llvm-project/llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp

2011 lines
67 KiB
C++

//===-- HexagonInstrInfo.cpp - Hexagon Instruction Information ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the Hexagon implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#include "HexagonInstrInfo.h"
#include "Hexagon.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/DFAPacketizer.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "hexagon-instrinfo"
#define GET_INSTRINFO_CTOR_DTOR
#define GET_INSTRMAP_INFO
#include "HexagonGenInstrInfo.inc"
#include "HexagonGenDFAPacketizer.inc"
///
/// Constants for Hexagon instructions.
///
const int Hexagon_MEMW_OFFSET_MAX = 4095;
const int Hexagon_MEMW_OFFSET_MIN = -4096;
const int Hexagon_MEMD_OFFSET_MAX = 8191;
const int Hexagon_MEMD_OFFSET_MIN = -8192;
const int Hexagon_MEMH_OFFSET_MAX = 2047;
const int Hexagon_MEMH_OFFSET_MIN = -2048;
const int Hexagon_MEMB_OFFSET_MAX = 1023;
const int Hexagon_MEMB_OFFSET_MIN = -1024;
const int Hexagon_ADDI_OFFSET_MAX = 32767;
const int Hexagon_ADDI_OFFSET_MIN = -32768;
const int Hexagon_MEMD_AUTOINC_MAX = 56;
const int Hexagon_MEMD_AUTOINC_MIN = -64;
const int Hexagon_MEMW_AUTOINC_MAX = 28;
const int Hexagon_MEMW_AUTOINC_MIN = -32;
const int Hexagon_MEMH_AUTOINC_MAX = 14;
const int Hexagon_MEMH_AUTOINC_MIN = -16;
const int Hexagon_MEMB_AUTOINC_MAX = 7;
const int Hexagon_MEMB_AUTOINC_MIN = -8;
// Pin the vtable to this file.
void HexagonInstrInfo::anchor() {}
HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
: HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
RI(), Subtarget(ST) {}
/// isLoadFromStackSlot - If the specified machine instruction is a direct
/// load from a stack slot, return the virtual or physical register number of
/// the destination along with the FrameIndex of the loaded stack slot. If
/// not, return 0. This predicate must return 0 if the instruction has
/// any side effects other than loading from the stack slot.
unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
int &FrameIndex) const {
switch (MI->getOpcode()) {
default: break;
case Hexagon::L2_loadri_io:
case Hexagon::L2_loadrd_io:
case Hexagon::L2_loadrh_io:
case Hexagon::L2_loadrb_io:
case Hexagon::L2_loadrub_io:
if (MI->getOperand(2).isFI() &&
MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
FrameIndex = MI->getOperand(2).getIndex();
return MI->getOperand(0).getReg();
}
break;
}
return 0;
}
/// isStoreToStackSlot - If the specified machine instruction is a direct
/// store to a stack slot, return the virtual or physical register number of
/// the source reg along with the FrameIndex of the loaded stack slot. If
/// not, return 0. This predicate must return 0 if the instruction has
/// any side effects other than storing to the stack slot.
unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
int &FrameIndex) const {
switch (MI->getOpcode()) {
default: break;
case Hexagon::S2_storeri_io:
case Hexagon::S2_storerd_io:
case Hexagon::S2_storerh_io:
case Hexagon::S2_storerb_io:
if (MI->getOperand(2).isFI() &&
MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
FrameIndex = MI->getOperand(0).getIndex();
return MI->getOperand(2).getReg();
}
break;
}
return 0;
}
// Find the hardware loop instruction used to set-up the specified loop.
// On Hexagon, we have two instructions used to set-up the hardware loop
// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions
// to indicate the end of a loop.
static MachineInstr *
findLoopInstr(MachineBasicBlock *BB, int EndLoopOp,
SmallPtrSet<MachineBasicBlock *, 8> &Visited) {
int LOOPi;
int LOOPr;
if (EndLoopOp == Hexagon::ENDLOOP0) {
LOOPi = Hexagon::J2_loop0i;
LOOPr = Hexagon::J2_loop0r;
} else { // EndLoopOp == Hexagon::EndLOOP1
LOOPi = Hexagon::J2_loop1i;
LOOPr = Hexagon::J2_loop1r;
}
// The loop set-up instruction will be in a predecessor block
for (MachineBasicBlock::pred_iterator PB = BB->pred_begin(),
PE = BB->pred_end(); PB != PE; ++PB) {
// If this has been visited, already skip it.
if (!Visited.insert(*PB).second)
continue;
if (*PB == BB)
continue;
for (MachineBasicBlock::reverse_instr_iterator I = (*PB)->instr_rbegin(),
E = (*PB)->instr_rend(); I != E; ++I) {
int Opc = I->getOpcode();
if (Opc == LOOPi || Opc == LOOPr)
return &*I;
// We've reached a different loop, which means the loop0 has been removed.
if (Opc == EndLoopOp)
return 0;
}
// Check the predecessors for the LOOP instruction.
MachineInstr *loop = findLoopInstr(*PB, EndLoopOp, Visited);
if (loop)
return loop;
}
return 0;
}
unsigned HexagonInstrInfo::InsertBranch(
MachineBasicBlock &MBB,MachineBasicBlock *TBB, MachineBasicBlock *FBB,
ArrayRef<MachineOperand> Cond, DebugLoc DL) const {
Opcode_t BOpc = Hexagon::J2_jump;
Opcode_t BccOpc = Hexagon::J2_jumpt;
assert(TBB && "InsertBranch must not be told to insert a fallthrough");
// Check if ReverseBranchCondition has asked to reverse this branch
// If we want to reverse the branch an odd number of times, we want
// J2_jumpf.
if (!Cond.empty() && Cond[0].isImm())
BccOpc = Cond[0].getImm();
if (!FBB) {
if (Cond.empty()) {
// Due to a bug in TailMerging/CFG Optimization, we need to add a
// special case handling of a predicated jump followed by an
// unconditional jump. If not, Tail Merging and CFG Optimization go
// into an infinite loop.
MachineBasicBlock *NewTBB, *NewFBB;
SmallVector<MachineOperand, 4> Cond;
MachineInstr *Term = MBB.getFirstTerminator();
if (Term != MBB.end() && isPredicated(Term) &&
!AnalyzeBranch(MBB, NewTBB, NewFBB, Cond, false)) {
MachineBasicBlock *NextBB =
std::next(MachineFunction::iterator(&MBB));
if (NewTBB == NextBB) {
ReverseBranchCondition(Cond);
RemoveBranch(MBB);
return InsertBranch(MBB, TBB, nullptr, Cond, DL);
}
}
BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
} else if (isEndLoopN(Cond[0].getImm())) {
int EndLoopOp = Cond[0].getImm();
assert(Cond[1].isMBB());
// Since we're adding an ENDLOOP, there better be a LOOP instruction.
// Check for it, and change the BB target if needed.
SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, VisitedBBs);
assert(Loop != 0 && "Inserting an ENDLOOP without a LOOP");
Loop->getOperand(0).setMBB(TBB);
// Add the ENDLOOP after the finding the LOOP0.
BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
} else if (isNewValueJump(Cond[0].getImm())) {
assert((Cond.size() == 3) && "Only supporting rr/ri version of nvjump");
// New value jump
// (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset)
// (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset)
unsigned Flags1 = getUndefRegState(Cond[1].isUndef());
DEBUG(dbgs() << "\nInserting NVJump for BB#" << MBB.getNumber(););
if (Cond[2].isReg()) {
unsigned Flags2 = getUndefRegState(Cond[2].isUndef());
BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
addReg(Cond[2].getReg(), Flags2).addMBB(TBB);
} else if(Cond[2].isImm()) {
BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
addImm(Cond[2].getImm()).addMBB(TBB);
} else
llvm_unreachable("Invalid condition for branching");
} else {
assert((Cond.size() == 2) && "Malformed cond vector");
const MachineOperand &RO = Cond[1];
unsigned Flags = getUndefRegState(RO.isUndef());
BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
}
return 1;
}
assert((!Cond.empty()) &&
"Cond. cannot be empty when multiple branchings are required");
assert((!isNewValueJump(Cond[0].getImm())) &&
"NV-jump cannot be inserted with another branch");
// Special case for hardware loops. The condition is a basic block.
if (isEndLoopN(Cond[0].getImm())) {
int EndLoopOp = Cond[0].getImm();
assert(Cond[1].isMBB());
// Since we're adding an ENDLOOP, there better be a LOOP instruction.
// Check for it, and change the BB target if needed.
SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, VisitedBBs);
assert(Loop != 0 && "Inserting an ENDLOOP without a LOOP");
Loop->getOperand(0).setMBB(TBB);
// Add the ENDLOOP after the finding the LOOP0.
BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
} else {
const MachineOperand &RO = Cond[1];
unsigned Flags = getUndefRegState(RO.isUndef());
BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
}
BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
return 2;
}
/// This function can analyze one/two way branching only and should (mostly) be
/// called by target independent side.
/// First entry is always the opcode of the branching instruction, except when
/// the Cond vector is supposed to be empty, e.g., when AnalyzeBranch fails, a
/// BB with only unconditional jump. Subsequent entries depend upon the opcode,
/// e.g. Jump_c p will have
/// Cond[0] = Jump_c
/// Cond[1] = p
/// HW-loop ENDLOOP:
/// Cond[0] = ENDLOOP
/// Cond[1] = MBB
/// New value jump:
/// Cond[0] = Hexagon::CMPEQri_f_Jumpnv_t_V4 -- specific opcode
/// Cond[1] = R
/// Cond[2] = Imm
/// @note Related function is \fn findInstrPredicate which fills in
/// Cond. vector when a predicated instruction is passed to it.
/// We follow same protocol in that case too.
///
bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify) const {
TBB = nullptr;
FBB = nullptr;
Cond.clear();
// If the block has no terminators, it just falls into the block after it.
MachineBasicBlock::instr_iterator I = MBB.instr_end();
if (I == MBB.instr_begin())
return false;
// A basic block may looks like this:
//
// [ insn
// EH_LABEL
// insn
// insn
// insn
// EH_LABEL
// insn ]
//
// It has two succs but does not have a terminator
// Don't know how to handle it.
do {
--I;
if (I->isEHLabel())
// Don't analyze EH branches.
return true;
} while (I != MBB.instr_begin());
I = MBB.instr_end();
--I;
while (I->isDebugValue()) {
if (I == MBB.instr_begin())
return false;
--I;
}
bool JumpToBlock = I->getOpcode() == Hexagon::J2_jump &&
I->getOperand(0).isMBB();
// Delete the J2_jump if it's equivalent to a fall-through.
if (AllowModify && JumpToBlock &&
MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
DEBUG(dbgs()<< "\nErasing the jump to successor block\n";);
I->eraseFromParent();
I = MBB.instr_end();
if (I == MBB.instr_begin())
return false;
--I;
}
if (!isUnpredicatedTerminator(I))
return false;
// Get the last instruction in the block.
MachineInstr *LastInst = I;
MachineInstr *SecondLastInst = nullptr;
// Find one more terminator if present.
do {
if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(I)) {
if (!SecondLastInst)
SecondLastInst = I;
else
// This is a third branch.
return true;
}
if (I == MBB.instr_begin())
break;
--I;
} while(I);
int LastOpcode = LastInst->getOpcode();
int SecLastOpcode = SecondLastInst ? SecondLastInst->getOpcode() : 0;
// If the branch target is not a basic block, it could be a tail call.
// (It is, if the target is a function.)
if (LastOpcode == Hexagon::J2_jump && !LastInst->getOperand(0).isMBB())
return true;
if (SecLastOpcode == Hexagon::J2_jump &&
!SecondLastInst->getOperand(0).isMBB())
return true;
bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
bool LastOpcodeHasNVJump = isNewValueJump(LastInst);
// If there is only one terminator instruction, process it.
if (LastInst && !SecondLastInst) {
if (LastOpcode == Hexagon::J2_jump) {
TBB = LastInst->getOperand(0).getMBB();
return false;
}
if (isEndLoopN(LastOpcode)) {
TBB = LastInst->getOperand(0).getMBB();
Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
Cond.push_back(LastInst->getOperand(0));
return false;
}
if (LastOpcodeHasJMP_c) {
TBB = LastInst->getOperand(1).getMBB();
Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
Cond.push_back(LastInst->getOperand(0));
return false;
}
// Only supporting rr/ri versions of new-value jumps.
if (LastOpcodeHasNVJump && (LastInst->getNumExplicitOperands() == 3)) {
TBB = LastInst->getOperand(2).getMBB();
Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
Cond.push_back(LastInst->getOperand(0));
Cond.push_back(LastInst->getOperand(1));
return false;
}
DEBUG(dbgs() << "\nCant analyze BB#" << MBB.getNumber()
<< " with one jump\n";);
// Otherwise, don't know what this is.
return true;
}
bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
bool SecLastOpcodeHasNVJump = isNewValueJump(SecondLastInst);
if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) {
TBB = SecondLastInst->getOperand(1).getMBB();
Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
Cond.push_back(SecondLastInst->getOperand(0));
FBB = LastInst->getOperand(0).getMBB();
return false;
}
// Only supporting rr/ri versions of new-value jumps.
if (SecLastOpcodeHasNVJump &&
(SecondLastInst->getNumExplicitOperands() == 3) &&
(LastOpcode == Hexagon::J2_jump)) {
TBB = SecondLastInst->getOperand(2).getMBB();
Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
Cond.push_back(SecondLastInst->getOperand(0));
Cond.push_back(SecondLastInst->getOperand(1));
FBB = LastInst->getOperand(0).getMBB();
return false;
}
// If the block ends with two Hexagon:JMPs, handle it. The second one is not
// executed, so remove it.
if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) {
TBB = SecondLastInst->getOperand(0).getMBB();
I = LastInst;
if (AllowModify)
I->eraseFromParent();
return false;
}
// If the block ends with an ENDLOOP, and J2_jump, handle it.
if (isEndLoopN(SecLastOpcode) && LastOpcode == Hexagon::J2_jump) {
TBB = SecondLastInst->getOperand(0).getMBB();
Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
Cond.push_back(SecondLastInst->getOperand(0));
FBB = LastInst->getOperand(0).getMBB();
return false;
}
DEBUG(dbgs() << "\nCant analyze BB#" << MBB.getNumber()
<< " with two jumps";);
// Otherwise, can't handle this.
return true;
}
unsigned HexagonInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
DEBUG(dbgs() << "\nRemoving branches out of BB#" << MBB.getNumber());
MachineBasicBlock::iterator I = MBB.end();
unsigned Count = 0;
while (I != MBB.begin()) {
--I;
if (I->isDebugValue())
continue;
// Only removing branches from end of MBB.
if (!I->isBranch())
return Count;
if (Count && (I->getOpcode() == Hexagon::J2_jump))
llvm_unreachable("Malformed basic block: unconditional branch not last");
MBB.erase(&MBB.back());
I = MBB.end();
++Count;
}
return Count;
}
/// \brief For a comparison instruction, return the source registers in
/// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
/// compares against in CmpValue. Return true if the comparison instruction
/// can be analyzed.
bool HexagonInstrInfo::analyzeCompare(const MachineInstr *MI,
unsigned &SrcReg, unsigned &SrcReg2,
int &Mask, int &Value) const {
unsigned Opc = MI->getOpcode();
// Set mask and the first source register.
switch (Opc) {
case Hexagon::C2_cmpeq:
case Hexagon::C2_cmpeqp:
case Hexagon::C2_cmpgt:
case Hexagon::C2_cmpgtp:
case Hexagon::C2_cmpgtu:
case Hexagon::C2_cmpgtup:
case Hexagon::C4_cmpneq:
case Hexagon::C4_cmplte:
case Hexagon::C4_cmplteu:
case Hexagon::C2_cmpeqi:
case Hexagon::C2_cmpgti:
case Hexagon::C2_cmpgtui:
case Hexagon::C4_cmpneqi:
case Hexagon::C4_cmplteui:
case Hexagon::C4_cmpltei:
SrcReg = MI->getOperand(1).getReg();
Mask = ~0;
break;
case Hexagon::A4_cmpbeq:
case Hexagon::A4_cmpbgt:
case Hexagon::A4_cmpbgtu:
case Hexagon::A4_cmpbeqi:
case Hexagon::A4_cmpbgti:
case Hexagon::A4_cmpbgtui:
SrcReg = MI->getOperand(1).getReg();
Mask = 0xFF;
break;
case Hexagon::A4_cmpheq:
case Hexagon::A4_cmphgt:
case Hexagon::A4_cmphgtu:
case Hexagon::A4_cmpheqi:
case Hexagon::A4_cmphgti:
case Hexagon::A4_cmphgtui:
SrcReg = MI->getOperand(1).getReg();
Mask = 0xFFFF;
break;
}
// Set the value/second source register.
switch (Opc) {
case Hexagon::C2_cmpeq:
case Hexagon::C2_cmpeqp:
case Hexagon::C2_cmpgt:
case Hexagon::C2_cmpgtp:
case Hexagon::C2_cmpgtu:
case Hexagon::C2_cmpgtup:
case Hexagon::A4_cmpbeq:
case Hexagon::A4_cmpbgt:
case Hexagon::A4_cmpbgtu:
case Hexagon::A4_cmpheq:
case Hexagon::A4_cmphgt:
case Hexagon::A4_cmphgtu:
case Hexagon::C4_cmpneq:
case Hexagon::C4_cmplte:
case Hexagon::C4_cmplteu:
SrcReg2 = MI->getOperand(2).getReg();
return true;
case Hexagon::C2_cmpeqi:
case Hexagon::C2_cmpgtui:
case Hexagon::C2_cmpgti:
case Hexagon::C4_cmpneqi:
case Hexagon::C4_cmplteui:
case Hexagon::C4_cmpltei:
case Hexagon::A4_cmpbeqi:
case Hexagon::A4_cmpbgti:
case Hexagon::A4_cmpbgtui:
case Hexagon::A4_cmpheqi:
case Hexagon::A4_cmphgti:
case Hexagon::A4_cmphgtui:
SrcReg2 = 0;
Value = MI->getOperand(2).getImm();
return true;
}
return false;
}
void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I, DebugLoc DL,
unsigned DestReg, unsigned SrcReg,
bool KillSrc) const {
if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg).addReg(SrcReg);
return;
}
if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
BuildMI(MBB, I, DL, get(Hexagon::A2_tfrp), DestReg).addReg(SrcReg);
return;
}
if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
// Map Pd = Ps to Pd = or(Ps, Ps).
BuildMI(MBB, I, DL, get(Hexagon::C2_or),
DestReg).addReg(SrcReg).addReg(SrcReg);
return;
}
if (Hexagon::DoubleRegsRegClass.contains(DestReg) &&
Hexagon::IntRegsRegClass.contains(SrcReg)) {
// We can have an overlap between single and double reg: r1:0 = r0.
if(SrcReg == RI.getSubReg(DestReg, Hexagon::subreg_loreg)) {
// r1:0 = r0
BuildMI(MBB, I, DL, get(Hexagon::A2_tfrsi), (RI.getSubReg(DestReg,
Hexagon::subreg_hireg))).addImm(0);
} else {
// r1:0 = r1 or no overlap.
BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), (RI.getSubReg(DestReg,
Hexagon::subreg_loreg))).addReg(SrcReg);
BuildMI(MBB, I, DL, get(Hexagon::A2_tfrsi), (RI.getSubReg(DestReg,
Hexagon::subreg_hireg))).addImm(0);
}
return;
}
if (Hexagon::CtrRegsRegClass.contains(DestReg) &&
Hexagon::IntRegsRegClass.contains(SrcReg)) {
BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg).addReg(SrcReg);
return;
}
if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
Hexagon::IntRegsRegClass.contains(DestReg)) {
BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg).
addReg(SrcReg, getKillRegState(KillSrc));
return;
}
if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
Hexagon::PredRegsRegClass.contains(DestReg)) {
BuildMI(MBB, I, DL, get(Hexagon::C2_tfrrp), DestReg).
addReg(SrcReg, getKillRegState(KillSrc));
return;
}
llvm_unreachable("Unimplemented");
}
void HexagonInstrInfo::
storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
unsigned SrcReg, bool isKill, int FI,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
DebugLoc DL = MBB.findDebugLoc(I);
MachineFunction &MF = *MBB.getParent();
MachineFrameInfo &MFI = *MF.getFrameInfo();
unsigned Align = MFI.getObjectAlignment(FI);
MachineMemOperand *MMO = MF.getMachineMemOperand(
MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
MFI.getObjectSize(FI), Align);
if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
BuildMI(MBB, I, DL, get(Hexagon::S2_storeri_io))
.addFrameIndex(FI).addImm(0)
.addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
} else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
BuildMI(MBB, I, DL, get(Hexagon::S2_storerd_io))
.addFrameIndex(FI).addImm(0)
.addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
} else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
.addFrameIndex(FI).addImm(0)
.addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
} else {
llvm_unreachable("Unimplemented");
}
}
void HexagonInstrInfo::storeRegToAddr(
MachineFunction &MF, unsigned SrcReg,
bool isKill,
SmallVectorImpl<MachineOperand> &Addr,
const TargetRegisterClass *RC,
SmallVectorImpl<MachineInstr*> &NewMIs) const
{
llvm_unreachable("Unimplemented");
}
void HexagonInstrInfo::
loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
unsigned DestReg, int FI,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
DebugLoc DL = MBB.findDebugLoc(I);
MachineFunction &MF = *MBB.getParent();
MachineFrameInfo &MFI = *MF.getFrameInfo();
unsigned Align = MFI.getObjectAlignment(FI);
MachineMemOperand *MMO = MF.getMachineMemOperand(
MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
MFI.getObjectSize(FI), Align);
if (RC == &Hexagon::IntRegsRegClass) {
BuildMI(MBB, I, DL, get(Hexagon::L2_loadri_io), DestReg)
.addFrameIndex(FI).addImm(0).addMemOperand(MMO);
} else if (RC == &Hexagon::DoubleRegsRegClass) {
BuildMI(MBB, I, DL, get(Hexagon::L2_loadrd_io), DestReg)
.addFrameIndex(FI).addImm(0).addMemOperand(MMO);
} else if (RC == &Hexagon::PredRegsRegClass) {
BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
.addFrameIndex(FI).addImm(0).addMemOperand(MMO);
} else {
llvm_unreachable("Can't store this register to stack slot");
}
}
void HexagonInstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
SmallVectorImpl<MachineOperand> &Addr,
const TargetRegisterClass *RC,
SmallVectorImpl<MachineInstr*> &NewMIs) const {
llvm_unreachable("Unimplemented");
}
bool
HexagonInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
const HexagonRegisterInfo &TRI = getRegisterInfo();
MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
MachineBasicBlock &MBB = *MI->getParent();
DebugLoc DL = MI->getDebugLoc();
unsigned Opc = MI->getOpcode();
switch (Opc) {
case Hexagon::ALIGNA:
BuildMI(MBB, MI, DL, get(Hexagon::A2_andir), MI->getOperand(0).getReg())
.addReg(TRI.getFrameRegister())
.addImm(-MI->getOperand(1).getImm());
MBB.erase(MI);
return true;
case Hexagon::TFR_PdTrue: {
unsigned Reg = MI->getOperand(0).getReg();
BuildMI(MBB, MI, DL, get(Hexagon::C2_orn), Reg)
.addReg(Reg, RegState::Undef)
.addReg(Reg, RegState::Undef);
MBB.erase(MI);
return true;
}
case Hexagon::TFR_PdFalse: {
unsigned Reg = MI->getOperand(0).getReg();
BuildMI(MBB, MI, DL, get(Hexagon::C2_andn), Reg)
.addReg(Reg, RegState::Undef)
.addReg(Reg, RegState::Undef);
MBB.erase(MI);
return true;
}
case Hexagon::VMULW: {
// Expand a 64-bit vector multiply into 2 32-bit scalar multiplies.
unsigned DstReg = MI->getOperand(0).getReg();
unsigned Src1Reg = MI->getOperand(1).getReg();
unsigned Src2Reg = MI->getOperand(2).getReg();
unsigned Src1SubHi = TRI.getSubReg(Src1Reg, Hexagon::subreg_hireg);
unsigned Src1SubLo = TRI.getSubReg(Src1Reg, Hexagon::subreg_loreg);
unsigned Src2SubHi = TRI.getSubReg(Src2Reg, Hexagon::subreg_hireg);
unsigned Src2SubLo = TRI.getSubReg(Src2Reg, Hexagon::subreg_loreg);
BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_mpyi),
TRI.getSubReg(DstReg, Hexagon::subreg_hireg)).addReg(Src1SubHi)
.addReg(Src2SubHi);
BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_mpyi),
TRI.getSubReg(DstReg, Hexagon::subreg_loreg)).addReg(Src1SubLo)
.addReg(Src2SubLo);
MBB.erase(MI);
MRI.clearKillFlags(Src1SubHi);
MRI.clearKillFlags(Src1SubLo);
MRI.clearKillFlags(Src2SubHi);
MRI.clearKillFlags(Src2SubLo);
return true;
}
case Hexagon::VMULW_ACC: {
// Expand 64-bit vector multiply with addition into 2 scalar multiplies.
unsigned DstReg = MI->getOperand(0).getReg();
unsigned Src1Reg = MI->getOperand(1).getReg();
unsigned Src2Reg = MI->getOperand(2).getReg();
unsigned Src3Reg = MI->getOperand(3).getReg();
unsigned Src1SubHi = TRI.getSubReg(Src1Reg, Hexagon::subreg_hireg);
unsigned Src1SubLo = TRI.getSubReg(Src1Reg, Hexagon::subreg_loreg);
unsigned Src2SubHi = TRI.getSubReg(Src2Reg, Hexagon::subreg_hireg);
unsigned Src2SubLo = TRI.getSubReg(Src2Reg, Hexagon::subreg_loreg);
unsigned Src3SubHi = TRI.getSubReg(Src3Reg, Hexagon::subreg_hireg);
unsigned Src3SubLo = TRI.getSubReg(Src3Reg, Hexagon::subreg_loreg);
BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_maci),
TRI.getSubReg(DstReg, Hexagon::subreg_hireg)).addReg(Src1SubHi)
.addReg(Src2SubHi).addReg(Src3SubHi);
BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_maci),
TRI.getSubReg(DstReg, Hexagon::subreg_loreg)).addReg(Src1SubLo)
.addReg(Src2SubLo).addReg(Src3SubLo);
MBB.erase(MI);
MRI.clearKillFlags(Src1SubHi);
MRI.clearKillFlags(Src1SubLo);
MRI.clearKillFlags(Src2SubHi);
MRI.clearKillFlags(Src2SubLo);
MRI.clearKillFlags(Src3SubHi);
MRI.clearKillFlags(Src3SubLo);
return true;
}
case Hexagon::TCRETURNi:
MI->setDesc(get(Hexagon::J2_jump));
return true;
case Hexagon::TCRETURNr:
MI->setDesc(get(Hexagon::J2_jumpr));
return true;
}
return false;
}
MachineInstr *HexagonInstrInfo::foldMemoryOperandImpl(
MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops,
MachineBasicBlock::iterator InsertPt, int FI) const {
// Hexagon_TODO: Implement.
return nullptr;
}
unsigned HexagonInstrInfo::createVR(MachineFunction* MF, MVT VT) const {
MachineRegisterInfo &RegInfo = MF->getRegInfo();
const TargetRegisterClass *TRC;
if (VT == MVT::i1) {
TRC = &Hexagon::PredRegsRegClass;
} else if (VT == MVT::i32 || VT == MVT::f32) {
TRC = &Hexagon::IntRegsRegClass;
} else if (VT == MVT::i64 || VT == MVT::f64) {
TRC = &Hexagon::DoubleRegsRegClass;
} else {
llvm_unreachable("Cannot handle this register class");
}
unsigned NewReg = RegInfo.createVirtualRegister(TRC);
return NewReg;
}
bool HexagonInstrInfo::isExtendable(const MachineInstr *MI) const {
const MCInstrDesc &MID = MI->getDesc();
const uint64_t F = MID.TSFlags;
if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
return true;
// TODO: This is largely obsolete now. Will need to be removed
// in consecutive patches.
switch(MI->getOpcode()) {
// TFR_FI Remains a special case.
case Hexagon::TFR_FI:
return true;
default:
return false;
}
return false;
}
// This returns true in two cases:
// - The OP code itself indicates that this is an extended instruction.
// - One of MOs has been marked with HMOTF_ConstExtended flag.
bool HexagonInstrInfo::isExtended(const MachineInstr *MI) const {
// First check if this is permanently extended op code.
const uint64_t F = MI->getDesc().TSFlags;
if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
return true;
// Use MO operand flags to determine if one of MI's operands
// has HMOTF_ConstExtended flag set.
for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
E = MI->operands_end(); I != E; ++I) {
if (I->getTargetFlags() && HexagonII::HMOTF_ConstExtended)
return true;
}
return false;
}
bool HexagonInstrInfo::isBranch (const MachineInstr *MI) const {
return MI->getDesc().isBranch();
}
bool HexagonInstrInfo::isNewValueInst(const MachineInstr *MI) const {
if (isNewValueJump(MI))
return true;
if (isNewValueStore(MI))
return true;
return false;
}
bool HexagonInstrInfo::isNewValue(const MachineInstr* MI) const {
const uint64_t F = MI->getDesc().TSFlags;
return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
}
bool HexagonInstrInfo::isNewValue(Opcode_t Opcode) const {
const uint64_t F = get(Opcode).TSFlags;
return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
}
bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr *MI) const {
return MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4;
}
bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const {
bool isPred = MI->getDesc().isPredicable();
if (!isPred)
return false;
const int Opc = MI->getOpcode();
switch(Opc) {
case Hexagon::A2_tfrsi:
return (isOperandExtended(MI, 1) && isConstExtended(MI)) || isInt<12>(MI->getOperand(1).getImm());
case Hexagon::S2_storerd_io:
return isShiftedUInt<6,3>(MI->getOperand(1).getImm());
case Hexagon::S2_storeri_io:
case Hexagon::S2_storerinew_io:
return isShiftedUInt<6,2>(MI->getOperand(1).getImm());
case Hexagon::S2_storerh_io:
case Hexagon::S2_storerhnew_io:
return isShiftedUInt<6,1>(MI->getOperand(1).getImm());
case Hexagon::S2_storerb_io:
case Hexagon::S2_storerbnew_io:
return isUInt<6>(MI->getOperand(1).getImm());
case Hexagon::L2_loadrd_io:
return isShiftedUInt<6,3>(MI->getOperand(2).getImm());
case Hexagon::L2_loadri_io:
return isShiftedUInt<6,2>(MI->getOperand(2).getImm());
case Hexagon::L2_loadrh_io:
case Hexagon::L2_loadruh_io:
return isShiftedUInt<6,1>(MI->getOperand(2).getImm());
case Hexagon::L2_loadrb_io:
case Hexagon::L2_loadrub_io:
return isUInt<6>(MI->getOperand(2).getImm());
case Hexagon::L2_loadrd_pi:
return isShiftedInt<4,3>(MI->getOperand(3).getImm());
case Hexagon::L2_loadri_pi:
return isShiftedInt<4,2>(MI->getOperand(3).getImm());
case Hexagon::L2_loadrh_pi:
case Hexagon::L2_loadruh_pi:
return isShiftedInt<4,1>(MI->getOperand(3).getImm());
case Hexagon::L2_loadrb_pi:
case Hexagon::L2_loadrub_pi:
return isInt<4>(MI->getOperand(3).getImm());
case Hexagon::S4_storeirb_io:
case Hexagon::S4_storeirh_io:
case Hexagon::S4_storeiri_io:
return (isUInt<6>(MI->getOperand(1).getImm()) &&
isInt<6>(MI->getOperand(2).getImm()));
case Hexagon::A2_addi:
return isInt<8>(MI->getOperand(2).getImm());
case Hexagon::A2_aslh:
case Hexagon::A2_asrh:
case Hexagon::A2_sxtb:
case Hexagon::A2_sxth:
case Hexagon::A2_zxtb:
case Hexagon::A2_zxth:
return true;
}
return true;
}
// This function performs the following inversiones:
//
// cPt ---> cNotPt
// cNotPt ---> cPt
//
unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
int InvPredOpcode;
InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
: Hexagon::getTruePredOpcode(Opc);
if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
return InvPredOpcode;
switch(Opc) {
default: llvm_unreachable("Unexpected predicated instruction");
case Hexagon::C2_ccombinewt:
return Hexagon::C2_ccombinewf;
case Hexagon::C2_ccombinewf:
return Hexagon::C2_ccombinewt;
// Dealloc_return.
case Hexagon::L4_return_t:
return Hexagon::L4_return_f;
case Hexagon::L4_return_f:
return Hexagon::L4_return_t;
}
}
// New Value Store instructions.
bool HexagonInstrInfo::isNewValueStore(const MachineInstr *MI) const {
const uint64_t F = MI->getDesc().TSFlags;
return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask);
}
bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
const uint64_t F = get(Opcode).TSFlags;
return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask);
}
int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const {
enum Hexagon::PredSense inPredSense;
inPredSense = invertPredicate ? Hexagon::PredSense_false :
Hexagon::PredSense_true;
int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
if (CondOpcode >= 0) // Valid Conditional opcode/instruction
return CondOpcode;
// This switch case will be removed once all the instructions have been
// modified to use relation maps.
switch(Opc) {
case Hexagon::TFRI_f:
return !invertPredicate ? Hexagon::TFRI_cPt_f :
Hexagon::TFRI_cNotPt_f;
case Hexagon::A2_combinew:
return !invertPredicate ? Hexagon::C2_ccombinewt :
Hexagon::C2_ccombinewf;
// DEALLOC_RETURN.
case Hexagon::L4_return:
return !invertPredicate ? Hexagon::L4_return_t:
Hexagon::L4_return_f;
}
llvm_unreachable("Unexpected predicable instruction");
}
bool HexagonInstrInfo::
PredicateInstruction(MachineInstr *MI,
ArrayRef<MachineOperand> Cond) const {
if (Cond.empty() || isEndLoopN(Cond[0].getImm())) {
DEBUG(dbgs() << "\nCannot predicate:"; MI->dump(););
return false;
}
int Opc = MI->getOpcode();
assert (isPredicable(MI) && "Expected predicable instruction");
bool invertJump = predOpcodeHasNot(Cond);
// We have to predicate MI "in place", i.e. after this function returns,
// MI will need to be transformed into a predicated form. To avoid com-
// plicated manipulations with the operands (handling tied operands,
// etc.), build a new temporary instruction, then overwrite MI with it.
MachineBasicBlock &B = *MI->getParent();
DebugLoc DL = MI->getDebugLoc();
unsigned PredOpc = getCondOpcode(Opc, invertJump);
MachineInstrBuilder T = BuildMI(B, MI, DL, get(PredOpc));
unsigned NOp = 0, NumOps = MI->getNumOperands();
while (NOp < NumOps) {
MachineOperand &Op = MI->getOperand(NOp);
if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
break;
T.addOperand(Op);
NOp++;
}
unsigned PredReg, PredRegPos, PredRegFlags;
bool GotPredReg = getPredReg(Cond, PredReg, PredRegPos, PredRegFlags);
(void)GotPredReg;
assert(GotPredReg);
T.addReg(PredReg, PredRegFlags);
while (NOp < NumOps)
T.addOperand(MI->getOperand(NOp++));
MI->setDesc(get(PredOpc));
while (unsigned n = MI->getNumOperands())
MI->RemoveOperand(n-1);
for (unsigned i = 0, n = T->getNumOperands(); i < n; ++i)
MI->addOperand(T->getOperand(i));
MachineBasicBlock::instr_iterator TI = &*T;
B.erase(TI);
MachineRegisterInfo &MRI = B.getParent()->getRegInfo();
MRI.clearKillFlags(PredReg);
return true;
}
bool
HexagonInstrInfo::
isProfitableToIfCvt(MachineBasicBlock &MBB,
unsigned NumCycles,
unsigned ExtraPredCycles,
const BranchProbability &Probability) const {
return true;
}
bool
HexagonInstrInfo::
isProfitableToIfCvt(MachineBasicBlock &TMBB,
unsigned NumTCycles,
unsigned ExtraTCycles,
MachineBasicBlock &FMBB,
unsigned NumFCycles,
unsigned ExtraFCycles,
const BranchProbability &Probability) const {
return true;
}
// Returns true if an instruction is predicated irrespective of the predicate
// sense. For example, all of the following will return true.
// if (p0) R1 = add(R2, R3)
// if (!p0) R1 = add(R2, R3)
// if (p0.new) R1 = add(R2, R3)
// if (!p0.new) R1 = add(R2, R3)
bool HexagonInstrInfo::isPredicated(const MachineInstr *MI) const {
const uint64_t F = MI->getDesc().TSFlags;
return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
}
bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
const uint64_t F = get(Opcode).TSFlags;
return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
}
bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr *MI) const {
const uint64_t F = MI->getDesc().TSFlags;
assert(isPredicated(MI));
return (!((F >> HexagonII::PredicatedFalsePos) &
HexagonII::PredicatedFalseMask));
}
bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
const uint64_t F = get(Opcode).TSFlags;
// Make sure that the instruction is predicated.
assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
return (!((F >> HexagonII::PredicatedFalsePos) &
HexagonII::PredicatedFalseMask));
}
bool HexagonInstrInfo::isPredicatedNew(const MachineInstr *MI) const {
const uint64_t F = MI->getDesc().TSFlags;
assert(isPredicated(MI));
return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
}
bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
const uint64_t F = get(Opcode).TSFlags;
assert(isPredicated(Opcode));
return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
}
// Returns true, if a ST insn can be promoted to a new-value store.
bool HexagonInstrInfo::mayBeNewStore(const MachineInstr *MI) const {
const uint64_t F = MI->getDesc().TSFlags;
return ((F >> HexagonII::mayNVStorePos) &
HexagonII::mayNVStoreMask);
}
bool
HexagonInstrInfo::DefinesPredicate(MachineInstr *MI,
std::vector<MachineOperand> &Pred) const {
for (unsigned oper = 0; oper < MI->getNumOperands(); ++oper) {
MachineOperand MO = MI->getOperand(oper);
if (MO.isReg() && MO.isDef()) {
const TargetRegisterClass* RC = RI.getMinimalPhysRegClass(MO.getReg());
if (RC == &Hexagon::PredRegsRegClass) {
Pred.push_back(MO);
return true;
}
}
}
return false;
}
bool
HexagonInstrInfo::
SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
ArrayRef<MachineOperand> Pred2) const {
// TODO: Fix this
return false;
}
//
// We indicate that we want to reverse the branch by
// inserting the reversed branching opcode.
//
bool HexagonInstrInfo::ReverseBranchCondition(
SmallVectorImpl<MachineOperand> &Cond) const {
if (Cond.empty())
return true;
assert(Cond[0].isImm() && "First entry in the cond vector not imm-val");
Opcode_t opcode = Cond[0].getImm();
//unsigned temp;
assert(get(opcode).isBranch() && "Should be a branching condition.");
if (isEndLoopN(opcode))
return true;
Opcode_t NewOpcode = getInvertedPredicatedOpcode(opcode);
Cond[0].setImm(NewOpcode);
return false;
}
bool HexagonInstrInfo::
isProfitableToDupForIfCvt(MachineBasicBlock &MBB,unsigned NumInstrs,
const BranchProbability &Probability) const {
return (NumInstrs <= 4);
}
bool HexagonInstrInfo::isDeallocRet(const MachineInstr *MI) const {
switch (MI->getOpcode()) {
default: return false;
case Hexagon::L4_return:
case Hexagon::L4_return_t:
case Hexagon::L4_return_f:
case Hexagon::L4_return_tnew_pnt:
case Hexagon::L4_return_fnew_pnt:
case Hexagon::L4_return_tnew_pt:
case Hexagon::L4_return_fnew_pt:
return true;
}
}
bool HexagonInstrInfo::isValidOffset(unsigned Opcode, int Offset,
bool Extend) const {
// This function is to check whether the "Offset" is in the correct range of
// the given "Opcode". If "Offset" is not in the correct range, "A2_addi" is
// inserted to calculate the final address. Due to this reason, the function
// assumes that the "Offset" has correct alignment.
// We used to assert if the offset was not properly aligned, however,
// there are cases where a misaligned pointer recast can cause this
// problem, and we need to allow for it. The front end warns of such
// misaligns with respect to load size.
switch (Opcode) {
case Hexagon::J2_loop0i:
case Hexagon::J2_loop1i:
return isUInt<10>(Offset);
}
if (Extend)
return true;
switch (Opcode) {
case Hexagon::L2_loadri_io:
case Hexagon::S2_storeri_io:
return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
(Offset <= Hexagon_MEMW_OFFSET_MAX);
case Hexagon::L2_loadrd_io:
case Hexagon::S2_storerd_io:
return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
(Offset <= Hexagon_MEMD_OFFSET_MAX);
case Hexagon::L2_loadrh_io:
case Hexagon::L2_loadruh_io:
case Hexagon::S2_storerh_io:
return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
(Offset <= Hexagon_MEMH_OFFSET_MAX);
case Hexagon::L2_loadrb_io:
case Hexagon::S2_storerb_io:
case Hexagon::L2_loadrub_io:
return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
(Offset <= Hexagon_MEMB_OFFSET_MAX);
case Hexagon::A2_addi:
return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
(Offset <= Hexagon_ADDI_OFFSET_MAX);
case Hexagon::L4_iadd_memopw_io:
case Hexagon::L4_isub_memopw_io:
case Hexagon::L4_add_memopw_io:
case Hexagon::L4_sub_memopw_io:
case Hexagon::L4_and_memopw_io:
case Hexagon::L4_or_memopw_io:
return (0 <= Offset && Offset <= 255);
case Hexagon::L4_iadd_memoph_io:
case Hexagon::L4_isub_memoph_io:
case Hexagon::L4_add_memoph_io:
case Hexagon::L4_sub_memoph_io:
case Hexagon::L4_and_memoph_io:
case Hexagon::L4_or_memoph_io:
return (0 <= Offset && Offset <= 127);
case Hexagon::L4_iadd_memopb_io:
case Hexagon::L4_isub_memopb_io:
case Hexagon::L4_add_memopb_io:
case Hexagon::L4_sub_memopb_io:
case Hexagon::L4_and_memopb_io:
case Hexagon::L4_or_memopb_io:
return (0 <= Offset && Offset <= 63);
// LDri_pred and STriw_pred are pseudo operations, so it has to take offset of
// any size. Later pass knows how to handle it.
case Hexagon::STriw_pred:
case Hexagon::LDriw_pred:
return true;
case Hexagon::TFR_FI:
case Hexagon::TFR_FIA:
case Hexagon::INLINEASM:
return true;
}
llvm_unreachable("No offset range is defined for this opcode. "
"Please define it in the above switch statement!");
}
//
// Check if the Offset is a valid auto-inc imm by Load/Store Type.
//
bool HexagonInstrInfo::
isValidAutoIncImm(const EVT VT, const int Offset) const {
if (VT == MVT::i64) {
return (Offset >= Hexagon_MEMD_AUTOINC_MIN &&
Offset <= Hexagon_MEMD_AUTOINC_MAX &&
(Offset & 0x7) == 0);
}
if (VT == MVT::i32) {
return (Offset >= Hexagon_MEMW_AUTOINC_MIN &&
Offset <= Hexagon_MEMW_AUTOINC_MAX &&
(Offset & 0x3) == 0);
}
if (VT == MVT::i16) {
return (Offset >= Hexagon_MEMH_AUTOINC_MIN &&
Offset <= Hexagon_MEMH_AUTOINC_MAX &&
(Offset & 0x1) == 0);
}
if (VT == MVT::i8) {
return (Offset >= Hexagon_MEMB_AUTOINC_MIN &&
Offset <= Hexagon_MEMB_AUTOINC_MAX);
}
llvm_unreachable("Not an auto-inc opc!");
}
bool HexagonInstrInfo::
isMemOp(const MachineInstr *MI) const {
// return MI->getDesc().mayLoad() && MI->getDesc().mayStore();
switch (MI->getOpcode())
{
default: return false;
case Hexagon::L4_iadd_memopw_io:
case Hexagon::L4_isub_memopw_io:
case Hexagon::L4_add_memopw_io:
case Hexagon::L4_sub_memopw_io:
case Hexagon::L4_and_memopw_io:
case Hexagon::L4_or_memopw_io:
case Hexagon::L4_iadd_memoph_io:
case Hexagon::L4_isub_memoph_io:
case Hexagon::L4_add_memoph_io:
case Hexagon::L4_sub_memoph_io:
case Hexagon::L4_and_memoph_io:
case Hexagon::L4_or_memoph_io:
case Hexagon::L4_iadd_memopb_io:
case Hexagon::L4_isub_memopb_io:
case Hexagon::L4_add_memopb_io:
case Hexagon::L4_sub_memopb_io:
case Hexagon::L4_and_memopb_io:
case Hexagon::L4_or_memopb_io:
case Hexagon::L4_ior_memopb_io:
case Hexagon::L4_ior_memoph_io:
case Hexagon::L4_ior_memopw_io:
case Hexagon::L4_iand_memopb_io:
case Hexagon::L4_iand_memoph_io:
case Hexagon::L4_iand_memopw_io:
return true;
}
return false;
}
bool HexagonInstrInfo::
isSpillPredRegOp(const MachineInstr *MI) const {
switch (MI->getOpcode()) {
default: return false;
case Hexagon::STriw_pred :
case Hexagon::LDriw_pred :
return true;
}
}
bool HexagonInstrInfo::isNewValueJumpCandidate(const MachineInstr *MI) const {
switch (MI->getOpcode()) {
default: return false;
case Hexagon::C2_cmpeq:
case Hexagon::C2_cmpeqi:
case Hexagon::C2_cmpgt:
case Hexagon::C2_cmpgti:
case Hexagon::C2_cmpgtu:
case Hexagon::C2_cmpgtui:
return true;
}
}
bool HexagonInstrInfo::
isConditionalTransfer (const MachineInstr *MI) const {
switch (MI->getOpcode()) {
default: return false;
case Hexagon::A2_tfrt:
case Hexagon::A2_tfrf:
case Hexagon::C2_cmoveit:
case Hexagon::C2_cmoveif:
case Hexagon::A2_tfrtnew:
case Hexagon::A2_tfrfnew:
case Hexagon::C2_cmovenewit:
case Hexagon::C2_cmovenewif:
return true;
}
}
bool HexagonInstrInfo::isConditionalALU32 (const MachineInstr* MI) const {
switch (MI->getOpcode())
{
default: return false;
case Hexagon::A2_paddf:
case Hexagon::A2_paddfnew:
case Hexagon::A2_paddt:
case Hexagon::A2_paddtnew:
case Hexagon::A2_pandf:
case Hexagon::A2_pandfnew:
case Hexagon::A2_pandt:
case Hexagon::A2_pandtnew:
case Hexagon::A4_paslhf:
case Hexagon::A4_paslhfnew:
case Hexagon::A4_paslht:
case Hexagon::A4_paslhtnew:
case Hexagon::A4_pasrhf:
case Hexagon::A4_pasrhfnew:
case Hexagon::A4_pasrht:
case Hexagon::A4_pasrhtnew:
case Hexagon::A2_porf:
case Hexagon::A2_porfnew:
case Hexagon::A2_port:
case Hexagon::A2_portnew:
case Hexagon::A2_psubf:
case Hexagon::A2_psubfnew:
case Hexagon::A2_psubt:
case Hexagon::A2_psubtnew:
case Hexagon::A2_pxorf:
case Hexagon::A2_pxorfnew:
case Hexagon::A2_pxort:
case Hexagon::A2_pxortnew:
case Hexagon::A4_psxthf:
case Hexagon::A4_psxthfnew:
case Hexagon::A4_psxtht:
case Hexagon::A4_psxthtnew:
case Hexagon::A4_psxtbf:
case Hexagon::A4_psxtbfnew:
case Hexagon::A4_psxtbt:
case Hexagon::A4_psxtbtnew:
case Hexagon::A4_pzxtbf:
case Hexagon::A4_pzxtbfnew:
case Hexagon::A4_pzxtbt:
case Hexagon::A4_pzxtbtnew:
case Hexagon::A4_pzxthf:
case Hexagon::A4_pzxthfnew:
case Hexagon::A4_pzxtht:
case Hexagon::A4_pzxthtnew:
case Hexagon::A2_paddit:
case Hexagon::A2_paddif:
case Hexagon::C2_ccombinewt:
case Hexagon::C2_ccombinewf:
return true;
}
}
bool HexagonInstrInfo::
isConditionalLoad (const MachineInstr* MI) const {
switch (MI->getOpcode())
{
default: return false;
case Hexagon::L2_ploadrdt_io :
case Hexagon::L2_ploadrdf_io:
case Hexagon::L2_ploadrit_io:
case Hexagon::L2_ploadrif_io:
case Hexagon::L2_ploadrht_io:
case Hexagon::L2_ploadrhf_io:
case Hexagon::L2_ploadrbt_io:
case Hexagon::L2_ploadrbf_io:
case Hexagon::L2_ploadruht_io:
case Hexagon::L2_ploadruhf_io:
case Hexagon::L2_ploadrubt_io:
case Hexagon::L2_ploadrubf_io:
case Hexagon::L2_ploadrdt_pi:
case Hexagon::L2_ploadrdf_pi:
case Hexagon::L2_ploadrit_pi:
case Hexagon::L2_ploadrif_pi:
case Hexagon::L2_ploadrht_pi:
case Hexagon::L2_ploadrhf_pi:
case Hexagon::L2_ploadrbt_pi:
case Hexagon::L2_ploadrbf_pi:
case Hexagon::L2_ploadruht_pi:
case Hexagon::L2_ploadruhf_pi:
case Hexagon::L2_ploadrubt_pi:
case Hexagon::L2_ploadrubf_pi:
case Hexagon::L4_ploadrdt_rr:
case Hexagon::L4_ploadrdf_rr:
case Hexagon::L4_ploadrbt_rr:
case Hexagon::L4_ploadrbf_rr:
case Hexagon::L4_ploadrubt_rr:
case Hexagon::L4_ploadrubf_rr:
case Hexagon::L4_ploadrht_rr:
case Hexagon::L4_ploadrhf_rr:
case Hexagon::L4_ploadruht_rr:
case Hexagon::L4_ploadruhf_rr:
case Hexagon::L4_ploadrit_rr:
case Hexagon::L4_ploadrif_rr:
return true;
}
}
// Returns true if an instruction is a conditional store.
//
// Note: It doesn't include conditional new-value stores as they can't be
// converted to .new predicate.
//
// p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
// ^ ^
// / \ (not OK. it will cause new-value store to be
// / X conditional on p0.new while R2 producer is
// / \ on p0)
// / \.
// p.new store p.old NV store
// [if(p0.new)memw(R0+#0)=R2] [if(p0)memw(R0+#0)=R2.new]
// ^ ^
// \ /
// \ /
// \ /
// p.old store
// [if (p0)memw(R0+#0)=R2]
//
// The above diagram shows the steps involoved in the conversion of a predicated
// store instruction to its .new predicated new-value form.
//
// The following set of instructions further explains the scenario where
// conditional new-value store becomes invalid when promoted to .new predicate
// form.
//
// { 1) if (p0) r0 = add(r1, r2)
// 2) p0 = cmp.eq(r3, #0) }
//
// 3) if (p0) memb(r1+#0) = r0 --> this instruction can't be grouped with
// the first two instructions because in instr 1, r0 is conditional on old value
// of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
// is not valid for new-value stores.
bool HexagonInstrInfo::
isConditionalStore (const MachineInstr* MI) const {
switch (MI->getOpcode())
{
default: return false;
case Hexagon::S4_storeirbt_io:
case Hexagon::S4_storeirbf_io:
case Hexagon::S4_pstorerbt_rr:
case Hexagon::S4_pstorerbf_rr:
case Hexagon::S2_pstorerbt_io:
case Hexagon::S2_pstorerbf_io:
case Hexagon::S2_pstorerbt_pi:
case Hexagon::S2_pstorerbf_pi:
case Hexagon::S2_pstorerdt_io:
case Hexagon::S2_pstorerdf_io:
case Hexagon::S4_pstorerdt_rr:
case Hexagon::S4_pstorerdf_rr:
case Hexagon::S2_pstorerdt_pi:
case Hexagon::S2_pstorerdf_pi:
case Hexagon::S2_pstorerht_io:
case Hexagon::S2_pstorerhf_io:
case Hexagon::S4_storeirht_io:
case Hexagon::S4_storeirhf_io:
case Hexagon::S4_pstorerht_rr:
case Hexagon::S4_pstorerhf_rr:
case Hexagon::S2_pstorerht_pi:
case Hexagon::S2_pstorerhf_pi:
case Hexagon::S2_pstorerit_io:
case Hexagon::S2_pstorerif_io:
case Hexagon::S4_storeirit_io:
case Hexagon::S4_storeirif_io:
case Hexagon::S4_pstorerit_rr:
case Hexagon::S4_pstorerif_rr:
case Hexagon::S2_pstorerit_pi:
case Hexagon::S2_pstorerif_pi:
// V4 global address store before promoting to dot new.
case Hexagon::S4_pstorerdt_abs:
case Hexagon::S4_pstorerdf_abs:
case Hexagon::S4_pstorerbt_abs:
case Hexagon::S4_pstorerbf_abs:
case Hexagon::S4_pstorerht_abs:
case Hexagon::S4_pstorerhf_abs:
case Hexagon::S4_pstorerit_abs:
case Hexagon::S4_pstorerif_abs:
return true;
// Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
// from the "Conditional Store" list. Because a predicated new value store
// would NOT be promoted to a double dot new store. See diagram below:
// This function returns yes for those stores that are predicated but not
// yet promoted to predicate dot new instructions.
//
// +---------------------+
// /-----| if (p0) memw(..)=r0 |---------\~
// || +---------------------+ ||
// promote || /\ /\ || promote
// || /||\ /||\ ||
// \||/ demote || \||/
// \/ || || \/
// +-------------------------+ || +-------------------------+
// | if (p0.new) memw(..)=r0 | || | if (p0) memw(..)=r0.new |
// +-------------------------+ || +-------------------------+
// || || ||
// || demote \||/
// promote || \/ NOT possible
// || || /\~
// \||/ || /||\~
// \/ || ||
// +-----------------------------+
// | if (p0.new) memw(..)=r0.new |
// +-----------------------------+
// Double Dot New Store
//
}
}
bool HexagonInstrInfo::isNewValueJump(const MachineInstr *MI) const {
if (isNewValue(MI) && isBranch(MI))
return true;
return false;
}
bool HexagonInstrInfo::isNewValueJump(Opcode_t Opcode) const {
return isNewValue(Opcode) && get(Opcode).isBranch() && isPredicated(Opcode);
}
bool HexagonInstrInfo::isPostIncrement (const MachineInstr* MI) const {
return (getAddrMode(MI) == HexagonII::PostInc);
}
// Returns true, if any one of the operands is a dot new
// insn, whether it is predicated dot new or register dot new.
bool HexagonInstrInfo::isDotNewInst (const MachineInstr* MI) const {
return (isNewValueInst(MI) ||
(isPredicated(MI) && isPredicatedNew(MI)));
}
// Returns the most basic instruction for the .new predicated instructions and
// new-value stores.
// For example, all of the following instructions will be converted back to the
// same instruction:
// 1) if (p0.new) memw(R0+#0) = R1.new --->
// 2) if (p0) memw(R0+#0)= R1.new -------> if (p0) memw(R0+#0) = R1
// 3) if (p0.new) memw(R0+#0) = R1 --->
//
int HexagonInstrInfo::GetDotOldOp(const int opc) const {
int NewOp = opc;
if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
NewOp = Hexagon::getPredOldOpcode(NewOp);
assert(NewOp >= 0 &&
"Couldn't change predicate new instruction to its old form.");
}
if (isNewValueStore(NewOp)) { // Convert into non-new-value format
NewOp = Hexagon::getNonNVStore(NewOp);
assert(NewOp >= 0 && "Couldn't change new-value store to its old form.");
}
return NewOp;
}
// Return the new value instruction for a given store.
int HexagonInstrInfo::GetDotNewOp(const MachineInstr* MI) const {
int NVOpcode = Hexagon::getNewValueOpcode(MI->getOpcode());
if (NVOpcode >= 0) // Valid new-value store instruction.
return NVOpcode;
switch (MI->getOpcode()) {
default: llvm_unreachable("Unknown .new type");
case Hexagon::S4_storerb_ur:
return Hexagon::S4_storerbnew_ur;
case Hexagon::S4_storerh_ur:
return Hexagon::S4_storerhnew_ur;
case Hexagon::S4_storeri_ur:
return Hexagon::S4_storerinew_ur;
case Hexagon::S2_storerb_pci:
return Hexagon::S2_storerb_pci;
case Hexagon::S2_storeri_pci:
return Hexagon::S2_storeri_pci;
case Hexagon::S2_storerh_pci:
return Hexagon::S2_storerh_pci;
case Hexagon::S2_storerd_pci:
return Hexagon::S2_storerd_pci;
case Hexagon::S2_storerf_pci:
return Hexagon::S2_storerf_pci;
}
return 0;
}
// Return .new predicate version for an instruction.
int HexagonInstrInfo::GetDotNewPredOp(MachineInstr *MI,
const MachineBranchProbabilityInfo
*MBPI) const {
int NewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode());
if (NewOpcode >= 0) // Valid predicate new instruction
return NewOpcode;
switch (MI->getOpcode()) {
default: llvm_unreachable("Unknown .new type");
// Condtional Jumps
case Hexagon::J2_jumpt:
case Hexagon::J2_jumpf:
return getDotNewPredJumpOp(MI, MBPI);
case Hexagon::J2_jumprt:
return Hexagon::J2_jumptnewpt;
case Hexagon::J2_jumprf:
return Hexagon::J2_jumprfnewpt;
case Hexagon::JMPrett:
return Hexagon::J2_jumprtnewpt;
case Hexagon::JMPretf:
return Hexagon::J2_jumprfnewpt;
// Conditional combine
case Hexagon::C2_ccombinewt:
return Hexagon::C2_ccombinewnewt;
case Hexagon::C2_ccombinewf:
return Hexagon::C2_ccombinewnewf;
}
}
unsigned HexagonInstrInfo::getAddrMode(const MachineInstr* MI) const {
const uint64_t F = MI->getDesc().TSFlags;
return((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask);
}
/// immediateExtend - Changes the instruction in place to one using an immediate
/// extender.
void HexagonInstrInfo::immediateExtend(MachineInstr *MI) const {
assert((isExtendable(MI)||isConstExtended(MI)) &&
"Instruction must be extendable");
// Find which operand is extendable.
short ExtOpNum = getCExtOpNum(MI);
MachineOperand &MO = MI->getOperand(ExtOpNum);
// This needs to be something we understand.
assert((MO.isMBB() || MO.isImm()) &&
"Branch with unknown extendable field type");
// Mark given operand as extended.
MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
}
DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState(
const TargetSubtargetInfo &STI) const {
const InstrItineraryData *II = STI.getInstrItineraryData();
return static_cast<const HexagonSubtarget &>(STI).createDFAPacketizer(II);
}
bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
const MachineBasicBlock *MBB,
const MachineFunction &MF) const {
// Debug info is never a scheduling boundary. It's necessary to be explicit
// due to the special treatment of IT instructions below, otherwise a
// dbg_value followed by an IT will result in the IT instruction being
// considered a scheduling hazard, which is wrong. It should be the actual
// instruction preceding the dbg_value instruction(s), just like it is
// when debug info is not present.
if (MI->isDebugValue())
return false;
// Terminators and labels can't be scheduled around.
if (MI->getDesc().isTerminator() || MI->isPosition() || MI->isInlineAsm())
return true;
return false;
}
bool HexagonInstrInfo::isConstExtended(const MachineInstr *MI) const {
const uint64_t F = MI->getDesc().TSFlags;
unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
if (isExtended) // Instruction must be extended.
return true;
unsigned isExtendable =
(F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
if (!isExtendable)
return false;
short ExtOpNum = getCExtOpNum(MI);
const MachineOperand &MO = MI->getOperand(ExtOpNum);
// Use MO operand flags to determine if MO
// has the HMOTF_ConstExtended flag set.
if (MO.getTargetFlags() && HexagonII::HMOTF_ConstExtended)
return true;
// If this is a Machine BB address we are talking about, and it is
// not marked as extended, say so.
if (MO.isMBB())
return false;
// We could be using an instruction with an extendable immediate and shoehorn
// a global address into it. If it is a global address it will be constant
// extended. We do this for COMBINE.
// We currently only handle isGlobal() because it is the only kind of
// object we are going to end up with here for now.
// In the future we probably should add isSymbol(), etc.
if (MO.isGlobal() || MO.isSymbol() || MO.isBlockAddress() ||
MO.isJTI() || MO.isCPI())
return true;
// If the extendable operand is not 'Immediate' type, the instruction should
// have 'isExtended' flag set.
assert(MO.isImm() && "Extendable operand must be Immediate type");
int MinValue = getMinValue(MI);
int MaxValue = getMaxValue(MI);
int ImmValue = MO.getImm();
return (ImmValue < MinValue || ImmValue > MaxValue);
}
// Return the number of bytes required to encode the instruction.
// Hexagon instructions are fixed length, 4 bytes, unless they
// use a constant extender, which requires another 4 bytes.
// For debug instructions and prolog labels, return 0.
unsigned HexagonInstrInfo::getSize(const MachineInstr *MI) const {
if (MI->isDebugValue() || MI->isPosition())
return 0;
unsigned Size = MI->getDesc().getSize();
if (!Size)
// Assume the default insn size in case it cannot be determined
// for whatever reason.
Size = HEXAGON_INSTR_SIZE;
if (isConstExtended(MI) || isExtended(MI))
Size += HEXAGON_INSTR_SIZE;
return Size;
}
// Returns the opcode to use when converting MI, which is a conditional jump,
// into a conditional instruction which uses the .new value of the predicate.
// We also use branch probabilities to add a hint to the jump.
int
HexagonInstrInfo::getDotNewPredJumpOp(MachineInstr *MI,
const
MachineBranchProbabilityInfo *MBPI) const {
// We assume that block can have at most two successors.
bool taken = false;
MachineBasicBlock *Src = MI->getParent();
MachineOperand *BrTarget = &MI->getOperand(1);
MachineBasicBlock *Dst = BrTarget->getMBB();
const BranchProbability Prediction = MBPI->getEdgeProbability(Src, Dst);
if (Prediction >= BranchProbability(1,2))
taken = true;
switch (MI->getOpcode()) {
case Hexagon::J2_jumpt:
return taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew;
case Hexagon::J2_jumpf:
return taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew;
default:
llvm_unreachable("Unexpected jump instruction.");
}
}
// Returns true if a particular operand is extendable for an instruction.
bool HexagonInstrInfo::isOperandExtended(const MachineInstr *MI,
unsigned short OperandNum) const {
const uint64_t F = MI->getDesc().TSFlags;
return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
== OperandNum;
}
// Returns Operand Index for the constant extended instruction.
unsigned short HexagonInstrInfo::getCExtOpNum(const MachineInstr *MI) const {
const uint64_t F = MI->getDesc().TSFlags;
return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
}
// Returns the min value that doesn't need to be extended.
int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const {
const uint64_t F = MI->getDesc().TSFlags;
unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
& HexagonII::ExtentSignedMask;
unsigned bits = (F >> HexagonII::ExtentBitsPos)
& HexagonII::ExtentBitsMask;
if (isSigned) // if value is signed
return -1U << (bits - 1);
else
return 0;
}
// Returns the max value that doesn't need to be extended.
int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const {
const uint64_t F = MI->getDesc().TSFlags;
unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
& HexagonII::ExtentSignedMask;
unsigned bits = (F >> HexagonII::ExtentBitsPos)
& HexagonII::ExtentBitsMask;
if (isSigned) // if value is signed
return ~(-1U << (bits - 1));
else
return ~(-1U << bits);
}
// Returns true if an instruction can be converted into a non-extended
// equivalent instruction.
bool HexagonInstrInfo::NonExtEquivalentExists (const MachineInstr *MI) const {
short NonExtOpcode;
// Check if the instruction has a register form that uses register in place
// of the extended operand, if so return that as the non-extended form.
if (Hexagon::getRegForm(MI->getOpcode()) >= 0)
return true;
if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
// Check addressing mode and retrieve non-ext equivalent instruction.
switch (getAddrMode(MI)) {
case HexagonII::Absolute :
// Load/store with absolute addressing mode can be converted into
// base+offset mode.
NonExtOpcode = Hexagon::getBasedWithImmOffset(MI->getOpcode());
break;
case HexagonII::BaseImmOffset :
// Load/store with base+offset addressing mode can be converted into
// base+register offset addressing mode. However left shift operand should
// be set to 0.
NonExtOpcode = Hexagon::getBaseWithRegOffset(MI->getOpcode());
break;
default:
return false;
}
if (NonExtOpcode < 0)
return false;
return true;
}
return false;
}
// Returns opcode of the non-extended equivalent instruction.
short HexagonInstrInfo::getNonExtOpcode (const MachineInstr *MI) const {
// Check if the instruction has a register form that uses register in place
// of the extended operand, if so return that as the non-extended form.
short NonExtOpcode = Hexagon::getRegForm(MI->getOpcode());
if (NonExtOpcode >= 0)
return NonExtOpcode;
if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
// Check addressing mode and retrieve non-ext equivalent instruction.
switch (getAddrMode(MI)) {
case HexagonII::Absolute :
return Hexagon::getBasedWithImmOffset(MI->getOpcode());
case HexagonII::BaseImmOffset :
return Hexagon::getBaseWithRegOffset(MI->getOpcode());
default:
return -1;
}
}
return -1;
}
bool HexagonInstrInfo::PredOpcodeHasJMP_c(Opcode_t Opcode) const {
return (Opcode == Hexagon::J2_jumpt) ||
(Opcode == Hexagon::J2_jumpf) ||
(Opcode == Hexagon::J2_jumptnewpt) ||
(Opcode == Hexagon::J2_jumpfnewpt) ||
(Opcode == Hexagon::J2_jumpt) ||
(Opcode == Hexagon::J2_jumpf);
}
bool HexagonInstrInfo::predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const {
if (Cond.empty() || !isPredicated(Cond[0].getImm()))
return false;
return !isPredicatedTrue(Cond[0].getImm());
}
bool HexagonInstrInfo::isEndLoopN(Opcode_t Opcode) const {
return (Opcode == Hexagon::ENDLOOP0 ||
Opcode == Hexagon::ENDLOOP1);
}
bool HexagonInstrInfo::getPredReg(ArrayRef<MachineOperand> Cond,
unsigned &PredReg, unsigned &PredRegPos,
unsigned &PredRegFlags) const {
if (Cond.empty())
return false;
assert(Cond.size() == 2);
if (isNewValueJump(Cond[0].getImm()) || Cond[1].isMBB()) {
DEBUG(dbgs() << "No predregs for new-value jumps/endloop");
return false;
}
PredReg = Cond[1].getReg();
PredRegPos = 1;
// See IfConversion.cpp why we add RegState::Implicit | RegState::Undef
PredRegFlags = 0;
if (Cond[1].isImplicit())
PredRegFlags = RegState::Implicit;
if (Cond[1].isUndef())
PredRegFlags |= RegState::Undef;
return true;
}