|
|
// At last, use the generic allocation site handler to aggressively remove
|
|
// unused allocas.
|
|
return visitAllocSite(AI);
|
|
}
|
|
|
|
/// \brief Helper to combine a load to a new type.
|
|
///
|
|
/// This just does the work of combining a load to a new type. It handles
|
|
/// metadata, etc., and returns the new instruction. The \c NewTy should be the
|
|
/// loaded *value* type. This will convert it to a pointer, cast the operand to
|
|
/// that pointer type, load it, etc.
|
|
///
|
|
/// Note that this will create all of the instructions with whatever insert
|
|
/// point the \c InstCombiner currently is using.
|
|
static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy,
|
|
const Twine &Suffix = "") {
|
|
Value *Ptr = LI.getPointerOperand();
|
|
unsigned AS = LI.getPointerAddressSpace();
|
|
SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
|
|
LI.getAllMetadata(MD);
|
|
|
|
LoadInst *NewLoad = IC.Builder->CreateAlignedLoad(
|
|
IC.Builder->CreateBitCast(Ptr, NewTy->getPointerTo(AS)),
|
|
LI.getAlignment(), LI.getName() + Suffix);
|
|
MDBuilder MDB(NewLoad->getContext());
|
|
for (const auto &MDPair : MD) {
|
|
unsigned ID = MDPair.first;
|
|
MDNode *N = MDPair.second;
|
|
// Note, essentially every kind of metadata should be preserved here! This
|
|
// routine is supposed to clone a load instruction changing *only its type*.
|
|
// The only metadata it makes sense to drop is metadata which is invalidated
|
|
// when the pointer type changes. This should essentially never be the case
|
|
// in LLVM, but we explicitly switch over only known metadata to be
|
|
// conservatively correct. If you are adding metadata to LLVM which pertains
|
|
// to loads, you almost certainly want to add it here.
|
|
switch (ID) {
|
|
case LLVMContext::MD_dbg:
|
|
case LLVMContext::MD_tbaa:
|
|
case LLVMContext::MD_prof:
|
|
case LLVMContext::MD_fpmath:
|
|
case LLVMContext::MD_tbaa_struct:
|
|
case LLVMContext::MD_invariant_load:
|
|
case LLVMContext::MD_alias_scope:
|
|
case LLVMContext::MD_noalias:
|
|
case LLVMContext::MD_nontemporal:
|
|
case LLVMContext::MD_mem_parallel_loop_access:
|
|
// All of these directly apply.
|
|
NewLoad->setMetadata(ID, N);
|
|
break;
|
|
|
|
case LLVMContext::MD_nonnull:
|
|
// This only directly applies if the new type is also a pointer.
|
|
if (NewTy->isPointerTy()) {
|
|
NewLoad->setMetadata(ID, N);
|
|
break;
|
|
}
|
|
// If it's integral now, translate it to !range metadata.
|
|
if (NewTy->isIntegerTy()) {
|
|
auto *ITy = cast<IntegerType>(NewTy);
|
|
auto *NullInt = ConstantExpr::getPtrToInt(
|
|
ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
|
|
auto *NonNullInt =
|
|
ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
|
|
NewLoad->setMetadata(LLVMContext::MD_range,
|
|
MDB.createRange(NonNullInt, NullInt));
|
|
}
|
|
break;
|
|
|
|
case LLVMContext::MD_range:
|
|
// FIXME: It would be nice to propagate this in some way, but the type
|
|
// conversions make it hard. If the new type is a pointer, we could
|
|
// translate it to !nonnull metadata.
|
|
break;
|
|
}
|
|
}
|
|
return NewLoad;
|
|
}
|
|
|
|
/// \brief Combine a store to a new type.
|
|
///
|
|
/// Returns the newly created store instruction.
|
|
static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) {
|
|
Value *Ptr = SI.getPointerOperand();
|
|
unsigned AS = SI.getPointerAddressSpace();
|
|
SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
|
|
SI.getAllMetadata(MD);
|
|
|
|
StoreInst *NewStore = IC.Builder->CreateAlignedStore(
|
|
V, IC.Builder->CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
|
|
SI.getAlignment());
|
|
for (const auto &MDPair : MD) {
|
|
unsigned ID = MDPair.first;
|
|
MDNode *N = MDPair.second;
|
|
// Note, essentially every kind of metadata should be preserved here! This
|
|
// routine is supposed to clone a store instruction changing *only its
|
|
// type*. The only metadata it makes sense to drop is metadata which is
|
|
// invalidated when the pointer type changes. This should essentially
|
|
// never be the case in LLVM, but we explicitly switch over only known
|
|
// metadata to be conservatively correct. If you are adding metadata to
|
|
// LLVM which pertains to stores, you almost certainly want to add it
|
|
// here.
|
|
switch (ID) {
|
|
case LLVMContext::MD_dbg:
|
|
case LLVMContext::MD_tbaa:
|
|
case LLVMContext::MD_prof:
|
|
case LLVMContext::MD_fpmath:
|
|
case LLVMContext::MD_tbaa_struct:
|
|
case LLVMContext::MD_alias_scope:
|
|
case LLVMContext::MD_noalias:
|
|
case LLVMContext::MD_nontemporal:
|
|
case LLVMContext::MD_mem_parallel_loop_access:
|
|
// All of these directly apply.
|
|
NewStore->setMetadata(ID, N);
|
|
break;
|
|
|
|
case LLVMContext::MD_invariant_load:
|
|
case LLVMContext::MD_nonnull:
|
|
case LLVMContext::MD_range:
|
|
// These don't apply for stores.
|
|
break;
|
|
}
|
|
}
|
|
|
|
return NewStore;
|
|
}
|
|
|
|
/// \brief Combine loads to match the type of value their uses after looking
|
|
/// through intervening bitcasts.
|
|
///
|
|
/// The core idea here is that if the result of a load is used in an operation,
|
|
/// we should load the type most conducive to that operation. For example, when
|
|
/// loading an integer and converting that immediately to a pointer, we should
|
|
/// instead directly load a pointer.
|
|
///
|
|
/// However, this routine must never change the width of a load or the number of
|
|
/// loads as that would introduce a semantic change. This combine is expected to
|
|
/// be a semantic no-op which just allows loads to more closely model the types
|
|
/// of their consuming operations.
|
|
///
|
|
/// Currently, we also refuse to change the precise type used for an atomic load
|
|
/// or a volatile load. This is debatable, and might be reasonable to change
|
|
/// later. However, it is risky in case some backend or other part of LLVM is
|
|
/// relying on the exact type loaded to select appropriate atomic operations.
|
|
static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) {
|
|
// FIXME: We could probably with some care handle both volatile and atomic
|
|
// loads here but it isn't clear that this is important.
|
|
if (!LI.isSimple())
|
|
return nullptr;
|
|
|
|
if (LI.use_empty())
|
|
return nullptr;
|
|
|
|
Type *Ty = LI.getType();
|
|
const DataLayout &DL = IC.getDataLayout();
|
|
|
|
// Try to canonicalize loads which are only ever stored to operate over
|
|
// integers instead of any other type. We only do this when the loaded type
|
|
// is sized and has a size exactly the same as its store size and the store
|
|
// size is a legal integer type.
|
|
if (!Ty->isIntegerTy() && Ty->isSized() &&
|
|
DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) &&
|
|
DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty)) {
|
|
if (std::all_of(LI.user_begin(), LI.user_end(), [&LI](User *U) {
|
|
auto *SI = dyn_cast<StoreInst>(U);
|
|
return SI && SI->getPointerOperand() != &LI;
|
|
})) {
|
|
LoadInst *NewLoad = combineLoadToNewType(
|
|
IC, LI,
|
|
Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty)));
|
|
// Replace all the stores with stores of the newly loaded value.
|
|
for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) {
|
|
auto *SI = cast<StoreInst>(*UI++);
|
|
IC.Builder->SetInsertPoint(SI);
|
|
combineStoreToNewValue(IC, *SI, NewLoad);
|
|
IC.EraseInstFromFunction(*SI);
|
|
}
|
|
assert(LI.use_empty() && "Failed to remove all users of the load!");
|
|
// Return the old load so the combiner can delete it safely.
|
|
return &LI;
|
|
}
|
|
}
|
|
|
|
// Fold away bit casts of the loaded value by loading the desired type.
|
|
if (LI.hasOneUse())
|
|
if (auto *BC = dyn_cast<BitCastInst>(LI.user_back())) {
|
|
LoadInst *NewLoad = combineLoadToNewType(IC, LI, BC->getDestTy());
|
|
BC->replaceAllUsesWith(NewLoad);
|
|
IC.EraseInstFromFunction(*BC);
|
|
return &LI;
|
|
}
|
|
|
|
// FIXME: We should also canonicalize loads of vectors when their elements are
|
|
// cast to other types.
|
|
return nullptr;
|
|
}
|
|
|
|
static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) {
|
|
// FIXME: We could probably with some care handle both volatile and atomic
|
|
// stores here but it isn't clear that this is important.
|
|
if (!LI.isSimple())
|
|
return nullptr;
|
|
|
|
Type *T = LI.getType();
|
|
if (!T->isAggregateType())
|
|
return nullptr;
|
|
|
|
assert(LI.getAlignment() && "Alignement must be set at this point");
|
|
|
|
if (auto *ST = dyn_cast<StructType>(T)) {
|
|
// If the struct only have one element, we unpack.
|
|
if (ST->getNumElements() == 1) {
|
|
LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U),
|
|
".unpack");
|
|
return IC.ReplaceInstUsesWith(LI, IC.Builder->CreateInsertValue(
|
|
UndefValue::get(T), NewLoad, 0, LI.getName()));
|
|
}
|
|
}
|
|
|
|
if (auto *AT = dyn_cast<ArrayType>(T)) {
|
|
// If the array only have one element, we unpack.
|
|
if (AT->getNumElements() == 1) {
|
|
LoadInst *NewLoad = combineLoadToNewType(IC, LI, AT->getElementType(),
|
|
".unpack");
|
|
return IC.ReplaceInstUsesWith(LI, IC.Builder->CreateInsertValue(
|
|
UndefValue::get(T), NewLoad, 0, LI.getName()));
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// If we can determine that all possible objects pointed to by the provided
|
|
// pointer value are, not only dereferenceable, but also definitively less than
|
|
// or equal to the provided maximum size, then return true. Otherwise, return
|
|
// false (constant global values and allocas fall into this category).
|
|
//
|
|
// FIXME: This should probably live in ValueTracking (or similar).
|
|
static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
|
|
const DataLayout &DL) {
|
|
SmallPtrSet<Value *, 4> Visited;
|
|
SmallVector<Value *, 4> Worklist(1, V);
|
|
|
|
do {
|
|
Value *P = Worklist.pop_back_val();
|
|
P = P->stripPointerCasts();
|
|
|
|
if (!Visited.insert(P).second)
|
|
continue;
|
|
|
|
if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
|
|
Worklist.push_back(SI->getTrueValue());
|
|
Worklist.push_back(SI->getFalseValue());
|
|
continue;
|
|
}
|
|
|
|
if (PHINode *PN = dyn_cast<PHINode>(P)) {
|
|
for (Value *IncValue : PN->incoming_values())
|
|
Worklist.push_back(IncValue);
|
|
continue;
|
|
}
|
|
|
|
if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
|
|
if (GA->mayBeOverridden())
|
|
return false;
|
|
Worklist.push_back(GA->getAliasee());
|
|
continue;
|
|
}
|
|
|
|
// If we know how big this object is, and it is less than MaxSize, continue
|
|
// searching. Otherwise, return false.
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
|
|
if (!AI->getAllocatedType()->isSized())
|
|
return false;
|
|
|
|
ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
|
|
if (!CS)
|
|
return false;
|
|
|
|
uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
|
|
// Make sure that, even if the multiplication below would wrap as an
|
|
// uint64_t, we still do the right thing.
|
|
if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
|
|
return false;
|
|
continue;
|
|
}
|
|
|
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
|
|
if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
|
|
return false;
|
|
|
|
uint64_t InitSize = DL.getTypeAllocSize(GV->getType()->getElementType());
|
|
if (InitSize > MaxSize)
|
|
return false;
|
|
continue;
|
|
}
|
|
|
|
return false;
|
|
} while (!Worklist.empty());
|
|
|
|
return true;
|
|
}
|
|
|
|
// If we're indexing into an object of a known size, and the outer index is
|
|
// not a constant, but having any value but zero would lead to undefined
|
|
// behavior, replace it with zero.
|
|
//
|
|
// For example, if we have:
|
|
// @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
|
|
// ...
|
|
// %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
|
|
// ... = load i32* %arrayidx, align 4
|
|
// Then we know that we can replace %x in the GEP with i64 0.
|
|
//
|
|
// FIXME: We could fold any GEP index to zero that would cause UB if it were
|
|
// not zero. Currently, we only handle the first such index. Also, we could
|
|
// also search through non-zero constant indices if we kept track of the
|
|
// offsets those indices implied.
|
|
static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI,
|
|
Instruction *MemI, unsigned &Idx) {
|
|
if (GEPI->getNumOperands() < 2)
|
|
return false;
|
|
|
|
// Find the first non-zero index of a GEP. If all indices are zero, return
|
|
// one past the last index.
|
|
auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
|
|
unsigned I = 1;
|
|
for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
|
|
Value *V = GEPI->getOperand(I);
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
|
|
if (CI->isZero())
|
|
continue;
|
|
|
|
break;
|
|
}
|
|
|
|
return I;
|
|
};
|
|
|
|
// Skip through initial 'zero' indices, and find the corresponding pointer
|
|
// type. See if the next index is not a constant.
|
|
Idx = FirstNZIdx(GEPI);
|
|
if (Idx == GEPI->getNumOperands())
|
|
return false;
|
|
if (isa<Constant>(GEPI->getOperand(Idx)))
|
|
return false;
|
|
|
|
SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
|
|
Type *AllocTy = GetElementPtrInst::getIndexedType(
|
|
cast<PointerType>(GEPI->getOperand(0)->getType()->getScalarType())
|
|
->getElementType(),
|
|
Ops);
|
|
if (!AllocTy || !AllocTy->isSized())
|
|
return false;
|
|
const DataLayout &DL = IC.getDataLayout();
|
|
uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy);
|
|
|
|
// If there are more indices after the one we might replace with a zero, make
|
|
// sure they're all non-negative. If any of them are negative, the overall
|
|
// address being computed might be before the base address determined by the
|
|
// first non-zero index.
|
|
auto IsAllNonNegative = [&]() {
|
|
for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
|
|
bool KnownNonNegative, KnownNegative;
|
|
IC.ComputeSignBit(GEPI->getOperand(i), KnownNonNegative,
|
|
KnownNegative, 0, MemI);
|
|
if (KnownNonNegative)
|
|
continue;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
};
|
|
|
|
// FIXME: If the GEP is not inbounds, and there are extra indices after the
|
|
// one we'll replace, those could cause the address computation to wrap
|
|
// (rendering the IsAllNonNegative() check below insufficient). We can do
|
|
// better, ignoring zero indicies (and other indicies we can prove small
|
|
// enough not to wrap).
|
|
if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
|
|
return false;
|
|
|
|
// Note that isObjectSizeLessThanOrEq will return true only if the pointer is
|
|
// also known to be dereferenceable.
|
|
return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
|
|
IsAllNonNegative();
|
|
}
|
|
|
|
// If we're indexing into an object with a variable index for the memory
|
|
// access, but the object has only one element, we can assume that the index
|
|
// will always be zero. If we replace the GEP, return it.
|
|
template <typename T>
|
|
static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr,
|
|
T &MemI) {
|
|
if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
|
|
unsigned Idx;
|
|
if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
|
|
Instruction *NewGEPI = GEPI->clone();
|
|
NewGEPI->setOperand(Idx,
|
|
ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
|
|
NewGEPI->insertBefore(GEPI);
|
|
MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
|
|
return NewGEPI;
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
|
|
Value *Op = LI.getOperand(0);
|
|
|
|
// Try to canonicalize the loaded type.
|
|
if (Instruction *Res = combineLoadToOperationType(*this, LI))
|
|
return Res;
|
|
|
|
// Attempt to improve the alignment.
|
|
unsigned KnownAlign = getOrEnforceKnownAlignment(
|
|
Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, AC, DT);
|
|
unsigned LoadAlign = LI.getAlignment();
|
|
unsigned EffectiveLoadAlign =
|
|
LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType());
|
|
|
|
if (KnownAlign > EffectiveLoadAlign)
|
|
LI.setAlignment(KnownAlign);
|
|
else if (LoadAlign == 0)
|
|
LI.setAlignment(EffectiveLoadAlign);
|
|
|
|
// Replace GEP indices if possible.
|
|
if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
|
|
Worklist.Add(NewGEPI);
|
|
return &LI;
|
|
}
|
|
|
|
// None of the following transforms are legal for volatile/atomic loads.
|
|
// FIXME: Some of it is okay for atomic loads; needs refactoring.
|
|
if (!LI.isSimple()) return nullptr;
|
|
|
|
if (Instruction *Res = unpackLoadToAggregate(*this, LI))
|
|
return Res;
|
|
|
|
// Do really simple store-to-load forwarding and load CSE, to catch cases
|
|
// where there are several consecutive memory accesses to the same location,
|
|
// separated by a few arithmetic operations.
|
|
BasicBlock::iterator BBI = &LI;
|
|
if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6))
|
|
return ReplaceInstUsesWith(
|
|
LI, Builder->CreateBitOrPointerCast(AvailableVal, LI.getType(),
|
|
LI.getName() + ".cast"));
|
|
|
|
// load(gep null, ...) -> unreachable
|
|
if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
|
|
const Value *GEPI0 = GEPI->getOperand(0);
|
|
// TODO: Consider a target hook for valid address spaces for this xform.
|
|
if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
|
|
// Insert a new store to null instruction before the load to indicate
|
|
// that this code is not reachable. We do this instead of inserting
|
|
// an unreachable instruction directly because we cannot modify the
|
|
// CFG.
|
|
new StoreInst(UndefValue::get(LI.getType()),
|
|
Constant::getNullValue(Op->getType()), &LI);
|
|
return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
|
|
}
|
|
}
|
|
|
|
// load null/undef -> unreachable
|
|
// TODO: Consider a target hook for valid address spaces for this xform.
|
|
if (isa<UndefValue>(Op) ||
|
|
(isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) {
|
|
// Insert a new store to null instruction before the load to indicate that
|
|
// this code is not reachable. We do this instead of inserting an
|
|
// unreachable instruction directly because we cannot modify the CFG.
|
|
new StoreInst(UndefValue::get(LI.getType()),
|
|
Constant::getNullValue(Op->getType()), &LI);
|
|
return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
|
|
}
|
|
|
|
if (Op->hasOneUse()) {
|
|
// Change select and PHI nodes to select values instead of addresses: this
|
|
// helps alias analysis out a lot, allows many others simplifications, and
|
|
// exposes redundancy in the code.
|
|
//
|
|
// Note that we cannot do the transformation unless we know that the
|
|
// introduced loads cannot trap! Something like this is valid as long as
|
|
// the condition is always false: load (select bool %C, int* null, int* %G),
|
|
// but it would not be valid if we transformed it to load from null
|
|
// unconditionally.
|
|
//
|
|
if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
|
|
// load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
|
|
unsigned Align = LI.getAlignment();
|
|
if (isSafeToLoadUnconditionally(SI->getOperand(1), SI, Align) &&
|
|
isSafeToLoadUnconditionally(SI->getOperand(2), SI, Align)) {
|
|
LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1),
|
|
SI->getOperand(1)->getName()+".val");
|
|
LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2),
|
|
SI->getOperand(2)->getName()+".val");
|
|
V1->setAlignment(Align);
|
|
V2->setAlignment(Align);
|
|
return SelectInst::Create(SI->getCondition(), V1, V2);
|
|
}
|
|
|
|
// load (select (cond, null, P)) -> load P
|
|
if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
|
|
LI.getPointerAddressSpace() == 0) {
|
|
LI.setOperand(0, SI->getOperand(2));
|
|
return &LI;
|
|
}
|
|
|
|
// load (select (cond, P, null)) -> load P
|
|
if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
|
|
LI.getPointerAddressSpace() == 0) {
|
|
LI.setOperand(0, SI->getOperand(1));
|
|
return &LI;
|
|
}
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// \brief Combine stores to match the type of value being stored.
|
|
///
|
|
/// The core idea here is that the memory does not have any intrinsic type and
|
|
/// where we can we should match the type of a store to the type of value being
|
|
/// stored.
|
|
///
|
|
/// However, this routine must never change the width of a store or the number of
|
|
/// stores as that would introduce a semantic change. This combine is expected to
|
|
/// be a semantic no-op which just allows stores to more closely model the types
|
|
/// of their incoming values.
|
|
///
|
|
/// Currently, we also refuse to change the precise type used for an atomic or
|
|
/// volatile store. This is debatable, and might be reasonable to change later.
|
|
/// However, it is risky in case some backend or other part of LLVM is relying
|
|
/// on the exact type stored to select appropriate atomic operations.
|
|
///
|
|
/// \returns true if the store was successfully combined away. This indicates
|
|
/// the caller must erase the store instruction. We have to let the caller erase
|
|
/// the store instruction sas otherwise there is no way to signal whether it was
|
|
/// combined or not: IC.EraseInstFromFunction returns a null pointer.
|
|
static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) {
|
|
// FIXME: We could probably with some care handle both volatile and atomic
|
|
// stores here but it isn't clear that this is important.
|
|
if (!SI.isSimple())
|
|
return false;
|
|
|
|
Value *V = SI.getValueOperand();
|
|
|
|
// Fold away bit casts of the stored value by storing the original type.
|
|
if (auto *BC = dyn_cast<BitCastInst>(V)) {
|
|
V = BC->getOperand(0);
|
|
combineStoreToNewValue(IC, SI, V);
|
|
return true;
|
|
}
|
|
|
|
// FIXME: We should also canonicalize loads of vectors when their elements are
|
|
// cast to other types.
|
|
return false;
|
|
}
|
|
|
|
static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) {
|
|
// FIXME: We could probably with some care handle both volatile and atomic
|
|
// stores here but it isn't clear that this is important.
|
|
if (!SI.isSimple())
|
|
return false;
|
|
|
|
Value *V = SI.getValueOperand();
|
|
Type *T = V->getType();
|
|
|
|
if (!T->isAggregateType())
|
|
return false;
|
|
|
|
if (auto *ST = dyn_cast<StructType>(T)) {
|
|
// If the struct only have one element, we unpack.
|
|
if (ST->getNumElements() == 1) {
|
|
V = IC.Builder->CreateExtractValue(V, 0);
|
|
combineStoreToNewValue(IC, SI, V);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (auto *AT = dyn_cast<ArrayType>(T)) {
|
|
// If the array only have one element, we unpack.
|
|
if (AT->getNumElements() == 1) {
|
|
V = IC.Builder->CreateExtractValue(V, 0);
|
|
combineStoreToNewValue(IC, SI, V);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// equivalentAddressValues - Test if A and B will obviously have the same
|
|
/// value. This includes recognizing that %t0 and %t1 will have the same
|
|
/// value in code like this:
|
|
/// %t0 = getelementptr \@a, 0, 3
|
|
/// store i32 0, i32* %t0
|
|
/// %t1 = getelementptr \@a, 0, 3
|
|
/// %t2 = load i32* %t1
|
|
///
|
|
static bool equivalentAddressValues(Value *A, Value *B) {
|
|
// Test if the values are trivially equivalent.
|
|
if (A == B) return true;
|
|
|
|
// Test if the values come form identical arithmetic instructions.
|
|
// This uses isIdenticalToWhenDefined instead of isIdenticalTo because
|
|
// its only used to compare two uses within the same basic block, which
|
|
// means that they'll always either have the same value or one of them
|
|
// will have an undefined value.
|
|
if (isa<BinaryOperator>(A) ||
|
|
isa<CastInst>(A) ||
|
|
isa<PHINode>(A) ||
|
|
isa<GetElementPtrInst>(A))
|
|
if (Instruction *BI = dyn_cast<Instruction>(B))
|
|
if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
|
|
return true;
|
|
|
|
// Otherwise they may not be equivalent.
|
|
return false;
|
|
}
|
|
|
|
Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
|
|
Value *Val = SI.getOperand(0);
|
|
Value *Ptr = SI.getOperand(1);
|
|
|
|
// Try to canonicalize the stored type.
|
|
if (combineStoreToValueType(*this, SI))
|
|
return EraseInstFromFunction(SI);
|
|
|
|
// Attempt to improve the alignment.
|
|
unsigned KnownAlign = getOrEnforceKnownAlignment(
|
|
Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, AC, DT);
|
|
unsigned StoreAlign = SI.getAlignment();
|
|
unsigned EffectiveStoreAlign =
|
|
StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType());
|
|
|
|
if (KnownAlign > EffectiveStoreAlign)
|
|
SI.setAlignment(KnownAlign);
|
|
else if (StoreAlign == 0)
|
|
SI.setAlignment(EffectiveStoreAlign);
|
|
|
|
// Try to canonicalize the stored type.
|
|
if (unpackStoreToAggregate(*this, SI))
|
|
return EraseInstFromFunction(SI);
|
|
|
|
// Replace GEP indices if possible.
|
|
if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
|
|
Worklist.Add(NewGEPI);
|
|
return &SI;
|
|
}
|
|
|
|
// Don't hack volatile/atomic stores.
|
|
// FIXME: Some bits are legal for atomic stores; needs refactoring.
|
|
if (!SI.isSimple()) return nullptr;
|
|
|
|
// If the RHS is an alloca with a single use, zapify the store, making the
|
|
// alloca dead.
|
|
if (Ptr->hasOneUse()) {
|
|
if (isa<AllocaInst>(Ptr))
|
|
return EraseInstFromFunction(SI);
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
|
|
if (isa<AllocaInst>(GEP->getOperand(0))) {
|
|
if (GEP->getOperand(0)->hasOneUse())
|
|
return EraseInstFromFunction(SI);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Do really simple DSE, to catch cases where there are several consecutive
|
|
// stores to the same location, separated by a few arithmetic operations. This
|
|
// situation often occurs with bitfield accesses.
|
|
BasicBlock::iterator BBI = &SI;
|
|
for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
|
|
--ScanInsts) {
|
|
--BBI;
|
|
// Don't count debug info directives, lest they affect codegen,
|
|
// and we skip pointer-to-pointer bitcasts, which are NOPs.
|
|
if (isa<DbgInfoIntrinsic>(BBI) ||
|
|
(isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
|
|
ScanInsts++;
|
|
continue;
|
|
}
|
|
|
|
if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
|
|
// Prev store isn't volatile, and stores to the same location?
|
|
if (PrevSI->isSimple() && equivalentAddressValues(PrevSI->getOperand(1),
|
|
SI.getOperand(1))) {
|
|
++NumDeadStore;
|
|
++BBI;
|
|
EraseInstFromFunction(*PrevSI);
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
|
|
// If this is a load, we have to stop. However, if the loaded value is from
|
|
// the pointer we're loading and is producing the pointer we're storing,
|
|
// then *this* store is dead (X = load P; store X -> P).
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
|
|
if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
|
|
LI->isSimple())
|
|
return EraseInstFromFunction(SI);
|
|
|
|
// Otherwise, this is a load from some other location. Stores before it
|
|
// may not be dead.
|
|
break;
|
|
}
|
|
|
|
// Don't skip over loads or things that can modify memory.
|
|
if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
|
|
break;
|
|
}
|
|
|
|
// store X, null -> turns into 'unreachable' in SimplifyCFG
|
|
if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
|
|
if (!isa<UndefValue>(Val)) {
|
|
SI.setOperand(0, UndefValue::get(Val->getType()));
|
|
if (Instruction *U = dyn_cast<Instruction>(Val))
|
|
Worklist.Add(U); // Dropped a use.
|
|
}
|
|
return nullptr; // Do not modify these!
|
|
}
|
|
|
|
// store undef, Ptr -> noop
|
|
if (isa<UndefValue>(Val))
|
|
return EraseInstFromFunction(SI);
|
|
|
|
// If this store is the last instruction in the basic block (possibly
|
|
// excepting debug info instructions), and if the block ends with an
|
|
// unconditional branch, try to move it to the successor block.
|
|
BBI = &SI;
|
|
do {
|
|
++BBI;
|
|
} while (isa<DbgInfoIntrinsic>(BBI) ||
|
|
(isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
|
|
if (BI->isUnconditional())
|
|
if (SimplifyStoreAtEndOfBlock(SI))
|
|
return nullptr; // xform done!
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// SimplifyStoreAtEndOfBlock - Turn things like:
|
|
/// if () { *P = v1; } else { *P = v2 }
|
|
/// into a phi node with a store in the successor.
|
|
///
|
|
/// Simplify things like:
|
|
/// *P = v1; if () { *P = v2; }
|
|
/// into a phi node with a store in the successor.
|
|
///
|
|
bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
|
|
BasicBlock *StoreBB = SI.getParent();
|
|
|
|
// Check to see if the successor block has exactly two incoming edges. If
|
|
// so, see if the other predecessor contains a store to the same location.
|
|
// if so, insert a PHI node (if needed) and move the stores down.
|
|
BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
|
|
|
|
// Determine whether Dest has exactly two predecessors and, if so, compute
|
|
// the other predecessor.
|
|
pred_iterator PI = pred_begin(DestBB);
|
|
BasicBlock *P = *PI;
|
|
BasicBlock *OtherBB = nullptr;
|
|
|
|
if (P != StoreBB)
|
|
OtherBB = P;
|
|
|
|
if (++PI == pred_end(DestBB))
|
|
return false;
|
|
|
|
P = *PI;
|
|
if (P != StoreBB) {
|
|
if (OtherBB)
|
|
return false;
|
|
OtherBB = P;
|
|
}
|
|
if (++PI != pred_end(DestBB))
|
|
return false;
|
|
|
|
// Bail out if all the relevant blocks aren't distinct (this can happen,
|
|
// for example, if SI is in an infinite loop)
|
|
if (StoreBB == DestBB || OtherBB == DestBB)
|
|
return false;
|
|
|
|
// Verify that the other block ends in a branch and is not otherwise empty.
|
|
BasicBlock::iterator BBI = OtherBB->getTerminator();
|
|
BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
|
|
if (!OtherBr || BBI == OtherBB->begin())
|
|
return false;
|
|
|
|
// If the other block ends in an unconditional branch, check for the 'if then
|
|
// else' case. there is an instruction before the branch.
|
|
StoreInst *OtherStore = nullptr;
|
|
if (OtherBr->isUnconditional()) {
|
|
--BBI;
|
|
// Skip over debugging info.
|
|
while (isa<DbgInfoIntrinsic>(BBI) ||
|
|
(isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
|
|
if (BBI==OtherBB->begin())
|
|
return false;
|
|
--BBI;
|
|
}
|
|
// If this isn't a store, isn't a store to the same location, or is not the
|
|
// right kind of store, bail out.
|
|
OtherStore = dyn_cast<StoreInst>(BBI);
|
|
if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
|
|
!SI.isSameOperationAs(OtherStore))
|
|
return false;
|
|
} else {
|
|
// Otherwise, the other block ended with a conditional branch. If one of the
|
|
// destinations is StoreBB, then we have the if/then case.
|
|
if (OtherBr->getSuccessor(0) != StoreBB &&
|
|
OtherBr->getSuccessor(1) != StoreBB)
|
|
return false;
|
|
|
|
// Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
|
|
// if/then triangle. See if there is a store to the same ptr as SI that
|
|
// lives in OtherBB.
|
|
for (;; --BBI) {
|
|
// Check to see if we find the matching store.
|
|
if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
|
|
if (OtherStore->getOperand(1) != SI.getOperand(1) ||
|
|
!SI.isSameOperationAs(OtherStore))
|
|
return false;
|
|
break;
|
|
}
|
|
// If we find something that may be using or overwriting the stored
|
|
// value, or if we run out of instructions, we can't do the xform.
|
|
if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
|
|
BBI == OtherBB->begin())
|
|
return false;
|
|
}
|
|
|
|
// In order to eliminate the store in OtherBr, we have to
|
|
// make sure nothing reads or overwrites the stored value in
|
|
// StoreBB.
|
|
for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
|
|
// FIXME: This should really be AA driven.
|
|
if (I->mayReadFromMemory() || I->mayWriteToMemory())
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Insert a PHI node now if we need it.
|
|
Value *MergedVal = OtherStore->getOperand(0);
|
|
if (MergedVal != SI.getOperand(0)) {
|
|
PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
|
|
PN->addIncoming(SI.getOperand(0), SI.getParent());
|
|
PN->addIncoming(OtherStore->getOperand(0), OtherBB);
|
|
MergedVal = InsertNewInstBefore(PN, DestBB->front());
|
|
}
|
|
|
|
// Advance to a place where it is safe to insert the new store and
|
|
// insert it.
|
|
BBI = DestBB->getFirstInsertionPt();
|
|
StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1),
|
|
SI.isVolatile(),
|
|
SI.getAlignment(),
|
|
SI.getOrdering(),
|
|
SI.getSynchScope());
|
|
InsertNewInstBefore(NewSI, *BBI);
|
|
NewSI->setDebugLoc(OtherStore->getDebugLoc());
|
|
|
|
// If the two stores had AA tags, merge them.
|
|
AAMDNodes AATags;
|
|
SI.getAAMetadata(AATags);
|
|
if (AATags) {
|
|
OtherStore->getAAMetadata(AATags, /* Merge = */ true);
|
|
NewSI->setAAMetadata(AATags);
|
|
}
|
|
|
|
// Nuke the old stores.
|
|
EraseInstFromFunction(SI);
|
|
EraseInstFromFunction(*OtherStore);
|
|
return true;
|
|
}
|