llvm-project/clang/lib/CodeGen/CGBuiltin.cpp

7459 lines
309 KiB
C++

//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Builtin calls as LLVM code.
//
//===----------------------------------------------------------------------===//
#include "CodeGenFunction.h"
#include "CGCXXABI.h"
#include "CGObjCRuntime.h"
#include "CodeGenModule.h"
#include "TargetInfo.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/Basic/TargetBuiltins.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/CodeGen/CGFunctionInfo.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Intrinsics.h"
#include <sstream>
using namespace clang;
using namespace CodeGen;
using namespace llvm;
/// getBuiltinLibFunction - Given a builtin id for a function like
/// "__builtin_fabsf", return a Function* for "fabsf".
llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
unsigned BuiltinID) {
assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
// Get the name, skip over the __builtin_ prefix (if necessary).
StringRef Name;
GlobalDecl D(FD);
// If the builtin has been declared explicitly with an assembler label,
// use the mangled name. This differs from the plain label on platforms
// that prefix labels.
if (FD->hasAttr<AsmLabelAttr>())
Name = getMangledName(D);
else
Name = Context.BuiltinInfo.getName(BuiltinID) + 10;
llvm::FunctionType *Ty =
cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
}
/// Emit the conversions required to turn the given value into an
/// integer of the given size.
static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
QualType T, llvm::IntegerType *IntType) {
V = CGF.EmitToMemory(V, T);
if (V->getType()->isPointerTy())
return CGF.Builder.CreatePtrToInt(V, IntType);
assert(V->getType() == IntType);
return V;
}
static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
QualType T, llvm::Type *ResultType) {
V = CGF.EmitFromMemory(V, T);
if (ResultType->isPointerTy())
return CGF.Builder.CreateIntToPtr(V, ResultType);
assert(V->getType() == ResultType);
return V;
}
/// Utility to insert an atomic instruction based on Instrinsic::ID
/// and the expression node.
static Value *MakeBinaryAtomicValue(CodeGenFunction &CGF,
llvm::AtomicRMWInst::BinOp Kind,
const CallExpr *E) {
QualType T = E->getType();
assert(E->getArg(0)->getType()->isPointerType());
assert(CGF.getContext().hasSameUnqualifiedType(T,
E->getArg(0)->getType()->getPointeeType()));
assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
llvm::IntegerType *IntType =
llvm::IntegerType::get(CGF.getLLVMContext(),
CGF.getContext().getTypeSize(T));
llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
llvm::Value *Args[2];
Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
Args[1] = CGF.EmitScalarExpr(E->getArg(1));
llvm::Type *ValueType = Args[1]->getType();
Args[1] = EmitToInt(CGF, Args[1], T, IntType);
llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
return EmitFromInt(CGF, Result, T, ValueType);
}
static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
Value *Val = CGF.EmitScalarExpr(E->getArg(0));
Value *Address = CGF.EmitScalarExpr(E->getArg(1));
// Convert the type of the pointer to a pointer to the stored type.
Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
Value *BC = CGF.Builder.CreateBitCast(
Address, llvm::PointerType::getUnqual(Val->getType()), "cast");
LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType());
LV.setNontemporal(true);
CGF.EmitStoreOfScalar(Val, LV, false);
return nullptr;
}
static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
Value *Address = CGF.EmitScalarExpr(E->getArg(0));
LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType());
LV.setNontemporal(true);
return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
}
static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
llvm::AtomicRMWInst::BinOp Kind,
const CallExpr *E) {
return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
}
/// Utility to insert an atomic instruction based Instrinsic::ID and
/// the expression node, where the return value is the result of the
/// operation.
static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
llvm::AtomicRMWInst::BinOp Kind,
const CallExpr *E,
Instruction::BinaryOps Op,
bool Invert = false) {
QualType T = E->getType();
assert(E->getArg(0)->getType()->isPointerType());
assert(CGF.getContext().hasSameUnqualifiedType(T,
E->getArg(0)->getType()->getPointeeType()));
assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
llvm::IntegerType *IntType =
llvm::IntegerType::get(CGF.getLLVMContext(),
CGF.getContext().getTypeSize(T));
llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
llvm::Value *Args[2];
Args[1] = CGF.EmitScalarExpr(E->getArg(1));
llvm::Type *ValueType = Args[1]->getType();
Args[1] = EmitToInt(CGF, Args[1], T, IntType);
Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
if (Invert)
Result = CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
llvm::ConstantInt::get(IntType, -1));
Result = EmitFromInt(CGF, Result, T, ValueType);
return RValue::get(Result);
}
/// @brief Utility to insert an atomic cmpxchg instruction.
///
/// @param CGF The current codegen function.
/// @param E Builtin call expression to convert to cmpxchg.
/// arg0 - address to operate on
/// arg1 - value to compare with
/// arg2 - new value
/// @param ReturnBool Specifies whether to return success flag of
/// cmpxchg result or the old value.
///
/// @returns result of cmpxchg, according to ReturnBool
static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
bool ReturnBool) {
QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
llvm::IntegerType *IntType = llvm::IntegerType::get(
CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
Value *Args[3];
Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
Args[1] = CGF.EmitScalarExpr(E->getArg(1));
llvm::Type *ValueType = Args[1]->getType();
Args[1] = EmitToInt(CGF, Args[1], T, IntType);
Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent,
llvm::AtomicOrdering::SequentiallyConsistent);
if (ReturnBool)
// Extract boolean success flag and zext it to int.
return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
CGF.ConvertType(E->getType()));
else
// Extract old value and emit it using the same type as compare value.
return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
ValueType);
}
/// EmitFAbs - Emit a call to @llvm.fabs().
static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
Value *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
Call->setDoesNotAccessMemory();
return Call;
}
/// Emit the computation of the sign bit for a floating point value. Returns
/// the i1 sign bit value.
static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
LLVMContext &C = CGF.CGM.getLLVMContext();
llvm::Type *Ty = V->getType();
int Width = Ty->getPrimitiveSizeInBits();
llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
V = CGF.Builder.CreateBitCast(V, IntTy);
if (Ty->isPPC_FP128Ty()) {
// We want the sign bit of the higher-order double. The bitcast we just
// did works as if the double-double was stored to memory and then
// read as an i128. The "store" will put the higher-order double in the
// lower address in both little- and big-Endian modes, but the "load"
// will treat those bits as a different part of the i128: the low bits in
// little-Endian, the high bits in big-Endian. Therefore, on big-Endian
// we need to shift the high bits down to the low before truncating.
Width >>= 1;
if (CGF.getTarget().isBigEndian()) {
Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
V = CGF.Builder.CreateLShr(V, ShiftCst);
}
// We are truncating value in order to extract the higher-order
// double, which we will be using to extract the sign from.
IntTy = llvm::IntegerType::get(C, Width);
V = CGF.Builder.CreateTrunc(V, IntTy);
}
Value *Zero = llvm::Constant::getNullValue(IntTy);
return CGF.Builder.CreateICmpSLT(V, Zero);
}
static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *Fn,
const CallExpr *E, llvm::Value *calleeValue) {
return CGF.EmitCall(E->getCallee()->getType(), calleeValue, E,
ReturnValueSlot(), Fn);
}
/// \brief Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
/// depending on IntrinsicID.
///
/// \arg CGF The current codegen function.
/// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
/// \arg X The first argument to the llvm.*.with.overflow.*.
/// \arg Y The second argument to the llvm.*.with.overflow.*.
/// \arg Carry The carry returned by the llvm.*.with.overflow.*.
/// \returns The result (i.e. sum/product) returned by the intrinsic.
static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
const llvm::Intrinsic::ID IntrinsicID,
llvm::Value *X, llvm::Value *Y,
llvm::Value *&Carry) {
// Make sure we have integers of the same width.
assert(X->getType() == Y->getType() &&
"Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)");
llvm::Value *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
return CGF.Builder.CreateExtractValue(Tmp, 0);
}
// Emit a simple mangled intrinsic that has 1 argument and a return type
// matching the argument type.
static Value *emitUnaryBuiltin(CodeGenFunction &CGF,
const CallExpr *E,
unsigned IntrinsicID) {
llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
return CGF.Builder.CreateCall(F, Src0);
}
// Emit an intrinsic that has 3 float or double operands.
static Value *emitTernaryFPBuiltin(CodeGenFunction &CGF,
const CallExpr *E,
unsigned IntrinsicID) {
llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
return CGF.Builder.CreateCall(F, {Src0, Src1, Src2});
}
// Emit an intrinsic that has 1 float or double operand, and 1 integer.
static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
const CallExpr *E,
unsigned IntrinsicID) {
llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
return CGF.Builder.CreateCall(F, {Src0, Src1});
}
namespace {
struct WidthAndSignedness {
unsigned Width;
bool Signed;
};
}
static WidthAndSignedness
getIntegerWidthAndSignedness(const clang::ASTContext &context,
const clang::QualType Type) {
assert(Type->isIntegerType() && "Given type is not an integer.");
unsigned Width = Type->isBooleanType() ? 1 : context.getTypeInfo(Type).Width;
bool Signed = Type->isSignedIntegerType();
return {Width, Signed};
}
// Given one or more integer types, this function produces an integer type that
// encompasses them: any value in one of the given types could be expressed in
// the encompassing type.
static struct WidthAndSignedness
EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
assert(Types.size() > 0 && "Empty list of types.");
// If any of the given types is signed, we must return a signed type.
bool Signed = false;
for (const auto &Type : Types) {
Signed |= Type.Signed;
}
// The encompassing type must have a width greater than or equal to the width
// of the specified types. Aditionally, if the encompassing type is signed,
// its width must be strictly greater than the width of any unsigned types
// given.
unsigned Width = 0;
for (const auto &Type : Types) {
unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
if (Width < MinWidth) {
Width = MinWidth;
}
}
return {Width, Signed};
}
Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
llvm::Type *DestType = Int8PtrTy;
if (ArgValue->getType() != DestType)
ArgValue =
Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data());
Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
}
/// Checks if using the result of __builtin_object_size(p, @p From) in place of
/// __builtin_object_size(p, @p To) is correct
static bool areBOSTypesCompatible(int From, int To) {
// Note: Our __builtin_object_size implementation currently treats Type=0 and
// Type=2 identically. Encoding this implementation detail here may make
// improving __builtin_object_size difficult in the future, so it's omitted.
return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
}
static llvm::Value *
getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
}
llvm::Value *
CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
llvm::IntegerType *ResType) {
uint64_t ObjectSize;
if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
return emitBuiltinObjectSize(E, Type, ResType);
return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
}
/// Returns a Value corresponding to the size of the given expression.
/// This Value may be either of the following:
/// - A llvm::Argument (if E is a param with the pass_object_size attribute on
/// it)
/// - A call to the @llvm.objectsize intrinsic
llvm::Value *
CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
llvm::IntegerType *ResType) {
// We need to reference an argument if the pointer is a parameter with the
// pass_object_size attribute.
if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
if (Param != nullptr && PS != nullptr &&
areBOSTypesCompatible(PS->getType(), Type)) {
auto Iter = SizeArguments.find(Param);
assert(Iter != SizeArguments.end());
const ImplicitParamDecl *D = Iter->second;
auto DIter = LocalDeclMap.find(D);
assert(DIter != LocalDeclMap.end());
return EmitLoadOfScalar(DIter->second, /*volatile=*/false,
getContext().getSizeType(), E->getLocStart());
}
}
// LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
// evaluate E for side-effects. In either case, we shouldn't lower to
// @llvm.objectsize.
if (Type == 3 || E->HasSideEffects(getContext()))
return getDefaultBuiltinObjectSizeResult(Type, ResType);
// LLVM only supports 0 and 2, make sure that we pass along that
// as a boolean.
auto *CI = ConstantInt::get(Builder.getInt1Ty(), (Type & 2) >> 1);
// FIXME: Get right address space.
llvm::Type *Tys[] = {ResType, Builder.getInt8PtrTy(0)};
Value *F = CGM.getIntrinsic(Intrinsic::objectsize, Tys);
return Builder.CreateCall(F, {EmitScalarExpr(E), CI});
}
RValue CodeGenFunction::EmitBuiltinExpr(const FunctionDecl *FD,
unsigned BuiltinID, const CallExpr *E,
ReturnValueSlot ReturnValue) {
// See if we can constant fold this builtin. If so, don't emit it at all.
Expr::EvalResult Result;
if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
!Result.hasSideEffects()) {
if (Result.Val.isInt())
return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
Result.Val.getInt()));
if (Result.Val.isFloat())
return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
Result.Val.getFloat()));
}
switch (BuiltinID) {
default: break; // Handle intrinsics and libm functions below.
case Builtin::BI__builtin___CFStringMakeConstantString:
case Builtin::BI__builtin___NSStringMakeConstantString:
return RValue::get(CGM.EmitConstantExpr(E, E->getType(), nullptr));
case Builtin::BI__builtin_stdarg_start:
case Builtin::BI__builtin_va_start:
case Builtin::BI__va_start:
case Builtin::BI__builtin_va_end:
return RValue::get(
EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
? EmitScalarExpr(E->getArg(0))
: EmitVAListRef(E->getArg(0)).getPointer(),
BuiltinID != Builtin::BI__builtin_va_end));
case Builtin::BI__builtin_va_copy: {
Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
llvm::Type *Type = Int8PtrTy;
DstPtr = Builder.CreateBitCast(DstPtr, Type);
SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy),
{DstPtr, SrcPtr}));
}
case Builtin::BI__builtin_abs:
case Builtin::BI__builtin_labs:
case Builtin::BI__builtin_llabs: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
Value *NegOp = Builder.CreateNeg(ArgValue, "neg");
Value *CmpResult =
Builder.CreateICmpSGE(ArgValue,
llvm::Constant::getNullValue(ArgValue->getType()),
"abscond");
Value *Result =
Builder.CreateSelect(CmpResult, ArgValue, NegOp, "abs");
return RValue::get(Result);
}
case Builtin::BI__builtin_fabs:
case Builtin::BI__builtin_fabsf:
case Builtin::BI__builtin_fabsl: {
Value *Arg1 = EmitScalarExpr(E->getArg(0));
Value *Result = EmitFAbs(*this, Arg1);
return RValue::get(Result);
}
case Builtin::BI__builtin_fmod:
case Builtin::BI__builtin_fmodf:
case Builtin::BI__builtin_fmodl: {
Value *Arg1 = EmitScalarExpr(E->getArg(0));
Value *Arg2 = EmitScalarExpr(E->getArg(1));
Value *Result = Builder.CreateFRem(Arg1, Arg2, "fmod");
return RValue::get(Result);
}
case Builtin::BI__builtin_conj:
case Builtin::BI__builtin_conjf:
case Builtin::BI__builtin_conjl: {
ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
Value *Real = ComplexVal.first;
Value *Imag = ComplexVal.second;
Value *Zero =
Imag->getType()->isFPOrFPVectorTy()
? llvm::ConstantFP::getZeroValueForNegation(Imag->getType())
: llvm::Constant::getNullValue(Imag->getType());
Imag = Builder.CreateFSub(Zero, Imag, "sub");
return RValue::getComplex(std::make_pair(Real, Imag));
}
case Builtin::BI__builtin_creal:
case Builtin::BI__builtin_crealf:
case Builtin::BI__builtin_creall:
case Builtin::BIcreal:
case Builtin::BIcrealf:
case Builtin::BIcreall: {
ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
return RValue::get(ComplexVal.first);
}
case Builtin::BI__builtin_cimag:
case Builtin::BI__builtin_cimagf:
case Builtin::BI__builtin_cimagl:
case Builtin::BIcimag:
case Builtin::BIcimagf:
case Builtin::BIcimagl: {
ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
return RValue::get(ComplexVal.second);
}
case Builtin::BI__builtin_ctzs:
case Builtin::BI__builtin_ctz:
case Builtin::BI__builtin_ctzl:
case Builtin::BI__builtin_ctzll: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = ArgValue->getType();
Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
llvm::Type *ResultType = ConvertType(E->getType());
Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
"cast");
return RValue::get(Result);
}
case Builtin::BI__builtin_clzs:
case Builtin::BI__builtin_clz:
case Builtin::BI__builtin_clzl:
case Builtin::BI__builtin_clzll: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = ArgValue->getType();
Value *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
llvm::Type *ResultType = ConvertType(E->getType());
Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
"cast");
return RValue::get(Result);
}
case Builtin::BI__builtin_ffs:
case Builtin::BI__builtin_ffsl:
case Builtin::BI__builtin_ffsll: {
// ffs(x) -> x ? cttz(x) + 1 : 0
Value *ArgValue = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = ArgValue->getType();
Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
llvm::Type *ResultType = ConvertType(E->getType());
Value *Tmp =
Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
llvm::ConstantInt::get(ArgType, 1));
Value *Zero = llvm::Constant::getNullValue(ArgType);
Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
"cast");
return RValue::get(Result);
}
case Builtin::BI__builtin_parity:
case Builtin::BI__builtin_parityl:
case Builtin::BI__builtin_parityll: {
// parity(x) -> ctpop(x) & 1
Value *ArgValue = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = ArgValue->getType();
Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
llvm::Type *ResultType = ConvertType(E->getType());
Value *Tmp = Builder.CreateCall(F, ArgValue);
Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
"cast");
return RValue::get(Result);
}
case Builtin::BI__builtin_popcount:
case Builtin::BI__builtin_popcountl:
case Builtin::BI__builtin_popcountll: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = ArgValue->getType();
Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
llvm::Type *ResultType = ConvertType(E->getType());
Value *Result = Builder.CreateCall(F, ArgValue);
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
"cast");
return RValue::get(Result);
}
case Builtin::BI__builtin_unpredictable: {
// Always return the argument of __builtin_unpredictable. LLVM does not
// handle this builtin. Metadata for this builtin should be added directly
// to instructions such as branches or switches that use it.
return RValue::get(EmitScalarExpr(E->getArg(0)));
}
case Builtin::BI__builtin_expect: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = ArgValue->getType();
Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
// Don't generate llvm.expect on -O0 as the backend won't use it for
// anything.
// Note, we still IRGen ExpectedValue because it could have side-effects.
if (CGM.getCodeGenOpts().OptimizationLevel == 0)
return RValue::get(ArgValue);
Value *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
Value *Result =
Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
return RValue::get(Result);
}
case Builtin::BI__builtin_assume_aligned: {
Value *PtrValue = EmitScalarExpr(E->getArg(0));
Value *OffsetValue =
(E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
unsigned Alignment = (unsigned) AlignmentCI->getZExtValue();
EmitAlignmentAssumption(PtrValue, Alignment, OffsetValue);
return RValue::get(PtrValue);
}
case Builtin::BI__assume:
case Builtin::BI__builtin_assume: {
if (E->getArg(0)->HasSideEffects(getContext()))
return RValue::get(nullptr);
Value *ArgValue = EmitScalarExpr(E->getArg(0));
Value *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
return RValue::get(Builder.CreateCall(FnAssume, ArgValue));
}
case Builtin::BI__builtin_bswap16:
case Builtin::BI__builtin_bswap32:
case Builtin::BI__builtin_bswap64: {
return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap));
}
case Builtin::BI__builtin_bitreverse8:
case Builtin::BI__builtin_bitreverse16:
case Builtin::BI__builtin_bitreverse32:
case Builtin::BI__builtin_bitreverse64: {
return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse));
}
case Builtin::BI__builtin_object_size: {
unsigned Type =
E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
// We pass this builtin onto the optimizer so that it can figure out the
// object size in more complex cases.
return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType));
}
case Builtin::BI__builtin_prefetch: {
Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
// FIXME: Technically these constants should of type 'int', yes?
RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
llvm::ConstantInt::get(Int32Ty, 0);
Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
llvm::ConstantInt::get(Int32Ty, 3);
Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data}));
}
case Builtin::BI__builtin_readcyclecounter: {
Value *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
return RValue::get(Builder.CreateCall(F));
}
case Builtin::BI__builtin___clear_cache: {
Value *Begin = EmitScalarExpr(E->getArg(0));
Value *End = EmitScalarExpr(E->getArg(1));
Value *F = CGM.getIntrinsic(Intrinsic::clear_cache);
return RValue::get(Builder.CreateCall(F, {Begin, End}));
}
case Builtin::BI__builtin_trap:
return RValue::get(EmitTrapCall(Intrinsic::trap));
case Builtin::BI__debugbreak:
return RValue::get(EmitTrapCall(Intrinsic::debugtrap));
case Builtin::BI__builtin_unreachable: {
if (SanOpts.has(SanitizerKind::Unreachable)) {
SanitizerScope SanScope(this);
EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
SanitizerKind::Unreachable),
"builtin_unreachable", EmitCheckSourceLocation(E->getExprLoc()),
None);
} else
Builder.CreateUnreachable();
// We do need to preserve an insertion point.
EmitBlock(createBasicBlock("unreachable.cont"));
return RValue::get(nullptr);
}
case Builtin::BI__builtin_powi:
case Builtin::BI__builtin_powif:
case Builtin::BI__builtin_powil: {
Value *Base = EmitScalarExpr(E->getArg(0));
Value *Exponent = EmitScalarExpr(E->getArg(1));
llvm::Type *ArgType = Base->getType();
Value *F = CGM.getIntrinsic(Intrinsic::powi, ArgType);
return RValue::get(Builder.CreateCall(F, {Base, Exponent}));
}
case Builtin::BI__builtin_isgreater:
case Builtin::BI__builtin_isgreaterequal:
case Builtin::BI__builtin_isless:
case Builtin::BI__builtin_islessequal:
case Builtin::BI__builtin_islessgreater:
case Builtin::BI__builtin_isunordered: {
// Ordered comparisons: we know the arguments to these are matching scalar
// floating point values.
Value *LHS = EmitScalarExpr(E->getArg(0));
Value *RHS = EmitScalarExpr(E->getArg(1));
switch (BuiltinID) {
default: llvm_unreachable("Unknown ordered comparison");
case Builtin::BI__builtin_isgreater:
LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_isgreaterequal:
LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_isless:
LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_islessequal:
LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_islessgreater:
LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_isunordered:
LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
break;
}
// ZExt bool to int type.
return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
}
case Builtin::BI__builtin_isnan: {
Value *V = EmitScalarExpr(E->getArg(0));
V = Builder.CreateFCmpUNO(V, V, "cmp");
return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
}
case Builtin::BI__builtin_isinf:
case Builtin::BI__builtin_isfinite: {
// isinf(x) --> fabs(x) == infinity
// isfinite(x) --> fabs(x) != infinity
// x != NaN via the ordered compare in either case.
Value *V = EmitScalarExpr(E->getArg(0));
Value *Fabs = EmitFAbs(*this, V);
Constant *Infinity = ConstantFP::getInfinity(V->getType());
CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf)
? CmpInst::FCMP_OEQ
: CmpInst::FCMP_ONE;
Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf");
return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType())));
}
case Builtin::BI__builtin_isinf_sign: {
// isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
Value *Arg = EmitScalarExpr(E->getArg(0));
Value *AbsArg = EmitFAbs(*this, Arg);
Value *IsInf = Builder.CreateFCmpOEQ(
AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
Value *IsNeg = EmitSignBit(*this, Arg);
llvm::Type *IntTy = ConvertType(E->getType());
Value *Zero = Constant::getNullValue(IntTy);
Value *One = ConstantInt::get(IntTy, 1);
Value *NegativeOne = ConstantInt::get(IntTy, -1);
Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
return RValue::get(Result);
}
case Builtin::BI__builtin_isnormal: {
// isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
Value *V = EmitScalarExpr(E->getArg(0));
Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
Value *Abs = EmitFAbs(*this, V);
Value *IsLessThanInf =
Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
APFloat Smallest = APFloat::getSmallestNormalized(
getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
Value *IsNormal =
Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
"isnormal");
V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
V = Builder.CreateAnd(V, IsNormal, "and");
return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
}
case Builtin::BI__builtin_fpclassify: {
Value *V = EmitScalarExpr(E->getArg(5));
llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
// Create Result
BasicBlock *Begin = Builder.GetInsertBlock();
BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
Builder.SetInsertPoint(End);
PHINode *Result =
Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
"fpclassify_result");
// if (V==0) return FP_ZERO
Builder.SetInsertPoint(Begin);
Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
"iszero");
Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
Builder.CreateCondBr(IsZero, End, NotZero);
Result->addIncoming(ZeroLiteral, Begin);
// if (V != V) return FP_NAN
Builder.SetInsertPoint(NotZero);
Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
Value *NanLiteral = EmitScalarExpr(E->getArg(0));
BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
Builder.CreateCondBr(IsNan, End, NotNan);
Result->addIncoming(NanLiteral, NotZero);
// if (fabs(V) == infinity) return FP_INFINITY
Builder.SetInsertPoint(NotNan);
Value *VAbs = EmitFAbs(*this, V);
Value *IsInf =
Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
"isinf");
Value *InfLiteral = EmitScalarExpr(E->getArg(1));
BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
Builder.CreateCondBr(IsInf, End, NotInf);
Result->addIncoming(InfLiteral, NotNan);
// if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
Builder.SetInsertPoint(NotInf);
APFloat Smallest = APFloat::getSmallestNormalized(
getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
Value *IsNormal =
Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
"isnormal");
Value *NormalResult =
Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
EmitScalarExpr(E->getArg(3)));
Builder.CreateBr(End);
Result->addIncoming(NormalResult, NotInf);
// return Result
Builder.SetInsertPoint(End);
return RValue::get(Result);
}
case Builtin::BIalloca:
case Builtin::BI_alloca:
case Builtin::BI__builtin_alloca: {
Value *Size = EmitScalarExpr(E->getArg(0));
return RValue::get(Builder.CreateAlloca(Builder.getInt8Ty(), Size));
}
case Builtin::BIbzero:
case Builtin::BI__builtin_bzero: {
Address Dest = EmitPointerWithAlignment(E->getArg(0));
Value *SizeVal = EmitScalarExpr(E->getArg(1));
EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
E->getArg(0)->getExprLoc(), FD, 0);
Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
return RValue::get(Dest.getPointer());
}
case Builtin::BImemcpy:
case Builtin::BI__builtin_memcpy: {
Address Dest = EmitPointerWithAlignment(E->getArg(0));
Address Src = EmitPointerWithAlignment(E->getArg(1));
Value *SizeVal = EmitScalarExpr(E->getArg(2));
EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
E->getArg(0)->getExprLoc(), FD, 0);
EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
E->getArg(1)->getExprLoc(), FD, 1);
Builder.CreateMemCpy(Dest, Src, SizeVal, false);
return RValue::get(Dest.getPointer());
}
case Builtin::BI__builtin___memcpy_chk: {
// fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
llvm::APSInt Size, DstSize;
if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
!E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
break;
if (Size.ugt(DstSize))
break;
Address Dest = EmitPointerWithAlignment(E->getArg(0));
Address Src = EmitPointerWithAlignment(E->getArg(1));
Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
Builder.CreateMemCpy(Dest, Src, SizeVal, false);
return RValue::get(Dest.getPointer());
}
case Builtin::BI__builtin_objc_memmove_collectable: {
Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
Value *SizeVal = EmitScalarExpr(E->getArg(2));
CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
DestAddr, SrcAddr, SizeVal);
return RValue::get(DestAddr.getPointer());
}
case Builtin::BI__builtin___memmove_chk: {
// fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
llvm::APSInt Size, DstSize;
if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
!E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
break;
if (Size.ugt(DstSize))
break;
Address Dest = EmitPointerWithAlignment(E->getArg(0));
Address Src = EmitPointerWithAlignment(E->getArg(1));
Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
Builder.CreateMemMove(Dest, Src, SizeVal, false);
return RValue::get(Dest.getPointer());
}
case Builtin::BImemmove:
case Builtin::BI__builtin_memmove: {
Address Dest = EmitPointerWithAlignment(E->getArg(0));
Address Src = EmitPointerWithAlignment(E->getArg(1));
Value *SizeVal = EmitScalarExpr(E->getArg(2));
EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
E->getArg(0)->getExprLoc(), FD, 0);
EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
E->getArg(1)->getExprLoc(), FD, 1);
Builder.CreateMemMove(Dest, Src, SizeVal, false);
return RValue::get(Dest.getPointer());
}
case Builtin::BImemset:
case Builtin::BI__builtin_memset: {
Address Dest = EmitPointerWithAlignment(E->getArg(0));
Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
Builder.getInt8Ty());
Value *SizeVal = EmitScalarExpr(E->getArg(2));
EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
E->getArg(0)->getExprLoc(), FD, 0);
Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
return RValue::get(Dest.getPointer());
}
case Builtin::BI__builtin___memset_chk: {
// fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
llvm::APSInt Size, DstSize;
if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
!E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
break;
if (Size.ugt(DstSize))
break;
Address Dest = EmitPointerWithAlignment(E->getArg(0));
Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
Builder.getInt8Ty());
Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
return RValue::get(Dest.getPointer());
}
case Builtin::BI__builtin_dwarf_cfa: {
// The offset in bytes from the first argument to the CFA.
//
// Why on earth is this in the frontend? Is there any reason at
// all that the backend can't reasonably determine this while
// lowering llvm.eh.dwarf.cfa()?
//
// TODO: If there's a satisfactory reason, add a target hook for
// this instead of hard-coding 0, which is correct for most targets.
int32_t Offset = 0;
Value *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
return RValue::get(Builder.CreateCall(F,
llvm::ConstantInt::get(Int32Ty, Offset)));
}
case Builtin::BI__builtin_return_address: {
Value *Depth =
CGM.EmitConstantExpr(E->getArg(0), getContext().UnsignedIntTy, this);
Value *F = CGM.getIntrinsic(Intrinsic::returnaddress);
return RValue::get(Builder.CreateCall(F, Depth));
}
case Builtin::BI__builtin_frame_address: {
Value *Depth =
CGM.EmitConstantExpr(E->getArg(0), getContext().UnsignedIntTy, this);
Value *F = CGM.getIntrinsic(Intrinsic::frameaddress);
return RValue::get(Builder.CreateCall(F, Depth));
}
case Builtin::BI__builtin_extract_return_addr: {
Value *Address = EmitScalarExpr(E->getArg(0));
Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
return RValue::get(Result);
}
case Builtin::BI__builtin_frob_return_addr: {
Value *Address = EmitScalarExpr(E->getArg(0));
Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
return RValue::get(Result);
}
case Builtin::BI__builtin_dwarf_sp_column: {
llvm::IntegerType *Ty
= cast<llvm::IntegerType>(ConvertType(E->getType()));
int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
if (Column == -1) {
CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
return RValue::get(llvm::UndefValue::get(Ty));
}
return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
}
case Builtin::BI__builtin_init_dwarf_reg_size_table: {
Value *Address = EmitScalarExpr(E->getArg(0));
if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
}
case Builtin::BI__builtin_eh_return: {
Value *Int = EmitScalarExpr(E->getArg(0));
Value *Ptr = EmitScalarExpr(E->getArg(1));
llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
"LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
Value *F = CGM.getIntrinsic(IntTy->getBitWidth() == 32
? Intrinsic::eh_return_i32
: Intrinsic::eh_return_i64);
Builder.CreateCall(F, {Int, Ptr});
Builder.CreateUnreachable();
// We do need to preserve an insertion point.
EmitBlock(createBasicBlock("builtin_eh_return.cont"));
return RValue::get(nullptr);
}
case Builtin::BI__builtin_unwind_init: {
Value *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
return RValue::get(Builder.CreateCall(F));
}
case Builtin::BI__builtin_extend_pointer: {
// Extends a pointer to the size of an _Unwind_Word, which is
// uint64_t on all platforms. Generally this gets poked into a
// register and eventually used as an address, so if the
// addressing registers are wider than pointers and the platform
// doesn't implicitly ignore high-order bits when doing
// addressing, we need to make sure we zext / sext based on
// the platform's expectations.
//
// See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
// Cast the pointer to intptr_t.
Value *Ptr = EmitScalarExpr(E->getArg(0));
Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
// If that's 64 bits, we're done.
if (IntPtrTy->getBitWidth() == 64)
return RValue::get(Result);
// Otherwise, ask the codegen data what to do.
if (getTargetHooks().extendPointerWithSExt())
return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
else
return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
}
case Builtin::BI__builtin_setjmp: {
// Buffer is a void**.
Address Buf = EmitPointerWithAlignment(E->getArg(0));
// Store the frame pointer to the setjmp buffer.
Value *FrameAddr =
Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
ConstantInt::get(Int32Ty, 0));
Builder.CreateStore(FrameAddr, Buf);
// Store the stack pointer to the setjmp buffer.
Value *StackAddr =
Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
Address StackSaveSlot =
Builder.CreateConstInBoundsGEP(Buf, 2, getPointerSize());
Builder.CreateStore(StackAddr, StackSaveSlot);
// Call LLVM's EH setjmp, which is lightweight.
Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
return RValue::get(Builder.CreateCall(F, Buf.getPointer()));
}
case Builtin::BI__builtin_longjmp: {
Value *Buf = EmitScalarExpr(E->getArg(0));
Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
// Call LLVM's EH longjmp, which is lightweight.
Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
// longjmp doesn't return; mark this as unreachable.
Builder.CreateUnreachable();
// We do need to preserve an insertion point.
EmitBlock(createBasicBlock("longjmp.cont"));
return RValue::get(nullptr);
}
case Builtin::BI__sync_fetch_and_add:
case Builtin::BI__sync_fetch_and_sub:
case Builtin::BI__sync_fetch_and_or:
case Builtin::BI__sync_fetch_and_and:
case Builtin::BI__sync_fetch_and_xor:
case Builtin::BI__sync_fetch_and_nand:
case Builtin::BI__sync_add_and_fetch:
case Builtin::BI__sync_sub_and_fetch:
case Builtin::BI__sync_and_and_fetch:
case Builtin::BI__sync_or_and_fetch:
case Builtin::BI__sync_xor_and_fetch:
case Builtin::BI__sync_nand_and_fetch:
case Builtin::BI__sync_val_compare_and_swap:
case Builtin::BI__sync_bool_compare_and_swap:
case Builtin::BI__sync_lock_test_and_set:
case Builtin::BI__sync_lock_release:
case Builtin::BI__sync_swap:
llvm_unreachable("Shouldn't make it through sema");
case Builtin::BI__sync_fetch_and_add_1:
case Builtin::BI__sync_fetch_and_add_2:
case Builtin::BI__sync_fetch_and_add_4:
case Builtin::BI__sync_fetch_and_add_8:
case Builtin::BI__sync_fetch_and_add_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
case Builtin::BI__sync_fetch_and_sub_1:
case Builtin::BI__sync_fetch_and_sub_2:
case Builtin::BI__sync_fetch_and_sub_4:
case Builtin::BI__sync_fetch_and_sub_8:
case Builtin::BI__sync_fetch_and_sub_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
case Builtin::BI__sync_fetch_and_or_1:
case Builtin::BI__sync_fetch_and_or_2:
case Builtin::BI__sync_fetch_and_or_4:
case Builtin::BI__sync_fetch_and_or_8:
case Builtin::BI__sync_fetch_and_or_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
case Builtin::BI__sync_fetch_and_and_1:
case Builtin::BI__sync_fetch_and_and_2:
case Builtin::BI__sync_fetch_and_and_4:
case Builtin::BI__sync_fetch_and_and_8:
case Builtin::BI__sync_fetch_and_and_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
case Builtin::BI__sync_fetch_and_xor_1:
case Builtin::BI__sync_fetch_and_xor_2:
case Builtin::BI__sync_fetch_and_xor_4:
case Builtin::BI__sync_fetch_and_xor_8:
case Builtin::BI__sync_fetch_and_xor_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
case Builtin::BI__sync_fetch_and_nand_1:
case Builtin::BI__sync_fetch_and_nand_2:
case Builtin::BI__sync_fetch_and_nand_4:
case Builtin::BI__sync_fetch_and_nand_8:
case Builtin::BI__sync_fetch_and_nand_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
// Clang extensions: not overloaded yet.
case Builtin::BI__sync_fetch_and_min:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
case Builtin::BI__sync_fetch_and_max:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
case Builtin::BI__sync_fetch_and_umin:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
case Builtin::BI__sync_fetch_and_umax:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
case Builtin::BI__sync_add_and_fetch_1:
case Builtin::BI__sync_add_and_fetch_2:
case Builtin::BI__sync_add_and_fetch_4:
case Builtin::BI__sync_add_and_fetch_8:
case Builtin::BI__sync_add_and_fetch_16:
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
llvm::Instruction::Add);
case Builtin::BI__sync_sub_and_fetch_1:
case Builtin::BI__sync_sub_and_fetch_2:
case Builtin::BI__sync_sub_and_fetch_4:
case Builtin::BI__sync_sub_and_fetch_8:
case Builtin::BI__sync_sub_and_fetch_16:
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
llvm::Instruction::Sub);
case Builtin::BI__sync_and_and_fetch_1:
case Builtin::BI__sync_and_and_fetch_2:
case Builtin::BI__sync_and_and_fetch_4:
case Builtin::BI__sync_and_and_fetch_8:
case Builtin::BI__sync_and_and_fetch_16:
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
llvm::Instruction::And);
case Builtin::BI__sync_or_and_fetch_1:
case Builtin::BI__sync_or_and_fetch_2:
case Builtin::BI__sync_or_and_fetch_4:
case Builtin::BI__sync_or_and_fetch_8:
case Builtin::BI__sync_or_and_fetch_16:
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
llvm::Instruction::Or);
case Builtin::BI__sync_xor_and_fetch_1:
case Builtin::BI__sync_xor_and_fetch_2:
case Builtin::BI__sync_xor_and_fetch_4:
case Builtin::BI__sync_xor_and_fetch_8:
case Builtin::BI__sync_xor_and_fetch_16:
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
llvm::Instruction::Xor);
case Builtin::BI__sync_nand_and_fetch_1:
case Builtin::BI__sync_nand_and_fetch_2:
case Builtin::BI__sync_nand_and_fetch_4:
case Builtin::BI__sync_nand_and_fetch_8:
case Builtin::BI__sync_nand_and_fetch_16:
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
llvm::Instruction::And, true);
case Builtin::BI__sync_val_compare_and_swap_1:
case Builtin::BI__sync_val_compare_and_swap_2:
case Builtin::BI__sync_val_compare_and_swap_4:
case Builtin::BI__sync_val_compare_and_swap_8:
case Builtin::BI__sync_val_compare_and_swap_16:
return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
case Builtin::BI__sync_bool_compare_and_swap_1:
case Builtin::BI__sync_bool_compare_and_swap_2:
case Builtin::BI__sync_bool_compare_and_swap_4:
case Builtin::BI__sync_bool_compare_and_swap_8:
case Builtin::BI__sync_bool_compare_and_swap_16:
return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
case Builtin::BI__sync_swap_1:
case Builtin::BI__sync_swap_2:
case Builtin::BI__sync_swap_4:
case Builtin::BI__sync_swap_8:
case Builtin::BI__sync_swap_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
case Builtin::BI__sync_lock_test_and_set_1:
case Builtin::BI__sync_lock_test_and_set_2:
case Builtin::BI__sync_lock_test_and_set_4:
case Builtin::BI__sync_lock_test_and_set_8:
case Builtin::BI__sync_lock_test_and_set_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
case Builtin::BI__sync_lock_release_1:
case Builtin::BI__sync_lock_release_2:
case Builtin::BI__sync_lock_release_4:
case Builtin::BI__sync_lock_release_8:
case Builtin::BI__sync_lock_release_16: {
Value *Ptr = EmitScalarExpr(E->getArg(0));
QualType ElTy = E->getArg(0)->getType()->getPointeeType();
CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
StoreSize.getQuantity() * 8);
Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
llvm::StoreInst *Store =
Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr,
StoreSize);
Store->setAtomic(llvm::AtomicOrdering::Release);
return RValue::get(nullptr);
}
case Builtin::BI__sync_synchronize: {
// We assume this is supposed to correspond to a C++0x-style
// sequentially-consistent fence (i.e. this is only usable for
// synchonization, not device I/O or anything like that). This intrinsic
// is really badly designed in the sense that in theory, there isn't
// any way to safely use it... but in practice, it mostly works
// to use it with non-atomic loads and stores to get acquire/release
// semantics.
Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
return RValue::get(nullptr);
}
case Builtin::BI__builtin_nontemporal_load:
return RValue::get(EmitNontemporalLoad(*this, E));
case Builtin::BI__builtin_nontemporal_store:
return RValue::get(EmitNontemporalStore(*this, E));
case Builtin::BI__c11_atomic_is_lock_free:
case Builtin::BI__atomic_is_lock_free: {
// Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
// __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
// _Atomic(T) is always properly-aligned.
const char *LibCallName = "__atomic_is_lock_free";
CallArgList Args;
Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
getContext().getSizeType());
if (BuiltinID == Builtin::BI__atomic_is_lock_free)
Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
getContext().VoidPtrTy);
else
Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
getContext().VoidPtrTy);
const CGFunctionInfo &FuncInfo =
CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args);
llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
return EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
}
case Builtin::BI__atomic_test_and_set: {
// Look at the argument type to determine whether this is a volatile
// operation. The parameter type is always volatile.
QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
bool Volatile =
PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
Value *Ptr = EmitScalarExpr(E->getArg(0));
unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
Value *NewVal = Builder.getInt8(1);
Value *Order = EmitScalarExpr(E->getArg(1));
if (isa<llvm::ConstantInt>(Order)) {
int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
AtomicRMWInst *Result = nullptr;
switch (ord) {
case 0: // memory_order_relaxed
default: // invalid order
Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
llvm::AtomicOrdering::Monotonic);
break;
case 1: // memory_order_consume
case 2: // memory_order_acquire
Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
llvm::AtomicOrdering::Acquire);
break;
case 3: // memory_order_release
Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
llvm::AtomicOrdering::Release);
break;
case 4: // memory_order_acq_rel
Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
llvm::AtomicOrdering::AcquireRelease);
break;
case 5: // memory_order_seq_cst
Result = Builder.CreateAtomicRMW(
llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
llvm::AtomicOrdering::SequentiallyConsistent);
break;
}
Result->setVolatile(Volatile);
return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
}
llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
llvm::BasicBlock *BBs[5] = {
createBasicBlock("monotonic", CurFn),
createBasicBlock("acquire", CurFn),
createBasicBlock("release", CurFn),
createBasicBlock("acqrel", CurFn),
createBasicBlock("seqcst", CurFn)
};
llvm::AtomicOrdering Orders[5] = {
llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
llvm::AtomicOrdering::SequentiallyConsistent};
Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
Builder.SetInsertPoint(ContBB);
PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
for (unsigned i = 0; i < 5; ++i) {
Builder.SetInsertPoint(BBs[i]);
AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
Ptr, NewVal, Orders[i]);
RMW->setVolatile(Volatile);
Result->addIncoming(RMW, BBs[i]);
Builder.CreateBr(ContBB);
}
SI->addCase(Builder.getInt32(0), BBs[0]);
SI->addCase(Builder.getInt32(1), BBs[1]);
SI->addCase(Builder.getInt32(2), BBs[1]);
SI->addCase(Builder.getInt32(3), BBs[2]);
SI->addCase(Builder.getInt32(4), BBs[3]);
SI->addCase(Builder.getInt32(5), BBs[4]);
Builder.SetInsertPoint(ContBB);
return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
}
case Builtin::BI__atomic_clear: {
QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
bool Volatile =
PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
Address Ptr = EmitPointerWithAlignment(E->getArg(0));
unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace();
Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
Value *NewVal = Builder.getInt8(0);
Value *Order = EmitScalarExpr(E->getArg(1));
if (isa<llvm::ConstantInt>(Order)) {
int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
switch (ord) {
case 0: // memory_order_relaxed
default: // invalid order
Store->setOrdering(llvm::AtomicOrdering::Monotonic);
break;
case 3: // memory_order_release
Store->setOrdering(llvm::AtomicOrdering::Release);
break;
case 5: // memory_order_seq_cst
Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
break;
}
return RValue::get(nullptr);
}
llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
llvm::BasicBlock *BBs[3] = {
createBasicBlock("monotonic", CurFn),
createBasicBlock("release", CurFn),
createBasicBlock("seqcst", CurFn)
};
llvm::AtomicOrdering Orders[3] = {
llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
llvm::AtomicOrdering::SequentiallyConsistent};
Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
for (unsigned i = 0; i < 3; ++i) {
Builder.SetInsertPoint(BBs[i]);
StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
Store->setOrdering(Orders[i]);
Builder.CreateBr(ContBB);
}
SI->addCase(Builder.getInt32(0), BBs[0]);
SI->addCase(Builder.getInt32(3), BBs[1]);
SI->addCase(Builder.getInt32(5), BBs[2]);
Builder.SetInsertPoint(ContBB);
return RValue::get(nullptr);
}
case Builtin::BI__atomic_thread_fence:
case Builtin::BI__atomic_signal_fence:
case Builtin::BI__c11_atomic_thread_fence:
case Builtin::BI__c11_atomic_signal_fence: {
llvm::SynchronizationScope Scope;
if (BuiltinID == Builtin::BI__atomic_signal_fence ||
BuiltinID == Builtin::BI__c11_atomic_signal_fence)
Scope = llvm::SingleThread;
else
Scope = llvm::CrossThread;
Value *Order = EmitScalarExpr(E->getArg(0));
if (isa<llvm::ConstantInt>(Order)) {
int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
switch (ord) {
case 0: // memory_order_relaxed
default: // invalid order
break;
case 1: // memory_order_consume
case 2: // memory_order_acquire
Builder.CreateFence(llvm::AtomicOrdering::Acquire, Scope);
break;
case 3: // memory_order_release
Builder.CreateFence(llvm::AtomicOrdering::Release, Scope);
break;
case 4: // memory_order_acq_rel
Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, Scope);
break;
case 5: // memory_order_seq_cst
Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
Scope);
break;
}
return RValue::get(nullptr);
}
llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
AcquireBB = createBasicBlock("acquire", CurFn);
ReleaseBB = createBasicBlock("release", CurFn);
AcqRelBB = createBasicBlock("acqrel", CurFn);
SeqCstBB = createBasicBlock("seqcst", CurFn);
llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
Builder.SetInsertPoint(AcquireBB);
Builder.CreateFence(llvm::AtomicOrdering::Acquire, Scope);
Builder.CreateBr(ContBB);
SI->addCase(Builder.getInt32(1), AcquireBB);
SI->addCase(Builder.getInt32(2), AcquireBB);
Builder.SetInsertPoint(ReleaseBB);
Builder.CreateFence(llvm::AtomicOrdering::Release, Scope);
Builder.CreateBr(ContBB);
SI->addCase(Builder.getInt32(3), ReleaseBB);
Builder.SetInsertPoint(AcqRelBB);
Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, Scope);
Builder.CreateBr(ContBB);
SI->addCase(Builder.getInt32(4), AcqRelBB);
Builder.SetInsertPoint(SeqCstBB);
Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, Scope);
Builder.CreateBr(ContBB);
SI->addCase(Builder.getInt32(5), SeqCstBB);
Builder.SetInsertPoint(ContBB);
return RValue::get(nullptr);
}
// Library functions with special handling.
case Builtin::BIsqrt:
case Builtin::BIsqrtf:
case Builtin::BIsqrtl: {
// Transform a call to sqrt* into a @llvm.sqrt.* intrinsic call, but only
// in finite- or unsafe-math mode (the intrinsic has different semantics
// for handling negative numbers compared to the library function, so
// -fmath-errno=0 is not enough).
if (!FD->hasAttr<ConstAttr>())
break;
if (!(CGM.getCodeGenOpts().UnsafeFPMath ||
CGM.getCodeGenOpts().NoNaNsFPMath))
break;
Value *Arg0 = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = Arg0->getType();
Value *F = CGM.getIntrinsic(Intrinsic::sqrt, ArgType);
return RValue::get(Builder.CreateCall(F, Arg0));
}
case Builtin::BI__builtin_pow:
case Builtin::BI__builtin_powf:
case Builtin::BI__builtin_powl:
case Builtin::BIpow:
case Builtin::BIpowf:
case Builtin::BIpowl: {
// Transform a call to pow* into a @llvm.pow.* intrinsic call.
if (!FD->hasAttr<ConstAttr>())
break;
Value *Base = EmitScalarExpr(E->getArg(0));
Value *Exponent = EmitScalarExpr(E->getArg(1));
llvm::Type *ArgType = Base->getType();
Value *F = CGM.getIntrinsic(Intrinsic::pow, ArgType);
return RValue::get(Builder.CreateCall(F, {Base, Exponent}));
}
case Builtin::BIfma:
case Builtin::BIfmaf:
case Builtin::BIfmal:
case Builtin::BI__builtin_fma:
case Builtin::BI__builtin_fmaf:
case Builtin::BI__builtin_fmal: {
// Rewrite fma to intrinsic.
Value *FirstArg = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = FirstArg->getType();
Value *F = CGM.getIntrinsic(Intrinsic::fma, ArgType);
return RValue::get(
Builder.CreateCall(F, {FirstArg, EmitScalarExpr(E->getArg(1)),
EmitScalarExpr(E->getArg(2))}));
}
case Builtin::BI__builtin_signbit:
case Builtin::BI__builtin_signbitf:
case Builtin::BI__builtin_signbitl: {
return RValue::get(
Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
ConvertType(E->getType())));
}
case Builtin::BI__builtin_annotation: {
llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
AnnVal->getType());
// Get the annotation string, go through casts. Sema requires this to be a
// non-wide string literal, potentially casted, so the cast<> is safe.
const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc()));
}
case Builtin::BI__builtin_addcb:
case Builtin::BI__builtin_addcs:
case Builtin::BI__builtin_addc:
case Builtin::BI__builtin_addcl:
case Builtin::BI__builtin_addcll:
case Builtin::BI__builtin_subcb:
case Builtin::BI__builtin_subcs:
case Builtin::BI__builtin_subc:
case Builtin::BI__builtin_subcl:
case Builtin::BI__builtin_subcll: {
// We translate all of these builtins from expressions of the form:
// int x = ..., y = ..., carryin = ..., carryout, result;
// result = __builtin_addc(x, y, carryin, &carryout);
//
// to LLVM IR of the form:
//
// %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
// %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
// %carry1 = extractvalue {i32, i1} %tmp1, 1
// %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
// i32 %carryin)
// %result = extractvalue {i32, i1} %tmp2, 0
// %carry2 = extractvalue {i32, i1} %tmp2, 1
// %tmp3 = or i1 %carry1, %carry2
// %tmp4 = zext i1 %tmp3 to i32
// store i32 %tmp4, i32* %carryout
// Scalarize our inputs.
llvm::Value *X = EmitScalarExpr(E->getArg(0));
llvm::Value *Y = EmitScalarExpr(E->getArg(1));
llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
// Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
llvm::Intrinsic::ID IntrinsicId;
switch (BuiltinID) {
default: llvm_unreachable("Unknown multiprecision builtin id.");
case Builtin::BI__builtin_addcb:
case Builtin::BI__builtin_addcs:
case Builtin::BI__builtin_addc:
case Builtin::BI__builtin_addcl:
case Builtin::BI__builtin_addcll:
IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
break;
case Builtin::BI__builtin_subcb:
case Builtin::BI__builtin_subcs:
case Builtin::BI__builtin_subc:
case Builtin::BI__builtin_subcl:
case Builtin::BI__builtin_subcll:
IntrinsicId = llvm::Intrinsic::usub_with_overflow;
break;
}
// Construct our resulting LLVM IR expression.
llvm::Value *Carry1;
llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
X, Y, Carry1);
llvm::Value *Carry2;
llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
Sum1, Carryin, Carry2);
llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
X->getType());
Builder.CreateStore(CarryOut, CarryOutPtr);
return RValue::get(Sum2);
}
case Builtin::BI__builtin_add_overflow:
case Builtin::BI__builtin_sub_overflow:
case Builtin::BI__builtin_mul_overflow: {
const clang::Expr *LeftArg = E->getArg(0);
const clang::Expr *RightArg = E->getArg(1);
const clang::Expr *ResultArg = E->getArg(2);
clang::QualType ResultQTy =
ResultArg->getType()->castAs<PointerType>()->getPointeeType();
WidthAndSignedness LeftInfo =
getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
WidthAndSignedness RightInfo =
getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
WidthAndSignedness ResultInfo =
getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
WidthAndSignedness EncompassingInfo =
EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
llvm::Type *EncompassingLLVMTy =
llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
llvm::Intrinsic::ID IntrinsicId;
switch (BuiltinID) {
default:
llvm_unreachable("Unknown overflow builtin id.");
case Builtin::BI__builtin_add_overflow:
IntrinsicId = EncompassingInfo.Signed
? llvm::Intrinsic::sadd_with_overflow
: llvm::Intrinsic::uadd_with_overflow;
break;
case Builtin::BI__builtin_sub_overflow:
IntrinsicId = EncompassingInfo.Signed
? llvm::Intrinsic::ssub_with_overflow
: llvm::Intrinsic::usub_with_overflow;
break;
case Builtin::BI__builtin_mul_overflow:
IntrinsicId = EncompassingInfo.Signed
? llvm::Intrinsic::smul_with_overflow
: llvm::Intrinsic::umul_with_overflow;
break;
}
llvm::Value *Left = EmitScalarExpr(LeftArg);
llvm::Value *Right = EmitScalarExpr(RightArg);
Address ResultPtr = EmitPointerWithAlignment(ResultArg);
// Extend each operand to the encompassing type.
Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
// Perform the operation on the extended values.
llvm::Value *Overflow, *Result;
Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
if (EncompassingInfo.Width > ResultInfo.Width) {
// The encompassing type is wider than the result type, so we need to
// truncate it.
llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
// To see if the truncation caused an overflow, we will extend
// the result and then compare it to the original result.
llvm::Value *ResultTruncExt = Builder.CreateIntCast(
ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
llvm::Value *TruncationOverflow =
Builder.CreateICmpNE(Result, ResultTruncExt);
Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
Result = ResultTrunc;
}
// Finally, store the result using the pointer.
bool isVolatile =
ResultArg->getType()->getPointeeType().isVolatileQualified();
Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
return RValue::get(Overflow);
}
case Builtin::BI__builtin_uadd_overflow:
case Builtin::BI__builtin_uaddl_overflow:
case Builtin::BI__builtin_uaddll_overflow:
case Builtin::BI__builtin_usub_overflow:
case Builtin::BI__builtin_usubl_overflow:
case Builtin::BI__builtin_usubll_overflow:
case Builtin::BI__builtin_umul_overflow:
case Builtin::BI__builtin_umull_overflow:
case Builtin::BI__builtin_umulll_overflow:
case Builtin::BI__builtin_sadd_overflow:
case Builtin::BI__builtin_saddl_overflow:
case Builtin::BI__builtin_saddll_overflow:
case Builtin::BI__builtin_ssub_overflow:
case Builtin::BI__builtin_ssubl_overflow:
case Builtin::BI__builtin_ssubll_overflow:
case Builtin::BI__builtin_smul_overflow:
case Builtin::BI__builtin_smull_overflow:
case Builtin::BI__builtin_smulll_overflow: {
// We translate all of these builtins directly to the relevant llvm IR node.
// Scalarize our inputs.
llvm::Value *X = EmitScalarExpr(E->getArg(0));
llvm::Value *Y = EmitScalarExpr(E->getArg(1));
Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
// Decide which of the overflow intrinsics we are lowering to:
llvm::Intrinsic::ID IntrinsicId;
switch (BuiltinID) {
default: llvm_unreachable("Unknown overflow builtin id.");
case Builtin::BI__builtin_uadd_overflow:
case Builtin::BI__builtin_uaddl_overflow:
case Builtin::BI__builtin_uaddll_overflow:
IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
break;
case Builtin::BI__builtin_usub_overflow:
case Builtin::BI__builtin_usubl_overflow:
case Builtin::BI__builtin_usubll_overflow:
IntrinsicId = llvm::Intrinsic::usub_with_overflow;
break;
case Builtin::BI__builtin_umul_overflow:
case Builtin::BI__builtin_umull_overflow:
case Builtin::BI__builtin_umulll_overflow:
IntrinsicId = llvm::Intrinsic::umul_with_overflow;
break;
case Builtin::BI__builtin_sadd_overflow:
case Builtin::BI__builtin_saddl_overflow:
case Builtin::BI__builtin_saddll_overflow:
IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
break;
case Builtin::BI__builtin_ssub_overflow:
case Builtin::BI__builtin_ssubl_overflow:
case Builtin::BI__builtin_ssubll_overflow:
IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
break;
case Builtin::BI__builtin_smul_overflow:
case Builtin::BI__builtin_smull_overflow:
case Builtin::BI__builtin_smulll_overflow:
IntrinsicId = llvm::Intrinsic::smul_with_overflow;
break;
}
llvm::Value *Carry;
llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
Builder.CreateStore(Sum, SumOutPtr);
return RValue::get(Carry);
}
case Builtin::BI__builtin_addressof:
return RValue::get(EmitLValue(E->getArg(0)).getPointer());
case Builtin::BI__builtin_operator_new:
return EmitBuiltinNewDeleteCall(FD->getType()->castAs<FunctionProtoType>(),
E->getArg(0), false);
case Builtin::BI__builtin_operator_delete:
return EmitBuiltinNewDeleteCall(FD->getType()->castAs<FunctionProtoType>(),
E->getArg(0), true);
case Builtin::BI__noop:
// __noop always evaluates to an integer literal zero.
return RValue::get(ConstantInt::get(IntTy, 0));
case Builtin::BI__builtin_call_with_static_chain: {
const CallExpr *Call = cast<CallExpr>(E->getArg(0));
const Expr *Chain = E->getArg(1);
return EmitCall(Call->getCallee()->getType(),
EmitScalarExpr(Call->getCallee()), Call, ReturnValue,
Call->getCalleeDecl(), EmitScalarExpr(Chain));
}
case Builtin::BI_InterlockedExchange:
case Builtin::BI_InterlockedExchangePointer:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
case Builtin::BI_InterlockedCompareExchangePointer: {
llvm::Type *RTy;
llvm::IntegerType *IntType =
IntegerType::get(getLLVMContext(),
getContext().getTypeSize(E->getType()));
llvm::Type *IntPtrType = IntType->getPointerTo();
llvm::Value *Destination =
Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
RTy = Exchange->getType();
Exchange = Builder.CreatePtrToInt(Exchange, IntType);
llvm::Value *Comparand =
Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
auto Result =
Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
AtomicOrdering::SequentiallyConsistent,
AtomicOrdering::SequentiallyConsistent);
Result->setVolatile(true);
return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
0),
RTy));
}
case Builtin::BI_InterlockedCompareExchange: {
AtomicCmpXchgInst *CXI = Builder.CreateAtomicCmpXchg(
EmitScalarExpr(E->getArg(0)),
EmitScalarExpr(E->getArg(2)),
EmitScalarExpr(E->getArg(1)),
AtomicOrdering::SequentiallyConsistent,
AtomicOrdering::SequentiallyConsistent);
CXI->setVolatile(true);
return RValue::get(Builder.CreateExtractValue(CXI, 0));
}
case Builtin::BI_InterlockedIncrement: {
AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
AtomicRMWInst::Add,
EmitScalarExpr(E->getArg(0)),
ConstantInt::get(Int32Ty, 1),
llvm::AtomicOrdering::SequentiallyConsistent);
RMWI->setVolatile(true);
return RValue::get(Builder.CreateAdd(RMWI, ConstantInt::get(Int32Ty, 1)));
}
case Builtin::BI_InterlockedDecrement: {
AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
AtomicRMWInst::Sub,
EmitScalarExpr(E->getArg(0)),
ConstantInt::get(Int32Ty, 1),
llvm::AtomicOrdering::SequentiallyConsistent);
RMWI->setVolatile(true);
return RValue::get(Builder.CreateSub(RMWI, ConstantInt::get(Int32Ty, 1)));
}
case Builtin::BI_InterlockedExchangeAdd: {
AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
AtomicRMWInst::Add,
EmitScalarExpr(E->getArg(0)),
EmitScalarExpr(E->getArg(1)),
llvm::AtomicOrdering::SequentiallyConsistent);
RMWI->setVolatile(true);
return RValue::get(RMWI);
}
case Builtin::BI__readfsdword: {
Value *IntToPtr =
Builder.CreateIntToPtr(EmitScalarExpr(E->getArg(0)),
llvm::PointerType::get(CGM.Int32Ty, 257));
LoadInst *Load =
Builder.CreateAlignedLoad(IntToPtr, /*Align=*/4, /*isVolatile=*/true);
return RValue::get(Load);
}
case Builtin::BI__exception_code:
case Builtin::BI_exception_code:
return RValue::get(EmitSEHExceptionCode());
case Builtin::BI__exception_info:
case Builtin::BI_exception_info:
return RValue::get(EmitSEHExceptionInfo());
case Builtin::BI__abnormal_termination:
case Builtin::BI_abnormal_termination:
return RValue::get(EmitSEHAbnormalTermination());
case Builtin::BI_setjmpex: {
if (getTarget().getTriple().isOSMSVCRT()) {
llvm::Type *ArgTypes[] = {Int8PtrTy, Int8PtrTy};
llvm::AttributeSet ReturnsTwiceAttr =
AttributeSet::get(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
llvm::Attribute::ReturnsTwice);
llvm::Constant *SetJmpEx = CGM.CreateRuntimeFunction(
llvm::FunctionType::get(IntTy, ArgTypes, /*isVarArg=*/false),
"_setjmpex", ReturnsTwiceAttr);
llvm::Value *Buf = Builder.CreateBitOrPointerCast(
EmitScalarExpr(E->getArg(0)), Int8PtrTy);
llvm::Value *FrameAddr =
Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
ConstantInt::get(Int32Ty, 0));
llvm::Value *Args[] = {Buf, FrameAddr};
llvm::CallSite CS = EmitRuntimeCallOrInvoke(SetJmpEx, Args);
CS.setAttributes(ReturnsTwiceAttr);
return RValue::get(CS.getInstruction());
}
break;
}
case Builtin::BI_setjmp: {
if (getTarget().getTriple().isOSMSVCRT()) {
llvm::AttributeSet ReturnsTwiceAttr =
AttributeSet::get(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
llvm::Attribute::ReturnsTwice);
llvm::Value *Buf = Builder.CreateBitOrPointerCast(
EmitScalarExpr(E->getArg(0)), Int8PtrTy);
llvm::CallSite CS;
if (getTarget().getTriple().getArch() == llvm::Triple::x86) {
llvm::Type *ArgTypes[] = {Int8PtrTy, IntTy};
llvm::Constant *SetJmp3 = CGM.CreateRuntimeFunction(
llvm::FunctionType::get(IntTy, ArgTypes, /*isVarArg=*/true),
"_setjmp3", ReturnsTwiceAttr);
llvm::Value *Count = ConstantInt::get(IntTy, 0);
llvm::Value *Args[] = {Buf, Count};
CS = EmitRuntimeCallOrInvoke(SetJmp3, Args);
} else {
llvm::Type *ArgTypes[] = {Int8PtrTy, Int8PtrTy};
llvm::Constant *SetJmp = CGM.CreateRuntimeFunction(
llvm::FunctionType::get(IntTy, ArgTypes, /*isVarArg=*/false),
"_setjmp", ReturnsTwiceAttr);
llvm::Value *FrameAddr =
Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
ConstantInt::get(Int32Ty, 0));
llvm::Value *Args[] = {Buf, FrameAddr};
CS = EmitRuntimeCallOrInvoke(SetJmp, Args);
}
CS.setAttributes(ReturnsTwiceAttr);
return RValue::get(CS.getInstruction());
}
break;
}
case Builtin::BI__GetExceptionInfo: {
if (llvm::GlobalVariable *GV =
CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy));
break;
}
// OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
case Builtin::BIread_pipe:
case Builtin::BIwrite_pipe: {
Value *Arg0 = EmitScalarExpr(E->getArg(0)),
*Arg1 = EmitScalarExpr(E->getArg(1));
// Type of the generic packet parameter.
unsigned GenericAS =
getContext().getTargetAddressSpace(LangAS::opencl_generic);
llvm::Type *I8PTy = llvm::PointerType::get(
llvm::Type::getInt8Ty(getLLVMContext()), GenericAS);
// Testing which overloaded version we should generate the call for.
if (2U == E->getNumArgs()) {
const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"
: "__write_pipe_2";
// Creating a generic function type to be able to call with any builtin or
// user defined type.
llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy};
llvm::FunctionType *FTy = llvm::FunctionType::get(
Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy);
return RValue::get(Builder.CreateCall(
CGM.CreateRuntimeFunction(FTy, Name), {Arg0, BCast}));
} else {
assert(4 == E->getNumArgs() &&
"Illegal number of parameters to pipe function");
const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"
: "__write_pipe_4";
llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy};
Value *Arg2 = EmitScalarExpr(E->getArg(2)),
*Arg3 = EmitScalarExpr(E->getArg(3));
llvm::FunctionType *FTy = llvm::FunctionType::get(
Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy);
// We know the third argument is an integer type, but we may need to cast
// it to i32.
if (Arg2->getType() != Int32Ty)
Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty);
return RValue::get(Builder.CreateCall(
CGM.CreateRuntimeFunction(FTy, Name), {Arg0, Arg1, Arg2, BCast}));
}
}
// OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
// functions
case Builtin::BIreserve_read_pipe:
case Builtin::BIreserve_write_pipe:
case Builtin::BIwork_group_reserve_read_pipe:
case Builtin::BIwork_group_reserve_write_pipe:
case Builtin::BIsub_group_reserve_read_pipe:
case Builtin::BIsub_group_reserve_write_pipe: {
// Composing the mangled name for the function.
const char *Name;
if (BuiltinID == Builtin::BIreserve_read_pipe)
Name = "__reserve_read_pipe";
else if (BuiltinID == Builtin::BIreserve_write_pipe)
Name = "__reserve_write_pipe";
else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe)
Name = "__work_group_reserve_read_pipe";
else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe)
Name = "__work_group_reserve_write_pipe";
else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe)
Name = "__sub_group_reserve_read_pipe";
else
Name = "__sub_group_reserve_write_pipe";
Value *Arg0 = EmitScalarExpr(E->getArg(0)),
*Arg1 = EmitScalarExpr(E->getArg(1));
llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy);
// Building the generic function prototype.
llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty};
llvm::FunctionType *FTy = llvm::FunctionType::get(
ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
// We know the second argument is an integer type, but we may need to cast
// it to i32.
if (Arg1->getType() != Int32Ty)
Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty);
return RValue::get(
Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), {Arg0, Arg1}));
}
// OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe commit read and write
// functions
case Builtin::BIcommit_read_pipe:
case Builtin::BIcommit_write_pipe:
case Builtin::BIwork_group_commit_read_pipe:
case Builtin::BIwork_group_commit_write_pipe:
case Builtin::BIsub_group_commit_read_pipe:
case Builtin::BIsub_group_commit_write_pipe: {
const char *Name;
if (BuiltinID == Builtin::BIcommit_read_pipe)
Name = "__commit_read_pipe";
else if (BuiltinID == Builtin::BIcommit_write_pipe)
Name = "__commit_write_pipe";
else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe)
Name = "__work_group_commit_read_pipe";
else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe)
Name = "__work_group_commit_write_pipe";
else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe)
Name = "__sub_group_commit_read_pipe";
else
Name = "__sub_group_commit_write_pipe";
Value *Arg0 = EmitScalarExpr(E->getArg(0)),
*Arg1 = EmitScalarExpr(E->getArg(1));
// Building the generic function prototype.
llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType()};
llvm::FunctionType *FTy =
llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
llvm::ArrayRef<llvm::Type *>(ArgTys), false);
return RValue::get(
Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), {Arg0, Arg1}));
}
// OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
case Builtin::BIget_pipe_num_packets:
case Builtin::BIget_pipe_max_packets: {
const char *Name;
if (BuiltinID == Builtin::BIget_pipe_num_packets)
Name = "__get_pipe_num_packets";
else
Name = "__get_pipe_max_packets";
// Building the generic function prototype.
Value *Arg0 = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgTys[] = {Arg0->getType()};
llvm::FunctionType *FTy = llvm::FunctionType::get(
Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
return RValue::get(
Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), {Arg0}));
}
case Builtin::BIprintf:
if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
return EmitCUDADevicePrintfCallExpr(E, ReturnValue);
break;
case Builtin::BI__builtin_canonicalize:
case Builtin::BI__builtin_canonicalizef:
case Builtin::BI__builtin_canonicalizel:
return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize));
}
// If this is an alias for a lib function (e.g. __builtin_sin), emit
// the call using the normal call path, but using the unmangled
// version of the function name.
if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
return emitLibraryCall(*this, FD, E,
CGM.getBuiltinLibFunction(FD, BuiltinID));
// If this is a predefined lib function (e.g. malloc), emit the call
// using exactly the normal call path.
if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
return emitLibraryCall(*this, FD, E, EmitScalarExpr(E->getCallee()));
// Check that a call to a target specific builtin has the correct target
// features.
// This is down here to avoid non-target specific builtins, however, if
// generic builtins start to require generic target features then we
// can move this up to the beginning of the function.
checkTargetFeatures(E, FD);
// See if we have a target specific intrinsic.
const char *Name = getContext().BuiltinInfo.getName(BuiltinID);
Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
if (const char *Prefix =
llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch())) {
IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix, Name);
// NOTE we dont need to perform a compatibility flag check here since the
// intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
// MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
if (IntrinsicID == Intrinsic::not_intrinsic)
IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix, Name);
}
if (IntrinsicID != Intrinsic::not_intrinsic) {
SmallVector<Value*, 16> Args;
// Find out if any arguments are required to be integer constant
// expressions.
unsigned ICEArguments = 0;
ASTContext::GetBuiltinTypeError Error;
getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
assert(Error == ASTContext::GE_None && "Should not codegen an error");
Function *F = CGM.getIntrinsic(IntrinsicID);
llvm::FunctionType *FTy = F->getFunctionType();
for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
Value *ArgValue;
// If this is a normal argument, just emit it as a scalar.
if ((ICEArguments & (1 << i)) == 0) {
ArgValue = EmitScalarExpr(E->getArg(i));
} else {
// If this is required to be a constant, constant fold it so that we
// know that the generated intrinsic gets a ConstantInt.
llvm::APSInt Result;
bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
assert(IsConst && "Constant arg isn't actually constant?");
(void)IsConst;
ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result);
}
// If the intrinsic arg type is different from the builtin arg type
// we need to do a bit cast.
llvm::Type *PTy = FTy->getParamType(i);
if (PTy != ArgValue->getType()) {
assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
"Must be able to losslessly bit cast to param");
ArgValue = Builder.CreateBitCast(ArgValue, PTy);
}
Args.push_back(ArgValue);
}
Value *V = Builder.CreateCall(F, Args);
QualType BuiltinRetType = E->getType();
llvm::Type *RetTy = VoidTy;
if (!BuiltinRetType->isVoidType())
RetTy = ConvertType(BuiltinRetType);
if (RetTy != V->getType()) {
assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
"Must be able to losslessly bit cast result type");
V = Builder.CreateBitCast(V, RetTy);
}
return RValue::get(V);
}
// See if we have a target specific builtin that needs to be lowered.
if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E))
return RValue::get(V);
ErrorUnsupported(E, "builtin function");
// Unknown builtin, for now just dump it out and return undef.
return GetUndefRValue(E->getType());
}
static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
unsigned BuiltinID, const CallExpr *E,
llvm::Triple::ArchType Arch) {
switch (Arch) {
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::thumb:
case llvm::Triple::thumbeb:
return CGF->EmitARMBuiltinExpr(BuiltinID, E);
case llvm::Triple::aarch64:
case llvm::Triple::aarch64_be:
return CGF->EmitAArch64BuiltinExpr(BuiltinID, E);
case llvm::Triple::x86:
case llvm::Triple::x86_64:
return CGF->EmitX86BuiltinExpr(BuiltinID, E);
case llvm::Triple::ppc:
case llvm::Triple::ppc64:
case llvm::Triple::ppc64le:
return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
case llvm::Triple::r600:
case llvm::Triple::amdgcn:
return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
case llvm::Triple::systemz:
return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
case llvm::Triple::nvptx:
case llvm::Triple::nvptx64:
return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
case llvm::Triple::wasm32:
case llvm::Triple::wasm64:
return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
default:
return nullptr;
}
}
Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
assert(getContext().getAuxTargetInfo() && "Missing aux target info");
return EmitTargetArchBuiltinExpr(
this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
getContext().getAuxTargetInfo()->getTriple().getArch());
}
return EmitTargetArchBuiltinExpr(this, BuiltinID, E,
getTarget().getTriple().getArch());
}
static llvm::VectorType *GetNeonType(CodeGenFunction *CGF,
NeonTypeFlags TypeFlags,
bool V1Ty=false) {
int IsQuad = TypeFlags.isQuad();
switch (TypeFlags.getEltType()) {
case NeonTypeFlags::Int8:
case NeonTypeFlags::Poly8:
return llvm::VectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
case NeonTypeFlags::Int16:
case NeonTypeFlags::Poly16:
case NeonTypeFlags::Float16:
return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
case NeonTypeFlags::Int32:
return llvm::VectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
case NeonTypeFlags::Int64:
case NeonTypeFlags::Poly64:
return llvm::VectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
case NeonTypeFlags::Poly128:
// FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
// There is a lot of i128 and f128 API missing.
// so we use v16i8 to represent poly128 and get pattern matched.
return llvm::VectorType::get(CGF->Int8Ty, 16);
case NeonTypeFlags::Float32:
return llvm::VectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
case NeonTypeFlags::Float64:
return llvm::VectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
}
llvm_unreachable("Unknown vector element type!");
}
static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
NeonTypeFlags IntTypeFlags) {
int IsQuad = IntTypeFlags.isQuad();
switch (IntTypeFlags.getEltType()) {
case NeonTypeFlags::Int32:
return llvm::VectorType::get(CGF->FloatTy, (2 << IsQuad));
case NeonTypeFlags::Int64:
return llvm::VectorType::get(CGF->DoubleTy, (1 << IsQuad));
default:
llvm_unreachable("Type can't be converted to floating-point!");
}
}
Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
unsigned nElts = cast<llvm::VectorType>(V->getType())->getNumElements();
Value* SV = llvm::ConstantVector::getSplat(nElts, C);
return Builder.CreateShuffleVector(V, V, SV, "lane");
}
Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
const char *name,
unsigned shift, bool rightshift) {
unsigned j = 0;
for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
ai != ae; ++ai, ++j)
if (shift > 0 && shift == j)
Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
else
Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
return Builder.CreateCall(F, Ops, name);
}
Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
bool neg) {
int SV = cast<ConstantInt>(V)->getSExtValue();
return ConstantInt::get(Ty, neg ? -SV : SV);
}
// \brief Right-shift a vector by a constant.
Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
llvm::Type *Ty, bool usgn,
const char *name) {
llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
int EltSize = VTy->getScalarSizeInBits();
Vec = Builder.CreateBitCast(Vec, Ty);
// lshr/ashr are undefined when the shift amount is equal to the vector
// element size.
if (ShiftAmt == EltSize) {
if (usgn) {
// Right-shifting an unsigned value by its size yields 0.
return llvm::ConstantAggregateZero::get(VTy);
} else {
// Right-shifting a signed value by its size is equivalent
// to a shift of size-1.
--ShiftAmt;
Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
}
}
Shift = EmitNeonShiftVector(Shift, Ty, false);
if (usgn)
return Builder.CreateLShr(Vec, Shift, name);
else
return Builder.CreateAShr(Vec, Shift, name);
}
enum {
AddRetType = (1 << 0),
Add1ArgType = (1 << 1),
Add2ArgTypes = (1 << 2),
VectorizeRetType = (1 << 3),
VectorizeArgTypes = (1 << 4),
InventFloatType = (1 << 5),
UnsignedAlts = (1 << 6),
Use64BitVectors = (1 << 7),
Use128BitVectors = (1 << 8),
Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
VectorRet = AddRetType | VectorizeRetType,
VectorRetGetArgs01 =
AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
FpCmpzModifiers =
AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
};
namespace {
struct NeonIntrinsicInfo {
const char *NameHint;
unsigned BuiltinID;
unsigned LLVMIntrinsic;
unsigned AltLLVMIntrinsic;
unsigned TypeModifier;
bool operator<(unsigned RHSBuiltinID) const {
return BuiltinID < RHSBuiltinID;
}
bool operator<(const NeonIntrinsicInfo &TE) const {
return BuiltinID < TE.BuiltinID;
}
};
} // end anonymous namespace
#define NEONMAP0(NameBase) \
{ #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
#define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
{ #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
Intrinsic::LLVMIntrinsic, 0, TypeModifier }
#define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
{ #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
TypeModifier }
static const NeonIntrinsicInfo ARMSIMDIntrinsicMap [] = {
NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
NEONMAP1(vabs_v, arm_neon_vabs, 0),
NEONMAP1(vabsq_v, arm_neon_vabs, 0),
NEONMAP0(vaddhn_v),
NEONMAP1(vaesdq_v, arm_neon_aesd, 0),
NEONMAP1(vaeseq_v, arm_neon_aese, 0),
NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0),
NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0),
NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
NEONMAP1(vcage_v, arm_neon_vacge, 0),
NEONMAP1(vcageq_v, arm_neon_vacge, 0),
NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
NEONMAP1(vcale_v, arm_neon_vacge, 0),
NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
NEONMAP1(vclz_v, ctlz, Add1ArgType),
NEONMAP1(vclzq_v, ctlz, Add1ArgType),
NEONMAP1(vcnt_v, ctpop, Add1ArgType),
NEONMAP1(vcntq_v, ctpop, Add1ArgType),
NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
NEONMAP0(vcvt_f32_v),
NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
NEONMAP0(vcvt_s32_v),
NEONMAP0(vcvt_s64_v),
NEONMAP0(vcvt_u32_v),
NEONMAP0(vcvt_u64_v),
NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
NEONMAP0(vcvtq_f32_v),
NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
NEONMAP0(vcvtq_s32_v),
NEONMAP0(vcvtq_s64_v),
NEONMAP0(vcvtq_u32_v),
NEONMAP0(vcvtq_u64_v),
NEONMAP0(vext_v),
NEONMAP0(vextq_v),
NEONMAP0(vfma_v),
NEONMAP0(vfmaq_v),
NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
NEONMAP0(vld1_dup_v),
NEONMAP1(vld1_v, arm_neon_vld1, 0),
NEONMAP0(vld1q_dup_v),
NEONMAP1(vld1q_v, arm_neon_vld1, 0),
NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
NEONMAP1(vld2_v, arm_neon_vld2, 0),
NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
NEONMAP1(vld2q_v, arm_neon_vld2, 0),
NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
NEONMAP1(vld3_v, arm_neon_vld3, 0),
NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
NEONMAP1(vld3q_v, arm_neon_vld3, 0),
NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
NEONMAP1(vld4_v, arm_neon_vld4, 0),
NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
NEONMAP1(vld4q_v, arm_neon_vld4, 0),
NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
NEONMAP0(vmovl_v),
NEONMAP0(vmovn_v),
NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
NEONMAP0(vmull_v),
NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
NEONMAP2(vqadd_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts),
NEONMAP2(vqaddq_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts),
NEONMAP2(vqdmlal_v, arm_neon_vqdmull, arm_neon_vqadds, 0),
NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, arm_neon_vqsubs, 0),
NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
NEONMAP2(vqsub_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts),
NEONMAP2(vqsubq_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts),
NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0),
NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0),
NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0),
NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0),
NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0),
NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0),
NEONMAP0(vshl_n_v),
NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
NEONMAP0(vshll_n_v),
NEONMAP0(vshlq_n_v),
NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
NEONMAP0(vshr_n_v),
NEONMAP0(vshrn_n_v),
NEONMAP0(vshrq_n_v),
NEONMAP1(vst1_v, arm_neon_vst1, 0),
NEONMAP1(vst1q_v, arm_neon_vst1, 0),
NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
NEONMAP1(vst2_v, arm_neon_vst2, 0),
NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
NEONMAP1(vst2q_v, arm_neon_vst2, 0),
NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
NEONMAP1(vst3_v, arm_neon_vst3, 0),
NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
NEONMAP1(vst3q_v, arm_neon_vst3, 0),
NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
NEONMAP1(vst4_v, arm_neon_vst4, 0),
NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
NEONMAP1(vst4q_v, arm_neon_vst4, 0),
NEONMAP0(vsubhn_v),
NEONMAP0(vtrn_v),
NEONMAP0(vtrnq_v),
NEONMAP0(vtst_v),
NEONMAP0(vtstq_v),
NEONMAP0(vuzp_v),
NEONMAP0(vuzpq_v),
NEONMAP0(vzip_v),
NEONMAP0(vzipq_v)
};
static const NeonIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
NEONMAP1(vabs_v, aarch64_neon_abs, 0),
NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
NEONMAP0(vaddhn_v),
NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0),
NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0),
NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0),
NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0),
NEONMAP1(vcage_v, aarch64_neon_facge, 0),
NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
NEONMAP1(vcale_v, aarch64_neon_facge, 0),
NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
NEONMAP1(vclz_v, ctlz, Add1ArgType),
NEONMAP1(vclzq_v, ctlz, Add1ArgType),
NEONMAP1(vcnt_v, ctpop, Add1ArgType),
NEONMAP1(vcntq_v, ctpop, Add1ArgType),
NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
NEONMAP0(vcvt_f32_v),
NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
NEONMAP0(vcvtq_f32_v),
NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
NEONMAP0(vext_v),
NEONMAP0(vextq_v),
NEONMAP0(vfma_v),
NEONMAP0(vfmaq_v),
NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
NEONMAP0(vmovl_v),
NEONMAP0(vmovn_v),
NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0),
NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0),
NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0),
NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0),
NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0),
NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0),
NEONMAP0(vshl_n_v),
NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
NEONMAP0(vshll_n_v),
NEONMAP0(vshlq_n_v),
NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
NEONMAP0(vshr_n_v),
NEONMAP0(vshrn_n_v),
NEONMAP0(vshrq_n_v),
NEONMAP0(vsubhn_v),
NEONMAP0(vtst_v),
NEONMAP0(vtstq_v),
};
static const NeonIntrinsicInfo AArch64SISDIntrinsicMap[] = {
NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
};
#undef NEONMAP0
#undef NEONMAP1
#undef NEONMAP2
static bool NEONSIMDIntrinsicsProvenSorted = false;
static bool AArch64SIMDIntrinsicsProvenSorted = false;
static bool AArch64SISDIntrinsicsProvenSorted = false;
static const NeonIntrinsicInfo *
findNeonIntrinsicInMap(ArrayRef<NeonIntrinsicInfo> IntrinsicMap,
unsigned BuiltinID, bool &MapProvenSorted) {
#ifndef NDEBUG
if (!MapProvenSorted) {
assert(std::is_sorted(std::begin(IntrinsicMap), std::end(IntrinsicMap)));
MapProvenSorted = true;
}
#endif
const NeonIntrinsicInfo *Builtin =
std::lower_bound(IntrinsicMap.begin(), IntrinsicMap.end(), BuiltinID);
if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
return Builtin;
return nullptr;
}
Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
unsigned Modifier,
llvm::Type *ArgType,
const CallExpr *E) {
int VectorSize = 0;
if (Modifier & Use64BitVectors)
VectorSize = 64;
else if (Modifier & Use128BitVectors)
VectorSize = 128;
// Return type.
SmallVector<llvm::Type *, 3> Tys;
if (Modifier & AddRetType) {
llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
if (Modifier & VectorizeRetType)
Ty = llvm::VectorType::get(
Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
Tys.push_back(Ty);
}
// Arguments.
if (Modifier & VectorizeArgTypes) {
int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
ArgType = llvm::VectorType::get(ArgType, Elts);
}
if (Modifier & (Add1ArgType | Add2ArgTypes))
Tys.push_back(ArgType);
if (Modifier & Add2ArgTypes)
Tys.push_back(ArgType);
if (Modifier & InventFloatType)
Tys.push_back(FloatTy);
return CGM.getIntrinsic(IntrinsicID, Tys);
}
static Value *EmitCommonNeonSISDBuiltinExpr(CodeGenFunction &CGF,
const NeonIntrinsicInfo &SISDInfo,
SmallVectorImpl<Value *> &Ops,
const CallExpr *E) {
unsigned BuiltinID = SISDInfo.BuiltinID;
unsigned int Int = SISDInfo.LLVMIntrinsic;
unsigned Modifier = SISDInfo.TypeModifier;
const char *s = SISDInfo.NameHint;
switch (BuiltinID) {
case NEON::BI__builtin_neon_vcled_s64:
case NEON::BI__builtin_neon_vcled_u64:
case NEON::BI__builtin_neon_vcles_f32:
case NEON::BI__builtin_neon_vcled_f64:
case NEON::BI__builtin_neon_vcltd_s64:
case NEON::BI__builtin_neon_vcltd_u64:
case NEON::BI__builtin_neon_vclts_f32:
case NEON::BI__builtin_neon_vcltd_f64:
case NEON::BI__builtin_neon_vcales_f32:
case NEON::BI__builtin_neon_vcaled_f64:
case NEON::BI__builtin_neon_vcalts_f32:
case NEON::BI__builtin_neon_vcaltd_f64:
// Only one direction of comparisons actually exist, cmle is actually a cmge
// with swapped operands. The table gives us the right intrinsic but we
// still need to do the swap.
std::swap(Ops[0], Ops[1]);
break;
}
assert(Int && "Generic code assumes a valid intrinsic");
// Determine the type(s) of this overloaded AArch64 intrinsic.
const Expr *Arg = E->getArg(0);
llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
int j = 0;
ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
ai != ae; ++ai, ++j) {
llvm::Type *ArgTy = ai->getType();
if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
ArgTy->getPrimitiveSizeInBits())
continue;
assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy());
// The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
// it before inserting.
Ops[j] =
CGF.Builder.CreateTruncOrBitCast(Ops[j], ArgTy->getVectorElementType());
Ops[j] =
CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0);
}
Value *Result = CGF.EmitNeonCall(F, Ops, s);
llvm::Type *ResultType = CGF.ConvertType(E->getType());
if (ResultType->getPrimitiveSizeInBits() <
Result->getType()->getPrimitiveSizeInBits())
return CGF.Builder.CreateExtractElement(Result, C0);
return CGF.Builder.CreateBitCast(Result, ResultType, s);
}
Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
const char *NameHint, unsigned Modifier, const CallExpr *E,
SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1) {
// Get the last argument, which specifies the vector type.
llvm::APSInt NeonTypeConst;
const Expr *Arg = E->getArg(E->getNumArgs() - 1);
if (!Arg->isIntegerConstantExpr(NeonTypeConst, getContext()))
return nullptr;
// Determine the type of this overloaded NEON intrinsic.
NeonTypeFlags Type(NeonTypeConst.getZExtValue());
bool Usgn = Type.isUnsigned();
bool Quad = Type.isQuad();
llvm::VectorType *VTy = GetNeonType(this, Type);
llvm::Type *Ty = VTy;
if (!Ty)
return nullptr;
auto getAlignmentValue32 = [&](Address addr) -> Value* {
return Builder.getInt32(addr.getAlignment().getQuantity());
};
unsigned Int = LLVMIntrinsic;
if ((Modifier & UnsignedAlts) && !Usgn)
Int = AltLLVMIntrinsic;
switch (BuiltinID) {
default: break;
case NEON::BI__builtin_neon_vabs_v:
case NEON::BI__builtin_neon_vabsq_v:
if (VTy->getElementType()->isFloatingPointTy())
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
case NEON::BI__builtin_neon_vaddhn_v: {
llvm::VectorType *SrcTy =
llvm::VectorType::getExtendedElementVectorType(VTy);
// %sum = add <4 x i32> %lhs, %rhs
Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
// %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
Constant *ShiftAmt =
ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
// %res = trunc <4 x i32> %high to <4 x i16>
return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
}
case NEON::BI__builtin_neon_vcale_v:
case NEON::BI__builtin_neon_vcaleq_v:
case NEON::BI__builtin_neon_vcalt_v:
case NEON::BI__builtin_neon_vcaltq_v:
std::swap(Ops[0], Ops[1]);
case NEON::BI__builtin_neon_vcage_v:
case NEON::BI__builtin_neon_vcageq_v:
case NEON::BI__builtin_neon_vcagt_v:
case NEON::BI__builtin_neon_vcagtq_v: {
llvm::Type *VecFlt = llvm::VectorType::get(
VTy->getScalarSizeInBits() == 32 ? FloatTy : DoubleTy,
VTy->getNumElements());
llvm::Type *Tys[] = { VTy, VecFlt };
Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
return EmitNeonCall(F, Ops, NameHint);
}
case NEON::BI__builtin_neon_vclz_v:
case NEON::BI__builtin_neon_vclzq_v:
// We generate target-independent intrinsic, which needs a second argument
// for whether or not clz of zero is undefined; on ARM it isn't.
Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
break;
case NEON::BI__builtin_neon_vcvt_f32_v:
case NEON::BI__builtin_neon_vcvtq_f32_v:
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad));
return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
: Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
case NEON::BI__builtin_neon_vcvt_n_f32_v:
case NEON::BI__builtin_neon_vcvt_n_f64_v:
case NEON::BI__builtin_neon_vcvtq_n_f32_v:
case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
Function *F = CGM.getIntrinsic(Int, Tys);
return EmitNeonCall(F, Ops, "vcvt_n");
}
case NEON::BI__builtin_neon_vcvt_n_s32_v:
case NEON::BI__builtin_neon_vcvt_n_u32_v:
case NEON::BI__builtin_neon_vcvt_n_s64_v:
case NEON::BI__builtin_neon_vcvt_n_u64_v:
case NEON::BI__builtin_neon_vcvtq_n_s32_v:
case NEON::BI__builtin_neon_vcvtq_n_u32_v:
case NEON::BI__builtin_neon_vcvtq_n_s64_v:
case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
return EmitNeonCall(F, Ops, "vcvt_n");
}
case NEON::BI__builtin_neon_vcvt_s32_v:
case NEON::BI__builtin_neon_vcvt_u32_v:
case NEON::BI__builtin_neon_vcvt_s64_v:
case NEON::BI__builtin_neon_vcvt_u64_v:
case NEON::BI__builtin_neon_vcvtq_s32_v:
case NEON::BI__builtin_neon_vcvtq_u32_v:
case NEON::BI__builtin_neon_vcvtq_s64_v:
case NEON::BI__builtin_neon_vcvtq_u64_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
: Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
}
case NEON::BI__builtin_neon_vcvta_s32_v:
case NEON::BI__builtin_neon_vcvta_s64_v:
case NEON::BI__builtin_neon_vcvta_u32_v:
case NEON::BI__builtin_neon_vcvta_u64_v:
case NEON::BI__builtin_neon_vcvtaq_s32_v:
case NEON::BI__builtin_neon_vcvtaq_s64_v:
case NEON::BI__builtin_neon_vcvtaq_u32_v:
case NEON::BI__builtin_neon_vcvtaq_u64_v:
case NEON::BI__builtin_neon_vcvtn_s32_v:
case NEON::BI__builtin_neon_vcvtn_s64_v:
case NEON::BI__builtin_neon_vcvtn_u32_v:
case NEON::BI__builtin_neon_vcvtn_u64_v:
case NEON::BI__builtin_neon_vcvtnq_s32_v:
case NEON::BI__builtin_neon_vcvtnq_s64_v:
case NEON::BI__builtin_neon_vcvtnq_u32_v:
case NEON::BI__builtin_neon_vcvtnq_u64_v:
case NEON::BI__builtin_neon_vcvtp_s32_v:
case NEON::BI__builtin_neon_vcvtp_s64_v:
case NEON::BI__builtin_neon_vcvtp_u32_v:
case NEON::BI__builtin_neon_vcvtp_u64_v:
case NEON::BI__builtin_neon_vcvtpq_s32_v:
case NEON::BI__builtin_neon_vcvtpq_s64_v:
case NEON::BI__builtin_neon_vcvtpq_u32_v:
case NEON::BI__builtin_neon_vcvtpq_u64_v:
case NEON::BI__builtin_neon_vcvtm_s32_v:
case NEON::BI__builtin_neon_vcvtm_s64_v:
case NEON::BI__builtin_neon_vcvtm_u32_v:
case NEON::BI__builtin_neon_vcvtm_u64_v:
case NEON::BI__builtin_neon_vcvtmq_s32_v:
case NEON::BI__builtin_neon_vcvtmq_s64_v:
case NEON::BI__builtin_neon_vcvtmq_u32_v:
case NEON::BI__builtin_neon_vcvtmq_u64_v: {
llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
}
case NEON::BI__builtin_neon_vext_v:
case NEON::BI__builtin_neon_vextq_v: {
int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
SmallVector<Constant*, 16> Indices;
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
Indices.push_back(ConstantInt::get(Int32Ty, i+CV));
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Value *SV = llvm::ConstantVector::get(Indices);
return Builder.CreateShuffleVector(Ops[0], Ops[1], SV, "vext");
}
case NEON::BI__builtin_neon_vfma_v:
case NEON::BI__builtin_neon_vfmaq_v: {
Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
// NEON intrinsic puts accumulator first, unlike the LLVM fma.
return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
}
case NEON::BI__builtin_neon_vld1_v:
case NEON::BI__builtin_neon_vld1q_v: {
llvm::Type *Tys[] = {Ty, Int8PtrTy};
Ops.push_back(getAlignmentValue32(PtrOp0));
return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
}
case NEON::BI__builtin_neon_vld2_v:
case NEON::BI__builtin_neon_vld2q_v:
case NEON::BI__builtin_neon_vld3_v:
case NEON::BI__builtin_neon_vld3q_v:
case NEON::BI__builtin_neon_vld4_v:
case NEON::BI__builtin_neon_vld4q_v: {
llvm::Type *Tys[] = {Ty, Int8PtrTy};
Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
Value *Align = getAlignmentValue32(PtrOp1);
Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vld1_dup_v:
case NEON::BI__builtin_neon_vld1q_dup_v: {
Value *V = UndefValue::get(Ty);
Ty = llvm::PointerType::getUnqual(VTy->getElementType());
PtrOp0 = Builder.CreateBitCast(PtrOp0, Ty);
LoadInst *Ld = Builder.CreateLoad(PtrOp0);
llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
return EmitNeonSplat(Ops[0], CI);
}
case NEON::BI__builtin_neon_vld2_lane_v:
case NEON::BI__builtin_neon_vld2q_lane_v:
case NEON::BI__builtin_neon_vld3_lane_v:
case NEON::BI__builtin_neon_vld3q_lane_v:
case NEON::BI__builtin_neon_vld4_lane_v:
case NEON::BI__builtin_neon_vld4q_lane_v: {
llvm::Type *Tys[] = {Ty, Int8PtrTy};
Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
for (unsigned I = 2; I < Ops.size() - 1; ++I)
Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
Ops.push_back(getAlignmentValue32(PtrOp1));
Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint);
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vmovl_v: {
llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
if (Usgn)
return Builder.CreateZExt(Ops[0], Ty, "vmovl");
return Builder.CreateSExt(Ops[0], Ty, "vmovl");
}
case NEON::BI__builtin_neon_vmovn_v: {
llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
}
case NEON::BI__builtin_neon_vmull_v:
// FIXME: the integer vmull operations could be emitted in terms of pure
// LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
// hoisting the exts outside loops. Until global ISel comes along that can
// see through such movement this leads to bad CodeGen. So we need an
// intrinsic for now.
Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
case NEON::BI__builtin_neon_vpadal_v:
case NEON::BI__builtin_neon_vpadalq_v: {
// The source operand type has twice as many elements of half the size.
unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
llvm::Type *EltTy =
llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
llvm::Type *NarrowTy =
llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
llvm::Type *Tys[2] = { Ty, NarrowTy };
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
}
case NEON::BI__builtin_neon_vpaddl_v:
case NEON::BI__builtin_neon_vpaddlq_v: {
// The source operand type has twice as many elements of half the size.
unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
llvm::Type *NarrowTy =
llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
llvm::Type *Tys[2] = { Ty, NarrowTy };
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
}
case NEON::BI__builtin_neon_vqdmlal_v:
case NEON::BI__builtin_neon_vqdmlsl_v: {
SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
Ops[1] =
EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
Ops.resize(2);
return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
}
case NEON::BI__builtin_neon_vqshl_n_v:
case NEON::BI__builtin_neon_vqshlq_n_v:
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
1, false);
case NEON::BI__builtin_neon_vqshlu_n_v:
case NEON::BI__builtin_neon_vqshluq_n_v:
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
1, false);
case NEON::BI__builtin_neon_vrecpe_v:
case NEON::BI__builtin_neon_vrecpeq_v:
case NEON::BI__builtin_neon_vrsqrte_v:
case NEON::BI__builtin_neon_vrsqrteq_v:
Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
case NEON::BI__builtin_neon_vrshr_n_v:
case NEON::BI__builtin_neon_vrshrq_n_v:
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
1, true);
case NEON::BI__builtin_neon_vshl_n_v:
case NEON::BI__builtin_neon_vshlq_n_v:
Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
"vshl_n");
case NEON::BI__builtin_neon_vshll_n_v: {
llvm::Type *SrcTy = llvm::VectorType::getTruncatedElementVectorType(VTy);
Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
if (Usgn)
Ops[0] = Builder.CreateZExt(Ops[0], VTy);
else
Ops[0] = Builder.CreateSExt(Ops[0], VTy);
Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
}
case NEON::BI__builtin_neon_vshrn_n_v: {
llvm::Type *SrcTy = llvm::VectorType::getExtendedElementVectorType(VTy);
Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
if (Usgn)
Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
else
Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
}
case NEON::BI__builtin_neon_vshr_n_v:
case NEON::BI__builtin_neon_vshrq_n_v:
return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
case NEON::BI__builtin_neon_vst1_v:
case NEON::BI__builtin_neon_vst1q_v:
case NEON::BI__builtin_neon_vst2_v:
case NEON::BI__builtin_neon_vst2q_v:
case NEON::BI__builtin_neon_vst3_v:
case NEON::BI__builtin_neon_vst3q_v:
case NEON::BI__builtin_neon_vst4_v:
case NEON::BI__builtin_neon_vst4q_v:
case NEON::BI__builtin_neon_vst2_lane_v:
case NEON::BI__builtin_neon_vst2q_lane_v:
case NEON::BI__builtin_neon_vst3_lane_v:
case NEON::BI__builtin_neon_vst3q_lane_v:
case NEON::BI__builtin_neon_vst4_lane_v:
case NEON::BI__builtin_neon_vst4q_lane_v: {
llvm::Type *Tys[] = {Int8PtrTy, Ty};
Ops.push_back(getAlignmentValue32(PtrOp0));
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
}
case NEON::BI__builtin_neon_vsubhn_v: {
llvm::VectorType *SrcTy =
llvm::VectorType::getExtendedElementVectorType(VTy);
// %sum = add <4 x i32> %lhs, %rhs
Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
// %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
Constant *ShiftAmt =
ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
// %res = trunc <4 x i32> %high to <4 x i16>
return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
}
case NEON::BI__builtin_neon_vtrn_v:
case NEON::BI__builtin_neon_vtrnq_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Value *SV = nullptr;
for (unsigned vi = 0; vi != 2; ++vi) {
SmallVector<Constant*, 16> Indices;
for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
Indices.push_back(Builder.getInt32(i+vi));
Indices.push_back(Builder.getInt32(i+e+vi));
}
Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
SV = llvm::ConstantVector::get(Indices);
SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vtrn");
SV = Builder.CreateDefaultAlignedStore(SV, Addr);
}
return SV;
}
case NEON::BI__builtin_neon_vtst_v:
case NEON::BI__builtin_neon_vtstq_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
ConstantAggregateZero::get(Ty));
return Builder.CreateSExt(Ops[0], Ty, "vtst");
}
case NEON::BI__builtin_neon_vuzp_v:
case NEON::BI__builtin_neon_vuzpq_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Value *SV = nullptr;
for (unsigned vi = 0; vi != 2; ++vi) {
SmallVector<Constant*, 16> Indices;
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
Indices.push_back(ConstantInt::get(Int32Ty, 2*i+vi));
Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
SV = llvm::ConstantVector::get(Indices);
SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vuzp");
SV = Builder.CreateDefaultAlignedStore(SV, Addr);
}
return SV;
}
case NEON::BI__builtin_neon_vzip_v:
case NEON::BI__builtin_neon_vzipq_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Value *SV = nullptr;
for (unsigned vi = 0; vi != 2; ++vi) {
SmallVector<Constant*, 16> Indices;
for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
Indices.push_back(ConstantInt::get(Int32Ty, (i + vi*e) >> 1));
Indices.push_back(ConstantInt::get(Int32Ty, ((i + vi*e) >> 1)+e));
}
Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
SV = llvm::ConstantVector::get(Indices);
SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vzip");
SV = Builder.CreateDefaultAlignedStore(SV, Addr);
}
return SV;
}
}
assert(Int && "Expected valid intrinsic number");
// Determine the type(s) of this overloaded AArch64 intrinsic.
Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
Value *Result = EmitNeonCall(F, Ops, NameHint);
llvm::Type *ResultType = ConvertType(E->getType());
// AArch64 intrinsic one-element vector type cast to
// scalar type expected by the builtin
return Builder.CreateBitCast(Result, ResultType, NameHint);
}
Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
const CmpInst::Predicate Ip, const Twine &Name) {
llvm::Type *OTy = Op->getType();
// FIXME: this is utterly horrific. We should not be looking at previous
// codegen context to find out what needs doing. Unfortunately TableGen
// currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
// (etc).
if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
OTy = BI->getOperand(0)->getType();
Op = Builder.CreateBitCast(Op, OTy);
if (OTy->getScalarType()->isFloatingPointTy()) {
Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
} else {
Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
}
return Builder.CreateSExt(Op, Ty, Name);
}
static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
Value *ExtOp, Value *IndexOp,
llvm::Type *ResTy, unsigned IntID,
const char *Name) {
SmallVector<Value *, 2> TblOps;
if (ExtOp)
TblOps.push_back(ExtOp);
// Build a vector containing sequential number like (0, 1, 2, ..., 15)
SmallVector<Constant*, 16> Indices;
llvm::VectorType *TblTy = cast<llvm::VectorType>(Ops[0]->getType());
for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
Indices.push_back(ConstantInt::get(CGF.Int32Ty, 2*i));
Indices.push_back(ConstantInt::get(CGF.Int32Ty, 2*i+1));
}
Value *SV = llvm::ConstantVector::get(Indices);
int PairPos = 0, End = Ops.size() - 1;
while (PairPos < End) {
TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
Ops[PairPos+1], SV, Name));
PairPos += 2;
}
// If there's an odd number of 64-bit lookup table, fill the high 64-bit
// of the 128-bit lookup table with zero.
if (PairPos == End) {
Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
ZeroTbl, SV, Name));
}
Function *TblF;
TblOps.push_back(IndexOp);
TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
return CGF.EmitNeonCall(TblF, TblOps, Name);
}
Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
unsigned Value;
switch (BuiltinID) {
default:
return nullptr;
case ARM::BI__builtin_arm_nop:
Value = 0;
break;
case ARM::BI__builtin_arm_yield:
case ARM::BI__yield:
Value = 1;
break;
case ARM::BI__builtin_arm_wfe:
case ARM::BI__wfe:
Value = 2;
break;
case ARM::BI__builtin_arm_wfi:
case ARM::BI__wfi:
Value = 3;
break;
case ARM::BI__builtin_arm_sev:
case ARM::BI__sev:
Value = 4;
break;
case ARM::BI__builtin_arm_sevl:
case ARM::BI__sevl:
Value = 5;
break;
}
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
llvm::ConstantInt::get(Int32Ty, Value));
}
// Generates the IR for the read/write special register builtin,
// ValueType is the type of the value that is to be written or read,
// RegisterType is the type of the register being written to or read from.
static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
const CallExpr *E,
llvm::Type *RegisterType,
llvm::Type *ValueType, bool IsRead) {
// write and register intrinsics only support 32 and 64 bit operations.
assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64))
&& "Unsupported size for register.");
CodeGen::CGBuilderTy &Builder = CGF.Builder;
CodeGen::CodeGenModule &CGM = CGF.CGM;
LLVMContext &Context = CGM.getLLVMContext();
const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
StringRef SysReg = cast<StringLiteral>(SysRegStrExpr)->getString();
llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
llvm::Type *Types[] = { RegisterType };
bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))
&& "Can't fit 64-bit value in 32-bit register");
if (IsRead) {
llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
llvm::Value *Call = Builder.CreateCall(F, Metadata);
if (MixedTypes)
// Read into 64 bit register and then truncate result to 32 bit.
return Builder.CreateTrunc(Call, ValueType);
if (ValueType->isPointerTy())
// Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
return Builder.CreateIntToPtr(Call, ValueType);
return Call;
}
llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
if (MixedTypes) {
// Extend 32 bit write value to 64 bit to pass to write.
ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
return Builder.CreateCall(F, { Metadata, ArgValue });
}
if (ValueType->isPointerTy()) {
// Have VoidPtrTy ArgValue but want to return an i32/i64.
ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
return Builder.CreateCall(F, { Metadata, ArgValue });
}
return Builder.CreateCall(F, { Metadata, ArgValue });
}
/// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
/// argument that specifies the vector type.
static bool HasExtraNeonArgument(unsigned BuiltinID) {
switch (BuiltinID) {
default: break;
case NEON::BI__builtin_neon_vget_lane_i8:
case NEON::BI__builtin_neon_vget_lane_i16:
case NEON::BI__builtin_neon_vget_lane_i32:
case NEON::BI__builtin_neon_vget_lane_i64:
case NEON::BI__builtin_neon_vget_lane_f32:
case NEON::BI__builtin_neon_vgetq_lane_i8:
case NEON::BI__builtin_neon_vgetq_lane_i16:
case NEON::BI__builtin_neon_vgetq_lane_i32:
case NEON::BI__builtin_neon_vgetq_lane_i64:
case NEON::BI__builtin_neon_vgetq_lane_f32:
case NEON::BI__builtin_neon_vset_lane_i8:
case NEON::BI__builtin_neon_vset_lane_i16:
case NEON::BI__builtin_neon_vset_lane_i32:
case NEON::BI__builtin_neon_vset_lane_i64:
case NEON::BI__builtin_neon_vset_lane_f32:
case NEON::BI__builtin_neon_vsetq_lane_i8:
case NEON::BI__builtin_neon_vsetq_lane_i16:
case NEON::BI__builtin_neon_vsetq_lane_i32:
case NEON::BI__builtin_neon_vsetq_lane_i64:
case NEON::BI__builtin_neon_vsetq_lane_f32:
case NEON::BI__builtin_neon_vsha1h_u32:
case NEON::BI__builtin_neon_vsha1cq_u32:
case NEON::BI__builtin_neon_vsha1pq_u32:
case NEON::BI__builtin_neon_vsha1mq_u32:
case ARM::BI_MoveToCoprocessor:
case ARM::BI_MoveToCoprocessor2:
return false;
}
return true;
}
Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
if (auto Hint = GetValueForARMHint(BuiltinID))
return Hint;
if (BuiltinID == ARM::BI__emit) {
bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
llvm::FunctionType *FTy =
llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
APSInt Value;
if (!E->getArg(0)->EvaluateAsInt(Value, CGM.getContext()))
llvm_unreachable("Sema will ensure that the parameter is constant");
uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
llvm::InlineAsm *Emit =
IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
/*SideEffects=*/true)
: InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
/*SideEffects=*/true);
return Builder.CreateCall(Emit);
}
if (BuiltinID == ARM::BI__builtin_arm_dbg) {
Value *Option = EmitScalarExpr(E->getArg(0));
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
}
if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
Value *Address = EmitScalarExpr(E->getArg(0));
Value *RW = EmitScalarExpr(E->getArg(1));
Value *IsData = EmitScalarExpr(E->getArg(2));
// Locality is not supported on ARM target
Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
return Builder.CreateCall(F, {Address, RW, Locality, IsData});
}
if (BuiltinID == ARM::BI__builtin_arm_rbit) {
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_rbit),
EmitScalarExpr(E->getArg(0)),
"rbit");
}
if (BuiltinID == ARM::BI__clear_cache) {
assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
const FunctionDecl *FD = E->getDirectCallee();
Value *Ops[2];
for (unsigned i = 0; i < 2; i++)
Ops[i] = EmitScalarExpr(E->getArg(i));
llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
StringRef Name = FD->getName();
return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
}
if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
((BuiltinID == ARM::BI__builtin_arm_ldrex ||
BuiltinID == ARM::BI__builtin_arm_ldaex) &&
getContext().getTypeSize(E->getType()) == 64) ||
BuiltinID == ARM::BI__ldrexd) {
Function *F;
switch (BuiltinID) {
default: llvm_unreachable("unexpected builtin");
case ARM::BI__builtin_arm_ldaex:
F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
break;
case ARM::BI__builtin_arm_ldrexd:
case ARM::BI__builtin_arm_ldrex:
case ARM::BI__ldrexd:
F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
break;
}
Value *LdPtr = EmitScalarExpr(E->getArg(0));
Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
"ldrexd");
Value *Val0 = Builder.CreateExtractValue(Val, 1);
Value *Val1 = Builder.CreateExtractValue(Val, 0);
Val0 = Builder.CreateZExt(Val0, Int64Ty);
Val1 = Builder.CreateZExt(Val1, Int64Ty);
Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
Val = Builder.CreateOr(Val, Val1);
return Builder.CreateBitCast(Val, ConvertType(E->getType()));
}
if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
BuiltinID == ARM::BI__builtin_arm_ldaex) {
Value *LoadAddr = EmitScalarExpr(E->getArg(0));
QualType Ty = E->getType();
llvm::Type *RealResTy = ConvertType(Ty);
llvm::Type *IntResTy = llvm::IntegerType::get(getLLVMContext(),
getContext().getTypeSize(Ty));
LoadAddr = Builder.CreateBitCast(LoadAddr, IntResTy->getPointerTo());
Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex
? Intrinsic::arm_ldaex
: Intrinsic::arm_ldrex,
LoadAddr->getType());
Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
if (RealResTy->isPointerTy())
return Builder.CreateIntToPtr(Val, RealResTy);
else {
Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
return Builder.CreateBitCast(Val, RealResTy);
}
}
if (BuiltinID == ARM::BI__builtin_arm_strexd ||
((BuiltinID == ARM::BI__builtin_arm_stlex ||
BuiltinID == ARM::BI__builtin_arm_strex) &&
getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
? Intrinsic::arm_stlexd
: Intrinsic::arm_strexd);
llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, nullptr);
Address Tmp = CreateMemTemp(E->getArg(0)->getType());
Value *Val = EmitScalarExpr(E->getArg(0));
Builder.CreateStore(Val, Tmp);
Address LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
Val = Builder.CreateLoad(LdPtr);
Value *Arg0 = Builder.CreateExtractValue(Val, 0);
Value *Arg1 = Builder.CreateExtractValue(Val, 1);
Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
}
if (BuiltinID == ARM::BI__builtin_arm_strex ||
BuiltinID == ARM::BI__builtin_arm_stlex) {
Value *StoreVal = EmitScalarExpr(E->getArg(0));
Value *StoreAddr = EmitScalarExpr(E->getArg(1));
QualType Ty = E->getArg(0)->getType();
llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
getContext().getTypeSize(Ty));
StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
if (StoreVal->getType()->isPointerTy())
StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
else {
StoreVal = Builder.CreateBitCast(StoreVal, StoreTy);
StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
}
Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
? Intrinsic::arm_stlex
: Intrinsic::arm_strex,
StoreAddr->getType());
return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
}
if (BuiltinID == ARM::BI__builtin_arm_clrex) {
Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
return Builder.CreateCall(F);
}
// CRC32
Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
switch (BuiltinID) {
case ARM::BI__builtin_arm_crc32b:
CRCIntrinsicID = Intrinsic::arm_crc32b; break;
case ARM::BI__builtin_arm_crc32cb:
CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
case ARM::BI__builtin_arm_crc32h:
CRCIntrinsicID = Intrinsic::arm_crc32h; break;
case ARM::BI__builtin_arm_crc32ch:
CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
case ARM::BI__builtin_arm_crc32w:
case ARM::BI__builtin_arm_crc32d:
CRCIntrinsicID = Intrinsic::arm_crc32w; break;
case ARM::BI__builtin_arm_crc32cw:
case ARM::BI__builtin_arm_crc32cd:
CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
}
if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
Value *Arg0 = EmitScalarExpr(E->getArg(0));
Value *Arg1 = EmitScalarExpr(E->getArg(1));
// crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
// intrinsics, hence we need different codegen for these cases.
if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
BuiltinID == ARM::BI__builtin_arm_crc32cd) {
Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
Value *Arg1b = Builder.CreateLShr(Arg1, C1);
Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
Function *F = CGM.getIntrinsic(CRCIntrinsicID);
Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
return Builder.CreateCall(F, {Res, Arg1b});
} else {
Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
Function *F = CGM.getIntrinsic(CRCIntrinsicID);
return Builder.CreateCall(F, {Arg0, Arg1});
}
}
if (BuiltinID == ARM::BI__builtin_arm_rsr ||
BuiltinID == ARM::BI__builtin_arm_rsr64 ||
BuiltinID == ARM::BI__builtin_arm_rsrp ||
BuiltinID == ARM::BI__builtin_arm_wsr ||
BuiltinID == ARM::BI__builtin_arm_wsr64 ||
BuiltinID == ARM::BI__builtin_arm_wsrp) {
bool IsRead = BuiltinID == ARM::BI__builtin_arm_rsr ||
BuiltinID == ARM::BI__builtin_arm_rsr64 ||
BuiltinID == ARM::BI__builtin_arm_rsrp;
bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp ||
BuiltinID == ARM::BI__builtin_arm_wsrp;
bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
BuiltinID == ARM::BI__builtin_arm_wsr64;
llvm::Type *ValueType;
llvm::Type *RegisterType;
if (IsPointerBuiltin) {
ValueType = VoidPtrTy;
RegisterType = Int32Ty;
} else if (Is64Bit) {
ValueType = RegisterType = Int64Ty;
} else {
ValueType = RegisterType = Int32Ty;
}
return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead);
}
// Find out if any arguments are required to be integer constant
// expressions.
unsigned ICEArguments = 0;
ASTContext::GetBuiltinTypeError Error;
getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
assert(Error == ASTContext::GE_None && "Should not codegen an error");
auto getAlignmentValue32 = [&](Address addr) -> Value* {
return Builder.getInt32(addr.getAlignment().getQuantity());
};
Address PtrOp0 = Address::invalid();
Address PtrOp1 = Address::invalid();
SmallVector<Value*, 4> Ops;
bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
for (unsigned i = 0, e = NumArgs; i != e; i++) {
if (i == 0) {
switch (BuiltinID) {
case NEON::BI__builtin_neon_vld1_v:
case NEON::BI__builtin_neon_vld1q_v:
case NEON::BI__builtin_neon_vld1q_lane_v:
case NEON::BI__builtin_neon_vld1_lane_v:
case NEON::BI__builtin_neon_vld1_dup_v:
case NEON::BI__builtin_neon_vld1q_dup_v:
case NEON::BI__builtin_neon_vst1_v:
case NEON::BI__builtin_neon_vst1q_v:
case NEON::BI__builtin_neon_vst1q_lane_v:
case NEON::BI__builtin_neon_vst1_lane_v:
case NEON::BI__builtin_neon_vst2_v:
case NEON::BI__builtin_neon_vst2q_v:
case NEON::BI__builtin_neon_vst2_lane_v:
case NEON::BI__builtin_neon_vst2q_lane_v:
case NEON::BI__builtin_neon_vst3_v:
case NEON::BI__builtin_neon_vst3q_v:
case NEON::BI__builtin_neon_vst3_lane_v:
case NEON::BI__builtin_neon_vst3q_lane_v:
case NEON::BI__builtin_neon_vst4_v:
case NEON::BI__builtin_neon_vst4q_v:
case NEON::BI__builtin_neon_vst4_lane_v:
case NEON::BI__builtin_neon_vst4q_lane_v:
// Get the alignment for the argument in addition to the value;
// we'll use it later.
PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
Ops.push_back(PtrOp0.getPointer());
continue;
}
}
if (i == 1) {
switch (BuiltinID) {
case NEON::BI__builtin_neon_vld2_v:
case NEON::BI__builtin_neon_vld2q_v:
case NEON::BI__builtin_neon_vld3_v:
case NEON::BI__builtin_neon_vld3q_v:
case NEON::BI__builtin_neon_vld4_v:
case NEON::BI__builtin_neon_vld4q_v:
case NEON::BI__builtin_neon_vld2_lane_v:
case NEON::BI__builtin_neon_vld2q_lane_v:
case NEON::BI__builtin_neon_vld3_lane_v:
case NEON::BI__builtin_neon_vld3q_lane_v:
case NEON::BI__builtin_neon_vld4_lane_v:
case NEON::BI__builtin_neon_vld4q_lane_v:
case NEON::BI__builtin_neon_vld2_dup_v:
case NEON::BI__builtin_neon_vld3_dup_v:
case NEON::BI__builtin_neon_vld4_dup_v:
// Get the alignment for the argument in addition to the value;
// we'll use it later.
PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
Ops.push_back(PtrOp1.getPointer());
continue;
}
}
if ((ICEArguments & (1 << i)) == 0) {
Ops.push_back(EmitScalarExpr(E->getArg(i)));
} else {
// If this is required to be a constant, constant fold it so that we know
// that the generated intrinsic gets a ConstantInt.
llvm::APSInt Result;
bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
}
}
switch (BuiltinID) {
default: break;
case NEON::BI__builtin_neon_vget_lane_i8:
case NEON::BI__builtin_neon_vget_lane_i16:
case NEON::BI__builtin_neon_vget_lane_i32:
case NEON::BI__builtin_neon_vget_lane_i64:
case NEON::BI__builtin_neon_vget_lane_f32:
case NEON::BI__builtin_neon_vgetq_lane_i8:
case NEON::BI__builtin_neon_vgetq_lane_i16:
case NEON::BI__builtin_neon_vgetq_lane_i32:
case NEON::BI__builtin_neon_vgetq_lane_i64:
case NEON::BI__builtin_neon_vgetq_lane_f32:
return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
case NEON::BI__builtin_neon_vset_lane_i8:
case NEON::BI__builtin_neon_vset_lane_i16:
case NEON::BI__builtin_neon_vset_lane_i32:
case NEON::BI__builtin_neon_vset_lane_i64:
case NEON::BI__builtin_neon_vset_lane_f32:
case NEON::BI__builtin_neon_vsetq_lane_i8:
case NEON::BI__builtin_neon_vsetq_lane_i16:
case NEON::BI__builtin_neon_vsetq_lane_i32:
case NEON::BI__builtin_neon_vsetq_lane_i64:
case NEON::BI__builtin_neon_vsetq_lane_f32:
return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
case NEON::BI__builtin_neon_vsha1h_u32:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
"vsha1h");
case NEON::BI__builtin_neon_vsha1cq_u32:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
"vsha1h");
case NEON::BI__builtin_neon_vsha1pq_u32:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
"vsha1h");
case NEON::BI__builtin_neon_vsha1mq_u32:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
"vsha1h");
// The ARM _MoveToCoprocessor builtins put the input register value as
// the first argument, but the LLVM intrinsic expects it as the third one.
case ARM::BI_MoveToCoprocessor:
case ARM::BI_MoveToCoprocessor2: {
Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ?
Intrinsic::arm_mcr : Intrinsic::arm_mcr2);
return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
Ops[3], Ops[4], Ops[5]});
}
}
// Get the last argument, which specifies the vector type.
assert(HasExtraArg);
llvm::APSInt Result;
const Expr *Arg = E->getArg(E->getNumArgs()-1);
if (!Arg->isIntegerConstantExpr(Result, getContext()))
return nullptr;
if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
// Determine the overloaded type of this builtin.
llvm::Type *Ty;
if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
Ty = FloatTy;
else
Ty = DoubleTy;
// Determine whether this is an unsigned conversion or not.
bool usgn = Result.getZExtValue() == 1;
unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
// Call the appropriate intrinsic.
Function *F = CGM.getIntrinsic(Int, Ty);
return Builder.CreateCall(F, Ops, "vcvtr");
}
// Determine the type of this overloaded NEON intrinsic.
NeonTypeFlags Type(Result.getZExtValue());
bool usgn = Type.isUnsigned();
bool rightShift = false;
llvm::VectorType *VTy = GetNeonType(this, Type);
llvm::Type *Ty = VTy;
if (!Ty)
return nullptr;
// Many NEON builtins have identical semantics and uses in ARM and
// AArch64. Emit these in a single function.
auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap);
const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
if (Builtin)
return EmitCommonNeonBuiltinExpr(
Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1);
unsigned Int;
switch (BuiltinID) {
default: return nullptr;
case NEON::BI__builtin_neon_vld1q_lane_v:
// Handle 64-bit integer elements as a special case. Use shuffles of
// one-element vectors to avoid poor code for i64 in the backend.
if (VTy->getElementType()->isIntegerTy(64)) {
// Extract the other lane.
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
uint32_t Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
// Load the value as a one-element vector.
Ty = llvm::VectorType::get(VTy->getElementType(), 1);
llvm::Type *Tys[] = {Ty, Int8PtrTy};
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
Value *Align = getAlignmentValue32(PtrOp0);
Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
// Combine them.
uint32_t Indices[] = {1 - Lane, Lane};
SV = llvm::ConstantDataVector::get(getLLVMContext(), Indices);
return Builder.CreateShuffleVector(Ops[1], Ld, SV, "vld1q_lane");
}
// fall through
case NEON::BI__builtin_neon_vld1_lane_v: {
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
Value *Ld = Builder.CreateLoad(PtrOp0);
return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
}
case NEON::BI__builtin_neon_vld2_dup_v:
case NEON::BI__builtin_neon_vld3_dup_v:
case NEON::BI__builtin_neon_vld4_dup_v: {
// Handle 64-bit elements as a special-case. There is no "dup" needed.
if (VTy->getElementType()->getPrimitiveSizeInBits() == 64) {
switch (BuiltinID) {
case NEON::BI__builtin_neon_vld2_dup_v:
Int = Intrinsic::arm_neon_vld2;
break;
case NEON::BI__builtin_neon_vld3_dup_v:
Int = Intrinsic::arm_neon_vld3;
break;
case NEON::BI__builtin_neon_vld4_dup_v:
Int = Intrinsic::arm_neon_vld4;
break;
default: llvm_unreachable("unknown vld_dup intrinsic?");
}
llvm::Type *Tys[] = {Ty, Int8PtrTy};
Function *F = CGM.getIntrinsic(Int, Tys);
llvm::Value *Align = getAlignmentValue32(PtrOp1);
Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, "vld_dup");
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
switch (BuiltinID) {
case NEON::BI__builtin_neon_vld2_dup_v:
Int = Intrinsic::arm_neon_vld2lane;
break;
case NEON::BI__builtin_neon_vld3_dup_v:
Int = Intrinsic::arm_neon_vld3lane;
break;
case NEON::BI__builtin_neon_vld4_dup_v:
Int = Intrinsic::arm_neon_vld4lane;
break;
default: llvm_unreachable("unknown vld_dup intrinsic?");
}
llvm::Type *Tys[] = {Ty, Int8PtrTy};
Function *F = CGM.getIntrinsic(Int, Tys);
llvm::StructType *STy = cast<llvm::StructType>(F->getReturnType());
SmallVector<Value*, 6> Args;
Args.push_back(Ops[1]);
Args.append(STy->getNumElements(), UndefValue::get(Ty));
llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
Args.push_back(CI);
Args.push_back(getAlignmentValue32(PtrOp1));
Ops[1] = Builder.CreateCall(F, Args, "vld_dup");
// splat lane 0 to all elts in each vector of the result.
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
Value *Val = Builder.CreateExtractValue(Ops[1], i);
Value *Elt = Builder.CreateBitCast(Val, Ty);
Elt = EmitNeonSplat(Elt, CI);
Elt = Builder.CreateBitCast(Elt, Val->getType());
Ops[1] = Builder.CreateInsertValue(Ops[1], Elt, i);
}
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vqrshrn_n_v:
Int =
usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
1, true);
case NEON::BI__builtin_neon_vqrshrun_n_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
Ops, "vqrshrun_n", 1, true);
case NEON::BI__builtin_neon_vqshrn_n_v:
Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
1, true);
case NEON::BI__builtin_neon_vqshrun_n_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
Ops, "vqshrun_n", 1, true);
case NEON::BI__builtin_neon_vrecpe_v:
case NEON::BI__builtin_neon_vrecpeq_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
Ops, "vrecpe");
case NEON::BI__builtin_neon_vrshrn_n_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
Ops, "vrshrn_n", 1, true);
case NEON::BI__builtin_neon_vrsra_n_v:
case NEON::BI__builtin_neon_vrsraq_n_v:
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
case NEON::BI__builtin_neon_vsri_n_v:
case NEON::BI__builtin_neon_vsriq_n_v:
rightShift = true;
case NEON::BI__builtin_neon_vsli_n_v:
case NEON::BI__builtin_neon_vsliq_n_v:
Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
Ops, "vsli_n");
case NEON::BI__builtin_neon_vsra_n_v:
case NEON::BI__builtin_neon_vsraq_n_v:
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
return Builder.CreateAdd(Ops[0], Ops[1]);
case NEON::BI__builtin_neon_vst1q_lane_v:
// Handle 64-bit integer elements as a special case. Use a shuffle to get
// a one-element vector and avoid poor code for i64 in the backend.
if (VTy->getElementType()->isIntegerTy(64)) {
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
Ops[2] = getAlignmentValue32(PtrOp0);
llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
Tys), Ops);
}
// fall through
case NEON::BI__builtin_neon_vst1_lane_v: {
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
auto St = Builder.CreateStore(Ops[1], Builder.CreateBitCast(PtrOp0, Ty));
return St;
}
case NEON::BI__builtin_neon_vtbl1_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
Ops, "vtbl1");
case NEON::BI__builtin_neon_vtbl2_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
Ops, "vtbl2");
case NEON::BI__builtin_neon_vtbl3_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
Ops, "vtbl3");
case NEON::BI__builtin_neon_vtbl4_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
Ops, "vtbl4");
case NEON::BI__builtin_neon_vtbx1_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
Ops, "vtbx1");
case NEON::BI__builtin_neon_vtbx2_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
Ops, "vtbx2");
case NEON::BI__builtin_neon_vtbx3_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
Ops, "vtbx3");
case NEON::BI__builtin_neon_vtbx4_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
Ops, "vtbx4");
}
}
static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
const CallExpr *E,
SmallVectorImpl<Value *> &Ops) {
unsigned int Int = 0;
const char *s = nullptr;
switch (BuiltinID) {
default:
return nullptr;
case NEON::BI__builtin_neon_vtbl1_v:
case NEON::BI__builtin_neon_vqtbl1_v:
case NEON::BI__builtin_neon_vqtbl1q_v:
case NEON::BI__builtin_neon_vtbl2_v:
case NEON::BI__builtin_neon_vqtbl2_v:
case NEON::BI__builtin_neon_vqtbl2q_v:
case NEON::BI__builtin_neon_vtbl3_v:
case NEON::BI__builtin_neon_vqtbl3_v:
case NEON::BI__builtin_neon_vqtbl3q_v:
case NEON::BI__builtin_neon_vtbl4_v:
case NEON::BI__builtin_neon_vqtbl4_v:
case NEON::BI__builtin_neon_vqtbl4q_v:
break;
case NEON::BI__builtin_neon_vtbx1_v:
case NEON::BI__builtin_neon_vqtbx1_v:
case NEON::BI__builtin_neon_vqtbx1q_v:
case NEON::BI__builtin_neon_vtbx2_v:
case NEON::BI__builtin_neon_vqtbx2_v:
case NEON::BI__builtin_neon_vqtbx2q_v:
case NEON::BI__builtin_neon_vtbx3_v:
case NEON::BI__builtin_neon_vqtbx3_v:
case NEON::BI__builtin_neon_vqtbx3q_v:
case NEON::BI__builtin_neon_vtbx4_v:
case NEON::BI__builtin_neon_vqtbx4_v:
case NEON::BI__builtin_neon_vqtbx4q_v:
break;
}
assert(E->getNumArgs() >= 3);
// Get the last argument, which specifies the vector type.
llvm::APSInt Result;
const Expr *Arg = E->getArg(E->getNumArgs() - 1);
if (!Arg->isIntegerConstantExpr(Result, CGF.getContext()))
return nullptr;
// Determine the type of this overloaded NEON intrinsic.
NeonTypeFlags Type(Result.getZExtValue());
llvm::VectorType *Ty = GetNeonType(&CGF, Type);
if (!Ty)
return nullptr;
CodeGen::CGBuilderTy &Builder = CGF.Builder;
// AArch64 scalar builtins are not overloaded, they do not have an extra
// argument that specifies the vector type, need to handle each case.
switch (BuiltinID) {
case NEON::BI__builtin_neon_vtbl1_v: {
return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr,
Ops[1], Ty, Intrinsic::aarch64_neon_tbl1,
"vtbl1");
}
case NEON::BI__builtin_neon_vtbl2_v: {
return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr,
Ops[2], Ty, Intrinsic::aarch64_neon_tbl1,
"vtbl1");
}
case NEON::BI__builtin_neon_vtbl3_v: {
return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr,
Ops[3], Ty, Intrinsic::aarch64_neon_tbl2,
"vtbl2");
}
case NEON::BI__builtin_neon_vtbl4_v: {
return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr,
Ops[4], Ty, Intrinsic::aarch64_neon_tbl2,
"vtbl2");
}
case NEON::BI__builtin_neon_vtbx1_v: {
Value *TblRes =
packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2],
Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
llvm::Constant *EightV = ConstantInt::get(Ty, 8);
Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
CmpRes = Builder.CreateSExt(CmpRes, Ty);
Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
}
case NEON::BI__builtin_neon_vtbx2_v: {
return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0],
Ops[3], Ty, Intrinsic::aarch64_neon_tbx1,
"vtbx1");
}
case NEON::BI__builtin_neon_vtbx3_v: {
Value *TblRes =
packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4],
Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
TwentyFourV);
CmpRes = Builder.CreateSExt(CmpRes, Ty);
Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
}
case NEON::BI__builtin_neon_vtbx4_v: {
return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0],
Ops[5], Ty, Intrinsic::aarch64_neon_tbx2,
"vtbx2");
}
case NEON::BI__builtin_neon_vqtbl1_v:
case NEON::BI__builtin_neon_vqtbl1q_v:
Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
case NEON::BI__builtin_neon_vqtbl2_v:
case NEON::BI__builtin_neon_vqtbl2q_v: {
Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
case NEON::BI__builtin_neon_vqtbl3_v:
case NEON::BI__builtin_neon_vqtbl3q_v:
Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
case NEON::BI__builtin_neon_vqtbl4_v:
case NEON::BI__builtin_neon_vqtbl4q_v:
Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
case NEON::BI__builtin_neon_vqtbx1_v:
case NEON::BI__builtin_neon_vqtbx1q_v:
Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
case NEON::BI__builtin_neon_vqtbx2_v:
case NEON::BI__builtin_neon_vqtbx2q_v:
Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
case NEON::BI__builtin_neon_vqtbx3_v:
case NEON::BI__builtin_neon_vqtbx3q_v:
Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
case NEON::BI__builtin_neon_vqtbx4_v:
case NEON::BI__builtin_neon_vqtbx4q_v:
Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
}
}
if (!Int)
return nullptr;
Function *F = CGF.CGM.getIntrinsic(Int, Ty);
return CGF.EmitNeonCall(F, Ops, s);
}
Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
llvm::Type *VTy = llvm::VectorType::get(Int16Ty, 4);
Op = Builder.CreateBitCast(Op, Int16Ty);
Value *V = UndefValue::get(VTy);
llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
Op = Builder.CreateInsertElement(V, Op, CI);
return Op;
}
Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
unsigned HintID = static_cast<unsigned>(-1);
switch (BuiltinID) {
default: break;
case AArch64::BI__builtin_arm_nop:
HintID = 0;
break;
case AArch64::BI__builtin_arm_yield:
HintID = 1;
break;
case AArch64::BI__builtin_arm_wfe:
HintID = 2;
break;
case AArch64::BI__builtin_arm_wfi:
HintID = 3;
break;
case AArch64::BI__builtin_arm_sev:
HintID = 4;
break;
case AArch64::BI__builtin_arm_sevl:
HintID = 5;
break;
}
if (HintID != static_cast<unsigned>(-1)) {
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
}
if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
Value *Address = EmitScalarExpr(E->getArg(0));
Value *RW = EmitScalarExpr(E->getArg(1));
Value *CacheLevel = EmitScalarExpr(E->getArg(2));
Value *RetentionPolicy = EmitScalarExpr(E->getArg(3));
Value *IsData = EmitScalarExpr(E->getArg(4));
Value *Locality = nullptr;
if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) {
// Temporal fetch, needs to convert cache level to locality.
Locality = llvm::ConstantInt::get(Int32Ty,
-cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3);
} else {
// Streaming fetch.
Locality = llvm::ConstantInt::get(Int32Ty, 0);
}
// FIXME: We need AArch64 specific LLVM intrinsic if we want to specify
// PLDL3STRM or PLDL2STRM.
Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
return Builder.CreateCall(F, {Address, RW, Locality, IsData});
}
if (BuiltinID == AArch64::BI__builtin_arm_rbit) {
assert((getContext().getTypeSize(E->getType()) == 32) &&
"rbit of unusual size!");
llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
return Builder.CreateCall(
CGM.getIntrinsic(Intrinsic::aarch64_rbit, Arg->getType()), Arg, "rbit");
}
if (BuiltinID == AArch64::BI__builtin_arm_rbit64) {
assert((getContext().getTypeSize(E->getType()) == 64) &&
"rbit of unusual size!");
llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
return Builder.CreateCall(
CGM.getIntrinsic(Intrinsic::aarch64_rbit, Arg->getType()), Arg, "rbit");
}
if (BuiltinID == AArch64::BI__clear_cache) {
assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
const FunctionDecl *FD = E->getDirectCallee();
Value *Ops[2];
for (unsigned i = 0; i < 2; i++)
Ops[i] = EmitScalarExpr(E->getArg(i));
llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
StringRef Name = FD->getName();
return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
}
if ((BuiltinID == AArch64::BI__builtin_arm_ldrex ||
BuiltinID == AArch64::BI__builtin_arm_ldaex) &&
getContext().getTypeSize(E->getType()) == 128) {
Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
? Intrinsic::aarch64_ldaxp
: Intrinsic::aarch64_ldxp);
Value *LdPtr = EmitScalarExpr(E->getArg(0));
Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
"ldxp");
Value *Val0 = Builder.CreateExtractValue(Val, 1);
Value *Val1 = Builder.CreateExtractValue(Val, 0);
llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
Val0 = Builder.CreateZExt(Val0, Int128Ty);
Val1 = Builder.CreateZExt(Val1, Int128Ty);
Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
Val = Builder.CreateOr(Val, Val1);
return Builder.CreateBitCast(Val, ConvertType(E->getType()));
} else if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
BuiltinID == AArch64::BI__builtin_arm_ldaex) {
Value *LoadAddr = EmitScalarExpr(E->getArg(0));
QualType Ty = E->getType();
llvm::Type *RealResTy = ConvertType(Ty);
llvm::Type *IntResTy = llvm::IntegerType::get(getLLVMContext(),
getContext().getTypeSize(Ty));
LoadAddr = Builder.CreateBitCast(LoadAddr, IntResTy->getPointerTo());
Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
? Intrinsic::aarch64_ldaxr
: Intrinsic::aarch64_ldxr,
LoadAddr->getType());
Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
if (RealResTy->isPointerTy())
return Builder.CreateIntToPtr(Val, RealResTy);
Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
return Builder.CreateBitCast(Val, RealResTy);
}
if ((BuiltinID == AArch64::BI__builtin_arm_strex ||
BuiltinID == AArch64::BI__builtin_arm_stlex) &&
getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
? Intrinsic::aarch64_stlxp
: Intrinsic::aarch64_stxp);
llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty, nullptr);
Address Tmp = CreateMemTemp(E->getArg(0)->getType());
EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
Tmp = Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(STy));
llvm::Value *Val = Builder.CreateLoad(Tmp);
Value *Arg0 = Builder.CreateExtractValue(Val, 0);
Value *Arg1 = Builder.CreateExtractValue(Val, 1);
Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)),
Int8PtrTy);
return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
}
if (BuiltinID == AArch64::BI__builtin_arm_strex ||
BuiltinID == AArch64::BI__builtin_arm_stlex) {
Value *StoreVal = EmitScalarExpr(E->getArg(0));
Value *StoreAddr = EmitScalarExpr(E->getArg(1));
QualType Ty = E->getArg(0)->getType();
llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
getContext().getTypeSize(Ty));
StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
if (StoreVal->getType()->isPointerTy())
StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
else {
StoreVal = Builder.CreateBitCast(StoreVal, StoreTy);
StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
}
Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
? Intrinsic::aarch64_stlxr
: Intrinsic::aarch64_stxr,
StoreAddr->getType());
return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
}
if (BuiltinID == AArch64::BI__builtin_arm_clrex) {
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
return Builder.CreateCall(F);
}
// CRC32
Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
switch (BuiltinID) {
case AArch64::BI__builtin_arm_crc32b:
CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
case AArch64::BI__builtin_arm_crc32cb:
CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
case AArch64::BI__builtin_arm_crc32h:
CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
case AArch64::BI__builtin_arm_crc32ch:
CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
case AArch64::BI__builtin_arm_crc32w:
CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
case AArch64::BI__builtin_arm_crc32cw:
CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
case AArch64::BI__builtin_arm_crc32d:
CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
case AArch64::BI__builtin_arm_crc32cd:
CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
}
if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
Value *Arg0 = EmitScalarExpr(E->getArg(0));
Value *Arg1 = EmitScalarExpr(E->getArg(1));
Function *F = CGM.getIntrinsic(CRCIntrinsicID);
llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
return Builder.CreateCall(F, {Arg0, Arg1});
}
if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
BuiltinID == AArch64::BI__builtin_arm_rsrp ||
BuiltinID == AArch64::BI__builtin_arm_wsr ||
BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
BuiltinID == AArch64::BI__builtin_arm_wsrp) {
bool IsRead = BuiltinID == AArch64::BI__builtin_arm_rsr ||
BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
BuiltinID == AArch64::BI__builtin_arm_rsrp;
bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp ||
BuiltinID == AArch64::BI__builtin_arm_wsrp;
bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr &&
BuiltinID != AArch64::BI__builtin_arm_wsr;
llvm::Type *ValueType;
llvm::Type *RegisterType = Int64Ty;
if (IsPointerBuiltin) {
ValueType = VoidPtrTy;
} else if (Is64Bit) {
ValueType = Int64Ty;
} else {
ValueType = Int32Ty;
}
return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead);
}
// Find out if any arguments are required to be integer constant
// expressions.
unsigned ICEArguments = 0;
ASTContext::GetBuiltinTypeError Error;
getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
assert(Error == ASTContext::GE_None && "Should not codegen an error");
llvm::SmallVector<Value*, 4> Ops;
for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
if ((ICEArguments & (1 << i)) == 0) {
Ops.push_back(EmitScalarExpr(E->getArg(i)));
} else {
// If this is required to be a constant, constant fold it so that we know
// that the generated intrinsic gets a ConstantInt.
llvm::APSInt Result;
bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
assert(IsConst && "Constant arg isn't actually constant?");
(void)IsConst;
Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
}
}
auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap);
const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
if (Builtin) {
Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
assert(Result && "SISD intrinsic should have been handled");
return Result;
}
llvm::APSInt Result;
const Expr *Arg = E->getArg(E->getNumArgs()-1);
NeonTypeFlags Type(0);
if (Arg->isIntegerConstantExpr(Result, getContext()))
// Determine the type of this overloaded NEON intrinsic.
Type = NeonTypeFlags(Result.getZExtValue());
bool usgn = Type.isUnsigned();
bool quad = Type.isQuad();
// Handle non-overloaded intrinsics first.
switch (BuiltinID) {
default: break;
case NEON::BI__builtin_neon_vldrq_p128: {
llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy);
return Builder.CreateDefaultAlignedLoad(Ptr);
}
case NEON::BI__builtin_neon_vstrq_p128: {
llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy);
return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
}
case NEON::BI__builtin_neon_vcvts_u32_f32:
case NEON::BI__builtin_neon_vcvtd_u64_f64:
usgn = true;
// FALL THROUGH
case NEON::BI__builtin_neon_vcvts_s32_f32:
case NEON::BI__builtin_neon_vcvtd_s64_f64: {
Ops.push_back(EmitScalarExpr(E->getArg(0)));
bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
Ops[0] = Builder.CreateBitCast(Ops[0], FTy);
if (usgn)
return Builder.CreateFPToUI(Ops[0], InTy);
return Builder.CreateFPToSI(Ops[0], InTy);
}
case NEON::BI__builtin_neon_vcvts_f32_u32:
case NEON::BI__builtin_neon_vcvtd_f64_u64:
usgn = true;
// FALL THROUGH
case NEON::BI__builtin_neon_vcvts_f32_s32:
case NEON::BI__builtin_neon_vcvtd_f64_s64: {
Ops.push_back(EmitScalarExpr(E->getArg(0)));
bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
if (usgn)
return Builder.CreateUIToFP(Ops[0], FTy);
return Builder.CreateSIToFP(Ops[0], FTy);
}
case NEON::BI__builtin_neon_vpaddd_s64: {
llvm::Type *Ty = llvm::VectorType::get(Int64Ty, 2);
Value *Vec = EmitScalarExpr(E->getArg(0));
// The vector is v2f64, so make sure it's bitcast to that.
Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
// Pairwise addition of a v2f64 into a scalar f64.
return Builder.CreateAdd(Op0, Op1, "vpaddd");
}
case NEON::BI__builtin_neon_vpaddd_f64: {
llvm::Type *Ty =
llvm::VectorType::get(DoubleTy, 2);
Value *Vec = EmitScalarExpr(E->getArg(0));
// The vector is v2f64, so make sure it's bitcast to that.
Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
// Pairwise addition of a v2f64 into a scalar f64.
return Builder.CreateFAdd(Op0, Op1, "vpaddd");
}
case NEON::BI__builtin_neon_vpadds_f32: {
llvm::Type *Ty =
llvm::VectorType::get(FloatTy, 2);
Value *Vec = EmitScalarExpr(E->getArg(0));
// The vector is v2f32, so make sure it's bitcast to that.
Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
// Pairwise addition of a v2f32 into a scalar f32.
return Builder.CreateFAdd(Op0, Op1, "vpaddd");
}
case NEON::BI__builtin_neon_vceqzd_s64:
case NEON::BI__builtin_neon_vceqzd_f64:
case NEON::BI__builtin_neon_vceqzs_f32:
Ops.push_back(EmitScalarExpr(E->getArg(0)));
return EmitAArch64CompareBuiltinExpr(
Ops[0], ConvertType(E->getCallReturnType(getContext())),
ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
case NEON::BI__builtin_neon_vcgezd_s64:
case NEON::BI__builtin_neon_vcgezd_f64:
case NEON::BI__builtin_neon_vcgezs_f32:
Ops.push_back(EmitScalarExpr(E->getArg(0)));
return EmitAArch64CompareBuiltinExpr(
Ops[0], ConvertType(E->getCallReturnType(getContext())),
ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
case NEON::BI__builtin_neon_vclezd_s64:
case NEON::BI__builtin_neon_vclezd_f64:
case NEON::BI__builtin_neon_vclezs_f32:
Ops.push_back(EmitScalarExpr(E->getArg(0)));
return EmitAArch64CompareBuiltinExpr(
Ops[0], ConvertType(E->getCallReturnType(getContext())),
ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
case NEON::BI__builtin_neon_vcgtzd_s64:
case NEON::BI__builtin_neon_vcgtzd_f64:
case NEON::BI__builtin_neon_vcgtzs_f32:
Ops.push_back(EmitScalarExpr(E->getArg(0)));
return EmitAArch64CompareBuiltinExpr(
Ops[0], ConvertType(E->getCallReturnType(getContext())),
ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
case NEON::BI__builtin_neon_vcltzd_s64:
case NEON::BI__builtin_neon_vcltzd_f64:
case NEON::BI__builtin_neon_vcltzs_f32:
Ops.push_back(EmitScalarExpr(E->getArg(0)));
return EmitAArch64CompareBuiltinExpr(
Ops[0], ConvertType(E->getCallReturnType(getContext())),
ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
case NEON::BI__builtin_neon_vceqzd_u64: {
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
Ops[0] =
Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
}
case NEON::BI__builtin_neon_vceqd_f64:
case NEON::BI__builtin_neon_vcled_f64:
case NEON::BI__builtin_neon_vcltd_f64:
case NEON::BI__builtin_neon_vcged_f64:
case NEON::BI__builtin_neon_vcgtd_f64: {
llvm::CmpInst::Predicate P;
switch (BuiltinID) {
default: llvm_unreachable("missing builtin ID in switch!");
case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
}
Ops.push_back(EmitScalarExpr(E->getArg(1)));
Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
}
case NEON::BI__builtin_neon_vceqs_f32:
case NEON::BI__builtin_neon_vcles_f32:
case NEON::BI__builtin_neon_vclts_f32:
case NEON::BI__builtin_neon_vcges_f32:
case NEON::BI__builtin_neon_vcgts_f32: {
llvm::CmpInst::Predicate P;
switch (BuiltinID) {
default: llvm_unreachable("missing builtin ID in switch!");
case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
}
Ops.push_back(EmitScalarExpr(E->getArg(1)));
Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
}
case NEON::BI__builtin_neon_vceqd_s64:
case NEON::BI__builtin_neon_vceqd_u64:
case NEON::BI__builtin_neon_vcgtd_s64:
case NEON::BI__builtin_neon_vcgtd_u64:
case NEON::BI__builtin_neon_vcltd_s64:
case NEON::BI__builtin_neon_vcltd_u64:
case NEON::BI__builtin_neon_vcged_u64:
case NEON::BI__builtin_neon_vcged_s64:
case NEON::BI__builtin_neon_vcled_u64:
case NEON::BI__builtin_neon_vcled_s64: {
llvm::CmpInst::Predicate P;
switch (BuiltinID) {
default: llvm_unreachable("missing builtin ID in switch!");
case NEON::BI__builtin_neon_vceqd_s64:
case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
}
Ops.push_back(EmitScalarExpr(E->getArg(1)));
Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
}
case NEON::BI__builtin_neon_vtstd_s64:
case NEON::BI__builtin_neon_vtstd_u64: {
Ops.push_back(EmitScalarExpr(E->getArg(1)));
Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
llvm::Constant::getNullValue(Int64Ty));
return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
}
case NEON::BI__builtin_neon_vset_lane_i8:
case NEON::BI__builtin_neon_vset_lane_i16:
case NEON::BI__builtin_neon_vset_lane_i32:
case NEON::BI__builtin_neon_vset_lane_i64:
case NEON::BI__builtin_neon_vset_lane_f32:
case NEON::BI__builtin_neon_vsetq_lane_i8:
case NEON::BI__builtin_neon_vsetq_lane_i16:
case NEON::BI__builtin_neon_vsetq_lane_i32:
case NEON::BI__builtin_neon_vsetq_lane_i64:
case NEON::BI__builtin_neon_vsetq_lane_f32:
Ops.push_back(EmitScalarExpr(E->getArg(2)));
return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
case NEON::BI__builtin_neon_vset_lane_f64:
// The vector type needs a cast for the v1f64 variant.
Ops[1] = Builder.CreateBitCast(Ops[1],
llvm::VectorType::get(DoubleTy, 1));
Ops.push_back(EmitScalarExpr(E->getArg(2)));
return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
case NEON::BI__builtin_neon_vsetq_lane_f64:
// The vector type needs a cast for the v2f64 variant.
Ops[1] = Builder.CreateBitCast(Ops[1],
llvm::VectorType::get(DoubleTy, 2));
Ops.push_back(EmitScalarExpr(E->getArg(2)));
return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
case NEON::BI__builtin_neon_vget_lane_i8:
case NEON::BI__builtin_neon_vdupb_lane_i8:
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 8));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vget_lane");
case NEON::BI__builtin_neon_vgetq_lane_i8:
case NEON::BI__builtin_neon_vdupb_laneq_i8:
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 16));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vgetq_lane");
case NEON::BI__builtin_neon_vget_lane_i16:
case NEON::BI__builtin_neon_vduph_lane_i16:
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 4));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vget_lane");
case NEON::BI__builtin_neon_vgetq_lane_i16:
case NEON::BI__builtin_neon_vduph_laneq_i16:
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 8));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vgetq_lane");
case NEON::BI__builtin_neon_vget_lane_i32:
case NEON::BI__builtin_neon_vdups_lane_i32:
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 2));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vget_lane");
case NEON::BI__builtin_neon_vdups_lane_f32:
Ops[0] = Builder.CreateBitCast(Ops[0],
llvm::VectorType::get(FloatTy, 2));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vdups_lane");
case NEON::BI__builtin_neon_vgetq_lane_i32:
case NEON::BI__builtin_neon_vdups_laneq_i32:
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vgetq_lane");
case NEON::BI__builtin_neon_vget_lane_i64:
case NEON::BI__builtin_neon_vdupd_lane_i64:
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 1));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vget_lane");
case NEON::BI__builtin_neon_vdupd_lane_f64:
Ops[0] = Builder.CreateBitCast(Ops[0],
llvm::VectorType::get(DoubleTy, 1));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vdupd_lane");
case NEON::BI__builtin_neon_vgetq_lane_i64:
case NEON::BI__builtin_neon_vdupd_laneq_i64:
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vgetq_lane");
case NEON::BI__builtin_neon_vget_lane_f32:
Ops[0] = Builder.CreateBitCast(Ops[0],
llvm::VectorType::get(FloatTy, 2));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vget_lane");
case NEON::BI__builtin_neon_vget_lane_f64:
Ops[0] = Builder.CreateBitCast(Ops[0],
llvm::VectorType::get(DoubleTy, 1));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vget_lane");
case NEON::BI__builtin_neon_vgetq_lane_f32:
case NEON::BI__builtin_neon_vdups_laneq_f32:
Ops[0] = Builder.CreateBitCast(Ops[0],
llvm::VectorType::get(FloatTy, 4));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vgetq_lane");
case NEON::BI__builtin_neon_vgetq_lane_f64:
case NEON::BI__builtin_neon_vdupd_laneq_f64:
Ops[0] = Builder.CreateBitCast(Ops[0],
llvm::VectorType::get(DoubleTy, 2));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vgetq_lane");
case NEON::BI__builtin_neon_vaddd_s64:
case NEON::BI__builtin_neon_vaddd_u64:
return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
case NEON::BI__builtin_neon_vsubd_s64:
case NEON::BI__builtin_neon_vsubd_u64:
return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
case NEON::BI__builtin_neon_vqdmlalh_s16:
case NEON::BI__builtin_neon_vqdmlslh_s16: {
SmallVector<Value *, 2> ProductOps;
ProductOps.push_back(vectorWrapScalar16(Ops[1]));
ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
ProductOps, "vqdmlXl");
Constant *CI = ConstantInt::get(SizeTy, 0);
Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
? Intrinsic::aarch64_neon_sqadd
: Intrinsic::aarch64_neon_sqsub;
return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
}
case NEON::BI__builtin_neon_vqshlud_n_s64: {
Ops.push_back(EmitScalarExpr(E->getArg(1)));
Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
Ops, "vqshlu_n");
}
case NEON::BI__builtin_neon_vqshld_n_u64:
case NEON::BI__builtin_neon_vqshld_n_s64: {
unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
? Intrinsic::aarch64_neon_uqshl
: Intrinsic::aarch64_neon_sqshl;
Ops.push_back(EmitScalarExpr(E->getArg(1)));
Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
}
case NEON::BI__builtin_neon_vrshrd_n_u64:
case NEON::BI__builtin_neon_vrshrd_n_s64: {
unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
? Intrinsic::aarch64_neon_urshl
: Intrinsic::aarch64_neon_srshl;
Ops.push_back(EmitScalarExpr(E->getArg(1)));
int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
Ops[1] = ConstantInt::get(Int64Ty, -SV);
return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
}
case NEON::BI__builtin_neon_vrsrad_n_u64:
case NEON::BI__builtin_neon_vrsrad_n_s64: {
unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
? Intrinsic::aarch64_neon_urshl
: Intrinsic::aarch64_neon_srshl;
Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
{Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
}
case NEON::BI__builtin_neon_vshld_n_s64:
case NEON::BI__builtin_neon_vshld_n_u64: {
llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
return Builder.CreateShl(
Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
}
case NEON::BI__builtin_neon_vshrd_n_s64: {
llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
return Builder.CreateAShr(
Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
Amt->getZExtValue())),
"shrd_n");
}
case NEON::BI__builtin_neon_vshrd_n_u64: {
llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
uint64_t ShiftAmt = Amt->getZExtValue();
// Right-shifting an unsigned value by its size yields 0.
if (ShiftAmt == 64)
return ConstantInt::get(Int64Ty, 0);
return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
"shrd_n");
}
case NEON::BI__builtin_neon_vsrad_n_s64: {
llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
Ops[1] = Builder.CreateAShr(
Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
Amt->getZExtValue())),
"shrd_n");
return Builder.CreateAdd(Ops[0], Ops[1]);
}
case NEON::BI__builtin_neon_vsrad_n_u64: {
llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
uint64_t ShiftAmt = Amt->getZExtValue();
// Right-shifting an unsigned value by its size yields 0.
// As Op + 0 = Op, return Ops[0] directly.
if (ShiftAmt == 64)
return Ops[0];
Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
"shrd_n");
return Builder.CreateAdd(Ops[0], Ops[1]);
}
case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
"lane");
SmallVector<Value *, 2> ProductOps;
ProductOps.push_back(vectorWrapScalar16(Ops[1]));
ProductOps.push_back(vectorWrapScalar16(Ops[2]));
llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
ProductOps, "vqdmlXl");
Constant *CI = ConstantInt::get(SizeTy, 0);
Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
Ops.pop_back();
unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
? Intrinsic::aarch64_neon_sqadd
: Intrinsic::aarch64_neon_sqsub;
return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
}
case NEON::BI__builtin_neon_vqdmlals_s32:
case NEON::BI__builtin_neon_vqdmlsls_s32: {
SmallVector<Value *, 2> ProductOps;
ProductOps.push_back(Ops[1]);
ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
Ops[1] =
EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
ProductOps, "vqdmlXl");
unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
? Intrinsic::aarch64_neon_sqadd
: Intrinsic::aarch64_neon_sqsub;
return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
}
case NEON::BI__builtin_neon_vqdmlals_lane_s32:
case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
"lane");
SmallVector<Value *, 2> ProductOps;
ProductOps.push_back(Ops[1]);
ProductOps.push_back(Ops[2]);
Ops[1] =
EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
ProductOps, "vqdmlXl");
Ops.pop_back();
unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
? Intrinsic::aarch64_neon_sqadd
: Intrinsic::aarch64_neon_sqsub;
return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
}
}
llvm::VectorType *VTy = GetNeonType(this, Type);
llvm::Type *Ty = VTy;
if (!Ty)
return nullptr;
// Not all intrinsics handled by the common case work for AArch64 yet, so only
// defer to common code if it's been added to our special map.
Builtin = findNeonIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
AArch64SIMDIntrinsicsProvenSorted);
if (Builtin)
return EmitCommonNeonBuiltinExpr(
Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
Builtin->NameHint, Builtin->TypeModifier, E, Ops,
/*never use addresses*/ Address::invalid(), Address::invalid());
if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops))
return V;
unsigned Int;
switch (BuiltinID) {
default: return nullptr;
case NEON::BI__builtin_neon_vbsl_v:
case NEON::BI__builtin_neon_vbslq_v: {
llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
return Builder.CreateBitCast(Ops[0], Ty);
}
case NEON::BI__builtin_neon_vfma_lane_v:
case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
// The ARM builtins (and instructions) have the addend as the first
// operand, but the 'fma' intrinsics have it last. Swap it around here.
Value *Addend = Ops[0];
Value *Multiplicand = Ops[1];
Value *LaneSource = Ops[2];
Ops[0] = Multiplicand;
Ops[1] = LaneSource;
Ops[2] = Addend;
// Now adjust things to handle the lane access.
llvm::Type *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v ?
llvm::VectorType::get(VTy->getElementType(), VTy->getNumElements() / 2) :
VTy;
llvm::Constant *cst = cast<Constant>(Ops[3]);
Value *SV = llvm::ConstantVector::getSplat(VTy->getNumElements(), cst);
Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
Ops.pop_back();
Int = Intrinsic::fma;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
}
case NEON::BI__builtin_neon_vfma_laneq_v: {
llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
// v1f64 fma should be mapped to Neon scalar f64 fma
if (VTy && VTy->getElementType() == DoubleTy) {
Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
llvm::Type *VTy = GetNeonType(this,
NeonTypeFlags(NeonTypeFlags::Float64, false, true));
Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
Value *F = CGM.getIntrinsic(Intrinsic::fma, DoubleTy);
Value *Result = Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
return Builder.CreateBitCast(Result, Ty);
}
Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
llvm::Type *STy = llvm::VectorType::get(VTy->getElementType(),
VTy->getNumElements() * 2);
Ops[2] = Builder.CreateBitCast(Ops[2], STy);
Value* SV = llvm::ConstantVector::getSplat(VTy->getNumElements(),
cast<ConstantInt>(Ops[3]));
Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]});
}
case NEON::BI__builtin_neon_vfmaq_laneq_v: {
Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]});
}
case NEON::BI__builtin_neon_vfmas_lane_f32:
case NEON::BI__builtin_neon_vfmas_laneq_f32:
case NEON::BI__builtin_neon_vfmad_lane_f64:
case NEON::BI__builtin_neon_vfmad_laneq_f64: {
Ops.push_back(EmitScalarExpr(E->getArg(3)));
llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
}
case NEON::BI__builtin_neon_vmull_v:
// FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
case NEON::BI__builtin_neon_vmax_v:
case NEON::BI__builtin_neon_vmaxq_v:
// FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
case NEON::BI__builtin_neon_vmin_v:
case NEON::BI__builtin_neon_vminq_v:
// FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
case NEON::BI__builtin_neon_vabd_v:
case NEON::BI__builtin_neon_vabdq_v:
// FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
case NEON::BI__builtin_neon_vpadal_v:
case NEON::BI__builtin_neon_vpadalq_v: {
unsigned ArgElts = VTy->getNumElements();
llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
unsigned BitWidth = EltTy->getBitWidth();
llvm::Type *ArgTy = llvm::VectorType::get(
llvm::IntegerType::get(getLLVMContext(), BitWidth/2), 2*ArgElts);
llvm::Type* Tys[2] = { VTy, ArgTy };
Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
SmallVector<llvm::Value*, 1> TmpOps;
TmpOps.push_back(Ops[1]);
Function *F = CGM.getIntrinsic(Int, Tys);
llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
return Builder.CreateAdd(tmp, addend);
}
case NEON::BI__builtin_neon_vpmin_v:
case NEON::BI__builtin_neon_vpminq_v:
// FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
case NEON::BI__builtin_neon_vpmax_v:
case NEON::BI__builtin_neon_vpmaxq_v:
// FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
case NEON::BI__builtin_neon_vminnm_v:
case NEON::BI__builtin_neon_vminnmq_v:
Int = Intrinsic::aarch64_neon_fminnm;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
case NEON::BI__builtin_neon_vmaxnm_v:
case NEON::BI__builtin_neon_vmaxnmq_v:
Int = Intrinsic::aarch64_neon_fmaxnm;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
case NEON::BI__builtin_neon_vrecpss_f32: {
Ops.push_back(EmitScalarExpr(E->getArg(1)));
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
Ops, "vrecps");
}
case NEON::BI__builtin_neon_vrecpsd_f64: {
Ops.push_back(EmitScalarExpr(E->getArg(1)));
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
Ops, "vrecps");
}
case NEON::BI__builtin_neon_vqshrun_n_v:
Int = Intrinsic::aarch64_neon_sqshrun;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
case NEON::BI__builtin_neon_vqrshrun_n_v:
Int = Intrinsic::aarch64_neon_sqrshrun;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
case NEON::BI__builtin_neon_vqshrn_n_v:
Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
case NEON::BI__builtin_neon_vrshrn_n_v:
Int = Intrinsic::aarch64_neon_rshrn;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
case NEON::BI__builtin_neon_vqrshrn_n_v:
Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
case NEON::BI__builtin_neon_vrnda_v:
case NEON::BI__builtin_neon_vrndaq_v: {
Int = Intrinsic::round;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
}
case NEON::BI__builtin_neon_vrndi_v:
case NEON::BI__builtin_neon_vrndiq_v: {
Int = Intrinsic::nearbyint;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndi");
}
case NEON::BI__builtin_neon_vrndm_v:
case NEON::BI__builtin_neon_vrndmq_v: {
Int = Intrinsic::floor;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
}
case NEON::BI__builtin_neon_vrndn_v:
case NEON::BI__builtin_neon_vrndnq_v: {
Int = Intrinsic::aarch64_neon_frintn;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
}
case NEON::BI__builtin_neon_vrndp_v:
case NEON::BI__builtin_neon_vrndpq_v: {
Int = Intrinsic::ceil;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
}
case NEON::BI__builtin_neon_vrndx_v:
case NEON::BI__builtin_neon_vrndxq_v: {
Int = Intrinsic::rint;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
}
case NEON::BI__builtin_neon_vrnd_v:
case NEON::BI__builtin_neon_vrndq_v: {
Int = Intrinsic::trunc;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
}
case NEON::BI__builtin_neon_vceqz_v:
case NEON::BI__builtin_neon_vceqzq_v:
return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
ICmpInst::ICMP_EQ, "vceqz");
case NEON::BI__builtin_neon_vcgez_v:
case NEON::BI__builtin_neon_vcgezq_v:
return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
ICmpInst::ICMP_SGE, "vcgez");
case NEON::BI__builtin_neon_vclez_v:
case NEON::BI__builtin_neon_vclezq_v:
return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
ICmpInst::ICMP_SLE, "vclez");
case NEON::BI__builtin_neon_vcgtz_v:
case NEON::BI__builtin_neon_vcgtzq_v:
return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
ICmpInst::ICMP_SGT, "vcgtz");
case NEON::BI__builtin_neon_vcltz_v:
case NEON::BI__builtin_neon_vcltzq_v:
return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
ICmpInst::ICMP_SLT, "vcltz");
case NEON::BI__builtin_neon_vcvt_f64_v:
case NEON::BI__builtin_neon_vcvtq_f64_v:
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
: Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
case NEON::BI__builtin_neon_vcvt_f64_f32: {
assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&
"unexpected vcvt_f64_f32 builtin");
NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
}
case NEON::BI__builtin_neon_vcvt_f32_f64: {
assert(Type.getEltType() == NeonTypeFlags::Float32 &&
"unexpected vcvt_f32_f64 builtin");
NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
}
case NEON::BI__builtin_neon_vcvt_s32_v:
case NEON::BI__builtin_neon_vcvt_u32_v:
case NEON::BI__builtin_neon_vcvt_s64_v:
case NEON::BI__builtin_neon_vcvt_u64_v:
case NEON::BI__builtin_neon_vcvtq_s32_v:
case NEON::BI__builtin_neon_vcvtq_u32_v:
case NEON::BI__builtin_neon_vcvtq_s64_v:
case NEON::BI__builtin_neon_vcvtq_u64_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
if (usgn)
return Builder.CreateFPToUI(Ops[0], Ty);
return Builder.CreateFPToSI(Ops[0], Ty);
}
case NEON::BI__builtin_neon_vcvta_s32_v:
case NEON::BI__builtin_neon_vcvtaq_s32_v:
case NEON::BI__builtin_neon_vcvta_u32_v:
case NEON::BI__builtin_neon_vcvtaq_u32_v:
case NEON::BI__builtin_neon_vcvta_s64_v:
case NEON::BI__builtin_neon_vcvtaq_s64_v:
case NEON::BI__builtin_neon_vcvta_u64_v:
case NEON::BI__builtin_neon_vcvtaq_u64_v: {
Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
}
case NEON::BI__builtin_neon_vcvtm_s32_v:
case NEON::BI__builtin_neon_vcvtmq_s32_v:
case NEON::BI__builtin_neon_vcvtm_u32_v:
case NEON::BI__builtin_neon_vcvtmq_u32_v:
case NEON::BI__builtin_neon_vcvtm_s64_v:
case NEON::BI__builtin_neon_vcvtmq_s64_v:
case NEON::BI__builtin_neon_vcvtm_u64_v:
case NEON::BI__builtin_neon_vcvtmq_u64_v: {
Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
}
case NEON::BI__builtin_neon_vcvtn_s32_v:
case NEON::BI__builtin_neon_vcvtnq_s32_v:
case NEON::BI__builtin_neon_vcvtn_u32_v:
case NEON::BI__builtin_neon_vcvtnq_u32_v:
case NEON::BI__builtin_neon_vcvtn_s64_v:
case NEON::BI__builtin_neon_vcvtnq_s64_v:
case NEON::BI__builtin_neon_vcvtn_u64_v:
case NEON::BI__builtin_neon_vcvtnq_u64_v: {
Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
}
case NEON::BI__builtin_neon_vcvtp_s32_v:
case NEON::BI__builtin_neon_vcvtpq_s32_v:
case NEON::BI__builtin_neon_vcvtp_u32_v:
case NEON::BI__builtin_neon_vcvtpq_u32_v:
case NEON::BI__builtin_neon_vcvtp_s64_v:
case NEON::BI__builtin_neon_vcvtpq_s64_v:
case NEON::BI__builtin_neon_vcvtp_u64_v:
case NEON::BI__builtin_neon_vcvtpq_u64_v: {
Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
}
case NEON::BI__builtin_neon_vmulx_v:
case NEON::BI__builtin_neon_vmulxq_v: {
Int = Intrinsic::aarch64_neon_fmulx;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
}
case NEON::BI__builtin_neon_vmul_lane_v:
case NEON::BI__builtin_neon_vmul_laneq_v: {
// v1f64 vmul_lane should be mapped to Neon scalar mul lane
bool Quad = false;
if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
Quad = true;
Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
llvm::Type *VTy = GetNeonType(this,
NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
return Builder.CreateBitCast(Result, Ty);
}
case NEON::BI__builtin_neon_vnegd_s64:
return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
case NEON::BI__builtin_neon_vpmaxnm_v:
case NEON::BI__builtin_neon_vpmaxnmq_v: {
Int = Intrinsic::aarch64_neon_fmaxnmp;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
}
case NEON::BI__builtin_neon_vpminnm_v:
case NEON::BI__builtin_neon_vpminnmq_v: {
Int = Intrinsic::aarch64_neon_fminnmp;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
}
case NEON::BI__builtin_neon_vsqrt_v:
case NEON::BI__builtin_neon_vsqrtq_v: {
Int = Intrinsic::sqrt;
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
}
case NEON::BI__builtin_neon_vrbit_v:
case NEON::BI__builtin_neon_vrbitq_v: {
Int = Intrinsic::aarch64_neon_rbit;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
}
case NEON::BI__builtin_neon_vaddv_u8:
// FIXME: These are handled by the AArch64 scalar code.
usgn = true;
// FALLTHROUGH
case NEON::BI__builtin_neon_vaddv_s8: {
Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int8Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
return Builder.CreateTrunc(Ops[0], Int8Ty);
}
case NEON::BI__builtin_neon_vaddv_u16:
usgn = true;
// FALLTHROUGH
case NEON::BI__builtin_neon_vaddv_s16: {
Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int16Ty, 4);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vaddvq_u8:
usgn = true;
// FALLTHROUGH
case NEON::BI__builtin_neon_vaddvq_s8: {
Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int8Ty, 16);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
return Builder.CreateTrunc(Ops[0], Int8Ty);
}
case NEON::BI__builtin_neon_vaddvq_u16:
usgn = true;
// FALLTHROUGH
case NEON::BI__builtin_neon_vaddvq_s16: {
Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int16Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vmaxv_u8: {
Int = Intrinsic::aarch64_neon_umaxv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int8Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
return Builder.CreateTrunc(Ops[0], Int8Ty);
}
case NEON::BI__builtin_neon_vmaxv_u16: {
Int = Intrinsic::aarch64_neon_umaxv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int16Ty, 4);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vmaxvq_u8: {
Int = Intrinsic::aarch64_neon_umaxv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int8Ty, 16);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
return Builder.CreateTrunc(Ops[0], Int8Ty);
}
case NEON::BI__builtin_neon_vmaxvq_u16: {
Int = Intrinsic::aarch64_neon_umaxv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int16Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vmaxv_s8: {
Int = Intrinsic::aarch64_neon_smaxv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int8Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
return Builder.CreateTrunc(Ops[0], Int8Ty);
}
case NEON::BI__builtin_neon_vmaxv_s16: {
Int = Intrinsic::aarch64_neon_smaxv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int16Ty, 4);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vmaxvq_s8: {
Int = Intrinsic::aarch64_neon_smaxv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int8Ty, 16);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
return Builder.CreateTrunc(Ops[0], Int8Ty);
}
case NEON::BI__builtin_neon_vmaxvq_s16: {
Int = Intrinsic::aarch64_neon_smaxv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int16Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vminv_u8: {
Int = Intrinsic::aarch64_neon_uminv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int8Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
return Builder.CreateTrunc(Ops[0], Int8Ty);
}
case NEON::BI__builtin_neon_vminv_u16: {
Int = Intrinsic::aarch64_neon_uminv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int16Ty, 4);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vminvq_u8: {
Int = Intrinsic::aarch64_neon_uminv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int8Ty, 16);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
return Builder.CreateTrunc(Ops[0], Int8Ty);
}
case NEON::BI__builtin_neon_vminvq_u16: {
Int = Intrinsic::aarch64_neon_uminv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int16Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vminv_s8: {
Int = Intrinsic::aarch64_neon_sminv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int8Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
return Builder.CreateTrunc(Ops[0], Int8Ty);
}
case NEON::BI__builtin_neon_vminv_s16: {
Int = Intrinsic::aarch64_neon_sminv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int16Ty, 4);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vminvq_s8: {
Int = Intrinsic::aarch64_neon_sminv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int8Ty, 16);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
return Builder.CreateTrunc(Ops[0], Int8Ty);
}
case NEON::BI__builtin_neon_vminvq_s16: {
Int = Intrinsic::aarch64_neon_sminv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int16Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vmul_n_f64: {
Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
return Builder.CreateFMul(Ops[0], RHS);
}
case NEON::BI__builtin_neon_vaddlv_u8: {
Int = Intrinsic::aarch64_neon_uaddlv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int8Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vaddlv_u16: {
Int = Intrinsic::aarch64_neon_uaddlv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int16Ty, 4);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
}
case NEON::BI__builtin_neon_vaddlvq_u8: {
Int = Intrinsic::aarch64_neon_uaddlv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int8Ty, 16);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vaddlvq_u16: {
Int = Intrinsic::aarch64_neon_uaddlv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int16Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
}
case NEON::BI__builtin_neon_vaddlv_s8: {
Int = Intrinsic::aarch64_neon_saddlv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int8Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vaddlv_s16: {
Int = Intrinsic::aarch64_neon_saddlv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int16Ty, 4);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
}
case NEON::BI__builtin_neon_vaddlvq_s8: {
Int = Intrinsic::aarch64_neon_saddlv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int8Ty, 16);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vaddlvq_s16: {
Int = Intrinsic::aarch64_neon_saddlv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int16Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
}
case NEON::BI__builtin_neon_vsri_n_v:
case NEON::BI__builtin_neon_vsriq_n_v: {
Int = Intrinsic::aarch64_neon_vsri;
llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
return EmitNeonCall(Intrin, Ops, "vsri_n");
}
case NEON::BI__builtin_neon_vsli_n_v:
case NEON::BI__builtin_neon_vsliq_n_v: {
Int = Intrinsic::aarch64_neon_vsli;
llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
return EmitNeonCall(Intrin, Ops, "vsli_n");
}
case NEON::BI__builtin_neon_vsra_n_v:
case NEON::BI__builtin_neon_vsraq_n_v:
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
return Builder.CreateAdd(Ops[0], Ops[1]);
case NEON::BI__builtin_neon_vrsra_n_v:
case NEON::BI__builtin_neon_vrsraq_n_v: {
Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
SmallVector<llvm::Value*,2> TmpOps;
TmpOps.push_back(Ops[1]);
TmpOps.push_back(Ops[2]);
Function* F = CGM.getIntrinsic(Int, Ty);
llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
return Builder.CreateAdd(Ops[0], tmp);
}
// FIXME: Sharing loads & stores with 32-bit is complicated by the absence
// of an Align parameter here.
case NEON::BI__builtin_neon_vld1_x2_v:
case NEON::BI__builtin_neon_vld1q_x2_v:
case NEON::BI__builtin_neon_vld1_x3_v:
case NEON::BI__builtin_neon_vld1q_x3_v:
case NEON::BI__builtin_neon_vld1_x4_v:
case NEON::BI__builtin_neon_vld1q_x4_v: {
llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
llvm::Type *Tys[2] = { VTy, PTy };
unsigned Int;
switch (BuiltinID) {
case NEON::BI__builtin_neon_vld1_x2_v:
case NEON::BI__builtin_neon_vld1q_x2_v:
Int = Intrinsic::aarch64_neon_ld1x2;
break;
case NEON::BI__builtin_neon_vld1_x3_v:
case NEON::BI__builtin_neon_vld1q_x3_v:
Int = Intrinsic::aarch64_neon_ld1x3;
break;
case NEON::BI__builtin_neon_vld1_x4_v:
case NEON::BI__builtin_neon_vld1q_x4_v:
Int = Intrinsic::aarch64_neon_ld1x4;
break;
}
Function *F = CGM.getIntrinsic(Int, Tys);
Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vst1_x2_v:
case NEON::BI__builtin_neon_vst1q_x2_v:
case NEON::BI__builtin_neon_vst1_x3_v:
case NEON::BI__builtin_neon_vst1q_x3_v:
case NEON::BI__builtin_neon_vst1_x4_v:
case NEON::BI__builtin_neon_vst1q_x4_v: {
llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
llvm::Type *Tys[2] = { VTy, PTy };
unsigned Int;
switch (BuiltinID) {
case NEON::BI__builtin_neon_vst1_x2_v:
case NEON::BI__builtin_neon_vst1q_x2_v:
Int = Intrinsic::aarch64_neon_st1x2;
break;
case NEON::BI__builtin_neon_vst1_x3_v:
case NEON::BI__builtin_neon_vst1q_x3_v:
Int = Intrinsic::aarch64_neon_st1x3;
break;
case NEON::BI__builtin_neon_vst1_x4_v:
case NEON::BI__builtin_neon_vst1q_x4_v:
Int = Intrinsic::aarch64_neon_st1x4;
break;
}
std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
}
case NEON::BI__builtin_neon_vld1_v:
case NEON::BI__builtin_neon_vld1q_v:
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
return Builder.CreateDefaultAlignedLoad(Ops[0]);
case NEON::BI__builtin_neon_vst1_v:
case NEON::BI__builtin_neon_vst1q_v:
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
case NEON::BI__builtin_neon_vld1_lane_v:
case NEON::BI__builtin_neon_vld1q_lane_v:
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ty = llvm::PointerType::getUnqual(VTy->getElementType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[0] = Builder.CreateDefaultAlignedLoad(Ops[0]);
return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
case NEON::BI__builtin_neon_vld1_dup_v:
case NEON::BI__builtin_neon_vld1q_dup_v: {
Value *V = UndefValue::get(Ty);
Ty = llvm::PointerType::getUnqual(VTy->getElementType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[0] = Builder.CreateDefaultAlignedLoad(Ops[0]);
llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
return EmitNeonSplat(Ops[0], CI);
}
case NEON::BI__builtin_neon_vst1_lane_v:
case NEON::BI__builtin_neon_vst1q_lane_v:
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
return Builder.CreateDefaultAlignedStore(Ops[1],
Builder.CreateBitCast(Ops[0], Ty));
case NEON::BI__builtin_neon_vld2_v:
case NEON::BI__builtin_neon_vld2q_v: {
llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
llvm::Type *Tys[2] = { VTy, PTy };
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
Ops[0] = Builder.CreateBitCast(Ops[0],
llvm::PointerType::getUnqual(Ops[1]->getType()));
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vld3_v:
case NEON::BI__builtin_neon_vld3q_v: {
llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
llvm::Type *Tys[2] = { VTy, PTy };
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
Ops[0] = Builder.CreateBitCast(Ops[0],
llvm::PointerType::getUnqual(Ops[1]->getType()));
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vld4_v:
case NEON::BI__builtin_neon_vld4q_v: {
llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
llvm::Type *Tys[2] = { VTy, PTy };
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
Ops[0] = Builder.CreateBitCast(Ops[0],
llvm::PointerType::getUnqual(Ops[1]->getType()));
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vld2_dup_v:
case NEON::BI__builtin_neon_vld2q_dup_v: {
llvm::Type *PTy =
llvm::PointerType::getUnqual(VTy->getElementType());
Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
llvm::Type *Tys[2] = { VTy, PTy };
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
Ops[0] = Builder.CreateBitCast(Ops[0],
llvm::PointerType::getUnqual(Ops[1]->getType()));
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vld3_dup_v:
case NEON::BI__builtin_neon_vld3q_dup_v: {
llvm::Type *PTy =
llvm::PointerType::getUnqual(VTy->getElementType());
Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
llvm::Type *Tys[2] = { VTy, PTy };
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
Ops[0] = Builder.CreateBitCast(Ops[0],
llvm::PointerType::getUnqual(Ops[1]->getType()));
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vld4_dup_v:
case NEON::BI__builtin_neon_vld4q_dup_v: {
llvm::Type *PTy =
llvm::PointerType::getUnqual(VTy->getElementType());
Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
llvm::Type *Tys[2] = { VTy, PTy };
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
Ops[0] = Builder.CreateBitCast(Ops[0],
llvm::PointerType::getUnqual(Ops[1]->getType()));
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vld2_lane_v:
case NEON::BI__builtin_neon_vld2q_lane_v: {
llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
Ops.push_back(Ops[1]);
Ops.erase(Ops.begin()+1);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vld3_lane_v:
case NEON::BI__builtin_neon_vld3q_lane_v: {
llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
Ops.push_back(Ops[1]);
Ops.erase(Ops.begin()+1);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vld4_lane_v:
case NEON::BI__builtin_neon_vld4q_lane_v: {
llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
Ops.push_back(Ops[1]);
Ops.erase(Ops.begin()+1);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane");
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vst2_v:
case NEON::BI__builtin_neon_vst2q_v: {
Ops.push_back(Ops[0]);
Ops.erase(Ops.begin());
llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
Ops, "");
}
case NEON::BI__builtin_neon_vst2_lane_v:
case NEON::BI__builtin_neon_vst2q_lane_v: {
Ops.push_back(Ops[0]);
Ops.erase(Ops.begin());
Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
Ops, "");
}
case NEON::BI__builtin_neon_vst3_v:
case NEON::BI__builtin_neon_vst3q_v: {
Ops.push_back(Ops[0]);
Ops.erase(Ops.begin());
llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
Ops, "");
}
case NEON::BI__builtin_neon_vst3_lane_v:
case NEON::BI__builtin_neon_vst3q_lane_v: {
Ops.push_back(Ops[0]);
Ops.erase(Ops.begin());
Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
Ops, "");
}
case NEON::BI__builtin_neon_vst4_v:
case NEON::BI__builtin_neon_vst4q_v: {
Ops.push_back(Ops[0]);
Ops.erase(Ops.begin());
llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
Ops, "");
}
case NEON::BI__builtin_neon_vst4_lane_v:
case NEON::BI__builtin_neon_vst4q_lane_v: {
Ops.push_back(Ops[0]);
Ops.erase(Ops.begin());
Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
Ops, "");
}
case NEON::BI__builtin_neon_vtrn_v:
case NEON::BI__builtin_neon_vtrnq_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Value *SV = nullptr;
for (unsigned vi = 0; vi != 2; ++vi) {
SmallVector<Constant*, 16> Indices;
for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
Indices.push_back(ConstantInt::get(Int32Ty, i+vi));
Indices.push_back(ConstantInt::get(Int32Ty, i+e+vi));
}
Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
SV = llvm::ConstantVector::get(Indices);
SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vtrn");
SV = Builder.CreateDefaultAlignedStore(SV, Addr);
}
return SV;
}
case NEON::BI__builtin_neon_vuzp_v:
case NEON::BI__builtin_neon_vuzpq_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Value *SV = nullptr;
for (unsigned vi = 0; vi != 2; ++vi) {
SmallVector<Constant*, 16> Indices;
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
Indices.push_back(ConstantInt::get(Int32Ty, 2*i+vi));
Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
SV = llvm::ConstantVector::get(Indices);
SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vuzp");
SV = Builder.CreateDefaultAlignedStore(SV, Addr);
}
return SV;
}
case NEON::BI__builtin_neon_vzip_v:
case NEON::BI__builtin_neon_vzipq_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Value *SV = nullptr;
for (unsigned vi = 0; vi != 2; ++vi) {
SmallVector<Constant*, 16> Indices;
for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
Indices.push_back(ConstantInt::get(Int32Ty, (i + vi*e) >> 1));
Indices.push_back(ConstantInt::get(Int32Ty, ((i + vi*e) >> 1)+e));
}
Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
SV = llvm::ConstantVector::get(Indices);
SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vzip");
SV = Builder.CreateDefaultAlignedStore(SV, Addr);
}
return SV;
}
case NEON::BI__builtin_neon_vqtbl1q_v: {
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
Ops, "vtbl1");
}
case NEON::BI__builtin_neon_vqtbl2q_v: {
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
Ops, "vtbl2");
}
case NEON::BI__builtin_neon_vqtbl3q_v: {
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
Ops, "vtbl3");
}
case NEON::BI__builtin_neon_vqtbl4q_v: {
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
Ops, "vtbl4");
}
case NEON::BI__builtin_neon_vqtbx1q_v: {
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
Ops, "vtbx1");
}
case NEON::BI__builtin_neon_vqtbx2q_v: {
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
Ops, "vtbx2");
}
case NEON::BI__builtin_neon_vqtbx3q_v: {
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
Ops, "vtbx3");
}
case NEON::BI__builtin_neon_vqtbx4q_v: {
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
Ops, "vtbx4");
}
case NEON::BI__builtin_neon_vsqadd_v:
case NEON::BI__builtin_neon_vsqaddq_v: {
Int = Intrinsic::aarch64_neon_usqadd;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
}
case NEON::BI__builtin_neon_vuqadd_v:
case NEON::BI__builtin_neon_vuqaddq_v: {
Int = Intrinsic::aarch64_neon_suqadd;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
}
}
}
llvm::Value *CodeGenFunction::
BuildVector(ArrayRef<llvm::Value*> Ops) {
assert((Ops.size() & (Ops.size() - 1)) == 0 &&
"Not a power-of-two sized vector!");
bool AllConstants = true;
for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
AllConstants &= isa<Constant>(Ops[i]);
// If this is a constant vector, create a ConstantVector.
if (AllConstants) {
SmallVector<llvm::Constant*, 16> CstOps;
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
CstOps.push_back(cast<Constant>(Ops[i]));
return llvm::ConstantVector::get(CstOps);
}
// Otherwise, insertelement the values to build the vector.
Value *Result =
llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size()));
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
return Result;
}
Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
if (BuiltinID == X86::BI__builtin_ms_va_start ||
BuiltinID == X86::BI__builtin_ms_va_end)
return EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(),
BuiltinID == X86::BI__builtin_ms_va_start);
if (BuiltinID == X86::BI__builtin_ms_va_copy) {
// Lower this manually. We can't reliably determine whether or not any
// given va_copy() is for a Win64 va_list from the calling convention
// alone, because it's legal to do this from a System V ABI function.
// With opaque pointer types, we won't have enough information in LLVM
// IR to determine this from the argument types, either. Best to do it
// now, while we have enough information.
Address DestAddr = EmitMSVAListRef(E->getArg(0));
Address SrcAddr = EmitMSVAListRef(E->getArg(1));
llvm::Type *BPP = Int8PtrPtrTy;
DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"),
DestAddr.getAlignment());
SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"),
SrcAddr.getAlignment());
Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
return Builder.CreateStore(ArgPtr, DestAddr);
}
SmallVector<Value*, 4> Ops;
// Find out if any arguments are required to be integer constant expressions.
unsigned ICEArguments = 0;
ASTContext::GetBuiltinTypeError Error;
getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
assert(Error == ASTContext::GE_None && "Should not codegen an error");
for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
// If this is a normal argument, just emit it as a scalar.
if ((ICEArguments & (1 << i)) == 0) {
Ops.push_back(EmitScalarExpr(E->getArg(i)));
continue;
}
// If this is required to be a constant, constant fold it so that we know
// that the generated intrinsic gets a ConstantInt.
llvm::APSInt Result;
bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
}
switch (BuiltinID) {
default: return nullptr;
case X86::BI__builtin_cpu_supports: {
const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
// TODO: When/if this becomes more than x86 specific then use a TargetInfo
// based mapping.
// Processor features and mapping to processor feature value.
enum X86Features {
CMOV = 0,
MMX,
POPCNT,
SSE,
SSE2,
SSE3,
SSSE3,
SSE4_1,
SSE4_2,
AVX,
AVX2,
SSE4_A,
FMA4,
XOP,
FMA,
AVX512F,
BMI,
BMI2,
MAX
};
X86Features Feature = StringSwitch<X86Features>(FeatureStr)
.Case("cmov", X86Features::CMOV)
.Case("mmx", X86Features::MMX)
.Case("popcnt", X86Features::POPCNT)
.Case("sse", X86Features::SSE)
.Case("sse2", X86Features::SSE2)
.Case("sse3", X86Features::SSE3)
.Case("sse4.1", X86Features::SSE4_1)
.Case("sse4.2", X86Features::SSE4_2)
.Case("avx", X86Features::AVX)
.Case("avx2", X86Features::AVX2)
.Case("sse4a", X86Features::SSE4_A)
.Case("fma4", X86Features::FMA4)
.Case("xop", X86Features::XOP)
.Case("fma", X86Features::FMA)
.Case("avx512f", X86Features::AVX512F)
.Case("bmi", X86Features::BMI)
.Case("bmi2", X86Features::BMI2)
.Default(X86Features::MAX);
assert(Feature != X86Features::MAX && "Invalid feature!");
// Matching the struct layout from the compiler-rt/libgcc structure that is
// filled in:
// unsigned int __cpu_vendor;
// unsigned int __cpu_type;
// unsigned int __cpu_subtype;
// unsigned int __cpu_features[1];
llvm::Type *STy = llvm::StructType::get(
Int32Ty, Int32Ty, Int32Ty, llvm::ArrayType::get(Int32Ty, 1), nullptr);
// Grab the global __cpu_model.
llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
// Grab the first (0th) element from the field __cpu_features off of the
// global in the struct STy.
Value *Idxs[] = {
ConstantInt::get(Int32Ty, 0),
ConstantInt::get(Int32Ty, 3),
ConstantInt::get(Int32Ty, 0)
};
Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs);
Value *Features = Builder.CreateAlignedLoad(CpuFeatures,
CharUnits::fromQuantity(4));
// Check the value of the bit corresponding to the feature requested.
Value *Bitset = Builder.CreateAnd(
Features, llvm::ConstantInt::get(Int32Ty, 1ULL << Feature));
return Builder.CreateICmpNE(Bitset, llvm::ConstantInt::get(Int32Ty, 0));
}
case X86::BI_mm_prefetch: {
Value *Address = Ops[0];
Value *RW = ConstantInt::get(Int32Ty, 0);
Value *Locality = Ops[1];
Value *Data = ConstantInt::get(Int32Ty, 1);
Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
return Builder.CreateCall(F, {Address, RW, Locality, Data});
}
case X86::BI__builtin_ia32_undef128:
case X86::BI__builtin_ia32_undef256:
case X86::BI__builtin_ia32_undef512:
return UndefValue::get(ConvertType(E->getType()));
case X86::BI__builtin_ia32_vec_init_v8qi:
case X86::BI__builtin_ia32_vec_init_v4hi:
case X86::BI__builtin_ia32_vec_init_v2si:
return Builder.CreateBitCast(BuildVector(Ops),
llvm::Type::getX86_MMXTy(getLLVMContext()));
case X86::BI__builtin_ia32_vec_ext_v2si:
return Builder.CreateExtractElement(Ops[0],
llvm::ConstantInt::get(Ops[1]->getType(), 0));
case X86::BI__builtin_ia32_ldmxcsr: {
Address Tmp = CreateMemTemp(E->getArg(0)->getType());
Builder.CreateStore(Ops[0], Tmp);
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
}
case X86::BI__builtin_ia32_stmxcsr: {
Address Tmp = CreateMemTemp(E->getType());
Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
return Builder.CreateLoad(Tmp, "stmxcsr");
}
case X86::BI__builtin_ia32_xsave:
case X86::BI__builtin_ia32_xsave64:
case X86::BI__builtin_ia32_xrstor:
case X86::BI__builtin_ia32_xrstor64:
case X86::BI__builtin_ia32_xsaveopt:
case X86::BI__builtin_ia32_xsaveopt64:
case X86::BI__builtin_ia32_xrstors:
case X86::BI__builtin_ia32_xrstors64:
case X86::BI__builtin_ia32_xsavec:
case X86::BI__builtin_ia32_xsavec64:
case X86::BI__builtin_ia32_xsaves:
case X86::BI__builtin_ia32_xsaves64: {
Intrinsic::ID ID;
#define INTRINSIC_X86_XSAVE_ID(NAME) \
case X86::BI__builtin_ia32_##NAME: \
ID = Intrinsic::x86_##NAME; \
break
switch (BuiltinID) {
default: llvm_unreachable("Unsupported intrinsic!");
INTRINSIC_X86_XSAVE_ID(xsave);
INTRINSIC_X86_XSAVE_ID(xsave64);
INTRINSIC_X86_XSAVE_ID(xrstor);
INTRINSIC_X86_XSAVE_ID(xrstor64);
INTRINSIC_X86_XSAVE_ID(xsaveopt);
INTRINSIC_X86_XSAVE_ID(xsaveopt64);
INTRINSIC_X86_XSAVE_ID(xrstors);
INTRINSIC_X86_XSAVE_ID(xrstors64);
INTRINSIC_X86_XSAVE_ID(xsavec);
INTRINSIC_X86_XSAVE_ID(xsavec64);
INTRINSIC_X86_XSAVE_ID(xsaves);
INTRINSIC_X86_XSAVE_ID(xsaves64);
}
#undef INTRINSIC_X86_XSAVE_ID
Value *Mhi = Builder.CreateTrunc(
Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
Ops[1] = Mhi;
Ops.push_back(Mlo);
return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
}
case X86::BI__builtin_ia32_storehps:
case X86::BI__builtin_ia32_storelps: {
llvm::Type *PtrTy = llvm::PointerType::getUnqual(Int64Ty);
llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
// cast val v2i64
Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast");
// extract (0, 1)
unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1;
llvm::Value *Idx = llvm::ConstantInt::get(SizeTy, Index);
Ops[1] = Builder.CreateExtractElement(Ops[1], Idx, "extract");
// cast pointer to i64 & store
Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy);
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case X86::BI__builtin_ia32_palignr128:
case X86::BI__builtin_ia32_palignr256: {
unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
unsigned NumElts =
cast<llvm::VectorType>(Ops[0]->getType())->getNumElements();
assert(NumElts % 16 == 0);
unsigned NumLanes = NumElts / 16;
unsigned NumLaneElts = NumElts / NumLanes;
// If palignr is shifting the pair of vectors more than the size of two
// lanes, emit zero.
if (ShiftVal >= (2 * NumLaneElts))
return llvm::Constant::getNullValue(ConvertType(E->getType()));
// If palignr is shifting the pair of input vectors more than one lane,
// but less than two lanes, convert to shifting in zeroes.
if (ShiftVal > NumLaneElts) {
ShiftVal -= NumLaneElts;
Ops[1] = Ops[0];
Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
}
uint32_t Indices[32];
// 256-bit palignr operates on 128-bit lanes so we need to handle that
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
for (unsigned i = 0; i != NumLaneElts; ++i) {
unsigned Idx = ShiftVal + i;
if (Idx >= NumLaneElts)
Idx += NumElts - NumLaneElts; // End of lane, switch operand.
Indices[l + i] = Idx + l;
}
}
Value *SV = llvm::ConstantDataVector::get(getLLVMContext(),
makeArrayRef(Indices, NumElts));
return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
}
case X86::BI__builtin_ia32_pslldqi256: {
// Shift value is in bits so divide by 8.
unsigned shiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() >> 3;
// If pslldq is shifting the vector more than 15 bytes, emit zero.
if (shiftVal >= 16)
return llvm::Constant::getNullValue(ConvertType(E->getType()));
uint32_t Indices[32];
// 256-bit pslldq operates on 128-bit lanes so we need to handle that
for (unsigned l = 0; l != 32; l += 16) {
for (unsigned i = 0; i != 16; ++i) {
unsigned Idx = 32 + i - shiftVal;
if (Idx < 32) Idx -= 16; // end of lane, switch operand.
Indices[l + i] = Idx + l;
}
}
llvm::Type *VecTy = llvm::VectorType::get(Int8Ty, 32);
Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
Value *Zero = llvm::Constant::getNullValue(VecTy);
Value *SV = llvm::ConstantDataVector::get(getLLVMContext(), Indices);
SV = Builder.CreateShuffleVector(Zero, Ops[0], SV, "pslldq");
llvm::Type *ResultType = ConvertType(E->getType());
return Builder.CreateBitCast(SV, ResultType, "cast");
}
case X86::BI__builtin_ia32_psrldqi256: {
// Shift value is in bits so divide by 8.
unsigned shiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() >> 3;
// If psrldq is shifting the vector more than 15 bytes, emit zero.
if (shiftVal >= 16)
return llvm::Constant::getNullValue(ConvertType(E->getType()));
uint32_t Indices[32];
// 256-bit psrldq operates on 128-bit lanes so we need to handle that
for (unsigned l = 0; l != 32; l += 16) {
for (unsigned i = 0; i != 16; ++i) {
unsigned Idx = i + shiftVal;
if (Idx >= 16) Idx += 16; // end of lane, switch operand.
Indices[l + i] = Idx + l;
}
}
llvm::Type *VecTy = llvm::VectorType::get(Int8Ty, 32);
Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
Value *Zero = llvm::Constant::getNullValue(VecTy);
Value *SV = llvm::ConstantDataVector::get(getLLVMContext(), Indices);
SV = Builder.CreateShuffleVector(Ops[0], Zero, SV, "psrldq");
llvm::Type *ResultType = ConvertType(E->getType());
return Builder.CreateBitCast(SV, ResultType, "cast");
}
case X86::BI__builtin_ia32_movntps:
case X86::BI__builtin_ia32_movntps256:
case X86::BI__builtin_ia32_movntpd:
case X86::BI__builtin_ia32_movntpd256:
case X86::BI__builtin_ia32_movntdq:
case X86::BI__builtin_ia32_movntdq256:
case X86::BI__builtin_ia32_movnti:
case X86::BI__builtin_ia32_movnti64: {
llvm::MDNode *Node = llvm::MDNode::get(
getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
// Convert the type of the pointer to a pointer to the stored type.
Value *BC = Builder.CreateBitCast(Ops[0],
llvm::PointerType::getUnqual(Ops[1]->getType()),
"cast");
StoreInst *SI = Builder.CreateDefaultAlignedStore(Ops[1], BC);
SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
// If the operand is an integer, we can't assume alignment. Otherwise,
// assume natural alignment.
QualType ArgTy = E->getArg(1)->getType();
unsigned Align;
if (ArgTy->isIntegerType())
Align = 1;
else
Align = getContext().getTypeSizeInChars(ArgTy).getQuantity();
SI->setAlignment(Align);
return SI;
}
// 3DNow!
case X86::BI__builtin_ia32_pswapdsf:
case X86::BI__builtin_ia32_pswapdsi: {
llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd);
return Builder.CreateCall(F, Ops, "pswapd");
}
case X86::BI__builtin_ia32_rdrand16_step:
case X86::BI__builtin_ia32_rdrand32_step:
case X86::BI__builtin_ia32_rdrand64_step:
case X86::BI__builtin_ia32_rdseed16_step:
case X86::BI__builtin_ia32_rdseed32_step:
case X86::BI__builtin_ia32_rdseed64_step: {
Intrinsic::ID ID;
switch (BuiltinID) {
default: llvm_unreachable("Unsupported intrinsic!");
case X86::BI__builtin_ia32_rdrand16_step:
ID = Intrinsic::x86_rdrand_16;
break;
case X86::BI__builtin_ia32_rdrand32_step:
ID = Intrinsic::x86_rdrand_32;
break;
case X86::BI__builtin_ia32_rdrand64_step:
ID = Intrinsic::x86_rdrand_64;
break;
case X86::BI__builtin_ia32_rdseed16_step:
ID = Intrinsic::x86_rdseed_16;
break;
case X86::BI__builtin_ia32_rdseed32_step:
ID = Intrinsic::x86_rdseed_32;
break;
case X86::BI__builtin_ia32_rdseed64_step:
ID = Intrinsic::x86_rdseed_64;
break;
}
Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
Ops[0]);
return Builder.CreateExtractValue(Call, 1);
}
// SSE comparison intrisics
case X86::BI__builtin_ia32_cmpeqps:
case X86::BI__builtin_ia32_cmpltps:
case X86::BI__builtin_ia32_cmpleps:
case X86::BI__builtin_ia32_cmpunordps:
case X86::BI__builtin_ia32_cmpneqps:
case X86::BI__builtin_ia32_cmpnltps:
case X86::BI__builtin_ia32_cmpnleps:
case X86::BI__builtin_ia32_cmpordps:
case X86::BI__builtin_ia32_cmpeqss:
case X86::BI__builtin_ia32_cmpltss:
case X86::BI__builtin_ia32_cmpless:
case X86::BI__builtin_ia32_cmpunordss:
case X86::BI__builtin_ia32_cmpneqss:
case X86::BI__builtin_ia32_cmpnltss:
case X86::BI__builtin_ia32_cmpnless:
case X86::BI__builtin_ia32_cmpordss:
case X86::BI__builtin_ia32_cmpeqpd:
case X86::BI__builtin_ia32_cmpltpd:
case X86::BI__builtin_ia32_cmplepd:
case X86::BI__builtin_ia32_cmpunordpd:
case X86::BI__builtin_ia32_cmpneqpd:
case X86::BI__builtin_ia32_cmpnltpd:
case X86::BI__builtin_ia32_cmpnlepd:
case X86::BI__builtin_ia32_cmpordpd:
case X86::BI__builtin_ia32_cmpeqsd:
case X86::BI__builtin_ia32_cmpltsd:
case X86::BI__builtin_ia32_cmplesd:
case X86::BI__builtin_ia32_cmpunordsd:
case X86::BI__builtin_ia32_cmpneqsd:
case X86::BI__builtin_ia32_cmpnltsd:
case X86::BI__builtin_ia32_cmpnlesd:
case X86::BI__builtin_ia32_cmpordsd:
// These exist so that the builtin that takes an immediate can be bounds
// checked by clang to avoid passing bad immediates to the backend. Since
// AVX has a larger immediate than SSE we would need separate builtins to
// do the different bounds checking. Rather than create a clang specific
// SSE only builtin, this implements eight separate builtins to match gcc
// implementation.
// Choose the immediate.
unsigned Imm;
switch (BuiltinID) {
default: llvm_unreachable("Unsupported intrinsic!");
case X86::BI__builtin_ia32_cmpeqps:
case X86::BI__builtin_ia32_cmpeqss:
case X86::BI__builtin_ia32_cmpeqpd:
case X86::BI__builtin_ia32_cmpeqsd:
Imm = 0;
break;
case X86::BI__builtin_ia32_cmpltps:
case X86::BI__builtin_ia32_cmpltss:
case X86::BI__builtin_ia32_cmpltpd:
case X86::BI__builtin_ia32_cmpltsd:
Imm = 1;
break;
case X86::BI__builtin_ia32_cmpleps:
case X86::BI__builtin_ia32_cmpless:
case X86::BI__builtin_ia32_cmplepd:
case X86::BI__builtin_ia32_cmplesd:
Imm = 2;
break;
case X86::BI__builtin_ia32_cmpunordps:
case X86::BI__builtin_ia32_cmpunordss:
case X86::BI__builtin_ia32_cmpunordpd:
case X86::BI__builtin_ia32_cmpunordsd:
Imm = 3;
break;
case X86::BI__builtin_ia32_cmpneqps:
case X86::BI__builtin_ia32_cmpneqss:
case X86::BI__builtin_ia32_cmpneqpd:
case X86::BI__builtin_ia32_cmpneqsd:
Imm = 4;
break;
case X86::BI__builtin_ia32_cmpnltps:
case X86::BI__builtin_ia32_cmpnltss:
case X86::BI__builtin_ia32_cmpnltpd:
case X86::BI__builtin_ia32_cmpnltsd:
Imm = 5;
break;
case X86::BI__builtin_ia32_cmpnleps:
case X86::BI__builtin_ia32_cmpnless:
case X86::BI__builtin_ia32_cmpnlepd:
case X86::BI__builtin_ia32_cmpnlesd:
Imm = 6;
break;
case X86::BI__builtin_ia32_cmpordps:
case X86::BI__builtin_ia32_cmpordss:
case X86::BI__builtin_ia32_cmpordpd:
case X86::BI__builtin_ia32_cmpordsd:
Imm = 7;
break;
}
// Choose the intrinsic ID.
const char *name;
Intrinsic::ID ID;
switch (BuiltinID) {
default: llvm_unreachable("Unsupported intrinsic!");
case X86::BI__builtin_ia32_cmpeqps:
case X86::BI__builtin_ia32_cmpltps:
case X86::BI__builtin_ia32_cmpleps:
case X86::BI__builtin_ia32_cmpunordps:
case X86::BI__builtin_ia32_cmpneqps:
case X86::BI__builtin_ia32_cmpnltps:
case X86::BI__builtin_ia32_cmpnleps:
case X86::BI__builtin_ia32_cmpordps:
name = "cmpps";
ID = Intrinsic::x86_sse_cmp_ps;
break;
case X86::BI__builtin_ia32_cmpeqss:
case X86::BI__builtin_ia32_cmpltss:
case X86::BI__builtin_ia32_cmpless:
case X86::BI__builtin_ia32_cmpunordss:
case X86::BI__builtin_ia32_cmpneqss:
case X86::BI__builtin_ia32_cmpnltss:
case X86::BI__builtin_ia32_cmpnless:
case X86::BI__builtin_ia32_cmpordss:
name = "cmpss";
ID = Intrinsic::x86_sse_cmp_ss;
break;
case X86::BI__builtin_ia32_cmpeqpd:
case X86::BI__builtin_ia32_cmpltpd:
case X86::BI__builtin_ia32_cmplepd:
case X86::BI__builtin_ia32_cmpunordpd:
case X86::BI__builtin_ia32_cmpneqpd:
case X86::BI__builtin_ia32_cmpnltpd:
case X86::BI__builtin_ia32_cmpnlepd:
case X86::BI__builtin_ia32_cmpordpd:
name = "cmppd";
ID = Intrinsic::x86_sse2_cmp_pd;
break;
case X86::BI__builtin_ia32_cmpeqsd:
case X86::BI__builtin_ia32_cmpltsd:
case X86::BI__builtin_ia32_cmplesd:
case X86::BI__builtin_ia32_cmpunordsd:
case X86::BI__builtin_ia32_cmpneqsd:
case X86::BI__builtin_ia32_cmpnltsd:
case X86::BI__builtin_ia32_cmpnlesd:
case X86::BI__builtin_ia32_cmpordsd:
name = "cmpsd";
ID = Intrinsic::x86_sse2_cmp_sd;
break;
}
Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
llvm::Function *F = CGM.getIntrinsic(ID);
return Builder.CreateCall(F, Ops, name);
}
}
Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
SmallVector<Value*, 4> Ops;
for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
Ops.push_back(EmitScalarExpr(E->getArg(i)));
Intrinsic::ID ID = Intrinsic::not_intrinsic;
switch (BuiltinID) {
default: return nullptr;
// __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
// call __builtin_readcyclecounter.
case PPC::BI__builtin_ppc_get_timebase:
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
// vec_ld, vec_lvsl, vec_lvsr
case PPC::BI__builtin_altivec_lvx:
case PPC::BI__builtin_altivec_lvxl:
case PPC::BI__builtin_altivec_lvebx:
case PPC::BI__builtin_altivec_lvehx:
case PPC::BI__builtin_altivec_lvewx:
case PPC::BI__builtin_altivec_lvsl:
case PPC::BI__builtin_altivec_lvsr:
case PPC::BI__builtin_vsx_lxvd2x:
case PPC::BI__builtin_vsx_lxvw4x:
{
Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
Ops.pop_back();
switch (BuiltinID) {
default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
case PPC::BI__builtin_altivec_lvx:
ID = Intrinsic::ppc_altivec_lvx;
break;
case PPC::BI__builtin_altivec_lvxl:
ID = Intrinsic::ppc_altivec_lvxl;
break;
case PPC::BI__builtin_altivec_lvebx:
ID = Intrinsic::ppc_altivec_lvebx;
break;
case PPC::BI__builtin_altivec_lvehx:
ID = Intrinsic::ppc_altivec_lvehx;
break;
case PPC::BI__builtin_altivec_lvewx:
ID = Intrinsic::ppc_altivec_lvewx;
break;
case PPC::BI__builtin_altivec_lvsl:
ID = Intrinsic::ppc_altivec_lvsl;
break;
case PPC::BI__builtin_altivec_lvsr:
ID = Intrinsic::ppc_altivec_lvsr;
break;
case PPC::BI__builtin_vsx_lxvd2x:
ID = Intrinsic::ppc_vsx_lxvd2x;
break;
case PPC::BI__builtin_vsx_lxvw4x:
ID = Intrinsic::ppc_vsx_lxvw4x;
break;
}
llvm::Function *F = CGM.getIntrinsic(ID);
return Builder.CreateCall(F, Ops, "");
}
// vec_st
case PPC::BI__builtin_altivec_stvx:
case PPC::BI__builtin_altivec_stvxl:
case PPC::BI__builtin_altivec_stvebx:
case PPC::BI__builtin_altivec_stvehx:
case PPC::BI__builtin_altivec_stvewx:
case PPC::BI__builtin_vsx_stxvd2x:
case PPC::BI__builtin_vsx_stxvw4x:
{
Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
Ops.pop_back();
switch (BuiltinID) {
default: llvm_unreachable("Unsupported st intrinsic!");
case PPC::BI__builtin_altivec_stvx:
ID = Intrinsic::ppc_altivec_stvx;
break;
case PPC::BI__builtin_altivec_stvxl:
ID = Intrinsic::ppc_altivec_stvxl;
break;
case PPC::BI__builtin_altivec_stvebx:
ID = Intrinsic::ppc_altivec_stvebx;
break;
case PPC::BI__builtin_altivec_stvehx:
ID = Intrinsic::ppc_altivec_stvehx;
break;
case PPC::BI__builtin_altivec_stvewx:
ID = Intrinsic::ppc_altivec_stvewx;
break;
case PPC::BI__builtin_vsx_stxvd2x:
ID = Intrinsic::ppc_vsx_stxvd2x;
break;
case PPC::BI__builtin_vsx_stxvw4x:
ID = Intrinsic::ppc_vsx_stxvw4x;
break;
}
llvm::Function *F = CGM.getIntrinsic(ID);
return Builder.CreateCall(F, Ops, "");
}
// Square root
case PPC::BI__builtin_vsx_xvsqrtsp:
case PPC::BI__builtin_vsx_xvsqrtdp: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
ID = Intrinsic::sqrt;
llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
return Builder.CreateCall(F, X);
}
// Count leading zeros
case PPC::BI__builtin_altivec_vclzb:
case PPC::BI__builtin_altivec_vclzh:
case PPC::BI__builtin_altivec_vclzw:
case PPC::BI__builtin_altivec_vclzd: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
return Builder.CreateCall(F, {X, Undef});
}
// Copy sign
case PPC::BI__builtin_vsx_xvcpsgnsp:
case PPC::BI__builtin_vsx_xvcpsgndp: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Value *Y = EmitScalarExpr(E->getArg(1));
ID = Intrinsic::copysign;
llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
return Builder.CreateCall(F, {X, Y});
}
// Rounding/truncation
case PPC::BI__builtin_vsx_xvrspip:
case PPC::BI__builtin_vsx_xvrdpip:
case PPC::BI__builtin_vsx_xvrdpim:
case PPC::BI__builtin_vsx_xvrspim:
case PPC::BI__builtin_vsx_xvrdpi:
case PPC::BI__builtin_vsx_xvrspi:
case PPC::BI__builtin_vsx_xvrdpic:
case PPC::BI__builtin_vsx_xvrspic:
case PPC::BI__builtin_vsx_xvrdpiz:
case PPC::BI__builtin_vsx_xvrspiz: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
BuiltinID == PPC::BI__builtin_vsx_xvrspim)
ID = Intrinsic::floor;
else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
BuiltinID == PPC::BI__builtin_vsx_xvrspi)
ID = Intrinsic::round;
else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
BuiltinID == PPC::BI__builtin_vsx_xvrspic)
ID = Intrinsic::nearbyint;
else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
BuiltinID == PPC::BI__builtin_vsx_xvrspip)
ID = Intrinsic::ceil;
else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
ID = Intrinsic::trunc;
llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
return Builder.CreateCall(F, X);
}
// Absolute value
case PPC::BI__builtin_vsx_xvabsdp:
case PPC::BI__builtin_vsx_xvabssp: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
return Builder.CreateCall(F, X);
}
// FMA variations
case PPC::BI__builtin_vsx_xvmaddadp:
case PPC::BI__builtin_vsx_xvmaddasp:
case PPC::BI__builtin_vsx_xvnmaddadp:
case PPC::BI__builtin_vsx_xvnmaddasp:
case PPC::BI__builtin_vsx_xvmsubadp:
case PPC::BI__builtin_vsx_xvmsubasp:
case PPC::BI__builtin_vsx_xvnmsubadp:
case PPC::BI__builtin_vsx_xvnmsubasp: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Value *Y = EmitScalarExpr(E->getArg(1));
Value *Z = EmitScalarExpr(E->getArg(2));
Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
llvm::Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
switch (BuiltinID) {
case PPC::BI__builtin_vsx_xvmaddadp:
case PPC::BI__builtin_vsx_xvmaddasp:
return Builder.CreateCall(F, {X, Y, Z});
case PPC::BI__builtin_vsx_xvnmaddadp:
case PPC::BI__builtin_vsx_xvnmaddasp:
return Builder.CreateFSub(Zero,
Builder.CreateCall(F, {X, Y, Z}), "sub");
case PPC::BI__builtin_vsx_xvmsubadp:
case PPC::BI__builtin_vsx_xvmsubasp:
return Builder.CreateCall(F,
{X, Y, Builder.CreateFSub(Zero, Z, "sub")});
case PPC::BI__builtin_vsx_xvnmsubadp:
case PPC::BI__builtin_vsx_xvnmsubasp:
Value *FsubRes =
Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
return Builder.CreateFSub(Zero, FsubRes, "sub");
}
llvm_unreachable("Unknown FMA operation");
return nullptr; // Suppress no-return warning
}
}
}
Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
switch (BuiltinID) {
case AMDGPU::BI__builtin_amdgcn_div_scale:
case AMDGPU::BI__builtin_amdgcn_div_scalef: {
// Translate from the intrinsics's struct return to the builtin's out
// argument.
Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
llvm::Value *X = EmitScalarExpr(E->getArg(0));
llvm::Value *Y = EmitScalarExpr(E->getArg(1));
llvm::Value *Z = EmitScalarExpr(E->getArg(2));
llvm::Value *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale,
X->getType());
llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
llvm::Type *RealFlagType
= FlagOutPtr.getPointer()->getType()->getPointerElementType();
llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
Builder.CreateStore(FlagExt, FlagOutPtr);
return Result;
}
case AMDGPU::BI__builtin_amdgcn_div_fmas:
case AMDGPU::BI__builtin_amdgcn_div_fmasf: {
llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
llvm::Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas,
Src0->getType());
llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
}
case AMDGPU::BI__builtin_amdgcn_div_fixup:
case AMDGPU::BI__builtin_amdgcn_div_fixupf:
return emitTernaryFPBuiltin(*this, E, Intrinsic::amdgcn_div_fixup);
case AMDGPU::BI__builtin_amdgcn_trig_preop:
case AMDGPU::BI__builtin_amdgcn_trig_preopf:
return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop);
case AMDGPU::BI__builtin_amdgcn_rcp:
case AMDGPU::BI__builtin_amdgcn_rcpf:
return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp);
case AMDGPU::BI__builtin_amdgcn_rsq:
case AMDGPU::BI__builtin_amdgcn_rsqf:
return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq);
case AMDGPU::BI__builtin_amdgcn_rsq_clamp:
case AMDGPU::BI__builtin_amdgcn_rsq_clampf:
return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp);
case AMDGPU::BI__builtin_amdgcn_sinf:
return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin);
case AMDGPU::BI__builtin_amdgcn_cosf:
return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos);
case AMDGPU::BI__builtin_amdgcn_log_clampf:
return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp);
case AMDGPU::BI__builtin_amdgcn_ldexp:
case AMDGPU::BI__builtin_amdgcn_ldexpf:
return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp);
case AMDGPU::BI__builtin_amdgcn_frexp_mant:
case AMDGPU::BI__builtin_amdgcn_frexp_mantf: {
return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant);
}
case AMDGPU::BI__builtin_amdgcn_frexp_exp:
case AMDGPU::BI__builtin_amdgcn_frexp_expf: {
return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_exp);
}
case AMDGPU::BI__builtin_amdgcn_class:
case AMDGPU::BI__builtin_amdgcn_classf:
return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class);
// Legacy amdgpu prefix
case AMDGPU::BI__builtin_amdgpu_rsq:
case AMDGPU::BI__builtin_amdgpu_rsqf: {
if (getTarget().getTriple().getArch() == Triple::amdgcn)
return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq);
return emitUnaryBuiltin(*this, E, Intrinsic::r600_rsq);
}
case AMDGPU::BI__builtin_amdgpu_ldexp:
case AMDGPU::BI__builtin_amdgpu_ldexpf: {
if (getTarget().getTriple().getArch() == Triple::amdgcn)
return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp);
return emitFPIntBuiltin(*this, E, Intrinsic::AMDGPU_ldexp);
}
default:
return nullptr;
}
}
/// Handle a SystemZ function in which the final argument is a pointer
/// to an int that receives the post-instruction CC value. At the LLVM level
/// this is represented as a function that returns a {result, cc} pair.
static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
unsigned IntrinsicID,
const CallExpr *E) {
unsigned NumArgs = E->getNumArgs() - 1;
SmallVector<Value *, 8> Args(NumArgs);
for (unsigned I = 0; I < NumArgs; ++I)
Args[I] = CGF.EmitScalarExpr(E->getArg(I));
Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
Value *F = CGF.CGM.getIntrinsic(IntrinsicID);
Value *Call = CGF.Builder.CreateCall(F, Args);
Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
CGF.Builder.CreateStore(CC, CCPtr);
return CGF.Builder.CreateExtractValue(Call, 0);
}
Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
switch (BuiltinID) {
case SystemZ::BI__builtin_tbegin: {
Value *TDB = EmitScalarExpr(E->getArg(0));
Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
Value *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
return Builder.CreateCall(F, {TDB, Control});
}
case SystemZ::BI__builtin_tbegin_nofloat: {
Value *TDB = EmitScalarExpr(E->getArg(0));
Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
Value *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
return Builder.CreateCall(F, {TDB, Control});
}
case SystemZ::BI__builtin_tbeginc: {
Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
Value *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
return Builder.CreateCall(F, {TDB, Control});
}
case SystemZ::BI__builtin_tabort: {
Value *Data = EmitScalarExpr(E->getArg(0));
Value *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
}
case SystemZ::BI__builtin_non_tx_store: {
Value *Address = EmitScalarExpr(E->getArg(0));
Value *Data = EmitScalarExpr(E->getArg(1));
Value *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
return Builder.CreateCall(F, {Data, Address});
}
// Vector builtins. Note that most vector builtins are mapped automatically
// to target-specific LLVM intrinsics. The ones handled specially here can
// be represented via standard LLVM IR, which is preferable to enable common
// LLVM optimizations.
case SystemZ::BI__builtin_s390_vpopctb:
case SystemZ::BI__builtin_s390_vpopcth:
case SystemZ::BI__builtin_s390_vpopctf:
case SystemZ::BI__builtin_s390_vpopctg: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
return Builder.CreateCall(F, X);
}
case SystemZ::BI__builtin_s390_vclzb:
case SystemZ::BI__builtin_s390_vclzh:
case SystemZ::BI__builtin_s390_vclzf:
case SystemZ::BI__builtin_s390_vclzg: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
return Builder.CreateCall(F, {X, Undef});
}
case SystemZ::BI__builtin_s390_vctzb:
case SystemZ::BI__builtin_s390_vctzh:
case SystemZ::BI__builtin_s390_vctzf:
case SystemZ::BI__builtin_s390_vctzg: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
return Builder.CreateCall(F, {X, Undef});
}
case SystemZ::BI__builtin_s390_vfsqdb: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
return Builder.CreateCall(F, X);
}
case SystemZ::BI__builtin_s390_vfmadb: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Value *Y = EmitScalarExpr(E->getArg(1));
Value *Z = EmitScalarExpr(E->getArg(2));
Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
return Builder.CreateCall(F, {X, Y, Z});
}
case SystemZ::BI__builtin_s390_vfmsdb: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Value *Y = EmitScalarExpr(E->getArg(1));
Value *Z = EmitScalarExpr(E->getArg(2));
Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
return Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
}
case SystemZ::BI__builtin_s390_vflpdb: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
return Builder.CreateCall(F, X);
}
case SystemZ::BI__builtin_s390_vflndb: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
return Builder.CreateFSub(Zero, Builder.CreateCall(F, X), "sub");
}
case SystemZ::BI__builtin_s390_vfidb: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
// Constant-fold the M4 and M5 mask arguments.
llvm::APSInt M4, M5;
bool IsConstM4 = E->getArg(1)->isIntegerConstantExpr(M4, getContext());
bool IsConstM5 = E->getArg(2)->isIntegerConstantExpr(M5, getContext());
assert(IsConstM4 && IsConstM5 && "Constant arg isn't actually constant?");
(void)IsConstM4; (void)IsConstM5;
// Check whether this instance of vfidb can be represented via a LLVM
// standard intrinsic. We only support some combinations of M4 and M5.
Intrinsic::ID ID = Intrinsic::not_intrinsic;
switch (M4.getZExtValue()) {
default: break;
case 0: // IEEE-inexact exception allowed
switch (M5.getZExtValue()) {
default: break;
case 0: ID = Intrinsic::rint; break;
}
break;
case 4: // IEEE-inexact exception suppressed
switch (M5.getZExtValue()) {
default: break;
case 0: ID = Intrinsic::nearbyint; break;
case 1: ID = Intrinsic::round; break;
case 5: ID = Intrinsic::trunc; break;
case 6: ID = Intrinsic::ceil; break;
case 7: ID = Intrinsic::floor; break;
}
break;
}
if (ID != Intrinsic::not_intrinsic) {
Function *F = CGM.getIntrinsic(ID, ResultType);
return Builder.CreateCall(F, X);
}
Function *F = CGM.getIntrinsic(Intrinsic::s390_vfidb);
Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
return Builder.CreateCall(F, {X, M4Value, M5Value});
}
// Vector intrisincs that output the post-instruction CC value.
#define INTRINSIC_WITH_CC(NAME) \
case SystemZ::BI__builtin_##NAME: \
return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
INTRINSIC_WITH_CC(s390_vpkshs);
INTRINSIC_WITH_CC(s390_vpksfs);
INTRINSIC_WITH_CC(s390_vpksgs);
INTRINSIC_WITH_CC(s390_vpklshs);
INTRINSIC_WITH_CC(s390_vpklsfs);
INTRINSIC_WITH_CC(s390_vpklsgs);
INTRINSIC_WITH_CC(s390_vceqbs);
INTRINSIC_WITH_CC(s390_vceqhs);
INTRINSIC_WITH_CC(s390_vceqfs);
INTRINSIC_WITH_CC(s390_vceqgs);
INTRINSIC_WITH_CC(s390_vchbs);
INTRINSIC_WITH_CC(s390_vchhs);
INTRINSIC_WITH_CC(s390_vchfs);
INTRINSIC_WITH_CC(s390_vchgs);
INTRINSIC_WITH_CC(s390_vchlbs);
INTRINSIC_WITH_CC(s390_vchlhs);
INTRINSIC_WITH_CC(s390_vchlfs);
INTRINSIC_WITH_CC(s390_vchlgs);
INTRINSIC_WITH_CC(s390_vfaebs);
INTRINSIC_WITH_CC(s390_vfaehs);
INTRINSIC_WITH_CC(s390_vfaefs);
INTRINSIC_WITH_CC(s390_vfaezbs);
INTRINSIC_WITH_CC(s390_vfaezhs);
INTRINSIC_WITH_CC(s390_vfaezfs);
INTRINSIC_WITH_CC(s390_vfeebs);
INTRINSIC_WITH_CC(s390_vfeehs);
INTRINSIC_WITH_CC(s390_vfeefs);
INTRINSIC_WITH_CC(s390_vfeezbs);
INTRINSIC_WITH_CC(s390_vfeezhs);
INTRINSIC_WITH_CC(s390_vfeezfs);
INTRINSIC_WITH_CC(s390_vfenebs);
INTRINSIC_WITH_CC(s390_vfenehs);
INTRINSIC_WITH_CC(s390_vfenefs);
INTRINSIC_WITH_CC(s390_vfenezbs);
INTRINSIC_WITH_CC(s390_vfenezhs);
INTRINSIC_WITH_CC(s390_vfenezfs);
INTRINSIC_WITH_CC(s390_vistrbs);
INTRINSIC_WITH_CC(s390_vistrhs);
INTRINSIC_WITH_CC(s390_vistrfs);
INTRINSIC_WITH_CC(s390_vstrcbs);
INTRINSIC_WITH_CC(s390_vstrchs);
INTRINSIC_WITH_CC(s390_vstrcfs);
INTRINSIC_WITH_CC(s390_vstrczbs);
INTRINSIC_WITH_CC(s390_vstrczhs);
INTRINSIC_WITH_CC(s390_vstrczfs);
INTRINSIC_WITH_CC(s390_vfcedbs);
INTRINSIC_WITH_CC(s390_vfchdbs);
INTRINSIC_WITH_CC(s390_vfchedbs);
INTRINSIC_WITH_CC(s390_vftcidb);
#undef INTRINSIC_WITH_CC
default:
return nullptr;
}
}
Value *CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
switch (BuiltinID) {
case NVPTX::BI__nvvm_atom_add_gen_i:
case NVPTX::BI__nvvm_atom_add_gen_l:
case NVPTX::BI__nvvm_atom_add_gen_ll:
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
case NVPTX::BI__nvvm_atom_sub_gen_i:
case NVPTX::BI__nvvm_atom_sub_gen_l:
case NVPTX::BI__nvvm_atom_sub_gen_ll:
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
case NVPTX::BI__nvvm_atom_and_gen_i:
case NVPTX::BI__nvvm_atom_and_gen_l:
case NVPTX::BI__nvvm_atom_and_gen_ll:
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
case NVPTX::BI__nvvm_atom_or_gen_i:
case NVPTX::BI__nvvm_atom_or_gen_l:
case NVPTX::BI__nvvm_atom_or_gen_ll:
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
case NVPTX::BI__nvvm_atom_xor_gen_i:
case NVPTX::BI__nvvm_atom_xor_gen_l:
case NVPTX::BI__nvvm_atom_xor_gen_ll:
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
case NVPTX::BI__nvvm_atom_xchg_gen_i:
case NVPTX::BI__nvvm_atom_xchg_gen_l:
case NVPTX::BI__nvvm_atom_xchg_gen_ll:
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
case NVPTX::BI__nvvm_atom_max_gen_i:
case NVPTX::BI__nvvm_atom_max_gen_l:
case NVPTX::BI__nvvm_atom_max_gen_ll:
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
case NVPTX::BI__nvvm_atom_max_gen_ui:
case NVPTX::BI__nvvm_atom_max_gen_ul:
case NVPTX::BI__nvvm_atom_max_gen_ull:
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
case NVPTX::BI__nvvm_atom_min_gen_i:
case NVPTX::BI__nvvm_atom_min_gen_l:
case NVPTX::BI__nvvm_atom_min_gen_ll:
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
case NVPTX::BI__nvvm_atom_min_gen_ui:
case NVPTX::BI__nvvm_atom_min_gen_ul:
case NVPTX::BI__nvvm_atom_min_gen_ull:
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
case NVPTX::BI__nvvm_atom_cas_gen_i:
case NVPTX::BI__nvvm_atom_cas_gen_l:
case NVPTX::BI__nvvm_atom_cas_gen_ll:
// __nvvm_atom_cas_gen_* should return the old value rather than the
// success flag.
return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
case NVPTX::BI__nvvm_atom_add_gen_f: {
Value *Ptr = EmitScalarExpr(E->getArg(0));
Value *Val = EmitScalarExpr(E->getArg(1));
// atomicrmw only deals with integer arguments so we need to use
// LLVM's nvvm_atomic_load_add_f32 intrinsic for that.
Value *FnALAF32 =
CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_add_f32, Ptr->getType());
return Builder.CreateCall(FnALAF32, {Ptr, Val});
}
case NVPTX::BI__nvvm_atom_inc_gen_ui: {
Value *Ptr = EmitScalarExpr(E->getArg(0));
Value *Val = EmitScalarExpr(E->getArg(1));
Value *FnALI32 =
CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType());
return Builder.CreateCall(FnALI32, {Ptr, Val});
}
case NVPTX::BI__nvvm_atom_dec_gen_ui: {
Value *Ptr = EmitScalarExpr(E->getArg(0));
Value *Val = EmitScalarExpr(E->getArg(1));
Value *FnALD32 =
CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType());
return Builder.CreateCall(FnALD32, {Ptr, Val});
}
default:
return nullptr;
}
}
Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
switch (BuiltinID) {
case WebAssembly::BI__builtin_wasm_memory_size: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType);
return Builder.CreateCall(Callee);
}
case WebAssembly::BI__builtin_wasm_grow_memory: {
Value *X = EmitScalarExpr(E->getArg(0));
Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_grow_memory, X->getType());
return Builder.CreateCall(Callee, X);
}
default:
return nullptr;
}
}