llvm-project/lld/wasm/SymbolTable.cpp

953 lines
33 KiB
C++

//===- SymbolTable.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "SymbolTable.h"
#include "Config.h"
#include "InputChunks.h"
#include "InputElement.h"
#include "WriterUtils.h"
#include "lld/Common/CommonLinkerContext.h"
#include "llvm/ADT/SetVector.h"
#define DEBUG_TYPE "lld"
using namespace llvm;
using namespace llvm::wasm;
using namespace llvm::object;
namespace lld {
namespace wasm {
SymbolTable *symtab;
void SymbolTable::addFile(InputFile *file) {
log("Processing: " + toString(file));
// .a file
if (auto *f = dyn_cast<ArchiveFile>(file)) {
f->parse();
return;
}
// .so file
if (auto *f = dyn_cast<SharedFile>(file)) {
sharedFiles.push_back(f);
return;
}
if (config->trace)
message(toString(file));
// LLVM bitcode file
if (auto *f = dyn_cast<BitcodeFile>(file)) {
f->parse();
bitcodeFiles.push_back(f);
return;
}
// Regular object file
auto *f = cast<ObjFile>(file);
f->parse(false);
objectFiles.push_back(f);
}
// This function is where all the optimizations of link-time
// optimization happens. When LTO is in use, some input files are
// not in native object file format but in the LLVM bitcode format.
// This function compiles bitcode files into a few big native files
// using LLVM functions and replaces bitcode symbols with the results.
// Because all bitcode files that the program consists of are passed
// to the compiler at once, it can do whole-program optimization.
void SymbolTable::compileBitcodeFiles() {
// Prevent further LTO objects being included
BitcodeFile::doneLTO = true;
if (bitcodeFiles.empty())
return;
// Compile bitcode files and replace bitcode symbols.
lto.reset(new BitcodeCompiler);
for (BitcodeFile *f : bitcodeFiles)
lto->add(*f);
for (StringRef filename : lto->compile()) {
auto *obj = make<ObjFile>(MemoryBufferRef(filename, "lto.tmp"), "");
obj->parse(true);
objectFiles.push_back(obj);
}
}
Symbol *SymbolTable::find(StringRef name) {
auto it = symMap.find(CachedHashStringRef(name));
if (it == symMap.end() || it->second == -1)
return nullptr;
return symVector[it->second];
}
void SymbolTable::replace(StringRef name, Symbol* sym) {
auto it = symMap.find(CachedHashStringRef(name));
symVector[it->second] = sym;
}
std::pair<Symbol *, bool> SymbolTable::insertName(StringRef name) {
bool trace = false;
auto p = symMap.insert({CachedHashStringRef(name), (int)symVector.size()});
int &symIndex = p.first->second;
bool isNew = p.second;
if (symIndex == -1) {
symIndex = symVector.size();
trace = true;
isNew = true;
}
if (!isNew)
return {symVector[symIndex], false};
Symbol *sym = reinterpret_cast<Symbol *>(make<SymbolUnion>());
sym->isUsedInRegularObj = false;
sym->canInline = true;
sym->traced = trace;
sym->forceExport = false;
symVector.emplace_back(sym);
return {sym, true};
}
std::pair<Symbol *, bool> SymbolTable::insert(StringRef name,
const InputFile *file) {
Symbol *s;
bool wasInserted;
std::tie(s, wasInserted) = insertName(name);
if (!file || file->kind() == InputFile::ObjectKind)
s->isUsedInRegularObj = true;
return {s, wasInserted};
}
static void reportTypeError(const Symbol *existing, const InputFile *file,
llvm::wasm::WasmSymbolType type) {
error("symbol type mismatch: " + toString(*existing) + "\n>>> defined as " +
toString(existing->getWasmType()) + " in " +
toString(existing->getFile()) + "\n>>> defined as " + toString(type) +
" in " + toString(file));
}
// Check the type of new symbol matches that of the symbol is replacing.
// Returns true if the function types match, false is there is a signature
// mismatch.
static bool signatureMatches(FunctionSymbol *existing,
const WasmSignature *newSig) {
const WasmSignature *oldSig = existing->signature;
// If either function is missing a signature (this happens for bitcode
// symbols) then assume they match. Any mismatch will be reported later
// when the LTO objects are added.
if (!newSig || !oldSig)
return true;
return *newSig == *oldSig;
}
static void checkGlobalType(const Symbol *existing, const InputFile *file,
const WasmGlobalType *newType) {
if (!isa<GlobalSymbol>(existing)) {
reportTypeError(existing, file, WASM_SYMBOL_TYPE_GLOBAL);
return;
}
const WasmGlobalType *oldType = cast<GlobalSymbol>(existing)->getGlobalType();
if (*newType != *oldType) {
error("Global type mismatch: " + existing->getName() + "\n>>> defined as " +
toString(*oldType) + " in " + toString(existing->getFile()) +
"\n>>> defined as " + toString(*newType) + " in " + toString(file));
}
}
static void checkTagType(const Symbol *existing, const InputFile *file,
const WasmSignature *newSig) {
const auto *existingTag = dyn_cast<TagSymbol>(existing);
if (!isa<TagSymbol>(existing)) {
reportTypeError(existing, file, WASM_SYMBOL_TYPE_TAG);
return;
}
const WasmSignature *oldSig = existingTag->signature;
if (*newSig != *oldSig)
warn("Tag signature mismatch: " + existing->getName() +
"\n>>> defined as " + toString(*oldSig) + " in " +
toString(existing->getFile()) + "\n>>> defined as " +
toString(*newSig) + " in " + toString(file));
}
static void checkTableType(const Symbol *existing, const InputFile *file,
const WasmTableType *newType) {
if (!isa<TableSymbol>(existing)) {
reportTypeError(existing, file, WASM_SYMBOL_TYPE_TABLE);
return;
}
const WasmTableType *oldType = cast<TableSymbol>(existing)->getTableType();
if (newType->ElemType != oldType->ElemType) {
error("Table type mismatch: " + existing->getName() + "\n>>> defined as " +
toString(*oldType) + " in " + toString(existing->getFile()) +
"\n>>> defined as " + toString(*newType) + " in " + toString(file));
}
// FIXME: No assertions currently on the limits.
}
static void checkDataType(const Symbol *existing, const InputFile *file) {
if (!isa<DataSymbol>(existing))
reportTypeError(existing, file, WASM_SYMBOL_TYPE_DATA);
}
DefinedFunction *SymbolTable::addSyntheticFunction(StringRef name,
uint32_t flags,
InputFunction *function) {
LLVM_DEBUG(dbgs() << "addSyntheticFunction: " << name << "\n");
assert(!find(name));
syntheticFunctions.emplace_back(function);
return replaceSymbol<DefinedFunction>(insertName(name).first, name,
flags, nullptr, function);
}
// Adds an optional, linker generated, data symbol. The symbol will only be
// added if there is an undefine reference to it, or if it is explicitly
// exported via the --export flag. Otherwise we don't add the symbol and return
// nullptr.
DefinedData *SymbolTable::addOptionalDataSymbol(StringRef name,
uint64_t value) {
Symbol *s = find(name);
if (!s && (config->exportAll || config->exportedSymbols.count(name) != 0))
s = insertName(name).first;
else if (!s || s->isDefined())
return nullptr;
LLVM_DEBUG(dbgs() << "addOptionalDataSymbol: " << name << "\n");
auto *rtn = replaceSymbol<DefinedData>(s, name, WASM_SYMBOL_VISIBILITY_HIDDEN);
rtn->setVA(value);
rtn->referenced = true;
return rtn;
}
DefinedData *SymbolTable::addSyntheticDataSymbol(StringRef name,
uint32_t flags) {
LLVM_DEBUG(dbgs() << "addSyntheticDataSymbol: " << name << "\n");
assert(!find(name));
return replaceSymbol<DefinedData>(insertName(name).first, name, flags);
}
DefinedGlobal *SymbolTable::addSyntheticGlobal(StringRef name, uint32_t flags,
InputGlobal *global) {
LLVM_DEBUG(dbgs() << "addSyntheticGlobal: " << name << " -> " << global
<< "\n");
assert(!find(name));
syntheticGlobals.emplace_back(global);
return replaceSymbol<DefinedGlobal>(insertName(name).first, name, flags,
nullptr, global);
}
DefinedGlobal *SymbolTable::addOptionalGlobalSymbol(StringRef name,
InputGlobal *global) {
Symbol *s = find(name);
if (!s || s->isDefined())
return nullptr;
LLVM_DEBUG(dbgs() << "addOptionalGlobalSymbol: " << name << " -> " << global
<< "\n");
syntheticGlobals.emplace_back(global);
return replaceSymbol<DefinedGlobal>(s, name, WASM_SYMBOL_VISIBILITY_HIDDEN,
nullptr, global);
}
DefinedTable *SymbolTable::addSyntheticTable(StringRef name, uint32_t flags,
InputTable *table) {
LLVM_DEBUG(dbgs() << "addSyntheticTable: " << name << " -> " << table
<< "\n");
Symbol *s = find(name);
assert(!s || s->isUndefined());
if (!s)
s = insertName(name).first;
syntheticTables.emplace_back(table);
return replaceSymbol<DefinedTable>(s, name, flags, nullptr, table);
}
static bool shouldReplace(const Symbol *existing, InputFile *newFile,
uint32_t newFlags) {
// If existing symbol is undefined, replace it.
if (!existing->isDefined()) {
LLVM_DEBUG(dbgs() << "resolving existing undefined symbol: "
<< existing->getName() << "\n");
return true;
}
// Now we have two defined symbols. If the new one is weak, we can ignore it.
if ((newFlags & WASM_SYMBOL_BINDING_MASK) == WASM_SYMBOL_BINDING_WEAK) {
LLVM_DEBUG(dbgs() << "existing symbol takes precedence\n");
return false;
}
// If the existing symbol is weak, we should replace it.
if (existing->isWeak()) {
LLVM_DEBUG(dbgs() << "replacing existing weak symbol\n");
return true;
}
// Neither symbol is week. They conflict.
error("duplicate symbol: " + toString(*existing) + "\n>>> defined in " +
toString(existing->getFile()) + "\n>>> defined in " +
toString(newFile));
return true;
}
Symbol *SymbolTable::addDefinedFunction(StringRef name, uint32_t flags,
InputFile *file,
InputFunction *function) {
LLVM_DEBUG(dbgs() << "addDefinedFunction: " << name << " ["
<< (function ? toString(function->signature) : "none")
<< "]\n");
Symbol *s;
bool wasInserted;
std::tie(s, wasInserted) = insert(name, file);
auto replaceSym = [&](Symbol *sym) {
// If the new defined function doesn't have signature (i.e. bitcode
// functions) but the old symbol does, then preserve the old signature
const WasmSignature *oldSig = s->getSignature();
auto* newSym = replaceSymbol<DefinedFunction>(sym, name, flags, file, function);
if (!newSym->signature)
newSym->signature = oldSig;
};
if (wasInserted || s->isLazy()) {
replaceSym(s);
return s;
}
auto existingFunction = dyn_cast<FunctionSymbol>(s);
if (!existingFunction) {
reportTypeError(s, file, WASM_SYMBOL_TYPE_FUNCTION);
return s;
}
bool checkSig = true;
if (auto ud = dyn_cast<UndefinedFunction>(existingFunction))
checkSig = ud->isCalledDirectly;
if (checkSig && function && !signatureMatches(existingFunction, &function->signature)) {
Symbol* variant;
if (getFunctionVariant(s, &function->signature, file, &variant))
// New variant, always replace
replaceSym(variant);
else if (shouldReplace(s, file, flags))
// Variant already exists, replace it after checking shouldReplace
replaceSym(variant);
// This variant we found take the place in the symbol table as the primary
// variant.
replace(name, variant);
return variant;
}
// Existing function with matching signature.
if (shouldReplace(s, file, flags))
replaceSym(s);
return s;
}
Symbol *SymbolTable::addDefinedData(StringRef name, uint32_t flags,
InputFile *file, InputChunk *segment,
uint64_t address, uint64_t size) {
LLVM_DEBUG(dbgs() << "addDefinedData:" << name << " addr:" << address
<< "\n");
Symbol *s;
bool wasInserted;
std::tie(s, wasInserted) = insert(name, file);
auto replaceSym = [&]() {
replaceSymbol<DefinedData>(s, name, flags, file, segment, address, size);
};
if (wasInserted || s->isLazy()) {
replaceSym();
return s;
}
checkDataType(s, file);
if (shouldReplace(s, file, flags))
replaceSym();
return s;
}
Symbol *SymbolTable::addDefinedGlobal(StringRef name, uint32_t flags,
InputFile *file, InputGlobal *global) {
LLVM_DEBUG(dbgs() << "addDefinedGlobal:" << name << "\n");
Symbol *s;
bool wasInserted;
std::tie(s, wasInserted) = insert(name, file);
auto replaceSym = [&]() {
replaceSymbol<DefinedGlobal>(s, name, flags, file, global);
};
if (wasInserted || s->isLazy()) {
replaceSym();
return s;
}
checkGlobalType(s, file, &global->getType());
if (shouldReplace(s, file, flags))
replaceSym();
return s;
}
Symbol *SymbolTable::addDefinedTag(StringRef name, uint32_t flags,
InputFile *file, InputTag *tag) {
LLVM_DEBUG(dbgs() << "addDefinedTag:" << name << "\n");
Symbol *s;
bool wasInserted;
std::tie(s, wasInserted) = insert(name, file);
auto replaceSym = [&]() {
replaceSymbol<DefinedTag>(s, name, flags, file, tag);
};
if (wasInserted || s->isLazy()) {
replaceSym();
return s;
}
checkTagType(s, file, &tag->signature);
if (shouldReplace(s, file, flags))
replaceSym();
return s;
}
Symbol *SymbolTable::addDefinedTable(StringRef name, uint32_t flags,
InputFile *file, InputTable *table) {
LLVM_DEBUG(dbgs() << "addDefinedTable:" << name << "\n");
Symbol *s;
bool wasInserted;
std::tie(s, wasInserted) = insert(name, file);
auto replaceSym = [&]() {
replaceSymbol<DefinedTable>(s, name, flags, file, table);
};
if (wasInserted || s->isLazy()) {
replaceSym();
return s;
}
checkTableType(s, file, &table->getType());
if (shouldReplace(s, file, flags))
replaceSym();
return s;
}
// This function get called when an undefined symbol is added, and there is
// already an existing one in the symbols table. In this case we check that
// custom 'import-module' and 'import-field' symbol attributes agree.
// With LTO these attributes are not available when the bitcode is read and only
// become available when the LTO object is read. In this case we silently
// replace the empty attributes with the valid ones.
template <typename T>
static void setImportAttributes(T *existing, Optional<StringRef> importName,
Optional<StringRef> importModule,
uint32_t flags, InputFile *file) {
if (importName) {
if (!existing->importName)
existing->importName = importName;
if (existing->importName != importName)
error("import name mismatch for symbol: " + toString(*existing) +
"\n>>> defined as " + *existing->importName + " in " +
toString(existing->getFile()) + "\n>>> defined as " + *importName +
" in " + toString(file));
}
if (importModule) {
if (!existing->importModule)
existing->importModule = importModule;
if (existing->importModule != importModule)
error("import module mismatch for symbol: " + toString(*existing) +
"\n>>> defined as " + *existing->importModule + " in " +
toString(existing->getFile()) + "\n>>> defined as " +
*importModule + " in " + toString(file));
}
// Update symbol binding, if the existing symbol is weak
uint32_t binding = flags & WASM_SYMBOL_BINDING_MASK;
if (existing->isWeak() && binding != WASM_SYMBOL_BINDING_WEAK) {
existing->flags = (existing->flags & ~WASM_SYMBOL_BINDING_MASK) | binding;
}
}
Symbol *SymbolTable::addUndefinedFunction(StringRef name,
Optional<StringRef> importName,
Optional<StringRef> importModule,
uint32_t flags, InputFile *file,
const WasmSignature *sig,
bool isCalledDirectly) {
LLVM_DEBUG(dbgs() << "addUndefinedFunction: " << name << " ["
<< (sig ? toString(*sig) : "none")
<< "] IsCalledDirectly:" << isCalledDirectly << " flags=0x"
<< utohexstr(flags) << "\n");
assert(flags & WASM_SYMBOL_UNDEFINED);
Symbol *s;
bool wasInserted;
std::tie(s, wasInserted) = insert(name, file);
if (s->traced)
printTraceSymbolUndefined(name, file);
auto replaceSym = [&]() {
replaceSymbol<UndefinedFunction>(s, name, importName, importModule, flags,
file, sig, isCalledDirectly);
};
if (wasInserted) {
replaceSym();
} else if (auto *lazy = dyn_cast<LazySymbol>(s)) {
if ((flags & WASM_SYMBOL_BINDING_MASK) == WASM_SYMBOL_BINDING_WEAK) {
lazy->setWeak();
lazy->signature = sig;
} else {
lazy->fetch();
}
} else {
auto existingFunction = dyn_cast<FunctionSymbol>(s);
if (!existingFunction) {
reportTypeError(s, file, WASM_SYMBOL_TYPE_FUNCTION);
return s;
}
if (!existingFunction->signature && sig)
existingFunction->signature = sig;
auto *existingUndefined = dyn_cast<UndefinedFunction>(existingFunction);
if (isCalledDirectly && !signatureMatches(existingFunction, sig)) {
// If the existing undefined functions is not called directly then let
// this one take precedence. Otherwise the existing function is either
// directly called or defined, in which case we need a function variant.
if (existingUndefined && !existingUndefined->isCalledDirectly)
replaceSym();
else if (getFunctionVariant(s, sig, file, &s))
replaceSym();
}
if (existingUndefined) {
setImportAttributes(existingUndefined, importName, importModule, flags,
file);
if (isCalledDirectly)
existingUndefined->isCalledDirectly = true;
}
}
return s;
}
Symbol *SymbolTable::addUndefinedData(StringRef name, uint32_t flags,
InputFile *file) {
LLVM_DEBUG(dbgs() << "addUndefinedData: " << name << "\n");
assert(flags & WASM_SYMBOL_UNDEFINED);
Symbol *s;
bool wasInserted;
std::tie(s, wasInserted) = insert(name, file);
if (s->traced)
printTraceSymbolUndefined(name, file);
if (wasInserted) {
replaceSymbol<UndefinedData>(s, name, flags, file);
} else if (auto *lazy = dyn_cast<LazySymbol>(s)) {
if ((flags & WASM_SYMBOL_BINDING_MASK) == WASM_SYMBOL_BINDING_WEAK)
lazy->setWeak();
else
lazy->fetch();
} else if (s->isDefined()) {
checkDataType(s, file);
}
return s;
}
Symbol *SymbolTable::addUndefinedGlobal(StringRef name,
Optional<StringRef> importName,
Optional<StringRef> importModule,
uint32_t flags, InputFile *file,
const WasmGlobalType *type) {
LLVM_DEBUG(dbgs() << "addUndefinedGlobal: " << name << "\n");
assert(flags & WASM_SYMBOL_UNDEFINED);
Symbol *s;
bool wasInserted;
std::tie(s, wasInserted) = insert(name, file);
if (s->traced)
printTraceSymbolUndefined(name, file);
if (wasInserted)
replaceSymbol<UndefinedGlobal>(s, name, importName, importModule, flags,
file, type);
else if (auto *lazy = dyn_cast<LazySymbol>(s))
lazy->fetch();
else if (s->isDefined())
checkGlobalType(s, file, type);
return s;
}
Symbol *SymbolTable::addUndefinedTable(StringRef name,
Optional<StringRef> importName,
Optional<StringRef> importModule,
uint32_t flags, InputFile *file,
const WasmTableType *type) {
LLVM_DEBUG(dbgs() << "addUndefinedTable: " << name << "\n");
assert(flags & WASM_SYMBOL_UNDEFINED);
Symbol *s;
bool wasInserted;
std::tie(s, wasInserted) = insert(name, file);
if (s->traced)
printTraceSymbolUndefined(name, file);
if (wasInserted)
replaceSymbol<UndefinedTable>(s, name, importName, importModule, flags,
file, type);
else if (auto *lazy = dyn_cast<LazySymbol>(s))
lazy->fetch();
else if (s->isDefined())
checkTableType(s, file, type);
return s;
}
Symbol *SymbolTable::addUndefinedTag(StringRef name,
Optional<StringRef> importName,
Optional<StringRef> importModule,
uint32_t flags, InputFile *file,
const WasmSignature *sig) {
LLVM_DEBUG(dbgs() << "addUndefinedTag: " << name << "\n");
assert(flags & WASM_SYMBOL_UNDEFINED);
Symbol *s;
bool wasInserted;
std::tie(s, wasInserted) = insert(name, file);
if (s->traced)
printTraceSymbolUndefined(name, file);
if (wasInserted)
replaceSymbol<UndefinedTag>(s, name, importName, importModule, flags, file,
sig);
else if (auto *lazy = dyn_cast<LazySymbol>(s))
lazy->fetch();
else if (s->isDefined())
checkTagType(s, file, sig);
return s;
}
TableSymbol *SymbolTable::createUndefinedIndirectFunctionTable(StringRef name) {
WasmLimits limits{0, 0, 0}; // Set by the writer.
WasmTableType *type = make<WasmTableType>();
type->ElemType = uint8_t(ValType::FUNCREF);
type->Limits = limits;
StringRef module(defaultModule);
uint32_t flags = config->exportTable ? 0 : WASM_SYMBOL_VISIBILITY_HIDDEN;
flags |= WASM_SYMBOL_UNDEFINED;
Symbol *sym = addUndefinedTable(name, name, module, flags, nullptr, type);
sym->markLive();
sym->forceExport = config->exportTable;
return cast<TableSymbol>(sym);
}
TableSymbol *SymbolTable::createDefinedIndirectFunctionTable(StringRef name) {
const uint32_t invalidIndex = -1;
WasmLimits limits{0, 0, 0}; // Set by the writer.
WasmTableType type{uint8_t(ValType::FUNCREF), limits};
WasmTable desc{invalidIndex, type, name};
InputTable *table = make<InputTable>(desc, nullptr);
uint32_t flags = config->exportTable ? 0 : WASM_SYMBOL_VISIBILITY_HIDDEN;
TableSymbol *sym = addSyntheticTable(name, flags, table);
sym->markLive();
sym->forceExport = config->exportTable;
return sym;
}
// Whether or not we need an indirect function table is usually a function of
// whether an input declares a need for it. However sometimes it's possible for
// no input to need the indirect function table, but then a late
// addInternalGOTEntry causes a function to be allocated an address. In that
// case address we synthesize a definition at the last minute.
TableSymbol *SymbolTable::resolveIndirectFunctionTable(bool required) {
Symbol *existing = find(functionTableName);
if (existing) {
if (!isa<TableSymbol>(existing)) {
error(Twine("reserved symbol must be of type table: `") +
functionTableName + "`");
return nullptr;
}
if (existing->isDefined()) {
error(Twine("reserved symbol must not be defined in input files: `") +
functionTableName + "`");
return nullptr;
}
}
if (config->importTable) {
if (existing)
return cast<TableSymbol>(existing);
if (required)
return createUndefinedIndirectFunctionTable(functionTableName);
} else if ((existing && existing->isLive()) || config->exportTable ||
required) {
// A defined table is required. Either because the user request an exported
// table or because the table symbol is already live. The existing table is
// guaranteed to be undefined due to the check above.
return createDefinedIndirectFunctionTable(functionTableName);
}
// An indirect function table will only be present in the symbol table if
// needed by a reloc; if we get here, we don't need one.
return nullptr;
}
void SymbolTable::addLazy(ArchiveFile *file, const Archive::Symbol *sym) {
LLVM_DEBUG(dbgs() << "addLazy: " << sym->getName() << "\n");
StringRef name = sym->getName();
Symbol *s;
bool wasInserted;
std::tie(s, wasInserted) = insertName(name);
if (wasInserted) {
replaceSymbol<LazySymbol>(s, name, 0, file, *sym);
return;
}
if (!s->isUndefined())
return;
// The existing symbol is undefined, load a new one from the archive,
// unless the existing symbol is weak in which case replace the undefined
// symbols with a LazySymbol.
if (s->isWeak()) {
const WasmSignature *oldSig = nullptr;
// In the case of an UndefinedFunction we need to preserve the expected
// signature.
if (auto *f = dyn_cast<UndefinedFunction>(s))
oldSig = f->signature;
LLVM_DEBUG(dbgs() << "replacing existing weak undefined symbol\n");
auto newSym = replaceSymbol<LazySymbol>(s, name, WASM_SYMBOL_BINDING_WEAK,
file, *sym);
newSym->signature = oldSig;
return;
}
LLVM_DEBUG(dbgs() << "replacing existing undefined\n");
file->addMember(sym);
}
bool SymbolTable::addComdat(StringRef name) {
return comdatGroups.insert(CachedHashStringRef(name)).second;
}
// The new signature doesn't match. Create a variant to the symbol with the
// signature encoded in the name and return that instead. These symbols are
// then unified later in handleSymbolVariants.
bool SymbolTable::getFunctionVariant(Symbol* sym, const WasmSignature *sig,
const InputFile *file, Symbol **out) {
LLVM_DEBUG(dbgs() << "getFunctionVariant: " << sym->getName() << " -> "
<< " " << toString(*sig) << "\n");
Symbol *variant = nullptr;
// Linear search through symbol variants. Should never be more than two
// or three entries here.
auto &variants = symVariants[CachedHashStringRef(sym->getName())];
if (variants.empty())
variants.push_back(sym);
for (Symbol* v : variants) {
if (*v->getSignature() == *sig) {
variant = v;
break;
}
}
bool wasAdded = !variant;
if (wasAdded) {
// Create a new variant;
LLVM_DEBUG(dbgs() << "added new variant\n");
variant = reinterpret_cast<Symbol *>(make<SymbolUnion>());
variant->isUsedInRegularObj =
!file || file->kind() == InputFile::ObjectKind;
variant->canInline = true;
variant->traced = false;
variant->forceExport = false;
variants.push_back(variant);
} else {
LLVM_DEBUG(dbgs() << "variant already exists: " << toString(*variant) << "\n");
assert(*variant->getSignature() == *sig);
}
*out = variant;
return wasAdded;
}
// Set a flag for --trace-symbol so that we can print out a log message
// if a new symbol with the same name is inserted into the symbol table.
void SymbolTable::trace(StringRef name) {
symMap.insert({CachedHashStringRef(name), -1});
}
void SymbolTable::wrap(Symbol *sym, Symbol *real, Symbol *wrap) {
// Swap symbols as instructed by -wrap.
int &origIdx = symMap[CachedHashStringRef(sym->getName())];
int &realIdx= symMap[CachedHashStringRef(real->getName())];
int &wrapIdx = symMap[CachedHashStringRef(wrap->getName())];
LLVM_DEBUG(dbgs() << "wrap: " << sym->getName() << "\n");
// Anyone looking up __real symbols should get the original
realIdx = origIdx;
// Anyone looking up the original should get the __wrap symbol
origIdx = wrapIdx;
}
static const uint8_t unreachableFn[] = {
0x03 /* ULEB length */, 0x00 /* ULEB num locals */,
0x00 /* opcode unreachable */, 0x0b /* opcode end */
};
// Replace the given symbol body with an unreachable function.
// This is used by handleWeakUndefines in order to generate a callable
// equivalent of an undefined function and also handleSymbolVariants for
// undefined functions that don't match the signature of the definition.
InputFunction *SymbolTable::replaceWithUnreachable(Symbol *sym,
const WasmSignature &sig,
StringRef debugName) {
auto *func = make<SyntheticFunction>(sig, sym->getName(), debugName);
func->setBody(unreachableFn);
syntheticFunctions.emplace_back(func);
// Mark new symbols as local. For relocatable output we don't want them
// to be exported outside the object file.
replaceSymbol<DefinedFunction>(sym, debugName, WASM_SYMBOL_BINDING_LOCAL,
nullptr, func);
// Ensure the stub function doesn't get a table entry. Its address
// should always compare equal to the null pointer.
sym->isStub = true;
return func;
}
void SymbolTable::replaceWithUndefined(Symbol *sym) {
// Add a synthetic dummy for weak undefined functions. These dummies will
// be GC'd if not used as the target of any "call" instructions.
StringRef debugName = saver().save("undefined_weak:" + toString(*sym));
replaceWithUnreachable(sym, *sym->getSignature(), debugName);
// Hide our dummy to prevent export.
sym->setHidden(true);
}
// For weak undefined functions, there may be "call" instructions that reference
// the symbol. In this case, we need to synthesise a dummy/stub function that
// will abort at runtime, so that relocations can still provided an operand to
// the call instruction that passes Wasm validation.
void SymbolTable::handleWeakUndefines() {
for (Symbol *sym : getSymbols()) {
if (sym->isUndefWeak() && sym->isUsedInRegularObj) {
if (sym->getSignature()) {
replaceWithUndefined(sym);
} else {
// It is possible for undefined functions not to have a signature (eg.
// if added via "--undefined"), but weak undefined ones do have a
// signature. Lazy symbols may not be functions and therefore Sig can
// still be null in some circumstance.
assert(!isa<FunctionSymbol>(sym));
}
}
}
}
DefinedFunction *SymbolTable::createUndefinedStub(const WasmSignature &sig) {
if (stubFunctions.count(sig))
return stubFunctions[sig];
LLVM_DEBUG(dbgs() << "createUndefinedStub: " << toString(sig) << "\n");
auto *sym = reinterpret_cast<DefinedFunction *>(make<SymbolUnion>());
sym->isUsedInRegularObj = true;
sym->canInline = true;
sym->traced = false;
sym->forceExport = false;
sym->signature = &sig;
replaceSymbol<DefinedFunction>(
sym, "undefined_stub", WASM_SYMBOL_VISIBILITY_HIDDEN, nullptr, nullptr);
replaceWithUnreachable(sym, sig, "undefined_stub");
stubFunctions[sig] = sym;
return sym;
}
static void reportFunctionSignatureMismatch(StringRef symName,
FunctionSymbol *a,
FunctionSymbol *b, bool isError) {
std::string msg = ("function signature mismatch: " + symName +
"\n>>> defined as " + toString(*a->signature) + " in " +
toString(a->getFile()) + "\n>>> defined as " +
toString(*b->signature) + " in " + toString(b->getFile()))
.str();
if (isError)
error(msg);
else
warn(msg);
}
// Remove any variant symbols that were created due to function signature
// mismatches.
void SymbolTable::handleSymbolVariants() {
for (auto pair : symVariants) {
// Push the initial symbol onto the list of variants.
StringRef symName = pair.first.val();
std::vector<Symbol *> &variants = pair.second;
#ifndef NDEBUG
LLVM_DEBUG(dbgs() << "symbol with (" << variants.size()
<< ") variants: " << symName << "\n");
for (auto *s: variants) {
auto *f = cast<FunctionSymbol>(s);
LLVM_DEBUG(dbgs() << " variant: " + f->getName() << " "
<< toString(*f->signature) << "\n");
}
#endif
// Find the one definition.
DefinedFunction *defined = nullptr;
for (auto *symbol : variants) {
if (auto f = dyn_cast<DefinedFunction>(symbol)) {
defined = f;
break;
}
}
// If there are no definitions, and the undefined symbols disagree on
// the signature, there is not we can do since we don't know which one
// to use as the signature on the import.
if (!defined) {
reportFunctionSignatureMismatch(symName,
cast<FunctionSymbol>(variants[0]),
cast<FunctionSymbol>(variants[1]), true);
return;
}
for (auto *symbol : variants) {
if (symbol != defined) {
auto *f = cast<FunctionSymbol>(symbol);
reportFunctionSignatureMismatch(symName, f, defined, false);
StringRef debugName =
saver().save("signature_mismatch:" + toString(*f));
replaceWithUnreachable(f, *f->signature, debugName);
}
}
}
}
} // namespace wasm
} // namespace lld