forked from OSchip/llvm-project
1303 lines
47 KiB
C++
1303 lines
47 KiB
C++
//===-- HexagonFrameLowering.cpp - Define frame lowering ------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "hexagon-pei"
|
|
|
|
#include "HexagonFrameLowering.h"
|
|
#include "Hexagon.h"
|
|
#include "HexagonInstrInfo.h"
|
|
#include "HexagonMachineFunctionInfo.h"
|
|
#include "HexagonRegisterInfo.h"
|
|
#include "HexagonSubtarget.h"
|
|
#include "HexagonTargetMachine.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachinePostDominators.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/RegisterScavenging.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
|
|
// Hexagon stack frame layout as defined by the ABI:
|
|
//
|
|
// Incoming arguments
|
|
// passed via stack
|
|
// |
|
|
// |
|
|
// SP during function's FP during function's |
|
|
// +-- runtime (top of stack) runtime (bottom) --+ |
|
|
// | | |
|
|
// --++---------------------+------------------+-----------------++-+-------
|
|
// | parameter area for | variable-size | fixed-size |LR| arg
|
|
// | called functions | local objects | local objects |FP|
|
|
// --+----------------------+------------------+-----------------+--+-------
|
|
// <- size known -> <- size unknown -> <- size known ->
|
|
//
|
|
// Low address High address
|
|
//
|
|
// <--- stack growth
|
|
//
|
|
//
|
|
// - In any circumstances, the outgoing function arguments are always accessi-
|
|
// ble using the SP, and the incoming arguments are accessible using the FP.
|
|
// - If the local objects are not aligned, they can always be accessed using
|
|
// the FP.
|
|
// - If there are no variable-sized objects, the local objects can always be
|
|
// accessed using the SP, regardless whether they are aligned or not. (The
|
|
// alignment padding will be at the bottom of the stack (highest address),
|
|
// and so the offset with respect to the SP will be known at the compile-
|
|
// -time.)
|
|
//
|
|
// The only complication occurs if there are both, local aligned objects, and
|
|
// dynamically allocated (variable-sized) objects. The alignment pad will be
|
|
// placed between the FP and the local objects, thus preventing the use of the
|
|
// FP to access the local objects. At the same time, the variable-sized objects
|
|
// will be between the SP and the local objects, thus introducing an unknown
|
|
// distance from the SP to the locals.
|
|
//
|
|
// To avoid this problem, a new register is created that holds the aligned
|
|
// address of the bottom of the stack, referred in the sources as AP (aligned
|
|
// pointer). The AP will be equal to "FP-p", where "p" is the smallest pad
|
|
// that aligns AP to the required boundary (a maximum of the alignments of
|
|
// all stack objects, fixed- and variable-sized). All local objects[1] will
|
|
// then use AP as the base pointer.
|
|
// [1] The exception is with "fixed" stack objects. "Fixed" stack objects get
|
|
// their name from being allocated at fixed locations on the stack, relative
|
|
// to the FP. In the presence of dynamic allocation and local alignment, such
|
|
// objects can only be accessed through the FP.
|
|
//
|
|
// Illustration of the AP:
|
|
// FP --+
|
|
// |
|
|
// ---------------+---------------------+-----+-----------------------++-+--
|
|
// Rest of the | Local stack objects | Pad | Fixed stack objects |LR|
|
|
// stack frame | (aligned) | | (CSR, spills, etc.) |FP|
|
|
// ---------------+---------------------+-----+-----------------+-----+--+--
|
|
// |<-- Multiple of the -->|
|
|
// stack alignment +-- AP
|
|
//
|
|
// The AP is set up at the beginning of the function. Since it is not a dedi-
|
|
// cated (reserved) register, it needs to be kept live throughout the function
|
|
// to be available as the base register for local object accesses.
|
|
// Normally, an address of a stack objects is obtained by a pseudo-instruction
|
|
// TFR_FI. To access local objects with the AP register present, a different
|
|
// pseudo-instruction needs to be used: TFR_FIA. The TFR_FIA takes one extra
|
|
// argument compared to TFR_FI: the first input register is the AP register.
|
|
// This keeps the register live between its definition and its uses.
|
|
|
|
// The AP register is originally set up using pseudo-instruction ALIGNA:
|
|
// AP = ALIGNA A
|
|
// where
|
|
// A - required stack alignment
|
|
// The alignment value must be the maximum of all alignments required by
|
|
// any stack object.
|
|
|
|
// The dynamic allocation uses a pseudo-instruction ALLOCA:
|
|
// Rd = ALLOCA Rs, A
|
|
// where
|
|
// Rd - address of the allocated space
|
|
// Rs - minimum size (the actual allocated can be larger to accommodate
|
|
// alignment)
|
|
// A - required alignment
|
|
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool> DisableDeallocRet("disable-hexagon-dealloc-ret",
|
|
cl::Hidden, cl::desc("Disable Dealloc Return for Hexagon target"));
|
|
|
|
|
|
static cl::opt<int> NumberScavengerSlots("number-scavenger-slots",
|
|
cl::Hidden, cl::desc("Set the number of scavenger slots"), cl::init(2),
|
|
cl::ZeroOrMore);
|
|
|
|
static cl::opt<int> SpillFuncThreshold("spill-func-threshold",
|
|
cl::Hidden, cl::desc("Specify O2(not Os) spill func threshold"),
|
|
cl::init(6), cl::ZeroOrMore);
|
|
|
|
static cl::opt<int> SpillFuncThresholdOs("spill-func-threshold-Os",
|
|
cl::Hidden, cl::desc("Specify Os spill func threshold"),
|
|
cl::init(1), cl::ZeroOrMore);
|
|
|
|
static cl::opt<bool> EnableShrinkWrapping("hexagon-shrink-frame",
|
|
cl::init(true), cl::Hidden, cl::ZeroOrMore,
|
|
cl::desc("Enable stack frame shrink wrapping"));
|
|
|
|
static cl::opt<unsigned> ShrinkLimit("shrink-frame-limit", cl::init(UINT_MAX),
|
|
cl::Hidden, cl::ZeroOrMore, cl::desc("Max count of stack frame "
|
|
"shrink-wraps"));
|
|
|
|
namespace {
|
|
/// Map a register pair Reg to the subregister that has the greater "number",
|
|
/// i.e. D3 (aka R7:6) will be mapped to R7, etc.
|
|
unsigned getMax32BitSubRegister(unsigned Reg, const TargetRegisterInfo &TRI,
|
|
bool hireg = true) {
|
|
if (Reg < Hexagon::D0 || Reg > Hexagon::D15)
|
|
return Reg;
|
|
|
|
unsigned RegNo = 0;
|
|
for (MCSubRegIterator SubRegs(Reg, &TRI); SubRegs.isValid(); ++SubRegs) {
|
|
if (hireg) {
|
|
if (*SubRegs > RegNo)
|
|
RegNo = *SubRegs;
|
|
} else {
|
|
if (!RegNo || *SubRegs < RegNo)
|
|
RegNo = *SubRegs;
|
|
}
|
|
}
|
|
return RegNo;
|
|
}
|
|
|
|
/// Returns the callee saved register with the largest id in the vector.
|
|
unsigned getMaxCalleeSavedReg(const std::vector<CalleeSavedInfo> &CSI,
|
|
const TargetRegisterInfo &TRI) {
|
|
assert(Hexagon::R1 > 0 &&
|
|
"Assume physical registers are encoded as positive integers");
|
|
if (CSI.empty())
|
|
return 0;
|
|
|
|
unsigned Max = getMax32BitSubRegister(CSI[0].getReg(), TRI);
|
|
for (unsigned I = 1, E = CSI.size(); I < E; ++I) {
|
|
unsigned Reg = getMax32BitSubRegister(CSI[I].getReg(), TRI);
|
|
if (Reg > Max)
|
|
Max = Reg;
|
|
}
|
|
return Max;
|
|
}
|
|
|
|
/// Checks if the basic block contains any instruction that needs a stack
|
|
/// frame to be already in place.
|
|
bool needsStackFrame(const MachineBasicBlock &MBB, const BitVector &CSR) {
|
|
for (auto &I : MBB) {
|
|
const MachineInstr *MI = &I;
|
|
if (MI->isCall())
|
|
return true;
|
|
unsigned Opc = MI->getOpcode();
|
|
switch (Opc) {
|
|
case Hexagon::ALLOCA:
|
|
case Hexagon::ALIGNA:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
// Check individual operands.
|
|
for (const MachineOperand &MO : MI->operands()) {
|
|
// While the presence of a frame index does not prove that a stack
|
|
// frame will be required, all frame indexes should be within alloc-
|
|
// frame/deallocframe. Otherwise, the code that translates a frame
|
|
// index into an offset would have to be aware of the placement of
|
|
// the frame creation/destruction instructions.
|
|
if (MO.isFI())
|
|
return true;
|
|
if (!MO.isReg())
|
|
continue;
|
|
unsigned R = MO.getReg();
|
|
// Virtual registers will need scavenging, which then may require
|
|
// a stack slot.
|
|
if (TargetRegisterInfo::isVirtualRegister(R))
|
|
return true;
|
|
if (CSR[R])
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Returns true if MBB has a machine instructions that indicates a tail call
|
|
/// in the block.
|
|
bool hasTailCall(const MachineBasicBlock &MBB) {
|
|
MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
|
|
unsigned RetOpc = I->getOpcode();
|
|
return RetOpc == Hexagon::TCRETURNi || RetOpc == Hexagon::TCRETURNr;
|
|
}
|
|
|
|
/// Returns true if MBB contains an instruction that returns.
|
|
bool hasReturn(const MachineBasicBlock &MBB) {
|
|
for (auto I = MBB.getFirstTerminator(), E = MBB.end(); I != E; ++I)
|
|
if (I->isReturn())
|
|
return true;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
/// Implements shrink-wrapping of the stack frame. By default, stack frame
|
|
/// is created in the function entry block, and is cleaned up in every block
|
|
/// that returns. This function finds alternate blocks: one for the frame
|
|
/// setup (prolog) and one for the cleanup (epilog).
|
|
void HexagonFrameLowering::findShrunkPrologEpilog(MachineFunction &MF,
|
|
MachineBasicBlock *&PrologB, MachineBasicBlock *&EpilogB) const {
|
|
static unsigned ShrinkCounter = 0;
|
|
|
|
if (ShrinkLimit.getPosition()) {
|
|
if (ShrinkCounter >= ShrinkLimit)
|
|
return;
|
|
ShrinkCounter++;
|
|
}
|
|
|
|
auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
|
|
auto &HRI = *HST.getRegisterInfo();
|
|
|
|
MachineDominatorTree MDT;
|
|
MDT.runOnMachineFunction(MF);
|
|
MachinePostDominatorTree MPT;
|
|
MPT.runOnMachineFunction(MF);
|
|
|
|
typedef DenseMap<unsigned,unsigned> UnsignedMap;
|
|
UnsignedMap RPO;
|
|
typedef ReversePostOrderTraversal<const MachineFunction*> RPOTType;
|
|
RPOTType RPOT(&MF);
|
|
unsigned RPON = 0;
|
|
for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I)
|
|
RPO[(*I)->getNumber()] = RPON++;
|
|
|
|
// Don't process functions that have loops, at least for now. Placement
|
|
// of prolog and epilog must take loop structure into account. For simpli-
|
|
// city don't do it right now.
|
|
for (auto &I : MF) {
|
|
unsigned BN = RPO[I.getNumber()];
|
|
for (auto SI = I.succ_begin(), SE = I.succ_end(); SI != SE; ++SI) {
|
|
// If found a back-edge, return.
|
|
if (RPO[(*SI)->getNumber()] <= BN)
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Collect the set of blocks that need a stack frame to execute. Scan
|
|
// each block for uses/defs of callee-saved registers, calls, etc.
|
|
SmallVector<MachineBasicBlock*,16> SFBlocks;
|
|
BitVector CSR(Hexagon::NUM_TARGET_REGS);
|
|
for (const MCPhysReg *P = HRI.getCalleeSavedRegs(&MF); *P; ++P)
|
|
CSR[*P] = true;
|
|
|
|
for (auto &I : MF)
|
|
if (needsStackFrame(I, CSR))
|
|
SFBlocks.push_back(&I);
|
|
|
|
DEBUG({
|
|
dbgs() << "Blocks needing SF: {";
|
|
for (auto &B : SFBlocks)
|
|
dbgs() << " BB#" << B->getNumber();
|
|
dbgs() << " }\n";
|
|
});
|
|
// No frame needed?
|
|
if (SFBlocks.empty())
|
|
return;
|
|
|
|
// Pick a common dominator and a common post-dominator.
|
|
MachineBasicBlock *DomB = SFBlocks[0];
|
|
for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
|
|
DomB = MDT.findNearestCommonDominator(DomB, SFBlocks[i]);
|
|
if (!DomB)
|
|
break;
|
|
}
|
|
MachineBasicBlock *PDomB = SFBlocks[0];
|
|
for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
|
|
PDomB = MPT.findNearestCommonDominator(PDomB, SFBlocks[i]);
|
|
if (!PDomB)
|
|
break;
|
|
}
|
|
DEBUG({
|
|
dbgs() << "Computed dom block: BB#";
|
|
if (DomB) dbgs() << DomB->getNumber();
|
|
else dbgs() << "<null>";
|
|
dbgs() << ", computed pdom block: BB#";
|
|
if (PDomB) dbgs() << PDomB->getNumber();
|
|
else dbgs() << "<null>";
|
|
dbgs() << "\n";
|
|
});
|
|
if (!DomB || !PDomB)
|
|
return;
|
|
|
|
// Make sure that DomB dominates PDomB and PDomB post-dominates DomB.
|
|
if (!MDT.dominates(DomB, PDomB)) {
|
|
DEBUG(dbgs() << "Dom block does not dominate pdom block\n");
|
|
return;
|
|
}
|
|
if (!MPT.dominates(PDomB, DomB)) {
|
|
DEBUG(dbgs() << "PDom block does not post-dominate dom block\n");
|
|
return;
|
|
}
|
|
|
|
// Finally, everything seems right.
|
|
PrologB = DomB;
|
|
EpilogB = PDomB;
|
|
}
|
|
|
|
/// Perform most of the PEI work here:
|
|
/// - saving/restoring of the callee-saved registers,
|
|
/// - stack frame creation and destruction.
|
|
/// Normally, this work is distributed among various functions, but doing it
|
|
/// in one place allows shrink-wrapping of the stack frame.
|
|
void HexagonFrameLowering::emitPrologue(MachineFunction &MF,
|
|
MachineBasicBlock &MBB) const {
|
|
auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
|
|
auto &HRI = *HST.getRegisterInfo();
|
|
|
|
assert(&MF.front() == &MBB && "Shrink-wrapping not yet supported");
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
|
|
|
|
MachineBasicBlock *PrologB = &MF.front(), *EpilogB = nullptr;
|
|
if (EnableShrinkWrapping)
|
|
findShrunkPrologEpilog(MF, PrologB, EpilogB);
|
|
|
|
insertCSRSpillsInBlock(*PrologB, CSI, HRI);
|
|
insertPrologueInBlock(*PrologB);
|
|
|
|
if (EpilogB) {
|
|
insertCSRRestoresInBlock(*EpilogB, CSI, HRI);
|
|
insertEpilogueInBlock(*EpilogB);
|
|
} else {
|
|
for (auto &B : MF)
|
|
if (!B.empty() && B.back().isReturn())
|
|
insertCSRRestoresInBlock(B, CSI, HRI);
|
|
|
|
for (auto &B : MF)
|
|
if (!B.empty() && B.back().isReturn())
|
|
insertEpilogueInBlock(B);
|
|
}
|
|
}
|
|
|
|
|
|
void HexagonFrameLowering::insertPrologueInBlock(MachineBasicBlock &MBB) const {
|
|
MachineFunction &MF = *MBB.getParent();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
MachineModuleInfo &MMI = MF.getMMI();
|
|
MachineBasicBlock::iterator MBBI = MBB.begin();
|
|
auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget());
|
|
auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
|
|
auto &HII = *HST.getInstrInfo();
|
|
auto &HRI = *HST.getRegisterInfo();
|
|
DebugLoc dl;
|
|
|
|
unsigned MaxAlign = std::max(MFI->getMaxAlignment(), getStackAlignment());
|
|
|
|
// Calculate the total stack frame size.
|
|
// Get the number of bytes to allocate from the FrameInfo.
|
|
unsigned FrameSize = MFI->getStackSize();
|
|
// Round up the max call frame size to the max alignment on the stack.
|
|
unsigned MaxCFA = RoundUpToAlignment(MFI->getMaxCallFrameSize(), MaxAlign);
|
|
MFI->setMaxCallFrameSize(MaxCFA);
|
|
|
|
FrameSize = MaxCFA + RoundUpToAlignment(FrameSize, MaxAlign);
|
|
MFI->setStackSize(FrameSize);
|
|
|
|
bool AlignStack = (MaxAlign > getStackAlignment());
|
|
|
|
// Check if frame moves are needed for EH.
|
|
bool needsFrameMoves = MMI.hasDebugInfo() ||
|
|
MF.getFunction()->needsUnwindTableEntry();
|
|
|
|
// Get the number of bytes to allocate from the FrameInfo.
|
|
unsigned NumBytes = MFI->getStackSize();
|
|
unsigned SP = HRI.getStackRegister();
|
|
unsigned MaxCF = MFI->getMaxCallFrameSize();
|
|
MachineBasicBlock::iterator InsertPt = MBB.begin();
|
|
|
|
auto *FuncInfo = MF.getInfo<HexagonMachineFunctionInfo>();
|
|
auto &AdjustRegs = FuncInfo->getAllocaAdjustInsts();
|
|
|
|
for (auto MI : AdjustRegs) {
|
|
assert((MI->getOpcode() == Hexagon::ALLOCA) && "Expected alloca");
|
|
expandAlloca(MI, HII, SP, MaxCF);
|
|
MI->eraseFromParent();
|
|
}
|
|
|
|
//
|
|
// Only insert ALLOCFRAME if we need to or at -O0 for the debugger. Think
|
|
// that this shouldn't be required, but doing so now because gcc does and
|
|
// gdb can't break at the start of the function without it. Will remove if
|
|
// this turns out to be a gdb bug.
|
|
//
|
|
bool NoOpt = (HTM.getOptLevel() == CodeGenOpt::None);
|
|
if (!NoOpt && !FuncInfo->hasClobberLR() && !hasFP(MF))
|
|
return;
|
|
|
|
// Check for overflow.
|
|
// Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used?
|
|
const unsigned int ALLOCFRAME_MAX = 16384;
|
|
|
|
// Create a dummy memory operand to avoid allocframe from being treated as
|
|
// a volatile memory reference.
|
|
MachineMemOperand *MMO =
|
|
MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOStore,
|
|
4, 4);
|
|
|
|
if (NumBytes >= ALLOCFRAME_MAX) {
|
|
// Emit allocframe(#0).
|
|
BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
|
|
.addImm(0)
|
|
.addMemOperand(MMO);
|
|
|
|
// Subtract offset from frame pointer.
|
|
// We use a caller-saved non-parameter register for that.
|
|
unsigned CallerSavedReg = HRI.getFirstCallerSavedNonParamReg();
|
|
BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::CONST32_Int_Real),
|
|
CallerSavedReg).addImm(NumBytes);
|
|
BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_sub), SP)
|
|
.addReg(SP)
|
|
.addReg(CallerSavedReg);
|
|
} else {
|
|
BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
|
|
.addImm(NumBytes)
|
|
.addMemOperand(MMO);
|
|
}
|
|
|
|
if (AlignStack) {
|
|
BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_andir), SP)
|
|
.addReg(SP)
|
|
.addImm(-int64_t(MaxAlign));
|
|
}
|
|
|
|
if (needsFrameMoves) {
|
|
std::vector<MCCFIInstruction> Instructions = MMI.getFrameInstructions();
|
|
MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
|
|
|
|
// Advance CFA. DW_CFA_def_cfa
|
|
unsigned DwFPReg = HRI.getDwarfRegNum(HRI.getFrameRegister(), true);
|
|
unsigned DwRAReg = HRI.getDwarfRegNum(HRI.getRARegister(), true);
|
|
|
|
// CFA = FP + 8
|
|
unsigned CFIIndex = MMI.addFrameInst(MCCFIInstruction::createDefCfa(
|
|
FrameLabel, DwFPReg, -8));
|
|
BuildMI(MBB, MBBI, dl, HII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex);
|
|
|
|
// R31 (return addr) = CFA - #4
|
|
CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset(
|
|
FrameLabel, DwRAReg, -4));
|
|
BuildMI(MBB, MBBI, dl, HII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex);
|
|
|
|
// R30 (frame ptr) = CFA - #8)
|
|
CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset(
|
|
FrameLabel, DwFPReg, -8));
|
|
BuildMI(MBB, MBBI, dl, HII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex);
|
|
|
|
unsigned int regsToMove[] = {
|
|
Hexagon::R1, Hexagon::R0, Hexagon::R3, Hexagon::R2,
|
|
Hexagon::R17, Hexagon::R16, Hexagon::R19, Hexagon::R18,
|
|
Hexagon::R21, Hexagon::R20, Hexagon::R23, Hexagon::R22,
|
|
Hexagon::R25, Hexagon::R24, Hexagon::R27, Hexagon::R26,
|
|
Hexagon::D0, Hexagon::D1, Hexagon::D8, Hexagon::D9, Hexagon::D10,
|
|
Hexagon::D11, Hexagon::D12, Hexagon::D13, Hexagon::NoRegister
|
|
};
|
|
|
|
const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
|
|
|
|
for (unsigned i = 0; regsToMove[i] != Hexagon::NoRegister; ++i) {
|
|
for (unsigned I = 0, E = CSI.size(); I < E; ++I) {
|
|
if (CSI[I].getReg() == regsToMove[i]) {
|
|
// Subtract 8 to make room for R30 and R31, which are added above.
|
|
unsigned FrameReg;
|
|
int64_t Offset =
|
|
getFrameIndexReference(MF, CSI[I].getFrameIdx(), FrameReg) - 8;
|
|
|
|
assert(FrameReg == HRI.getFrameRegister() &&
|
|
"FrameReg from getFrameIndexReference should be the default "
|
|
"frame reg");
|
|
|
|
if (regsToMove[i] < Hexagon::D0 || regsToMove[i] > Hexagon::D15) {
|
|
unsigned DwarfReg = HRI.getDwarfRegNum(regsToMove[i], true);
|
|
unsigned CFIIndex = MMI.addFrameInst(
|
|
MCCFIInstruction::createOffset(FrameLabel,
|
|
DwarfReg, Offset));
|
|
BuildMI(MBB, MBBI, dl, HII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex);
|
|
} else {
|
|
// Split the double regs into subregs, and generate appropriate
|
|
// cfi_offsets.
|
|
// The only reason, we are split double regs is, llvm-mc does not
|
|
// understand paired registers for cfi_offset.
|
|
// Eg .cfi_offset r1:0, -64
|
|
unsigned HiReg = getMax32BitSubRegister(regsToMove[i], HRI);
|
|
unsigned LoReg = getMax32BitSubRegister(regsToMove[i], HRI, false);
|
|
unsigned HiDwarfReg = HRI.getDwarfRegNum(HiReg, true);
|
|
unsigned LoDwarfReg = HRI.getDwarfRegNum(LoReg, true);
|
|
unsigned HiCFIIndex = MMI.addFrameInst(
|
|
MCCFIInstruction::createOffset(FrameLabel,
|
|
HiDwarfReg, Offset+4));
|
|
BuildMI(MBB, MBBI, dl, HII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(HiCFIIndex);
|
|
unsigned LoCFIIndex = MMI.addFrameInst(
|
|
MCCFIInstruction::createOffset(FrameLabel,
|
|
LoDwarfReg, Offset));
|
|
BuildMI(MBB, MBBI, dl, HII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(LoCFIIndex);
|
|
}
|
|
break;
|
|
}
|
|
} // for CSI.size()
|
|
} // for regsToMove
|
|
} // needsFrameMoves
|
|
}
|
|
|
|
void HexagonFrameLowering::insertEpilogueInBlock(MachineBasicBlock &MBB) const {
|
|
MachineFunction &MF = *MBB.getParent();
|
|
//
|
|
// Only insert deallocframe if we need to. Also at -O0. See comment
|
|
// in insertPrologueInBlock above.
|
|
//
|
|
if (!hasFP(MF) && MF.getTarget().getOptLevel() != CodeGenOpt::None)
|
|
return;
|
|
|
|
auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
|
|
auto &HII = *HST.getInstrInfo();
|
|
auto &HRI = *HST.getRegisterInfo();
|
|
unsigned SP = HRI.getStackRegister();
|
|
|
|
MachineInstr *RetI = nullptr;
|
|
for (auto &I : MBB) {
|
|
if (!I.isReturn())
|
|
continue;
|
|
RetI = &I;
|
|
break;
|
|
}
|
|
unsigned RetOpc = RetI ? RetI->getOpcode() : 0;
|
|
|
|
MachineBasicBlock::iterator InsertPt = MBB.getFirstTerminator();
|
|
DebugLoc DL;
|
|
if (InsertPt != MBB.end())
|
|
DL = InsertPt->getDebugLoc();
|
|
else if (!MBB.empty())
|
|
DL = std::prev(MBB.end())->getDebugLoc();
|
|
|
|
// Handle EH_RETURN.
|
|
if (RetOpc == Hexagon::EH_RETURN_JMPR) {
|
|
BuildMI(MBB, InsertPt, DL, HII.get(Hexagon::L2_deallocframe));
|
|
BuildMI(MBB, InsertPt, DL, HII.get(Hexagon::A2_add), SP)
|
|
.addReg(SP)
|
|
.addReg(Hexagon::R28);
|
|
return;
|
|
}
|
|
|
|
// Check for RESTORE_DEALLOC_RET* tail call. Don't emit an extra dealloc-
|
|
// frame instruction if we encounter it.
|
|
if (RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4) {
|
|
MachineBasicBlock::iterator It = RetI;
|
|
++It;
|
|
// Delete all instructions after the RESTORE (except labels).
|
|
while (It != MBB.end()) {
|
|
if (!It->isLabel())
|
|
It = MBB.erase(It);
|
|
else
|
|
++It;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// It is possible that the restoring code is a call to a library function.
|
|
// All of the restore* functions include "deallocframe", so we need to make
|
|
// sure that we don't add an extra one.
|
|
bool NeedsDeallocframe = true;
|
|
if (!MBB.empty() && InsertPt != MBB.begin()) {
|
|
MachineBasicBlock::iterator PrevIt = std::prev(InsertPt);
|
|
unsigned COpc = PrevIt->getOpcode();
|
|
if (COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4)
|
|
NeedsDeallocframe = false;
|
|
}
|
|
|
|
if (!NeedsDeallocframe)
|
|
return;
|
|
// If the returning instruction is JMPret, replace it with dealloc_return,
|
|
// otherwise just add deallocframe. The function could be returning via a
|
|
// tail call.
|
|
if (RetOpc != Hexagon::JMPret || DisableDeallocRet) {
|
|
BuildMI(MBB, InsertPt, DL, HII.get(Hexagon::L2_deallocframe));
|
|
return;
|
|
}
|
|
unsigned NewOpc = Hexagon::L4_return;
|
|
MachineInstr *NewI = BuildMI(MBB, RetI, DL, HII.get(NewOpc));
|
|
// Transfer the function live-out registers.
|
|
NewI->copyImplicitOps(MF, RetI);
|
|
MBB.erase(RetI);
|
|
}
|
|
|
|
|
|
bool HexagonFrameLowering::hasFP(const MachineFunction &MF) const {
|
|
const MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
const HexagonMachineFunctionInfo *FuncInfo =
|
|
MF.getInfo<HexagonMachineFunctionInfo>();
|
|
return MFI->hasCalls() || MFI->getStackSize() > 0 ||
|
|
FuncInfo->hasClobberLR();
|
|
}
|
|
|
|
|
|
enum SpillKind {
|
|
SK_ToMem,
|
|
SK_FromMem,
|
|
SK_FromMemTailcall
|
|
};
|
|
|
|
static const char *
|
|
getSpillFunctionFor(unsigned MaxReg, SpillKind SpillType) {
|
|
const char * V4SpillToMemoryFunctions[] = {
|
|
"__save_r16_through_r17",
|
|
"__save_r16_through_r19",
|
|
"__save_r16_through_r21",
|
|
"__save_r16_through_r23",
|
|
"__save_r16_through_r25",
|
|
"__save_r16_through_r27" };
|
|
|
|
const char * V4SpillFromMemoryFunctions[] = {
|
|
"__restore_r16_through_r17_and_deallocframe",
|
|
"__restore_r16_through_r19_and_deallocframe",
|
|
"__restore_r16_through_r21_and_deallocframe",
|
|
"__restore_r16_through_r23_and_deallocframe",
|
|
"__restore_r16_through_r25_and_deallocframe",
|
|
"__restore_r16_through_r27_and_deallocframe" };
|
|
|
|
const char * V4SpillFromMemoryTailcallFunctions[] = {
|
|
"__restore_r16_through_r17_and_deallocframe_before_tailcall",
|
|
"__restore_r16_through_r19_and_deallocframe_before_tailcall",
|
|
"__restore_r16_through_r21_and_deallocframe_before_tailcall",
|
|
"__restore_r16_through_r23_and_deallocframe_before_tailcall",
|
|
"__restore_r16_through_r25_and_deallocframe_before_tailcall",
|
|
"__restore_r16_through_r27_and_deallocframe_before_tailcall"
|
|
};
|
|
|
|
const char **SpillFunc = nullptr;
|
|
|
|
switch(SpillType) {
|
|
case SK_ToMem:
|
|
SpillFunc = V4SpillToMemoryFunctions;
|
|
break;
|
|
case SK_FromMem:
|
|
SpillFunc = V4SpillFromMemoryFunctions;
|
|
break;
|
|
case SK_FromMemTailcall:
|
|
SpillFunc = V4SpillFromMemoryTailcallFunctions;
|
|
break;
|
|
}
|
|
assert(SpillFunc && "Unknown spill kind");
|
|
|
|
// Spill all callee-saved registers up to the highest register used.
|
|
switch (MaxReg) {
|
|
case Hexagon::R17:
|
|
return SpillFunc[0];
|
|
case Hexagon::R19:
|
|
return SpillFunc[1];
|
|
case Hexagon::R21:
|
|
return SpillFunc[2];
|
|
case Hexagon::R23:
|
|
return SpillFunc[3];
|
|
case Hexagon::R25:
|
|
return SpillFunc[4];
|
|
case Hexagon::R27:
|
|
return SpillFunc[5];
|
|
default:
|
|
llvm_unreachable("Unhandled maximum callee save register");
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// Adds all callee-saved registers up to MaxReg to the instruction.
|
|
static void addCalleeSaveRegistersAsImpOperand(MachineInstr *Inst,
|
|
unsigned MaxReg, bool IsDef) {
|
|
// Add the callee-saved registers as implicit uses.
|
|
for (unsigned R = Hexagon::R16; R <= MaxReg; ++R) {
|
|
MachineOperand ImpUse = MachineOperand::CreateReg(R, IsDef, true);
|
|
Inst->addOperand(ImpUse);
|
|
}
|
|
}
|
|
|
|
int HexagonFrameLowering::getFrameIndexReference(const MachineFunction &MF,
|
|
int FI,
|
|
unsigned &FrameReg) const {
|
|
const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
|
|
|
|
// Fill in FrameReg output argument.
|
|
FrameReg = RI->getFrameRegister(MF);
|
|
|
|
return MF.getFrameInfo()->getObjectOffset(FI);
|
|
}
|
|
|
|
|
|
bool HexagonFrameLowering::insertCSRSpillsInBlock(MachineBasicBlock &MBB,
|
|
const CSIVect &CSI, const HexagonRegisterInfo &HRI) const {
|
|
if (CSI.empty())
|
|
return true;
|
|
|
|
MachineBasicBlock::iterator MI = MBB.begin();
|
|
MachineFunction &MF = *MBB.getParent();
|
|
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
|
|
|
|
if (useSpillFunction(MF, CSI)) {
|
|
unsigned MaxReg = getMaxCalleeSavedReg(CSI, HRI);
|
|
const char *SpillFun = getSpillFunctionFor(MaxReg, SK_ToMem);
|
|
// Call spill function.
|
|
DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
|
|
MachineInstr *SaveRegsCall =
|
|
BuildMI(MBB, MI, DL, TII.get(Hexagon::SAVE_REGISTERS_CALL_V4))
|
|
.addExternalSymbol(SpillFun);
|
|
// Add callee-saved registers as use.
|
|
addCalleeSaveRegistersAsImpOperand(SaveRegsCall, MaxReg, false);
|
|
// Add live in registers.
|
|
for (unsigned I = 0; I < CSI.size(); ++I)
|
|
MBB.addLiveIn(CSI[I].getReg());
|
|
return true;
|
|
}
|
|
|
|
for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
|
|
unsigned Reg = CSI[i].getReg();
|
|
// Add live in registers. We treat eh_return callee saved register r0 - r3
|
|
// specially. They are not really callee saved registers as they are not
|
|
// supposed to be killed.
|
|
bool IsKill = !HRI.isEHReturnCalleeSaveReg(Reg);
|
|
int FI = CSI[i].getFrameIdx();
|
|
const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
|
|
TII.storeRegToStackSlot(MBB, MI, Reg, IsKill, FI, RC, &HRI);
|
|
if (IsKill)
|
|
MBB.addLiveIn(Reg);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
bool HexagonFrameLowering::insertCSRRestoresInBlock(MachineBasicBlock &MBB,
|
|
const CSIVect &CSI, const HexagonRegisterInfo &HRI) const {
|
|
if (CSI.empty())
|
|
return false;
|
|
|
|
MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
|
|
MachineFunction &MF = *MBB.getParent();
|
|
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
|
|
|
|
if (useRestoreFunction(MF, CSI)) {
|
|
bool HasTC = hasTailCall(MBB) || !hasReturn(MBB);
|
|
unsigned MaxR = getMaxCalleeSavedReg(CSI, HRI);
|
|
SpillKind Kind = HasTC ? SK_FromMemTailcall : SK_FromMem;
|
|
const char *RestoreFn = getSpillFunctionFor(MaxR, Kind);
|
|
|
|
// Call spill function.
|
|
DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc()
|
|
: MBB.getLastNonDebugInstr()->getDebugLoc();
|
|
MachineInstr *DeallocCall = nullptr;
|
|
|
|
if (HasTC) {
|
|
unsigned ROpc = Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4;
|
|
DeallocCall = BuildMI(MBB, MI, DL, TII.get(ROpc))
|
|
.addExternalSymbol(RestoreFn);
|
|
} else {
|
|
// The block has a return.
|
|
MachineBasicBlock::iterator It = MBB.getFirstTerminator();
|
|
assert(It->isReturn() && std::next(It) == MBB.end());
|
|
unsigned ROpc = Hexagon::RESTORE_DEALLOC_RET_JMP_V4;
|
|
DeallocCall = BuildMI(MBB, It, DL, TII.get(ROpc))
|
|
.addExternalSymbol(RestoreFn);
|
|
// Transfer the function live-out registers.
|
|
DeallocCall->copyImplicitOps(MF, It);
|
|
}
|
|
addCalleeSaveRegistersAsImpOperand(DeallocCall, MaxR, true);
|
|
return true;
|
|
}
|
|
|
|
for (unsigned i = 0; i < CSI.size(); ++i) {
|
|
unsigned Reg = CSI[i].getReg();
|
|
const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
|
|
int FI = CSI[i].getFrameIdx();
|
|
TII.loadRegFromStackSlot(MBB, MI, Reg, FI, RC, &HRI);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
void HexagonFrameLowering::eliminateCallFramePseudoInstr(MachineFunction &MF,
|
|
MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const {
|
|
MachineInstr &MI = *I;
|
|
unsigned Opc = MI.getOpcode();
|
|
(void)Opc; // Silence compiler warning.
|
|
assert((Opc == Hexagon::ADJCALLSTACKDOWN || Opc == Hexagon::ADJCALLSTACKUP) &&
|
|
"Cannot handle this call frame pseudo instruction");
|
|
MBB.erase(I);
|
|
}
|
|
|
|
|
|
void HexagonFrameLowering::processFunctionBeforeFrameFinalized(
|
|
MachineFunction &MF, RegScavenger *RS) const {
|
|
// If this function has uses aligned stack and also has variable sized stack
|
|
// objects, then we need to map all spill slots to fixed positions, so that
|
|
// they can be accessed through FP. Otherwise they would have to be accessed
|
|
// via AP, which may not be available at the particular place in the program.
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
bool HasAlloca = MFI->hasVarSizedObjects();
|
|
bool HasAligna = (MFI->getMaxAlignment() > getStackAlignment());
|
|
|
|
if (!HasAlloca || !HasAligna)
|
|
return;
|
|
|
|
unsigned LFS = MFI->getLocalFrameSize();
|
|
int Offset = -LFS;
|
|
for (int i = 0, e = MFI->getObjectIndexEnd(); i != e; ++i) {
|
|
if (!MFI->isSpillSlotObjectIndex(i) || MFI->isDeadObjectIndex(i))
|
|
continue;
|
|
int S = MFI->getObjectSize(i);
|
|
LFS += S;
|
|
Offset -= S;
|
|
MFI->mapLocalFrameObject(i, Offset);
|
|
}
|
|
|
|
MFI->setLocalFrameSize(LFS);
|
|
unsigned A = MFI->getLocalFrameMaxAlign();
|
|
assert(A <= 8 && "Unexpected local frame alignment");
|
|
if (A == 0)
|
|
MFI->setLocalFrameMaxAlign(8);
|
|
MFI->setUseLocalStackAllocationBlock(true);
|
|
}
|
|
|
|
/// Returns true if there is no caller saved registers available.
|
|
static bool needToReserveScavengingSpillSlots(MachineFunction &MF,
|
|
const HexagonRegisterInfo &HRI) {
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
const MCPhysReg *CallerSavedRegs = HRI.getCallerSavedRegs(&MF);
|
|
// Check for an unused caller-saved register.
|
|
for ( ; *CallerSavedRegs; ++CallerSavedRegs) {
|
|
MCPhysReg FreeReg = *CallerSavedRegs;
|
|
if (!MRI.reg_nodbg_empty(FreeReg))
|
|
continue;
|
|
|
|
// Check aliased register usage.
|
|
bool IsCurrentRegUsed = false;
|
|
for (MCRegAliasIterator AI(FreeReg, &HRI, false); AI.isValid(); ++AI)
|
|
if (!MRI.reg_nodbg_empty(*AI)) {
|
|
IsCurrentRegUsed = true;
|
|
break;
|
|
}
|
|
if (IsCurrentRegUsed)
|
|
continue;
|
|
|
|
// Neither directly used nor used through an aliased register.
|
|
return false;
|
|
}
|
|
// All caller-saved registers are used.
|
|
return true;
|
|
}
|
|
|
|
|
|
/// Replaces the predicate spill code pseudo instructions by valid instructions.
|
|
bool HexagonFrameLowering::replacePredRegPseudoSpillCode(MachineFunction &MF)
|
|
const {
|
|
auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
|
|
auto &HII = *HST.getInstrInfo();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
bool HasReplacedPseudoInst = false;
|
|
// Replace predicate spill pseudo instructions by real code.
|
|
// Loop over all of the basic blocks.
|
|
for (MachineFunction::iterator MBBb = MF.begin(), MBBe = MF.end();
|
|
MBBb != MBBe; ++MBBb) {
|
|
MachineBasicBlock* MBB = MBBb;
|
|
// Traverse the basic block.
|
|
MachineBasicBlock::iterator NextII;
|
|
for (MachineBasicBlock::iterator MII = MBB->begin(); MII != MBB->end();
|
|
MII = NextII) {
|
|
MachineInstr *MI = MII;
|
|
NextII = std::next(MII);
|
|
int Opc = MI->getOpcode();
|
|
if (Opc == Hexagon::STriw_pred) {
|
|
HasReplacedPseudoInst = true;
|
|
// STriw_pred FI, 0, SrcReg;
|
|
unsigned VirtReg = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
|
|
unsigned SrcReg = MI->getOperand(2).getReg();
|
|
bool IsOrigSrcRegKilled = MI->getOperand(2).isKill();
|
|
|
|
assert(MI->getOperand(0).isFI() && "Expect a frame index");
|
|
assert(Hexagon::PredRegsRegClass.contains(SrcReg) &&
|
|
"Not a predicate register");
|
|
|
|
// Insert transfer to general purpose register.
|
|
// VirtReg = C2_tfrpr SrcPredReg
|
|
BuildMI(*MBB, MII, MI->getDebugLoc(), HII.get(Hexagon::C2_tfrpr),
|
|
VirtReg).addReg(SrcReg, getKillRegState(IsOrigSrcRegKilled));
|
|
|
|
// Change instruction to S2_storeri_io.
|
|
// S2_storeri_io FI, 0, VirtReg
|
|
MI->setDesc(HII.get(Hexagon::S2_storeri_io));
|
|
MI->getOperand(2).setReg(VirtReg);
|
|
MI->getOperand(2).setIsKill();
|
|
|
|
} else if (Opc == Hexagon::LDriw_pred) {
|
|
// DstReg = LDriw_pred FI, 0
|
|
MachineOperand &M0 = MI->getOperand(0);
|
|
if (M0.isDead()) {
|
|
MBB->erase(MII);
|
|
continue;
|
|
}
|
|
|
|
unsigned VirtReg = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
|
|
unsigned DestReg = MI->getOperand(0).getReg();
|
|
|
|
assert(MI->getOperand(1).isFI() && "Expect a frame index");
|
|
assert(Hexagon::PredRegsRegClass.contains(DestReg) &&
|
|
"Not a predicate register");
|
|
|
|
// Change instruction to L2_loadri_io.
|
|
// VirtReg = L2_loadri_io FI, 0
|
|
MI->setDesc(HII.get(Hexagon::L2_loadri_io));
|
|
MI->getOperand(0).setReg(VirtReg);
|
|
|
|
// Insert transfer to general purpose register.
|
|
// DestReg = C2_tfrrp VirtReg
|
|
const MCInstrDesc &D = HII.get(Hexagon::C2_tfrrp);
|
|
BuildMI(*MBB, std::next(MII), MI->getDebugLoc(), D, DestReg)
|
|
.addReg(VirtReg, getKillRegState(true));
|
|
HasReplacedPseudoInst = true;
|
|
}
|
|
}
|
|
}
|
|
return HasReplacedPseudoInst;
|
|
}
|
|
|
|
|
|
void HexagonFrameLowering::determineCalleeSaves(MachineFunction &MF,
|
|
BitVector &SavedRegs,
|
|
RegScavenger *RS) const {
|
|
TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
|
|
|
|
auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
|
|
auto &HRI = *HST.getRegisterInfo();
|
|
|
|
bool HasEHReturn = MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn();
|
|
|
|
// If we have a function containing __builtin_eh_return we want to spill and
|
|
// restore all callee saved registers. Pretend that they are used.
|
|
if (HasEHReturn) {
|
|
for (const MCPhysReg *CSRegs = HRI.getCalleeSavedRegs(&MF); *CSRegs;
|
|
++CSRegs)
|
|
SavedRegs.set(*CSRegs);
|
|
}
|
|
|
|
const TargetRegisterClass &RC = Hexagon::IntRegsRegClass;
|
|
|
|
// Replace predicate register pseudo spill code.
|
|
bool HasReplacedPseudoInst = replacePredRegPseudoSpillCode(MF);
|
|
|
|
// We need to reserve a a spill slot if scavenging could potentially require
|
|
// spilling a scavenged register.
|
|
if (HasReplacedPseudoInst && needToReserveScavengingSpillSlots(MF, HRI)) {
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
for (int i=0; i < NumberScavengerSlots; i++)
|
|
RS->addScavengingFrameIndex(
|
|
MFI->CreateSpillStackObject(RC.getSize(), RC.getAlignment()));
|
|
}
|
|
}
|
|
|
|
|
|
#ifndef NDEBUG
|
|
static void dump_registers(BitVector &Regs, const TargetRegisterInfo &TRI) {
|
|
dbgs() << '{';
|
|
for (int x = Regs.find_first(); x >= 0; x = Regs.find_next(x)) {
|
|
unsigned R = x;
|
|
dbgs() << ' ' << PrintReg(R, &TRI);
|
|
}
|
|
dbgs() << " }";
|
|
}
|
|
#endif
|
|
|
|
|
|
bool HexagonFrameLowering::assignCalleeSavedSpillSlots(MachineFunction &MF,
|
|
const TargetRegisterInfo *TRI, std::vector<CalleeSavedInfo> &CSI) const {
|
|
DEBUG(dbgs() << LLVM_FUNCTION_NAME << " on "
|
|
<< MF.getFunction()->getName() << '\n');
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
BitVector SRegs(Hexagon::NUM_TARGET_REGS);
|
|
|
|
// Generate a set of unique, callee-saved registers (SRegs), where each
|
|
// register in the set is maximal in terms of sub-/super-register relation,
|
|
// i.e. for each R in SRegs, no proper super-register of R is also in SRegs.
|
|
|
|
// (1) For each callee-saved register, add that register and all of its
|
|
// sub-registers to SRegs.
|
|
DEBUG(dbgs() << "Initial CS registers: {");
|
|
for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
|
|
unsigned R = CSI[i].getReg();
|
|
DEBUG(dbgs() << ' ' << PrintReg(R, TRI));
|
|
for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR)
|
|
SRegs[*SR] = true;
|
|
}
|
|
DEBUG(dbgs() << " }\n");
|
|
DEBUG(dbgs() << "SRegs.1: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
|
|
|
|
// (2) For each reserved register, remove that register and all of its
|
|
// sub- and super-registers from SRegs.
|
|
BitVector Reserved = TRI->getReservedRegs(MF);
|
|
for (int x = Reserved.find_first(); x >= 0; x = Reserved.find_next(x)) {
|
|
unsigned R = x;
|
|
for (MCSuperRegIterator SR(R, TRI, true); SR.isValid(); ++SR)
|
|
SRegs[*SR] = false;
|
|
}
|
|
DEBUG(dbgs() << "Res: "; dump_registers(Reserved, *TRI); dbgs() << "\n");
|
|
DEBUG(dbgs() << "SRegs.2: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
|
|
|
|
// (3) Collect all registers that have at least one sub-register in SRegs,
|
|
// and also have no sub-registers that are reserved. These will be the can-
|
|
// didates for saving as a whole instead of their individual sub-registers.
|
|
// (Saving R17:16 instead of R16 is fine, but only if R17 was not reserved.)
|
|
BitVector TmpSup(Hexagon::NUM_TARGET_REGS);
|
|
for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
|
|
unsigned R = x;
|
|
for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR)
|
|
TmpSup[*SR] = true;
|
|
}
|
|
for (int x = TmpSup.find_first(); x >= 0; x = TmpSup.find_next(x)) {
|
|
unsigned R = x;
|
|
for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR) {
|
|
if (!Reserved[*SR])
|
|
continue;
|
|
TmpSup[R] = false;
|
|
break;
|
|
}
|
|
}
|
|
DEBUG(dbgs() << "TmpSup: "; dump_registers(TmpSup, *TRI); dbgs() << "\n");
|
|
|
|
// (4) Include all super-registers found in (3) into SRegs.
|
|
SRegs |= TmpSup;
|
|
DEBUG(dbgs() << "SRegs.4: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
|
|
|
|
// (5) For each register R in SRegs, if any super-register of R is in SRegs,
|
|
// remove R from SRegs.
|
|
for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
|
|
unsigned R = x;
|
|
for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) {
|
|
if (!SRegs[*SR])
|
|
continue;
|
|
SRegs[R] = false;
|
|
break;
|
|
}
|
|
}
|
|
DEBUG(dbgs() << "SRegs.5: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
|
|
|
|
// Now, for each register that has a fixed stack slot, create the stack
|
|
// object for it.
|
|
CSI.clear();
|
|
|
|
typedef TargetFrameLowering::SpillSlot SpillSlot;
|
|
unsigned NumFixed;
|
|
int MinOffset = 0; // CS offsets are negative.
|
|
const SpillSlot *FixedSlots = getCalleeSavedSpillSlots(NumFixed);
|
|
for (const SpillSlot *S = FixedSlots; S != FixedSlots+NumFixed; ++S) {
|
|
if (!SRegs[S->Reg])
|
|
continue;
|
|
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(S->Reg);
|
|
int FI = MFI->CreateFixedSpillStackObject(RC->getSize(), S->Offset);
|
|
MinOffset = std::min(MinOffset, S->Offset);
|
|
CSI.push_back(CalleeSavedInfo(S->Reg, FI));
|
|
SRegs[S->Reg] = false;
|
|
}
|
|
|
|
// There can be some registers that don't have fixed slots. For example,
|
|
// we need to store R0-R3 in functions with exception handling. For each
|
|
// such register, create a non-fixed stack object.
|
|
for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
|
|
unsigned R = x;
|
|
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(R);
|
|
int Off = MinOffset - RC->getSize();
|
|
unsigned Align = std::min(RC->getAlignment(), getStackAlignment());
|
|
assert(isPowerOf2_32(Align));
|
|
Off &= -Align;
|
|
int FI = MFI->CreateFixedSpillStackObject(RC->getSize(), Off);
|
|
MinOffset = std::min(MinOffset, Off);
|
|
CSI.push_back(CalleeSavedInfo(R, FI));
|
|
SRegs[R] = false;
|
|
}
|
|
|
|
DEBUG({
|
|
dbgs() << "CS information: {";
|
|
for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
|
|
int FI = CSI[i].getFrameIdx();
|
|
int Off = MFI->getObjectOffset(FI);
|
|
dbgs() << ' ' << PrintReg(CSI[i].getReg(), TRI) << ":fi#" << FI << ":sp";
|
|
if (Off >= 0)
|
|
dbgs() << '+';
|
|
dbgs() << Off;
|
|
}
|
|
dbgs() << " }\n";
|
|
});
|
|
|
|
#ifndef NDEBUG
|
|
// Verify that all registers were handled.
|
|
bool MissedReg = false;
|
|
for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
|
|
unsigned R = x;
|
|
dbgs() << PrintReg(R, TRI) << ' ';
|
|
MissedReg = true;
|
|
}
|
|
if (MissedReg)
|
|
llvm_unreachable("...there are unhandled callee-saved registers!");
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
void HexagonFrameLowering::expandAlloca(MachineInstr *AI,
|
|
const HexagonInstrInfo &HII, unsigned SP, unsigned CF) const {
|
|
MachineBasicBlock &MB = *AI->getParent();
|
|
DebugLoc DL = AI->getDebugLoc();
|
|
unsigned A = AI->getOperand(2).getImm();
|
|
|
|
// Have
|
|
// Rd = alloca Rs, #A
|
|
//
|
|
// If Rs and Rd are different registers, use this sequence:
|
|
// Rd = sub(r29, Rs)
|
|
// r29 = sub(r29, Rs)
|
|
// Rd = and(Rd, #-A) ; if necessary
|
|
// r29 = and(r29, #-A) ; if necessary
|
|
// Rd = add(Rd, #CF) ; CF size aligned to at most A
|
|
// otherwise, do
|
|
// Rd = sub(r29, Rs)
|
|
// Rd = and(Rd, #-A) ; if necessary
|
|
// r29 = Rd
|
|
// Rd = add(Rd, #CF) ; CF size aligned to at most A
|
|
|
|
MachineOperand &RdOp = AI->getOperand(0);
|
|
MachineOperand &RsOp = AI->getOperand(1);
|
|
unsigned Rd = RdOp.getReg(), Rs = RsOp.getReg();
|
|
|
|
// Rd = sub(r29, Rs)
|
|
BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), Rd)
|
|
.addReg(SP)
|
|
.addReg(Rs);
|
|
if (Rs != Rd) {
|
|
// r29 = sub(r29, Rs)
|
|
BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), SP)
|
|
.addReg(SP)
|
|
.addReg(Rs);
|
|
}
|
|
if (A > 8) {
|
|
// Rd = and(Rd, #-A)
|
|
BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), Rd)
|
|
.addReg(Rd)
|
|
.addImm(-int64_t(A));
|
|
if (Rs != Rd)
|
|
BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), SP)
|
|
.addReg(SP)
|
|
.addImm(-int64_t(A));
|
|
}
|
|
if (Rs == Rd) {
|
|
// r29 = Rd
|
|
BuildMI(MB, AI, DL, HII.get(TargetOpcode::COPY), SP)
|
|
.addReg(Rd);
|
|
}
|
|
if (CF > 0) {
|
|
// Rd = add(Rd, #CF)
|
|
BuildMI(MB, AI, DL, HII.get(Hexagon::A2_addi), Rd)
|
|
.addReg(Rd)
|
|
.addImm(CF);
|
|
}
|
|
}
|
|
|
|
|
|
bool HexagonFrameLowering::needsAligna(const MachineFunction &MF) const {
|
|
const MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
if (!MFI->hasVarSizedObjects())
|
|
return false;
|
|
unsigned MaxA = MFI->getMaxAlignment();
|
|
if (MaxA <= getStackAlignment())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
MachineInstr *HexagonFrameLowering::getAlignaInstr(MachineFunction &MF) const {
|
|
for (auto &B : MF)
|
|
for (auto &I : B)
|
|
if (I.getOpcode() == Hexagon::ALIGNA)
|
|
return &I;
|
|
return nullptr;
|
|
}
|
|
|
|
|
|
// FIXME: Use Function::optForSize().
|
|
inline static bool isOptSize(const MachineFunction &MF) {
|
|
AttributeSet AF = MF.getFunction()->getAttributes();
|
|
return AF.hasAttribute(AttributeSet::FunctionIndex,
|
|
Attribute::OptimizeForSize);
|
|
}
|
|
|
|
inline static bool isMinSize(const MachineFunction &MF) {
|
|
return MF.getFunction()->optForMinSize();
|
|
}
|
|
|
|
|
|
/// Determine whether the callee-saved register saves and restores should
|
|
/// be generated via inline code. If this function returns "true", inline
|
|
/// code will be generated. If this function returns "false", additional
|
|
/// checks are performed, which may still lead to the inline code.
|
|
bool HexagonFrameLowering::shouldInlineCSR(MachineFunction &MF,
|
|
const CSIVect &CSI) const {
|
|
if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn())
|
|
return true;
|
|
if (!isOptSize(MF) && !isMinSize(MF))
|
|
if (MF.getTarget().getOptLevel() > CodeGenOpt::Default)
|
|
return true;
|
|
|
|
// Check if CSI only has double registers, and if the registers form
|
|
// a contiguous block starting from D8.
|
|
BitVector Regs(Hexagon::NUM_TARGET_REGS);
|
|
for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
|
|
unsigned R = CSI[i].getReg();
|
|
if (!Hexagon::DoubleRegsRegClass.contains(R))
|
|
return true;
|
|
Regs[R] = true;
|
|
}
|
|
int F = Regs.find_first();
|
|
if (F != Hexagon::D8)
|
|
return true;
|
|
while (F >= 0) {
|
|
int N = Regs.find_next(F);
|
|
if (N >= 0 && N != F+1)
|
|
return true;
|
|
F = N;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
bool HexagonFrameLowering::useSpillFunction(MachineFunction &MF,
|
|
const CSIVect &CSI) const {
|
|
if (shouldInlineCSR(MF, CSI))
|
|
return false;
|
|
unsigned NumCSI = CSI.size();
|
|
if (NumCSI <= 1)
|
|
return false;
|
|
|
|
unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs
|
|
: SpillFuncThreshold;
|
|
return Threshold < NumCSI;
|
|
}
|
|
|
|
|
|
bool HexagonFrameLowering::useRestoreFunction(MachineFunction &MF,
|
|
const CSIVect &CSI) const {
|
|
if (shouldInlineCSR(MF, CSI))
|
|
return false;
|
|
unsigned NumCSI = CSI.size();
|
|
unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs-1
|
|
: SpillFuncThreshold;
|
|
return Threshold < NumCSI;
|
|
}
|