llvm-project/llvm/lib/Target/AMDGPU/AMDGPUISelDAGToDAG.cpp

2441 lines
83 KiB
C++

//===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//==-----------------------------------------------------------------------===//
//
/// \file
/// Defines an instruction selector for the AMDGPU target.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPUArgumentUsageInfo.h"
#include "AMDGPUISelLowering.h" // For AMDGPUISD
#include "AMDGPUInstrInfo.h"
#include "AMDGPUPerfHintAnalysis.h"
#include "AMDGPURegisterInfo.h"
#include "AMDGPUSubtarget.h"
#include "AMDGPUTargetMachine.h"
#include "SIDefines.h"
#include "SIISelLowering.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Instruction.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
#include <cstdint>
#include <new>
#include <vector>
#define DEBUG_TYPE "isel"
using namespace llvm;
namespace llvm {
class R600InstrInfo;
} // end namespace llvm
//===----------------------------------------------------------------------===//
// Instruction Selector Implementation
//===----------------------------------------------------------------------===//
namespace {
/// AMDGPU specific code to select AMDGPU machine instructions for
/// SelectionDAG operations.
class AMDGPUDAGToDAGISel : public SelectionDAGISel {
// Subtarget - Keep a pointer to the AMDGPU Subtarget around so that we can
// make the right decision when generating code for different targets.
const GCNSubtarget *Subtarget;
bool EnableLateStructurizeCFG;
public:
explicit AMDGPUDAGToDAGISel(TargetMachine *TM = nullptr,
CodeGenOpt::Level OptLevel = CodeGenOpt::Default)
: SelectionDAGISel(*TM, OptLevel) {
EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG;
}
~AMDGPUDAGToDAGISel() override = default;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AMDGPUArgumentUsageInfo>();
AU.addRequired<AMDGPUPerfHintAnalysis>();
AU.addRequired<LegacyDivergenceAnalysis>();
SelectionDAGISel::getAnalysisUsage(AU);
}
bool matchLoadD16FromBuildVector(SDNode *N) const;
bool runOnMachineFunction(MachineFunction &MF) override;
void PreprocessISelDAG() override;
void Select(SDNode *N) override;
StringRef getPassName() const override;
void PostprocessISelDAG() override;
protected:
void SelectBuildVector(SDNode *N, unsigned RegClassID);
private:
std::pair<SDValue, SDValue> foldFrameIndex(SDValue N) const;
bool isNoNanSrc(SDValue N) const;
bool isInlineImmediate(const SDNode *N) const;
bool isVGPRImm(const SDNode *N) const;
bool isUniformLoad(const SDNode *N) const;
bool isUniformBr(const SDNode *N) const;
MachineSDNode *buildSMovImm64(SDLoc &DL, uint64_t Val, EVT VT) const;
SDNode *glueCopyToM0LDSInit(SDNode *N) const;
SDNode *glueCopyToM0(SDNode *N, SDValue Val) const;
const TargetRegisterClass *getOperandRegClass(SDNode *N, unsigned OpNo) const;
virtual bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset);
virtual bool SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset);
bool isDSOffsetLegal(SDValue Base, unsigned Offset,
unsigned OffsetBits) const;
bool SelectDS1Addr1Offset(SDValue Ptr, SDValue &Base, SDValue &Offset) const;
bool SelectDS64Bit4ByteAligned(SDValue Ptr, SDValue &Base, SDValue &Offset0,
SDValue &Offset1) const;
bool SelectMUBUF(SDValue Addr, SDValue &SRsrc, SDValue &VAddr,
SDValue &SOffset, SDValue &Offset, SDValue &Offen,
SDValue &Idxen, SDValue &Addr64, SDValue &GLC, SDValue &SLC,
SDValue &TFE) const;
bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, SDValue &VAddr,
SDValue &SOffset, SDValue &Offset, SDValue &GLC,
SDValue &SLC, SDValue &TFE) const;
bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
SDValue &VAddr, SDValue &SOffset, SDValue &Offset,
SDValue &SLC) const;
bool SelectMUBUFScratchOffen(SDNode *Parent,
SDValue Addr, SDValue &RSrc, SDValue &VAddr,
SDValue &SOffset, SDValue &ImmOffset) const;
bool SelectMUBUFScratchOffset(SDNode *Parent,
SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
SDValue &Offset) const;
bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &SOffset,
SDValue &Offset, SDValue &GLC, SDValue &SLC,
SDValue &TFE) const;
bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
SDValue &Offset, SDValue &SLC) const;
bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
SDValue &Offset) const;
bool SelectFlatAtomic(SDValue Addr, SDValue &VAddr,
SDValue &Offset, SDValue &SLC) const;
bool SelectFlatAtomicSigned(SDValue Addr, SDValue &VAddr,
SDValue &Offset, SDValue &SLC) const;
template <bool IsSigned>
bool SelectFlatOffset(SDValue Addr, SDValue &VAddr,
SDValue &Offset, SDValue &SLC) const;
bool SelectSMRDOffset(SDValue ByteOffsetNode, SDValue &Offset,
bool &Imm) const;
SDValue Expand32BitAddress(SDValue Addr) const;
bool SelectSMRD(SDValue Addr, SDValue &SBase, SDValue &Offset,
bool &Imm) const;
bool SelectSMRDImm(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
bool SelectSMRDImm32(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
bool SelectSMRDSgpr(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
bool SelectSMRDBufferImm(SDValue Addr, SDValue &Offset) const;
bool SelectSMRDBufferImm32(SDValue Addr, SDValue &Offset) const;
bool SelectMOVRELOffset(SDValue Index, SDValue &Base, SDValue &Offset) const;
bool SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, SDValue &SrcMods) const;
bool SelectVOP3ModsImpl(SDValue In, SDValue &Src, unsigned &SrcMods) const;
bool SelectVOP3Mods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
bool SelectVOP3NoMods(SDValue In, SDValue &Src) const;
bool SelectVOP3Mods0(SDValue In, SDValue &Src, SDValue &SrcMods,
SDValue &Clamp, SDValue &Omod) const;
bool SelectVOP3NoMods0(SDValue In, SDValue &Src, SDValue &SrcMods,
SDValue &Clamp, SDValue &Omod) const;
bool SelectVOP3Mods0Clamp0OMod(SDValue In, SDValue &Src, SDValue &SrcMods,
SDValue &Clamp,
SDValue &Omod) const;
bool SelectVOP3OMods(SDValue In, SDValue &Src,
SDValue &Clamp, SDValue &Omod) const;
bool SelectVOP3PMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
bool SelectVOP3PMods0(SDValue In, SDValue &Src, SDValue &SrcMods,
SDValue &Clamp) const;
bool SelectVOP3OpSel(SDValue In, SDValue &Src, SDValue &SrcMods) const;
bool SelectVOP3OpSel0(SDValue In, SDValue &Src, SDValue &SrcMods,
SDValue &Clamp) const;
bool SelectVOP3OpSelMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
bool SelectVOP3OpSelMods0(SDValue In, SDValue &Src, SDValue &SrcMods,
SDValue &Clamp) const;
bool SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, unsigned &Mods) const;
bool SelectVOP3PMadMixMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
SDValue getHi16Elt(SDValue In) const;
void SelectADD_SUB_I64(SDNode *N);
void SelectUADDO_USUBO(SDNode *N);
void SelectDIV_SCALE(SDNode *N);
void SelectMAD_64_32(SDNode *N);
void SelectFMA_W_CHAIN(SDNode *N);
void SelectFMUL_W_CHAIN(SDNode *N);
SDNode *getS_BFE(unsigned Opcode, const SDLoc &DL, SDValue Val,
uint32_t Offset, uint32_t Width);
void SelectS_BFEFromShifts(SDNode *N);
void SelectS_BFE(SDNode *N);
bool isCBranchSCC(const SDNode *N) const;
void SelectBRCOND(SDNode *N);
void SelectFMAD_FMA(SDNode *N);
void SelectATOMIC_CMP_SWAP(SDNode *N);
void SelectINTRINSIC_W_CHAIN(SDNode *N);
protected:
// Include the pieces autogenerated from the target description.
#include "AMDGPUGenDAGISel.inc"
};
class R600DAGToDAGISel : public AMDGPUDAGToDAGISel {
const R600Subtarget *Subtarget;
bool isConstantLoad(const MemSDNode *N, int cbID) const;
bool SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr);
bool SelectGlobalValueVariableOffset(SDValue Addr, SDValue &BaseReg,
SDValue& Offset);
public:
explicit R600DAGToDAGISel(TargetMachine *TM, CodeGenOpt::Level OptLevel) :
AMDGPUDAGToDAGISel(TM, OptLevel) {}
void Select(SDNode *N) override;
bool SelectADDRIndirect(SDValue Addr, SDValue &Base,
SDValue &Offset) override;
bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
SDValue &Offset) override;
bool runOnMachineFunction(MachineFunction &MF) override;
void PreprocessISelDAG() override {}
protected:
// Include the pieces autogenerated from the target description.
#include "R600GenDAGISel.inc"
};
static SDValue stripBitcast(SDValue Val) {
return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val;
}
// Figure out if this is really an extract of the high 16-bits of a dword.
static bool isExtractHiElt(SDValue In, SDValue &Out) {
In = stripBitcast(In);
if (In.getOpcode() != ISD::TRUNCATE)
return false;
SDValue Srl = In.getOperand(0);
if (Srl.getOpcode() == ISD::SRL) {
if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) {
if (ShiftAmt->getZExtValue() == 16) {
Out = stripBitcast(Srl.getOperand(0));
return true;
}
}
}
return false;
}
// Look through operations that obscure just looking at the low 16-bits of the
// same register.
static SDValue stripExtractLoElt(SDValue In) {
if (In.getOpcode() == ISD::TRUNCATE) {
SDValue Src = In.getOperand(0);
if (Src.getValueType().getSizeInBits() == 32)
return stripBitcast(Src);
}
return In;
}
} // end anonymous namespace
INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel, "amdgpu-isel",
"AMDGPU DAG->DAG Pattern Instruction Selection", false, false)
INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo)
INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis)
INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
INITIALIZE_PASS_END(AMDGPUDAGToDAGISel, "amdgpu-isel",
"AMDGPU DAG->DAG Pattern Instruction Selection", false, false)
/// This pass converts a legalized DAG into a AMDGPU-specific
// DAG, ready for instruction scheduling.
FunctionPass *llvm::createAMDGPUISelDag(TargetMachine *TM,
CodeGenOpt::Level OptLevel) {
return new AMDGPUDAGToDAGISel(TM, OptLevel);
}
/// This pass converts a legalized DAG into a R600-specific
// DAG, ready for instruction scheduling.
FunctionPass *llvm::createR600ISelDag(TargetMachine *TM,
CodeGenOpt::Level OptLevel) {
return new R600DAGToDAGISel(TM, OptLevel);
}
bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<GCNSubtarget>();
return SelectionDAGISel::runOnMachineFunction(MF);
}
bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const {
assert(Subtarget->d16PreservesUnusedBits());
MVT VT = N->getValueType(0).getSimpleVT();
if (VT != MVT::v2i16 && VT != MVT::v2f16)
return false;
SDValue Lo = N->getOperand(0);
SDValue Hi = N->getOperand(1);
LoadSDNode *LdHi = dyn_cast<LoadSDNode>(stripBitcast(Hi));
// build_vector lo, (load ptr) -> load_d16_hi ptr, lo
// build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo
// build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo
// Need to check for possible indirect dependencies on the other half of the
// vector to avoid introducing a cycle.
if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(Lo.getNode())) {
SDVTList VTList = CurDAG->getVTList(VT, MVT::Other);
SDValue TiedIn = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Lo);
SDValue Ops[] = {
LdHi->getChain(), LdHi->getBasePtr(), TiedIn
};
unsigned LoadOp = AMDGPUISD::LOAD_D16_HI;
if (LdHi->getMemoryVT() == MVT::i8) {
LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ?
AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8;
} else {
assert(LdHi->getMemoryVT() == MVT::i16);
}
SDValue NewLoadHi =
CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdHi), VTList,
Ops, LdHi->getMemoryVT(),
LdHi->getMemOperand());
CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadHi);
CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdHi, 1), NewLoadHi.getValue(1));
return true;
}
// build_vector (load ptr), hi -> load_d16_lo ptr, hi
// build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi
// build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi
LoadSDNode *LdLo = dyn_cast<LoadSDNode>(stripBitcast(Lo));
if (LdLo && Lo.hasOneUse()) {
SDValue TiedIn = getHi16Elt(Hi);
if (!TiedIn || LdLo->isPredecessorOf(TiedIn.getNode()))
return false;
SDVTList VTList = CurDAG->getVTList(VT, MVT::Other);
unsigned LoadOp = AMDGPUISD::LOAD_D16_LO;
if (LdLo->getMemoryVT() == MVT::i8) {
LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ?
AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8;
} else {
assert(LdLo->getMemoryVT() == MVT::i16);
}
TiedIn = CurDAG->getNode(ISD::BITCAST, SDLoc(N), VT, TiedIn);
SDValue Ops[] = {
LdLo->getChain(), LdLo->getBasePtr(), TiedIn
};
SDValue NewLoadLo =
CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdLo), VTList,
Ops, LdLo->getMemoryVT(),
LdLo->getMemOperand());
CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadLo);
CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdLo, 1), NewLoadLo.getValue(1));
return true;
}
return false;
}
void AMDGPUDAGToDAGISel::PreprocessISelDAG() {
if (!Subtarget->d16PreservesUnusedBits())
return;
SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
bool MadeChange = false;
while (Position != CurDAG->allnodes_begin()) {
SDNode *N = &*--Position;
if (N->use_empty())
continue;
switch (N->getOpcode()) {
case ISD::BUILD_VECTOR:
MadeChange |= matchLoadD16FromBuildVector(N);
break;
default:
break;
}
}
if (MadeChange) {
CurDAG->RemoveDeadNodes();
LLVM_DEBUG(dbgs() << "After PreProcess:\n";
CurDAG->dump(););
}
}
bool AMDGPUDAGToDAGISel::isNoNanSrc(SDValue N) const {
if (TM.Options.NoNaNsFPMath)
return true;
// TODO: Move into isKnownNeverNaN
if (N->getFlags().isDefined())
return N->getFlags().hasNoNaNs();
return CurDAG->isKnownNeverNaN(N);
}
bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N) const {
const SIInstrInfo *TII = Subtarget->getInstrInfo();
if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N))
return TII->isInlineConstant(C->getAPIntValue());
if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N))
return TII->isInlineConstant(C->getValueAPF().bitcastToAPInt());
return false;
}
/// Determine the register class for \p OpNo
/// \returns The register class of the virtual register that will be used for
/// the given operand number \OpNo or NULL if the register class cannot be
/// determined.
const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N,
unsigned OpNo) const {
if (!N->isMachineOpcode()) {
if (N->getOpcode() == ISD::CopyToReg) {
unsigned Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo();
return MRI.getRegClass(Reg);
}
const SIRegisterInfo *TRI
= static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo();
return TRI->getPhysRegClass(Reg);
}
return nullptr;
}
switch (N->getMachineOpcode()) {
default: {
const MCInstrDesc &Desc =
Subtarget->getInstrInfo()->get(N->getMachineOpcode());
unsigned OpIdx = Desc.getNumDefs() + OpNo;
if (OpIdx >= Desc.getNumOperands())
return nullptr;
int RegClass = Desc.OpInfo[OpIdx].RegClass;
if (RegClass == -1)
return nullptr;
return Subtarget->getRegisterInfo()->getRegClass(RegClass);
}
case AMDGPU::REG_SEQUENCE: {
unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
const TargetRegisterClass *SuperRC =
Subtarget->getRegisterInfo()->getRegClass(RCID);
SDValue SubRegOp = N->getOperand(OpNo + 1);
unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue();
return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC,
SubRegIdx);
}
}
}
SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const {
const SITargetLowering& Lowering =
*static_cast<const SITargetLowering*>(getTargetLowering());
// Write max value to m0 before each load operation
SDValue M0 = Lowering.copyToM0(*CurDAG, CurDAG->getEntryNode(), SDLoc(N),
Val);
SDValue Glue = M0.getValue(1);
SmallVector <SDValue, 8> Ops;
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
Ops.push_back(N->getOperand(i));
Ops.push_back(Glue);
return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops);
}
SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const {
if (cast<MemSDNode>(N)->getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS ||
!Subtarget->ldsRequiresM0Init())
return N;
return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32));
}
MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm,
EVT VT) const {
SDNode *Lo = CurDAG->getMachineNode(
AMDGPU::S_MOV_B32, DL, MVT::i32,
CurDAG->getConstant(Imm & 0xFFFFFFFF, DL, MVT::i32));
SDNode *Hi =
CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32,
CurDAG->getConstant(Imm >> 32, DL, MVT::i32));
const SDValue Ops[] = {
CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32),
SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)};
return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops);
}
static unsigned selectSGPRVectorRegClassID(unsigned NumVectorElts) {
switch (NumVectorElts) {
case 1:
return AMDGPU::SReg_32_XM0RegClassID;
case 2:
return AMDGPU::SReg_64RegClassID;
case 4:
return AMDGPU::SReg_128RegClassID;
case 8:
return AMDGPU::SReg_256RegClassID;
case 16:
return AMDGPU::SReg_512RegClassID;
}
llvm_unreachable("invalid vector size");
}
static bool getConstantValue(SDValue N, uint32_t &Out) {
if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) {
Out = C->getAPIntValue().getZExtValue();
return true;
}
if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) {
Out = C->getValueAPF().bitcastToAPInt().getZExtValue();
return true;
}
return false;
}
void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) {
EVT VT = N->getValueType(0);
unsigned NumVectorElts = VT.getVectorNumElements();
EVT EltVT = VT.getVectorElementType();
SDLoc DL(N);
SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32);
if (NumVectorElts == 1) {
CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0),
RegClass);
return;
}
assert(NumVectorElts <= 16 && "Vectors with more than 16 elements not "
"supported yet");
// 16 = Max Num Vector Elements
// 2 = 2 REG_SEQUENCE operands per element (value, subreg index)
// 1 = Vector Register Class
SmallVector<SDValue, 16 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1);
RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32);
bool IsRegSeq = true;
unsigned NOps = N->getNumOperands();
for (unsigned i = 0; i < NOps; i++) {
// XXX: Why is this here?
if (isa<RegisterSDNode>(N->getOperand(i))) {
IsRegSeq = false;
break;
}
unsigned Sub = AMDGPURegisterInfo::getSubRegFromChannel(i);
RegSeqArgs[1 + (2 * i)] = N->getOperand(i);
RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32);
}
if (NOps != NumVectorElts) {
// Fill in the missing undef elements if this was a scalar_to_vector.
assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts);
MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
DL, EltVT);
for (unsigned i = NOps; i < NumVectorElts; ++i) {
unsigned Sub = AMDGPURegisterInfo::getSubRegFromChannel(i);
RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0);
RegSeqArgs[1 + (2 * i) + 1] =
CurDAG->getTargetConstant(Sub, DL, MVT::i32);
}
}
if (!IsRegSeq)
SelectCode(N);
CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs);
}
void AMDGPUDAGToDAGISel::Select(SDNode *N) {
unsigned int Opc = N->getOpcode();
if (N->isMachineOpcode()) {
N->setNodeId(-1);
return; // Already selected.
}
if (isa<AtomicSDNode>(N) ||
(Opc == AMDGPUISD::ATOMIC_INC || Opc == AMDGPUISD::ATOMIC_DEC ||
Opc == ISD::ATOMIC_LOAD_FADD ||
Opc == AMDGPUISD::ATOMIC_LOAD_FMIN ||
Opc == AMDGPUISD::ATOMIC_LOAD_FMAX))
N = glueCopyToM0LDSInit(N);
switch (Opc) {
default:
break;
// We are selecting i64 ADD here instead of custom lower it during
// DAG legalization, so we can fold some i64 ADDs used for address
// calculation into the LOAD and STORE instructions.
case ISD::ADDC:
case ISD::ADDE:
case ISD::SUBC:
case ISD::SUBE: {
if (N->getValueType(0) != MVT::i64)
break;
SelectADD_SUB_I64(N);
return;
}
case ISD::UADDO:
case ISD::USUBO: {
SelectUADDO_USUBO(N);
return;
}
case AMDGPUISD::FMUL_W_CHAIN: {
SelectFMUL_W_CHAIN(N);
return;
}
case AMDGPUISD::FMA_W_CHAIN: {
SelectFMA_W_CHAIN(N);
return;
}
case ISD::SCALAR_TO_VECTOR:
case ISD::BUILD_VECTOR: {
EVT VT = N->getValueType(0);
unsigned NumVectorElts = VT.getVectorNumElements();
if (VT.getScalarSizeInBits() == 16) {
if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) {
uint32_t LHSVal, RHSVal;
if (getConstantValue(N->getOperand(0), LHSVal) &&
getConstantValue(N->getOperand(1), RHSVal)) {
uint32_t K = LHSVal | (RHSVal << 16);
CurDAG->SelectNodeTo(N, AMDGPU::S_MOV_B32, VT,
CurDAG->getTargetConstant(K, SDLoc(N), MVT::i32));
return;
}
}
break;
}
assert(VT.getVectorElementType().bitsEq(MVT::i32));
unsigned RegClassID = selectSGPRVectorRegClassID(NumVectorElts);
SelectBuildVector(N, RegClassID);
return;
}
case ISD::BUILD_PAIR: {
SDValue RC, SubReg0, SubReg1;
SDLoc DL(N);
if (N->getValueType(0) == MVT::i128) {
RC = CurDAG->getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32);
SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32);
SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32);
} else if (N->getValueType(0) == MVT::i64) {
RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32);
SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
} else {
llvm_unreachable("Unhandled value type for BUILD_PAIR");
}
const SDValue Ops[] = { RC, N->getOperand(0), SubReg0,
N->getOperand(1), SubReg1 };
ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL,
N->getValueType(0), Ops));
return;
}
case ISD::Constant:
case ISD::ConstantFP: {
if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N))
break;
uint64_t Imm;
if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N))
Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue();
else {
ConstantSDNode *C = cast<ConstantSDNode>(N);
Imm = C->getZExtValue();
}
SDLoc DL(N);
ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0)));
return;
}
case ISD::LOAD:
case ISD::STORE:
case ISD::ATOMIC_LOAD:
case ISD::ATOMIC_STORE: {
N = glueCopyToM0LDSInit(N);
break;
}
case AMDGPUISD::BFE_I32:
case AMDGPUISD::BFE_U32: {
// There is a scalar version available, but unlike the vector version which
// has a separate operand for the offset and width, the scalar version packs
// the width and offset into a single operand. Try to move to the scalar
// version if the offsets are constant, so that we can try to keep extended
// loads of kernel arguments in SGPRs.
// TODO: Technically we could try to pattern match scalar bitshifts of
// dynamic values, but it's probably not useful.
ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (!Offset)
break;
ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
if (!Width)
break;
bool Signed = Opc == AMDGPUISD::BFE_I32;
uint32_t OffsetVal = Offset->getZExtValue();
uint32_t WidthVal = Width->getZExtValue();
ReplaceNode(N, getS_BFE(Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32,
SDLoc(N), N->getOperand(0), OffsetVal, WidthVal));
return;
}
case AMDGPUISD::DIV_SCALE: {
SelectDIV_SCALE(N);
return;
}
case AMDGPUISD::MAD_I64_I32:
case AMDGPUISD::MAD_U64_U32: {
SelectMAD_64_32(N);
return;
}
case ISD::CopyToReg: {
const SITargetLowering& Lowering =
*static_cast<const SITargetLowering*>(getTargetLowering());
N = Lowering.legalizeTargetIndependentNode(N, *CurDAG);
break;
}
case ISD::AND:
case ISD::SRL:
case ISD::SRA:
case ISD::SIGN_EXTEND_INREG:
if (N->getValueType(0) != MVT::i32)
break;
SelectS_BFE(N);
return;
case ISD::BRCOND:
SelectBRCOND(N);
return;
case ISD::FMAD:
case ISD::FMA:
SelectFMAD_FMA(N);
return;
case AMDGPUISD::ATOMIC_CMP_SWAP:
SelectATOMIC_CMP_SWAP(N);
return;
case AMDGPUISD::CVT_PKRTZ_F16_F32:
case AMDGPUISD::CVT_PKNORM_I16_F32:
case AMDGPUISD::CVT_PKNORM_U16_F32:
case AMDGPUISD::CVT_PK_U16_U32:
case AMDGPUISD::CVT_PK_I16_I32: {
// Hack around using a legal type if f16 is illegal.
if (N->getValueType(0) == MVT::i32) {
MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16;
N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT),
{ N->getOperand(0), N->getOperand(1) });
SelectCode(N);
return;
}
break;
}
case ISD::INTRINSIC_W_CHAIN: {
SelectINTRINSIC_W_CHAIN(N);
return;
}
}
SelectCode(N);
}
bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const {
const BasicBlock *BB = FuncInfo->MBB->getBasicBlock();
const Instruction *Term = BB->getTerminator();
return Term->getMetadata("amdgpu.uniform") ||
Term->getMetadata("structurizecfg.uniform");
}
StringRef AMDGPUDAGToDAGISel::getPassName() const {
return "AMDGPU DAG->DAG Pattern Instruction Selection";
}
//===----------------------------------------------------------------------===//
// Complex Patterns
//===----------------------------------------------------------------------===//
bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
SDValue &Offset) {
return false;
}
bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base,
SDValue &Offset) {
ConstantSDNode *C;
SDLoc DL(Addr);
if ((C = dyn_cast<ConstantSDNode>(Addr))) {
Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
} else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) &&
(C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) {
Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
} else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
(C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
Base = Addr.getOperand(0);
Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
} else {
Base = Addr;
Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
}
return true;
}
// FIXME: Should only handle addcarry/subcarry
void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) {
SDLoc DL(N);
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
unsigned Opcode = N->getOpcode();
bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE);
bool ProduceCarry =
ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC;
bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE;
SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
DL, MVT::i32, LHS, Sub0);
SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
DL, MVT::i32, LHS, Sub1);
SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
DL, MVT::i32, RHS, Sub0);
SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
DL, MVT::i32, RHS, Sub1);
SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue);
unsigned Opc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
unsigned CarryOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
SDNode *AddLo;
if (!ConsumeCarry) {
SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) };
AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args);
} else {
SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) };
AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args);
}
SDValue AddHiArgs[] = {
SDValue(Hi0, 0),
SDValue(Hi1, 0),
SDValue(AddLo, 1)
};
SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs);
SDValue RegSequenceArgs[] = {
CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32),
SDValue(AddLo,0),
Sub0,
SDValue(AddHi,0),
Sub1,
};
SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL,
MVT::i64, RegSequenceArgs);
if (ProduceCarry) {
// Replace the carry-use
ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1));
}
// Replace the remaining uses.
ReplaceNode(N, RegSequence);
}
void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) {
// The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned
// carry out despite the _i32 name. These were renamed in VI to _U32.
// FIXME: We should probably rename the opcodes here.
unsigned Opc = N->getOpcode() == ISD::UADDO ?
AMDGPU::V_ADD_I32_e64 : AMDGPU::V_SUB_I32_e64;
CurDAG->SelectNodeTo(N, Opc, N->getVTList(),
{ N->getOperand(0), N->getOperand(1) });
}
void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) {
SDLoc SL(N);
// src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, omod
SDValue Ops[10];
SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]);
SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]);
SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]);
Ops[8] = N->getOperand(0);
Ops[9] = N->getOperand(4);
CurDAG->SelectNodeTo(N, AMDGPU::V_FMA_F32, N->getVTList(), Ops);
}
void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) {
SDLoc SL(N);
// src0_modifiers, src0, src1_modifiers, src1, clamp, omod
SDValue Ops[8];
SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]);
SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]);
Ops[6] = N->getOperand(0);
Ops[7] = N->getOperand(3);
CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops);
}
// We need to handle this here because tablegen doesn't support matching
// instructions with multiple outputs.
void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) {
SDLoc SL(N);
EVT VT = N->getValueType(0);
assert(VT == MVT::f32 || VT == MVT::f64);
unsigned Opc
= (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64 : AMDGPU::V_DIV_SCALE_F32;
SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2) };
CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
}
// We need to handle this here because tablegen doesn't support matching
// instructions with multiple outputs.
void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) {
SDLoc SL(N);
bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32;
unsigned Opc = Signed ? AMDGPU::V_MAD_I64_I32 : AMDGPU::V_MAD_U64_U32;
SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1);
SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
Clamp };
CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
}
bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset,
unsigned OffsetBits) const {
if ((OffsetBits == 16 && !isUInt<16>(Offset)) ||
(OffsetBits == 8 && !isUInt<8>(Offset)))
return false;
if (Subtarget->getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS ||
Subtarget->unsafeDSOffsetFoldingEnabled())
return true;
// On Southern Islands instruction with a negative base value and an offset
// don't seem to work.
return CurDAG->SignBitIsZero(Base);
}
bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base,
SDValue &Offset) const {
SDLoc DL(Addr);
if (CurDAG->isBaseWithConstantOffset(Addr)) {
SDValue N0 = Addr.getOperand(0);
SDValue N1 = Addr.getOperand(1);
ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
if (isDSOffsetLegal(N0, C1->getSExtValue(), 16)) {
// (add n0, c0)
Base = N0;
Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
return true;
}
} else if (Addr.getOpcode() == ISD::SUB) {
// sub C, x -> add (sub 0, x), C
if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) {
int64_t ByteOffset = C->getSExtValue();
if (isUInt<16>(ByteOffset)) {
SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
// XXX - This is kind of hacky. Create a dummy sub node so we can check
// the known bits in isDSOffsetLegal. We need to emit the selected node
// here, so this is thrown away.
SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32,
Zero, Addr.getOperand(1));
if (isDSOffsetLegal(Sub, ByteOffset, 16)) {
// FIXME: Select to VOP3 version for with-carry.
unsigned SubOp = Subtarget->hasAddNoCarry() ?
AMDGPU::V_SUB_U32_e64 : AMDGPU::V_SUB_I32_e32;
MachineSDNode *MachineSub
= CurDAG->getMachineNode(SubOp, DL, MVT::i32,
Zero, Addr.getOperand(1));
Base = SDValue(MachineSub, 0);
Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16);
return true;
}
}
}
} else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
// If we have a constant address, prefer to put the constant into the
// offset. This can save moves to load the constant address since multiple
// operations can share the zero base address register, and enables merging
// into read2 / write2 instructions.
SDLoc DL(Addr);
if (isUInt<16>(CAddr->getZExtValue())) {
SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
DL, MVT::i32, Zero);
Base = SDValue(MovZero, 0);
Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16);
return true;
}
}
// default case
Base = Addr;
Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16);
return true;
}
// TODO: If offset is too big, put low 16-bit into offset.
bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base,
SDValue &Offset0,
SDValue &Offset1) const {
SDLoc DL(Addr);
if (CurDAG->isBaseWithConstantOffset(Addr)) {
SDValue N0 = Addr.getOperand(0);
SDValue N1 = Addr.getOperand(1);
ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
unsigned DWordOffset0 = C1->getZExtValue() / 4;
unsigned DWordOffset1 = DWordOffset0 + 1;
// (add n0, c0)
if (isDSOffsetLegal(N0, DWordOffset1, 8)) {
Base = N0;
Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8);
Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8);
return true;
}
} else if (Addr.getOpcode() == ISD::SUB) {
// sub C, x -> add (sub 0, x), C
if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) {
unsigned DWordOffset0 = C->getZExtValue() / 4;
unsigned DWordOffset1 = DWordOffset0 + 1;
if (isUInt<8>(DWordOffset0)) {
SDLoc DL(Addr);
SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
// XXX - This is kind of hacky. Create a dummy sub node so we can check
// the known bits in isDSOffsetLegal. We need to emit the selected node
// here, so this is thrown away.
SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32,
Zero, Addr.getOperand(1));
if (isDSOffsetLegal(Sub, DWordOffset1, 8)) {
unsigned SubOp = Subtarget->hasAddNoCarry() ?
AMDGPU::V_SUB_U32_e64 : AMDGPU::V_SUB_I32_e32;
MachineSDNode *MachineSub
= CurDAG->getMachineNode(SubOp, DL, MVT::i32,
Zero, Addr.getOperand(1));
Base = SDValue(MachineSub, 0);
Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8);
Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8);
return true;
}
}
}
} else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
unsigned DWordOffset0 = CAddr->getZExtValue() / 4;
unsigned DWordOffset1 = DWordOffset0 + 1;
assert(4 * DWordOffset0 == CAddr->getZExtValue());
if (isUInt<8>(DWordOffset0) && isUInt<8>(DWordOffset1)) {
SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
MachineSDNode *MovZero
= CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
DL, MVT::i32, Zero);
Base = SDValue(MovZero, 0);
Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8);
Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8);
return true;
}
}
// default case
Base = Addr;
Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8);
Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8);
return true;
}
bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr,
SDValue &VAddr, SDValue &SOffset,
SDValue &Offset, SDValue &Offen,
SDValue &Idxen, SDValue &Addr64,
SDValue &GLC, SDValue &SLC,
SDValue &TFE) const {
// Subtarget prefers to use flat instruction
if (Subtarget->useFlatForGlobal())
return false;
SDLoc DL(Addr);
if (!GLC.getNode())
GLC = CurDAG->getTargetConstant(0, DL, MVT::i1);
if (!SLC.getNode())
SLC = CurDAG->getTargetConstant(0, DL, MVT::i1);
TFE = CurDAG->getTargetConstant(0, DL, MVT::i1);
Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1);
Offen = CurDAG->getTargetConstant(0, DL, MVT::i1);
Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1);
SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32);
ConstantSDNode *C1 = nullptr;
SDValue N0 = Addr;
if (CurDAG->isBaseWithConstantOffset(Addr)) {
C1 = cast<ConstantSDNode>(Addr.getOperand(1));
if (isUInt<32>(C1->getZExtValue()))
N0 = Addr.getOperand(0);
else
C1 = nullptr;
}
if (N0.getOpcode() == ISD::ADD) {
// (add N2, N3) -> addr64, or
// (add (add N2, N3), C1) -> addr64
SDValue N2 = N0.getOperand(0);
SDValue N3 = N0.getOperand(1);
Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1);
if (N2->isDivergent()) {
if (N3->isDivergent()) {
// Both N2 and N3 are divergent. Use N0 (the result of the add) as the
// addr64, and construct the resource from a 0 address.
Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0);
VAddr = N0;
} else {
// N2 is divergent, N3 is not.
Ptr = N3;
VAddr = N2;
}
} else {
// N2 is not divergent.
Ptr = N2;
VAddr = N3;
}
Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
} else if (N0->isDivergent()) {
// N0 is divergent. Use it as the addr64, and construct the resource from a
// 0 address.
Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0);
VAddr = N0;
Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1);
} else {
// N0 -> offset, or
// (N0 + C1) -> offset
VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32);
Ptr = N0;
}
if (!C1) {
// No offset.
Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
return true;
}
if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue())) {
// Legal offset for instruction.
Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
return true;
}
// Illegal offset, store it in soffset.
Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
SOffset =
SDValue(CurDAG->getMachineNode(
AMDGPU::S_MOV_B32, DL, MVT::i32,
CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)),
0);
return true;
}
bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
SDValue &VAddr, SDValue &SOffset,
SDValue &Offset, SDValue &GLC,
SDValue &SLC, SDValue &TFE) const {
SDValue Ptr, Offen, Idxen, Addr64;
// addr64 bit was removed for volcanic islands.
if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
return false;
if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64,
GLC, SLC, TFE))
return false;
ConstantSDNode *C = cast<ConstantSDNode>(Addr64);
if (C->getSExtValue()) {
SDLoc DL(Addr);
const SITargetLowering& Lowering =
*static_cast<const SITargetLowering*>(getTargetLowering());
SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0);
return true;
}
return false;
}
bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
SDValue &VAddr, SDValue &SOffset,
SDValue &Offset,
SDValue &SLC) const {
SLC = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i1);
SDValue GLC, TFE;
return SelectMUBUFAddr64(Addr, SRsrc, VAddr, SOffset, Offset, GLC, SLC, TFE);
}
static bool isStackPtrRelative(const MachinePointerInfo &PtrInfo) {
auto PSV = PtrInfo.V.dyn_cast<const PseudoSourceValue *>();
return PSV && PSV->isStack();
}
std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const {
const MachineFunction &MF = CurDAG->getMachineFunction();
const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
if (auto FI = dyn_cast<FrameIndexSDNode>(N)) {
SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(),
FI->getValueType(0));
// If we can resolve this to a frame index access, this is relative to the
// frame pointer SGPR.
return std::make_pair(TFI, CurDAG->getRegister(Info->getFrameOffsetReg(),
MVT::i32));
}
// If we don't know this private access is a local stack object, it needs to
// be relative to the entry point's scratch wave offset register.
return std::make_pair(N, CurDAG->getRegister(Info->getScratchWaveOffsetReg(),
MVT::i32));
}
bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent,
SDValue Addr, SDValue &Rsrc,
SDValue &VAddr, SDValue &SOffset,
SDValue &ImmOffset) const {
SDLoc DL(Addr);
MachineFunction &MF = CurDAG->getMachineFunction();
const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
unsigned Imm = CAddr->getZExtValue();
SDValue HighBits = CurDAG->getTargetConstant(Imm & ~4095, DL, MVT::i32);
MachineSDNode *MovHighBits = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
DL, MVT::i32, HighBits);
VAddr = SDValue(MovHighBits, 0);
// In a call sequence, stores to the argument stack area are relative to the
// stack pointer.
const MachinePointerInfo &PtrInfo = cast<MemSDNode>(Parent)->getPointerInfo();
unsigned SOffsetReg = isStackPtrRelative(PtrInfo) ?
Info->getStackPtrOffsetReg() : Info->getScratchWaveOffsetReg();
SOffset = CurDAG->getRegister(SOffsetReg, MVT::i32);
ImmOffset = CurDAG->getTargetConstant(Imm & 4095, DL, MVT::i16);
return true;
}
if (CurDAG->isBaseWithConstantOffset(Addr)) {
// (add n0, c1)
SDValue N0 = Addr.getOperand(0);
SDValue N1 = Addr.getOperand(1);
// Offsets in vaddr must be positive if range checking is enabled.
//
// The total computation of vaddr + soffset + offset must not overflow. If
// vaddr is negative, even if offset is 0 the sgpr offset add will end up
// overflowing.
//
// Prior to gfx9, MUBUF instructions with the vaddr offset enabled would
// always perform a range check. If a negative vaddr base index was used,
// this would fail the range check. The overall address computation would
// compute a valid address, but this doesn't happen due to the range
// check. For out-of-bounds MUBUF loads, a 0 is returned.
//
// Therefore it should be safe to fold any VGPR offset on gfx9 into the
// MUBUF vaddr, but not on older subtargets which can only do this if the
// sign bit is known 0.
ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue()) &&
(!Subtarget->privateMemoryResourceIsRangeChecked() ||
CurDAG->SignBitIsZero(N0))) {
std::tie(VAddr, SOffset) = foldFrameIndex(N0);
ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
return true;
}
}
// (node)
std::tie(VAddr, SOffset) = foldFrameIndex(Addr);
ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i16);
return true;
}
bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent,
SDValue Addr,
SDValue &SRsrc,
SDValue &SOffset,
SDValue &Offset) const {
ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr);
if (!CAddr || !SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue()))
return false;
SDLoc DL(Addr);
MachineFunction &MF = CurDAG->getMachineFunction();
const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
const MachinePointerInfo &PtrInfo = cast<MemSDNode>(Parent)->getPointerInfo();
unsigned SOffsetReg = isStackPtrRelative(PtrInfo) ?
Info->getStackPtrOffsetReg() : Info->getScratchWaveOffsetReg();
// FIXME: Get from MachinePointerInfo? We should only be using the frame
// offset if we know this is in a call sequence.
SOffset = CurDAG->getRegister(SOffsetReg, MVT::i32);
Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16);
return true;
}
bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
SDValue &SOffset, SDValue &Offset,
SDValue &GLC, SDValue &SLC,
SDValue &TFE) const {
SDValue Ptr, VAddr, Offen, Idxen, Addr64;
const SIInstrInfo *TII =
static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64,
GLC, SLC, TFE))
return false;
if (!cast<ConstantSDNode>(Offen)->getSExtValue() &&
!cast<ConstantSDNode>(Idxen)->getSExtValue() &&
!cast<ConstantSDNode>(Addr64)->getSExtValue()) {
uint64_t Rsrc = TII->getDefaultRsrcDataFormat() |
APInt::getAllOnesValue(32).getZExtValue(); // Size
SDLoc DL(Addr);
const SITargetLowering& Lowering =
*static_cast<const SITargetLowering*>(getTargetLowering());
SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0);
return true;
}
return false;
}
bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
SDValue &Soffset, SDValue &Offset
) const {
SDValue GLC, SLC, TFE;
return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE);
}
bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
SDValue &Soffset, SDValue &Offset,
SDValue &SLC) const {
SDValue GLC, TFE;
return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE);
}
template <bool IsSigned>
bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDValue Addr,
SDValue &VAddr,
SDValue &Offset,
SDValue &SLC) const {
int64_t OffsetVal = 0;
if (Subtarget->hasFlatInstOffsets() &&
CurDAG->isBaseWithConstantOffset(Addr)) {
SDValue N0 = Addr.getOperand(0);
SDValue N1 = Addr.getOperand(1);
int64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue();
if ((IsSigned && isInt<13>(COffsetVal)) ||
(!IsSigned && isUInt<12>(COffsetVal))) {
Addr = N0;
OffsetVal = COffsetVal;
}
}
VAddr = Addr;
Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i16);
SLC = CurDAG->getTargetConstant(0, SDLoc(), MVT::i1);
return true;
}
bool AMDGPUDAGToDAGISel::SelectFlatAtomic(SDValue Addr,
SDValue &VAddr,
SDValue &Offset,
SDValue &SLC) const {
return SelectFlatOffset<false>(Addr, VAddr, Offset, SLC);
}
bool AMDGPUDAGToDAGISel::SelectFlatAtomicSigned(SDValue Addr,
SDValue &VAddr,
SDValue &Offset,
SDValue &SLC) const {
return SelectFlatOffset<true>(Addr, VAddr, Offset, SLC);
}
bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode,
SDValue &Offset, bool &Imm) const {
// FIXME: Handle non-constant offsets.
ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode);
if (!C)
return false;
SDLoc SL(ByteOffsetNode);
GCNSubtarget::Generation Gen = Subtarget->getGeneration();
int64_t ByteOffset = C->getSExtValue();
int64_t EncodedOffset = AMDGPU::getSMRDEncodedOffset(*Subtarget, ByteOffset);
if (AMDGPU::isLegalSMRDImmOffset(*Subtarget, ByteOffset)) {
Offset = CurDAG->getTargetConstant(EncodedOffset, SL, MVT::i32);
Imm = true;
return true;
}
if (!isUInt<32>(EncodedOffset) || !isUInt<32>(ByteOffset))
return false;
if (Gen == AMDGPUSubtarget::SEA_ISLANDS && isUInt<32>(EncodedOffset)) {
// 32-bit Immediates are supported on Sea Islands.
Offset = CurDAG->getTargetConstant(EncodedOffset, SL, MVT::i32);
} else {
SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32);
Offset = SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32,
C32Bit), 0);
}
Imm = false;
return true;
}
SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const {
if (Addr.getValueType() != MVT::i32)
return Addr;
// Zero-extend a 32-bit address.
SDLoc SL(Addr);
const MachineFunction &MF = CurDAG->getMachineFunction();
const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
unsigned AddrHiVal = Info->get32BitAddressHighBits();
SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32);
const SDValue Ops[] = {
CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32),
Addr,
CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32),
SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi),
0),
CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32),
};
return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64,
Ops), 0);
}
bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase,
SDValue &Offset, bool &Imm) const {
SDLoc SL(Addr);
// A 32-bit (address + offset) should not cause unsigned 32-bit integer
// wraparound, because s_load instructions perform the addition in 64 bits.
if ((Addr.getValueType() != MVT::i32 ||
Addr->getFlags().hasNoUnsignedWrap()) &&
CurDAG->isBaseWithConstantOffset(Addr)) {
SDValue N0 = Addr.getOperand(0);
SDValue N1 = Addr.getOperand(1);
if (SelectSMRDOffset(N1, Offset, Imm)) {
SBase = Expand32BitAddress(N0);
return true;
}
}
SBase = Expand32BitAddress(Addr);
Offset = CurDAG->getTargetConstant(0, SL, MVT::i32);
Imm = true;
return true;
}
bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase,
SDValue &Offset) const {
bool Imm;
return SelectSMRD(Addr, SBase, Offset, Imm) && Imm;
}
bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase,
SDValue &Offset) const {
if (Subtarget->getGeneration() != AMDGPUSubtarget::SEA_ISLANDS)
return false;
bool Imm;
if (!SelectSMRD(Addr, SBase, Offset, Imm))
return false;
return !Imm && isa<ConstantSDNode>(Offset);
}
bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase,
SDValue &Offset) const {
bool Imm;
return SelectSMRD(Addr, SBase, Offset, Imm) && !Imm &&
!isa<ConstantSDNode>(Offset);
}
bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue Addr,
SDValue &Offset) const {
bool Imm;
return SelectSMRDOffset(Addr, Offset, Imm) && Imm;
}
bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue Addr,
SDValue &Offset) const {
if (Subtarget->getGeneration() != AMDGPUSubtarget::SEA_ISLANDS)
return false;
bool Imm;
if (!SelectSMRDOffset(Addr, Offset, Imm))
return false;
return !Imm && isa<ConstantSDNode>(Offset);
}
bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index,
SDValue &Base,
SDValue &Offset) const {
SDLoc DL(Index);
if (CurDAG->isBaseWithConstantOffset(Index)) {
SDValue N0 = Index.getOperand(0);
SDValue N1 = Index.getOperand(1);
ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
// (add n0, c0)
// Don't peel off the offset (c0) if doing so could possibly lead
// the base (n0) to be negative.
if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0)) {
Base = N0;
Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32);
return true;
}
}
if (isa<ConstantSDNode>(Index))
return false;
Base = Index;
Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
return true;
}
SDNode *AMDGPUDAGToDAGISel::getS_BFE(unsigned Opcode, const SDLoc &DL,
SDValue Val, uint32_t Offset,
uint32_t Width) {
// Transformation function, pack the offset and width of a BFE into
// the format expected by the S_BFE_I32 / S_BFE_U32. In the second
// source, bits [5:0] contain the offset and bits [22:16] the width.
uint32_t PackedVal = Offset | (Width << 16);
SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32);
return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst);
}
void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) {
// "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c)
// "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c)
// Predicate: 0 < b <= c < 32
const SDValue &Shl = N->getOperand(0);
ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1));
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (B && C) {
uint32_t BVal = B->getZExtValue();
uint32_t CVal = C->getZExtValue();
if (0 < BVal && BVal <= CVal && CVal < 32) {
bool Signed = N->getOpcode() == ISD::SRA;
unsigned Opcode = Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32;
ReplaceNode(N, getS_BFE(Opcode, SDLoc(N), Shl.getOperand(0), CVal - BVal,
32 - CVal));
return;
}
}
SelectCode(N);
}
void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) {
switch (N->getOpcode()) {
case ISD::AND:
if (N->getOperand(0).getOpcode() == ISD::SRL) {
// "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)"
// Predicate: isMask(mask)
const SDValue &Srl = N->getOperand(0);
ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1));
ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (Shift && Mask) {
uint32_t ShiftVal = Shift->getZExtValue();
uint32_t MaskVal = Mask->getZExtValue();
if (isMask_32(MaskVal)) {
uint32_t WidthVal = countPopulation(MaskVal);
ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N),
Srl.getOperand(0), ShiftVal, WidthVal));
return;
}
}
}
break;
case ISD::SRL:
if (N->getOperand(0).getOpcode() == ISD::AND) {
// "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)"
// Predicate: isMask(mask >> b)
const SDValue &And = N->getOperand(0);
ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1));
ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1));
if (Shift && Mask) {
uint32_t ShiftVal = Shift->getZExtValue();
uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal;
if (isMask_32(MaskVal)) {
uint32_t WidthVal = countPopulation(MaskVal);
ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N),
And.getOperand(0), ShiftVal, WidthVal));
return;
}
}
} else if (N->getOperand(0).getOpcode() == ISD::SHL) {
SelectS_BFEFromShifts(N);
return;
}
break;
case ISD::SRA:
if (N->getOperand(0).getOpcode() == ISD::SHL) {
SelectS_BFEFromShifts(N);
return;
}
break;
case ISD::SIGN_EXTEND_INREG: {
// sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8
SDValue Src = N->getOperand(0);
if (Src.getOpcode() != ISD::SRL)
break;
const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
if (!Amt)
break;
unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_I32, SDLoc(N), Src.getOperand(0),
Amt->getZExtValue(), Width));
return;
}
}
SelectCode(N);
}
bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const {
assert(N->getOpcode() == ISD::BRCOND);
if (!N->hasOneUse())
return false;
SDValue Cond = N->getOperand(1);
if (Cond.getOpcode() == ISD::CopyToReg)
Cond = Cond.getOperand(2);
if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse())
return false;
MVT VT = Cond.getOperand(0).getSimpleValueType();
if (VT == MVT::i32)
return true;
if (VT == MVT::i64) {
auto ST = static_cast<const GCNSubtarget *>(Subtarget);
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64();
}
return false;
}
void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) {
SDValue Cond = N->getOperand(1);
if (Cond.isUndef()) {
CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other,
N->getOperand(2), N->getOperand(0));
return;
}
bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N);
unsigned BrOp = UseSCCBr ? AMDGPU::S_CBRANCH_SCC1 : AMDGPU::S_CBRANCH_VCCNZ;
unsigned CondReg = UseSCCBr ? AMDGPU::SCC : AMDGPU::VCC;
SDLoc SL(N);
if (!UseSCCBr) {
// This is the case that we are selecting to S_CBRANCH_VCCNZ. We have not
// analyzed what generates the vcc value, so we do not know whether vcc
// bits for disabled lanes are 0. Thus we need to mask out bits for
// disabled lanes.
//
// For the case that we select S_CBRANCH_SCC1 and it gets
// changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls
// SIInstrInfo::moveToVALU which inserts the S_AND).
//
// We could add an analysis of what generates the vcc value here and omit
// the S_AND when is unnecessary. But it would be better to add a separate
// pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it
// catches both cases.
Cond = SDValue(CurDAG->getMachineNode(AMDGPU::S_AND_B64, SL, MVT::i1,
CurDAG->getRegister(AMDGPU::EXEC, MVT::i1),
Cond),
0);
}
SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond);
CurDAG->SelectNodeTo(N, BrOp, MVT::Other,
N->getOperand(2), // Basic Block
VCC.getValue(0));
}
void AMDGPUDAGToDAGISel::SelectFMAD_FMA(SDNode *N) {
MVT VT = N->getSimpleValueType(0);
bool IsFMA = N->getOpcode() == ISD::FMA;
if (VT != MVT::f32 || (!Subtarget->hasMadMixInsts() &&
!Subtarget->hasFmaMixInsts()) ||
((IsFMA && Subtarget->hasMadMixInsts()) ||
(!IsFMA && Subtarget->hasFmaMixInsts()))) {
SelectCode(N);
return;
}
SDValue Src0 = N->getOperand(0);
SDValue Src1 = N->getOperand(1);
SDValue Src2 = N->getOperand(2);
unsigned Src0Mods, Src1Mods, Src2Mods;
// Avoid using v_mad_mix_f32/v_fma_mix_f32 unless there is actually an operand
// using the conversion from f16.
bool Sel0 = SelectVOP3PMadMixModsImpl(Src0, Src0, Src0Mods);
bool Sel1 = SelectVOP3PMadMixModsImpl(Src1, Src1, Src1Mods);
bool Sel2 = SelectVOP3PMadMixModsImpl(Src2, Src2, Src2Mods);
assert((IsFMA || !Subtarget->hasFP32Denormals()) &&
"fmad selected with denormals enabled");
// TODO: We can select this with f32 denormals enabled if all the sources are
// converted from f16 (in which case fmad isn't legal).
if (Sel0 || Sel1 || Sel2) {
// For dummy operands.
SDValue Zero = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32);
SDValue Ops[] = {
CurDAG->getTargetConstant(Src0Mods, SDLoc(), MVT::i32), Src0,
CurDAG->getTargetConstant(Src1Mods, SDLoc(), MVT::i32), Src1,
CurDAG->getTargetConstant(Src2Mods, SDLoc(), MVT::i32), Src2,
CurDAG->getTargetConstant(0, SDLoc(), MVT::i1),
Zero, Zero
};
CurDAG->SelectNodeTo(N,
IsFMA ? AMDGPU::V_FMA_MIX_F32 : AMDGPU::V_MAD_MIX_F32,
MVT::f32, Ops);
} else {
SelectCode(N);
}
}
// This is here because there isn't a way to use the generated sub0_sub1 as the
// subreg index to EXTRACT_SUBREG in tablegen.
void AMDGPUDAGToDAGISel::SelectATOMIC_CMP_SWAP(SDNode *N) {
MemSDNode *Mem = cast<MemSDNode>(N);
unsigned AS = Mem->getAddressSpace();
if (AS == AMDGPUAS::FLAT_ADDRESS) {
SelectCode(N);
return;
}
MVT VT = N->getSimpleValueType(0);
bool Is32 = (VT == MVT::i32);
SDLoc SL(N);
MachineSDNode *CmpSwap = nullptr;
if (Subtarget->hasAddr64()) {
SDValue SRsrc, VAddr, SOffset, Offset, SLC;
if (SelectMUBUFAddr64(Mem->getBasePtr(), SRsrc, VAddr, SOffset, Offset, SLC)) {
unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_ADDR64_RTN :
AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_ADDR64_RTN;
SDValue CmpVal = Mem->getOperand(2);
// XXX - Do we care about glue operands?
SDValue Ops[] = {
CmpVal, VAddr, SRsrc, SOffset, Offset, SLC, Mem->getChain()
};
CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops);
}
}
if (!CmpSwap) {
SDValue SRsrc, SOffset, Offset, SLC;
if (SelectMUBUFOffset(Mem->getBasePtr(), SRsrc, SOffset, Offset, SLC)) {
unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_OFFSET_RTN :
AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_OFFSET_RTN;
SDValue CmpVal = Mem->getOperand(2);
SDValue Ops[] = {
CmpVal, SRsrc, SOffset, Offset, SLC, Mem->getChain()
};
CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops);
}
}
if (!CmpSwap) {
SelectCode(N);
return;
}
MachineMemOperand *MMO = Mem->getMemOperand();
CurDAG->setNodeMemRefs(CmpSwap, {MMO});
unsigned SubReg = Is32 ? AMDGPU::sub0 : AMDGPU::sub0_sub1;
SDValue Extract
= CurDAG->getTargetExtractSubreg(SubReg, SL, VT, SDValue(CmpSwap, 0));
ReplaceUses(SDValue(N, 0), Extract);
ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 1));
CurDAG->RemoveDeadNode(N);
}
void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) {
unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
if ((IntrID != Intrinsic::amdgcn_ds_append &&
IntrID != Intrinsic::amdgcn_ds_consume) ||
N->getValueType(0) != MVT::i32) {
SelectCode(N);
return;
}
// The address is assumed to be uniform, so if it ends up in a VGPR, it will
// be copied to an SGPR with readfirstlane.
unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ?
AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME;
SDValue Chain = N->getOperand(0);
SDValue Ptr = N->getOperand(2);
MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS;
SDValue Offset;
if (CurDAG->isBaseWithConstantOffset(Ptr)) {
SDValue PtrBase = Ptr.getOperand(0);
SDValue PtrOffset = Ptr.getOperand(1);
const APInt &OffsetVal = cast<ConstantSDNode>(PtrOffset)->getAPIntValue();
if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue(), 16)) {
N = glueCopyToM0(N, PtrBase);
Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32);
}
}
if (!Offset) {
N = glueCopyToM0(N, Ptr);
Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32);
}
SDValue Ops[] = {
Offset,
CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32),
Chain,
N->getOperand(N->getNumOperands() - 1) // New glue
};
CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
}
bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src,
unsigned &Mods) const {
Mods = 0;
Src = In;
if (Src.getOpcode() == ISD::FNEG) {
Mods |= SISrcMods::NEG;
Src = Src.getOperand(0);
}
if (Src.getOpcode() == ISD::FABS) {
Mods |= SISrcMods::ABS;
Src = Src.getOperand(0);
}
return true;
}
bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src,
SDValue &SrcMods) const {
unsigned Mods;
if (SelectVOP3ModsImpl(In, Src, Mods)) {
SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
return true;
}
return false;
}
bool AMDGPUDAGToDAGISel::SelectVOP3Mods_NNaN(SDValue In, SDValue &Src,
SDValue &SrcMods) const {
SelectVOP3Mods(In, Src, SrcMods);
return isNoNanSrc(Src);
}
bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const {
if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG)
return false;
Src = In;
return true;
}
bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src,
SDValue &SrcMods, SDValue &Clamp,
SDValue &Omod) const {
SDLoc DL(In);
Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
return SelectVOP3Mods(In, Src, SrcMods);
}
bool AMDGPUDAGToDAGISel::SelectVOP3Mods0Clamp0OMod(SDValue In, SDValue &Src,
SDValue &SrcMods,
SDValue &Clamp,
SDValue &Omod) const {
Clamp = Omod = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32);
return SelectVOP3Mods(In, Src, SrcMods);
}
bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src,
SDValue &Clamp, SDValue &Omod) const {
Src = In;
SDLoc DL(In);
Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
return true;
}
bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src,
SDValue &SrcMods) const {
unsigned Mods = 0;
Src = In;
if (Src.getOpcode() == ISD::FNEG) {
Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI);
Src = Src.getOperand(0);
}
if (Src.getOpcode() == ISD::BUILD_VECTOR) {
unsigned VecMods = Mods;
SDValue Lo = stripBitcast(Src.getOperand(0));
SDValue Hi = stripBitcast(Src.getOperand(1));
if (Lo.getOpcode() == ISD::FNEG) {
Lo = stripBitcast(Lo.getOperand(0));
Mods ^= SISrcMods::NEG;
}
if (Hi.getOpcode() == ISD::FNEG) {
Hi = stripBitcast(Hi.getOperand(0));
Mods ^= SISrcMods::NEG_HI;
}
if (isExtractHiElt(Lo, Lo))
Mods |= SISrcMods::OP_SEL_0;
if (isExtractHiElt(Hi, Hi))
Mods |= SISrcMods::OP_SEL_1;
Lo = stripExtractLoElt(Lo);
Hi = stripExtractLoElt(Hi);
if (Lo == Hi && !isInlineImmediate(Lo.getNode())) {
// Really a scalar input. Just select from the low half of the register to
// avoid packing.
Src = Lo;
SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
return true;
}
Mods = VecMods;
}
// Packed instructions do not have abs modifiers.
Mods |= SISrcMods::OP_SEL_1;
SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
return true;
}
bool AMDGPUDAGToDAGISel::SelectVOP3PMods0(SDValue In, SDValue &Src,
SDValue &SrcMods,
SDValue &Clamp) const {
SDLoc SL(In);
// FIXME: Handle clamp and op_sel
Clamp = CurDAG->getTargetConstant(0, SL, MVT::i32);
return SelectVOP3PMods(In, Src, SrcMods);
}
bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src,
SDValue &SrcMods) const {
Src = In;
// FIXME: Handle op_sel
SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32);
return true;
}
bool AMDGPUDAGToDAGISel::SelectVOP3OpSel0(SDValue In, SDValue &Src,
SDValue &SrcMods,
SDValue &Clamp) const {
SDLoc SL(In);
// FIXME: Handle clamp
Clamp = CurDAG->getTargetConstant(0, SL, MVT::i32);
return SelectVOP3OpSel(In, Src, SrcMods);
}
bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src,
SDValue &SrcMods) const {
// FIXME: Handle op_sel
return SelectVOP3Mods(In, Src, SrcMods);
}
bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods0(SDValue In, SDValue &Src,
SDValue &SrcMods,
SDValue &Clamp) const {
SDLoc SL(In);
// FIXME: Handle clamp
Clamp = CurDAG->getTargetConstant(0, SL, MVT::i32);
return SelectVOP3OpSelMods(In, Src, SrcMods);
}
// The return value is not whether the match is possible (which it always is),
// but whether or not it a conversion is really used.
bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src,
unsigned &Mods) const {
Mods = 0;
SelectVOP3ModsImpl(In, Src, Mods);
if (Src.getOpcode() == ISD::FP_EXTEND) {
Src = Src.getOperand(0);
assert(Src.getValueType() == MVT::f16);
Src = stripBitcast(Src);
// Be careful about folding modifiers if we already have an abs. fneg is
// applied last, so we don't want to apply an earlier fneg.
if ((Mods & SISrcMods::ABS) == 0) {
unsigned ModsTmp;
SelectVOP3ModsImpl(Src, Src, ModsTmp);
if ((ModsTmp & SISrcMods::NEG) != 0)
Mods ^= SISrcMods::NEG;
if ((ModsTmp & SISrcMods::ABS) != 0)
Mods |= SISrcMods::ABS;
}
// op_sel/op_sel_hi decide the source type and source.
// If the source's op_sel_hi is set, it indicates to do a conversion from fp16.
// If the sources's op_sel is set, it picks the high half of the source
// register.
Mods |= SISrcMods::OP_SEL_1;
if (isExtractHiElt(Src, Src)) {
Mods |= SISrcMods::OP_SEL_0;
// TODO: Should we try to look for neg/abs here?
}
return true;
}
return false;
}
bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src,
SDValue &SrcMods) const {
unsigned Mods = 0;
SelectVOP3PMadMixModsImpl(In, Src, Mods);
SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
return true;
}
SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const {
if (In.isUndef())
return CurDAG->getUNDEF(MVT::i32);
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) {
SDLoc SL(In);
return CurDAG->getConstant(C->getZExtValue() << 16, SL, MVT::i32);
}
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) {
SDLoc SL(In);
return CurDAG->getConstant(
C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32);
}
SDValue Src;
if (isExtractHiElt(In, Src))
return Src;
return SDValue();
}
bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const {
if (Subtarget->getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS) {
return false;
}
const SIRegisterInfo *SIRI =
static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
const SIInstrInfo * SII =
static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
unsigned Limit = 0;
bool AllUsesAcceptSReg = true;
for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end();
Limit < 10 && U != E; ++U, ++Limit) {
const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo());
// If the register class is unknown, it could be an unknown
// register class that needs to be an SGPR, e.g. an inline asm
// constraint
if (!RC || SIRI->isSGPRClass(RC))
return false;
if (RC != &AMDGPU::VS_32RegClass) {
AllUsesAcceptSReg = false;
SDNode * User = *U;
if (User->isMachineOpcode()) {
unsigned Opc = User->getMachineOpcode();
MCInstrDesc Desc = SII->get(Opc);
if (Desc.isCommutable()) {
unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo();
unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) {
unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs();
const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo);
if (CommutedRC == &AMDGPU::VS_32RegClass)
AllUsesAcceptSReg = true;
}
}
}
// If "AllUsesAcceptSReg == false" so far we haven't suceeded
// commuting current user. This means have at least one use
// that strictly require VGPR. Thus, we will not attempt to commute
// other user instructions.
if (!AllUsesAcceptSReg)
break;
}
}
return !AllUsesAcceptSReg && (Limit < 10);
}
bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode * N) const {
auto Ld = cast<LoadSDNode>(N);
return Ld->getAlignment() >= 4 &&
(
(
(
Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT
)
&&
!N->isDivergent()
)
||
(
Subtarget->getScalarizeGlobalBehavior() &&
Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS &&
!Ld->isVolatile() &&
!N->isDivergent() &&
static_cast<const SITargetLowering *>(
getTargetLowering())->isMemOpHasNoClobberedMemOperand(N)
)
);
}
void AMDGPUDAGToDAGISel::PostprocessISelDAG() {
const AMDGPUTargetLowering& Lowering =
*static_cast<const AMDGPUTargetLowering*>(getTargetLowering());
bool IsModified = false;
do {
IsModified = false;
// Go over all selected nodes and try to fold them a bit more
SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin();
while (Position != CurDAG->allnodes_end()) {
SDNode *Node = &*Position++;
MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node);
if (!MachineNode)
continue;
SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG);
if (ResNode != Node) {
if (ResNode)
ReplaceUses(Node, ResNode);
IsModified = true;
}
}
CurDAG->RemoveDeadNodes();
} while (IsModified);
}
bool R600DAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<R600Subtarget>();
return SelectionDAGISel::runOnMachineFunction(MF);
}
bool R600DAGToDAGISel::isConstantLoad(const MemSDNode *N, int CbId) const {
if (!N->readMem())
return false;
if (CbId == -1)
return N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
return N->getAddressSpace() == AMDGPUAS::CONSTANT_BUFFER_0 + CbId;
}
bool R600DAGToDAGISel::SelectGlobalValueConstantOffset(SDValue Addr,
SDValue& IntPtr) {
if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Addr)) {
IntPtr = CurDAG->getIntPtrConstant(Cst->getZExtValue() / 4, SDLoc(Addr),
true);
return true;
}
return false;
}
bool R600DAGToDAGISel::SelectGlobalValueVariableOffset(SDValue Addr,
SDValue& BaseReg, SDValue &Offset) {
if (!isa<ConstantSDNode>(Addr)) {
BaseReg = Addr;
Offset = CurDAG->getIntPtrConstant(0, SDLoc(Addr), true);
return true;
}
return false;
}
void R600DAGToDAGISel::Select(SDNode *N) {
unsigned int Opc = N->getOpcode();
if (N->isMachineOpcode()) {
N->setNodeId(-1);
return; // Already selected.
}
switch (Opc) {
default: break;
case AMDGPUISD::BUILD_VERTICAL_VECTOR:
case ISD::SCALAR_TO_VECTOR:
case ISD::BUILD_VECTOR: {
EVT VT = N->getValueType(0);
unsigned NumVectorElts = VT.getVectorNumElements();
unsigned RegClassID;
// BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG
// that adds a 128 bits reg copy when going through TwoAddressInstructions
// pass. We want to avoid 128 bits copies as much as possible because they
// can't be bundled by our scheduler.
switch(NumVectorElts) {
case 2: RegClassID = R600::R600_Reg64RegClassID; break;
case 4:
if (Opc == AMDGPUISD::BUILD_VERTICAL_VECTOR)
RegClassID = R600::R600_Reg128VerticalRegClassID;
else
RegClassID = R600::R600_Reg128RegClassID;
break;
default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR");
}
SelectBuildVector(N, RegClassID);
return;
}
}
SelectCode(N);
}
bool R600DAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base,
SDValue &Offset) {
ConstantSDNode *C;
SDLoc DL(Addr);
if ((C = dyn_cast<ConstantSDNode>(Addr))) {
Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
} else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) &&
(C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) {
Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
} else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
(C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
Base = Addr.getOperand(0);
Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
} else {
Base = Addr;
Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
}
return true;
}
bool R600DAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
SDValue &Offset) {
ConstantSDNode *IMMOffset;
if (Addr.getOpcode() == ISD::ADD
&& (IMMOffset = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))
&& isInt<16>(IMMOffset->getZExtValue())) {
Base = Addr.getOperand(0);
Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr),
MVT::i32);
return true;
// If the pointer address is constant, we can move it to the offset field.
} else if ((IMMOffset = dyn_cast<ConstantSDNode>(Addr))
&& isInt<16>(IMMOffset->getZExtValue())) {
Base = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
SDLoc(CurDAG->getEntryNode()),
R600::ZERO, MVT::i32);
Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr),
MVT::i32);
return true;
}
// Default case, no offset
Base = Addr;
Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i32);
return true;
}