forked from OSchip/llvm-project
395 lines
14 KiB
C++
395 lines
14 KiB
C++
//===--------------------- Dispatch.cpp -------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
///
|
|
/// This file implements methods declared by class RegisterFile, DispatchUnit
|
|
/// and RetireControlUnit.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Dispatch.h"
|
|
#include "Backend.h"
|
|
#include "HWEventListener.h"
|
|
#include "Scheduler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "llvm-mca"
|
|
|
|
namespace mca {
|
|
|
|
void RegisterFile::addRegisterFile(ArrayRef<unsigned> RegisterClasses,
|
|
unsigned NumTemps) {
|
|
unsigned RegisterFileIndex = RegisterFiles.size();
|
|
assert(RegisterFileIndex < 32 && "Too many register files!");
|
|
RegisterFiles.emplace_back(NumTemps);
|
|
|
|
// Special case where there are no register classes specified.
|
|
// An empty register class set means *all* registers.
|
|
if (RegisterClasses.empty()) {
|
|
for (std::pair<WriteState *, unsigned> &Mapping : RegisterMappings)
|
|
Mapping.second |= 1U << RegisterFileIndex;
|
|
} else {
|
|
for (const unsigned RegClassIndex : RegisterClasses) {
|
|
const MCRegisterClass &RC = MRI.getRegClass(RegClassIndex);
|
|
for (const MCPhysReg Reg : RC)
|
|
RegisterMappings[Reg].second |= 1U << RegisterFileIndex;
|
|
}
|
|
}
|
|
}
|
|
|
|
void RegisterFile::createNewMappings(unsigned RegisterFileMask,
|
|
MutableArrayRef<unsigned> UsedPhysRegs) {
|
|
assert(RegisterFileMask && "RegisterFileMask cannot be zero!");
|
|
// Notify each register file that contains RegID.
|
|
do {
|
|
unsigned NextRegisterFile = llvm::PowerOf2Floor(RegisterFileMask);
|
|
unsigned RegisterFileIndex = llvm::countTrailingZeros(NextRegisterFile);
|
|
RegisterMappingTracker &RMT = RegisterFiles[RegisterFileIndex];
|
|
RMT.NumUsedMappings++;
|
|
UsedPhysRegs[RegisterFileIndex]++;
|
|
RegisterFileMask ^= NextRegisterFile;
|
|
} while (RegisterFileMask);
|
|
}
|
|
|
|
void RegisterFile::removeMappings(unsigned RegisterFileMask,
|
|
MutableArrayRef<unsigned> FreedPhysRegs) {
|
|
assert(RegisterFileMask && "RegisterFileMask cannot be zero!");
|
|
// Notify each register file that contains RegID.
|
|
do {
|
|
unsigned NextRegisterFile = llvm::PowerOf2Floor(RegisterFileMask);
|
|
unsigned RegisterFileIndex = llvm::countTrailingZeros(NextRegisterFile);
|
|
RegisterMappingTracker &RMT = RegisterFiles[RegisterFileIndex];
|
|
assert(RMT.NumUsedMappings);
|
|
RMT.NumUsedMappings--;
|
|
FreedPhysRegs[RegisterFileIndex]++;
|
|
RegisterFileMask ^= NextRegisterFile;
|
|
} while (RegisterFileMask);
|
|
}
|
|
|
|
void RegisterFile::addRegisterMapping(WriteState &WS,
|
|
MutableArrayRef<unsigned> UsedPhysRegs) {
|
|
unsigned RegID = WS.getRegisterID();
|
|
assert(RegID && "Adding an invalid register definition?");
|
|
|
|
RegisterMapping &Mapping = RegisterMappings[RegID];
|
|
Mapping.first = &WS;
|
|
for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I)
|
|
RegisterMappings[*I].first = &WS;
|
|
|
|
createNewMappings(Mapping.second, UsedPhysRegs);
|
|
|
|
// If this is a partial update, then we are done.
|
|
if (!WS.fullyUpdatesSuperRegs())
|
|
return;
|
|
|
|
for (MCSuperRegIterator I(RegID, &MRI); I.isValid(); ++I)
|
|
RegisterMappings[*I].first = &WS;
|
|
}
|
|
|
|
void RegisterFile::invalidateRegisterMapping(
|
|
const WriteState &WS, MutableArrayRef<unsigned> FreedPhysRegs) {
|
|
unsigned RegID = WS.getRegisterID();
|
|
bool ShouldInvalidateSuperRegs = WS.fullyUpdatesSuperRegs();
|
|
|
|
assert(RegID != 0 && "Invalidating an already invalid register?");
|
|
assert(WS.getCyclesLeft() != -512 &&
|
|
"Invalidating a write of unknown cycles!");
|
|
assert(WS.getCyclesLeft() <= 0 && "Invalid cycles left for this write!");
|
|
RegisterMapping &Mapping = RegisterMappings[RegID];
|
|
if (!Mapping.first)
|
|
return;
|
|
|
|
removeMappings(Mapping.second, FreedPhysRegs);
|
|
|
|
if (Mapping.first == &WS)
|
|
Mapping.first = nullptr;
|
|
|
|
for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I)
|
|
if (RegisterMappings[*I].first == &WS)
|
|
RegisterMappings[*I].first = nullptr;
|
|
|
|
if (!ShouldInvalidateSuperRegs)
|
|
return;
|
|
|
|
for (MCSuperRegIterator I(RegID, &MRI); I.isValid(); ++I)
|
|
if (RegisterMappings[*I].first == &WS)
|
|
RegisterMappings[*I].first = nullptr;
|
|
}
|
|
|
|
void RegisterFile::collectWrites(SmallVectorImpl<WriteState *> &Writes,
|
|
unsigned RegID) const {
|
|
assert(RegID && RegID < RegisterMappings.size());
|
|
WriteState *WS = RegisterMappings[RegID].first;
|
|
if (WS) {
|
|
DEBUG(dbgs() << "Found a dependent use of RegID=" << RegID << '\n');
|
|
Writes.push_back(WS);
|
|
}
|
|
|
|
// Handle potential partial register updates.
|
|
for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I) {
|
|
WS = RegisterMappings[*I].first;
|
|
if (WS && std::find(Writes.begin(), Writes.end(), WS) == Writes.end()) {
|
|
DEBUG(dbgs() << "Found a dependent use of subReg " << *I << " (part of "
|
|
<< RegID << ")\n");
|
|
Writes.push_back(WS);
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned RegisterFile::isAvailable(ArrayRef<unsigned> Regs) const {
|
|
SmallVector<unsigned, 4> NumTemporaries(getNumRegisterFiles());
|
|
|
|
// Find how many new mappings must be created for each register file.
|
|
for (const unsigned RegID : Regs) {
|
|
unsigned RegisterFileMask = RegisterMappings[RegID].second;
|
|
do {
|
|
unsigned NextRegisterFileID = llvm::PowerOf2Floor(RegisterFileMask);
|
|
NumTemporaries[llvm::countTrailingZeros(NextRegisterFileID)]++;
|
|
RegisterFileMask ^= NextRegisterFileID;
|
|
} while (RegisterFileMask);
|
|
}
|
|
|
|
unsigned Response = 0;
|
|
for (unsigned I = 0, E = getNumRegisterFiles(); I < E; ++I) {
|
|
unsigned Temporaries = NumTemporaries[I];
|
|
if (!Temporaries)
|
|
continue;
|
|
|
|
const RegisterMappingTracker &RMT = RegisterFiles[I];
|
|
if (!RMT.TotalMappings) {
|
|
// The register file has an unbound number of microarchitectural
|
|
// registers.
|
|
continue;
|
|
}
|
|
|
|
if (RMT.TotalMappings < Temporaries) {
|
|
// The current register file is too small. This may occur if the number of
|
|
// microarchitectural registers in register file #0 was changed by the
|
|
// users via flag -reg-file-size. Alternatively, the scheduling model
|
|
// specified a too small number of registers for this register file.
|
|
report_fatal_error(
|
|
"Not enough microarchitectural registers in the register file");
|
|
}
|
|
|
|
if (RMT.TotalMappings < RMT.NumUsedMappings + Temporaries)
|
|
Response |= (1U << I);
|
|
}
|
|
|
|
return Response;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void RegisterFile::dump() const {
|
|
for (unsigned I = 0, E = MRI.getNumRegs(); I < E; ++I) {
|
|
const RegisterMapping &RM = RegisterMappings[I];
|
|
dbgs() << MRI.getName(I) << ", " << I << ", Map=" << RM.second << ", ";
|
|
if (RM.first)
|
|
RM.first->dump();
|
|
else
|
|
dbgs() << "(null)\n";
|
|
}
|
|
|
|
for (unsigned I = 0, E = getNumRegisterFiles(); I < E; ++I) {
|
|
dbgs() << "Register File #" << I;
|
|
const RegisterMappingTracker &RMT = RegisterFiles[I];
|
|
dbgs() << "\n TotalMappings: " << RMT.TotalMappings
|
|
<< "\n NumUsedMappings: " << RMT.NumUsedMappings << '\n';
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Reserves a number of slots, and returns a new token.
|
|
unsigned RetireControlUnit::reserveSlot(unsigned Index, unsigned NumMicroOps) {
|
|
assert(isAvailable(NumMicroOps));
|
|
unsigned NormalizedQuantity =
|
|
std::min(NumMicroOps, static_cast<unsigned>(Queue.size()));
|
|
// Zero latency instructions may have zero mOps. Artificially bump this
|
|
// value to 1. Although zero latency instructions don't consume scheduler
|
|
// resources, they still consume one slot in the retire queue.
|
|
NormalizedQuantity = std::max(NormalizedQuantity, 1U);
|
|
unsigned TokenID = NextAvailableSlotIdx;
|
|
Queue[NextAvailableSlotIdx] = {Index, NormalizedQuantity, false};
|
|
NextAvailableSlotIdx += NormalizedQuantity;
|
|
NextAvailableSlotIdx %= Queue.size();
|
|
AvailableSlots -= NormalizedQuantity;
|
|
return TokenID;
|
|
}
|
|
|
|
void DispatchUnit::notifyInstructionDispatched(unsigned Index,
|
|
ArrayRef<unsigned> UsedRegs) {
|
|
DEBUG(dbgs() << "[E] Instruction Dispatched: " << Index << '\n');
|
|
Owner->notifyInstructionEvent(HWInstructionDispatchedEvent(Index, UsedRegs));
|
|
}
|
|
|
|
void DispatchUnit::notifyInstructionRetired(unsigned Index) {
|
|
DEBUG(dbgs() << "[E] Instruction Retired: " << Index << '\n');
|
|
const Instruction &IS = Owner->getInstruction(Index);
|
|
SmallVector<unsigned, 4> FreedRegs(RAT->getNumRegisterFiles());
|
|
for (const std::unique_ptr<WriteState> &WS : IS.getDefs())
|
|
RAT->invalidateRegisterMapping(*WS.get(), FreedRegs);
|
|
|
|
Owner->notifyInstructionEvent(HWInstructionRetiredEvent(Index, FreedRegs));
|
|
Owner->eraseInstruction(Index);
|
|
}
|
|
|
|
void RetireControlUnit::cycleEvent() {
|
|
if (isEmpty())
|
|
return;
|
|
|
|
unsigned NumRetired = 0;
|
|
while (!isEmpty()) {
|
|
if (MaxRetirePerCycle != 0 && NumRetired == MaxRetirePerCycle)
|
|
break;
|
|
RUToken &Current = Queue[CurrentInstructionSlotIdx];
|
|
assert(Current.NumSlots && "Reserved zero slots?");
|
|
if (!Current.Executed)
|
|
break;
|
|
Owner->notifyInstructionRetired(Current.Index);
|
|
CurrentInstructionSlotIdx += Current.NumSlots;
|
|
CurrentInstructionSlotIdx %= Queue.size();
|
|
AvailableSlots += Current.NumSlots;
|
|
NumRetired++;
|
|
}
|
|
}
|
|
|
|
void RetireControlUnit::onInstructionExecuted(unsigned TokenID) {
|
|
assert(Queue.size() > TokenID);
|
|
assert(Queue[TokenID].Executed == false && Queue[TokenID].Index != ~0U);
|
|
Queue[TokenID].Executed = true;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void RetireControlUnit::dump() const {
|
|
dbgs() << "Retire Unit: { Total Slots=" << Queue.size()
|
|
<< ", Available Slots=" << AvailableSlots << " }\n";
|
|
}
|
|
#endif
|
|
|
|
bool DispatchUnit::checkRAT(unsigned Index, const Instruction &Instr) {
|
|
SmallVector<unsigned, 4> RegDefs;
|
|
for (const std::unique_ptr<WriteState> &RegDef : Instr.getDefs())
|
|
RegDefs.emplace_back(RegDef->getRegisterID());
|
|
|
|
unsigned RegisterMask = RAT->isAvailable(RegDefs);
|
|
// A mask with all zeroes means: register files are available.
|
|
if (RegisterMask) {
|
|
Owner->notifyStallEvent(
|
|
HWStallEvent(HWStallEvent::RegisterFileStall, Index));
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool DispatchUnit::checkRCU(unsigned Index, const InstrDesc &Desc) {
|
|
unsigned NumMicroOps = Desc.NumMicroOps;
|
|
if (RCU->isAvailable(NumMicroOps))
|
|
return true;
|
|
Owner->notifyStallEvent(
|
|
HWStallEvent(HWStallEvent::RetireControlUnitStall, Index));
|
|
return false;
|
|
}
|
|
|
|
bool DispatchUnit::checkScheduler(unsigned Index, const InstrDesc &Desc) {
|
|
// If this is a zero-latency instruction, then it bypasses
|
|
// the scheduler.
|
|
HWStallEvent::GenericEventType Type = HWStallEvent::Invalid;
|
|
switch (SC->canBeDispatched(Desc)) {
|
|
case Scheduler::HWS_AVAILABLE:
|
|
return true;
|
|
case Scheduler::HWS_QUEUE_UNAVAILABLE:
|
|
Type = HWStallEvent::SchedulerQueueFull;
|
|
break;
|
|
case Scheduler::HWS_LD_QUEUE_UNAVAILABLE:
|
|
Type = HWStallEvent::LoadQueueFull;
|
|
break;
|
|
case Scheduler::HWS_ST_QUEUE_UNAVAILABLE:
|
|
Type = HWStallEvent::StoreQueueFull;
|
|
break;
|
|
case Scheduler::HWS_DISPATCH_GROUP_RESTRICTION:
|
|
Type = HWStallEvent::DispatchGroupStall;
|
|
}
|
|
|
|
Owner->notifyStallEvent(HWStallEvent(Type, Index));
|
|
return false;
|
|
}
|
|
|
|
void DispatchUnit::updateRAWDependencies(ReadState &RS,
|
|
const MCSubtargetInfo &STI) {
|
|
SmallVector<WriteState *, 4> DependentWrites;
|
|
|
|
collectWrites(DependentWrites, RS.getRegisterID());
|
|
RS.setDependentWrites(DependentWrites.size());
|
|
DEBUG(dbgs() << "Found " << DependentWrites.size() << " dependent writes\n");
|
|
// We know that this read depends on all the writes in DependentWrites.
|
|
// For each write, check if we have ReadAdvance information, and use it
|
|
// to figure out in how many cycles this read becomes available.
|
|
const ReadDescriptor &RD = RS.getDescriptor();
|
|
if (!RD.HasReadAdvanceEntries) {
|
|
for (WriteState *WS : DependentWrites)
|
|
WS->addUser(&RS, /* ReadAdvance */ 0);
|
|
return;
|
|
}
|
|
|
|
const MCSchedModel &SM = STI.getSchedModel();
|
|
const MCSchedClassDesc *SC = SM.getSchedClassDesc(RD.SchedClassID);
|
|
for (WriteState *WS : DependentWrites) {
|
|
unsigned WriteResID = WS->getWriteResourceID();
|
|
int ReadAdvance = STI.getReadAdvanceCycles(SC, RD.UseIndex, WriteResID);
|
|
WS->addUser(&RS, ReadAdvance);
|
|
}
|
|
// Prepare the set for another round.
|
|
DependentWrites.clear();
|
|
}
|
|
|
|
void DispatchUnit::dispatch(unsigned IID, Instruction *NewInst,
|
|
const MCSubtargetInfo &STI) {
|
|
assert(!CarryOver && "Cannot dispatch another instruction!");
|
|
unsigned NumMicroOps = NewInst->getDesc().NumMicroOps;
|
|
if (NumMicroOps > DispatchWidth) {
|
|
assert(AvailableEntries == DispatchWidth);
|
|
AvailableEntries = 0;
|
|
CarryOver = NumMicroOps - DispatchWidth;
|
|
} else {
|
|
assert(AvailableEntries >= NumMicroOps);
|
|
AvailableEntries -= NumMicroOps;
|
|
}
|
|
|
|
// Update RAW dependencies.
|
|
for (std::unique_ptr<ReadState> &RS : NewInst->getUses())
|
|
updateRAWDependencies(*RS, STI);
|
|
|
|
// Allocate new mappings.
|
|
SmallVector<unsigned, 4> RegisterFiles(RAT->getNumRegisterFiles());
|
|
for (std::unique_ptr<WriteState> &WS : NewInst->getDefs())
|
|
RAT->addRegisterMapping(*WS, RegisterFiles);
|
|
|
|
// Reserve slots in the RCU, and notify the instruction that it has been
|
|
// dispatched to the schedulers for execution.
|
|
NewInst->dispatch(RCU->reserveSlot(IID, NumMicroOps));
|
|
|
|
// Notify listeners of the "instruction dispatched" event.
|
|
notifyInstructionDispatched(IID, RegisterFiles);
|
|
|
|
// Now move the instruction into the scheduler's queue.
|
|
// The scheduler is responsible for checking if this is a zero-latency
|
|
// instruction that doesn't consume pipeline/scheduler resources.
|
|
SC->scheduleInstruction(IID, *NewInst);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void DispatchUnit::dump() const {
|
|
RAT->dump();
|
|
RCU->dump();
|
|
}
|
|
#endif
|
|
} // namespace mca
|