forked from OSchip/llvm-project
2191 lines
81 KiB
C++
2191 lines
81 KiB
C++
//===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains support for writing dwarf debug info into asm files.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "DwarfDebug.h"
|
|
#include "ByteStreamer.h"
|
|
#include "DIEHash.h"
|
|
#include "DebugLocEntry.h"
|
|
#include "DebugLocStream.h"
|
|
#include "DwarfAccelTable.h"
|
|
#include "DwarfCompileUnit.h"
|
|
#include "DwarfExpression.h"
|
|
#include "DwarfFile.h"
|
|
#include "DwarfUnit.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/BinaryFormat/Dwarf.h"
|
|
#include "llvm/CodeGen/AsmPrinter.h"
|
|
#include "llvm/CodeGen/DIE.h"
|
|
#include "llvm/CodeGen/LexicalScopes.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCDwarf.h"
|
|
#include "llvm/MC/MCSection.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/MC/MCTargetOptions.h"
|
|
#include "llvm/MC/MachineLocation.h"
|
|
#include "llvm/MC/SectionKind.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MD5.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/Timer.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetLoweringObjectFile.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "dwarfdebug"
|
|
|
|
static cl::opt<bool>
|
|
DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden,
|
|
cl::desc("Disable debug info printing"));
|
|
|
|
static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier(
|
|
"use-dwarf-ranges-base-address-specifier", cl::Hidden,
|
|
cl::desc("Use base address specifiers in debug_ranges"), cl::init(false));
|
|
|
|
static cl::opt<bool> GenerateARangeSection("generate-arange-section",
|
|
cl::Hidden,
|
|
cl::desc("Generate dwarf aranges"),
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool> SplitDwarfCrossCuReferences(
|
|
"split-dwarf-cross-cu-references", cl::Hidden,
|
|
cl::desc("Enable cross-cu references in DWO files"), cl::init(false));
|
|
|
|
enum DefaultOnOff { Default, Enable, Disable };
|
|
|
|
static cl::opt<DefaultOnOff> UnknownLocations(
|
|
"use-unknown-locations", cl::Hidden,
|
|
cl::desc("Make an absence of debug location information explicit."),
|
|
cl::values(clEnumVal(Default, "At top of block or after label"),
|
|
clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")),
|
|
cl::init(Default));
|
|
|
|
static cl::opt<DefaultOnOff>
|
|
DwarfAccelTables("dwarf-accel-tables", cl::Hidden,
|
|
cl::desc("Output prototype dwarf accelerator tables."),
|
|
cl::values(clEnumVal(Default, "Default for platform"),
|
|
clEnumVal(Enable, "Enabled"),
|
|
clEnumVal(Disable, "Disabled")),
|
|
cl::init(Default));
|
|
|
|
enum LinkageNameOption {
|
|
DefaultLinkageNames,
|
|
AllLinkageNames,
|
|
AbstractLinkageNames
|
|
};
|
|
|
|
static cl::opt<LinkageNameOption>
|
|
DwarfLinkageNames("dwarf-linkage-names", cl::Hidden,
|
|
cl::desc("Which DWARF linkage-name attributes to emit."),
|
|
cl::values(clEnumValN(DefaultLinkageNames, "Default",
|
|
"Default for platform"),
|
|
clEnumValN(AllLinkageNames, "All", "All"),
|
|
clEnumValN(AbstractLinkageNames, "Abstract",
|
|
"Abstract subprograms")),
|
|
cl::init(DefaultLinkageNames));
|
|
|
|
static const char *const DWARFGroupName = "dwarf";
|
|
static const char *const DWARFGroupDescription = "DWARF Emission";
|
|
static const char *const DbgTimerName = "writer";
|
|
static const char *const DbgTimerDescription = "DWARF Debug Writer";
|
|
|
|
void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) {
|
|
BS.EmitInt8(
|
|
Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op)
|
|
: dwarf::OperationEncodingString(Op));
|
|
}
|
|
|
|
void DebugLocDwarfExpression::emitSigned(int64_t Value) {
|
|
BS.EmitSLEB128(Value, Twine(Value));
|
|
}
|
|
|
|
void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) {
|
|
BS.EmitULEB128(Value, Twine(Value));
|
|
}
|
|
|
|
bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI,
|
|
unsigned MachineReg) {
|
|
// This information is not available while emitting .debug_loc entries.
|
|
return false;
|
|
}
|
|
|
|
bool DbgVariable::isBlockByrefVariable() const {
|
|
assert(Var && "Invalid complex DbgVariable!");
|
|
return Var->getType().resolve()->isBlockByrefStruct();
|
|
}
|
|
|
|
const DIType *DbgVariable::getType() const {
|
|
DIType *Ty = Var->getType().resolve();
|
|
// FIXME: isBlockByrefVariable should be reformulated in terms of complex
|
|
// addresses instead.
|
|
if (Ty->isBlockByrefStruct()) {
|
|
/* Byref variables, in Blocks, are declared by the programmer as
|
|
"SomeType VarName;", but the compiler creates a
|
|
__Block_byref_x_VarName struct, and gives the variable VarName
|
|
either the struct, or a pointer to the struct, as its type. This
|
|
is necessary for various behind-the-scenes things the compiler
|
|
needs to do with by-reference variables in blocks.
|
|
|
|
However, as far as the original *programmer* is concerned, the
|
|
variable should still have type 'SomeType', as originally declared.
|
|
|
|
The following function dives into the __Block_byref_x_VarName
|
|
struct to find the original type of the variable. This will be
|
|
passed back to the code generating the type for the Debug
|
|
Information Entry for the variable 'VarName'. 'VarName' will then
|
|
have the original type 'SomeType' in its debug information.
|
|
|
|
The original type 'SomeType' will be the type of the field named
|
|
'VarName' inside the __Block_byref_x_VarName struct.
|
|
|
|
NOTE: In order for this to not completely fail on the debugger
|
|
side, the Debug Information Entry for the variable VarName needs to
|
|
have a DW_AT_location that tells the debugger how to unwind through
|
|
the pointers and __Block_byref_x_VarName struct to find the actual
|
|
value of the variable. The function addBlockByrefType does this. */
|
|
DIType *subType = Ty;
|
|
uint16_t tag = Ty->getTag();
|
|
|
|
if (tag == dwarf::DW_TAG_pointer_type)
|
|
subType = resolve(cast<DIDerivedType>(Ty)->getBaseType());
|
|
|
|
auto Elements = cast<DICompositeType>(subType)->getElements();
|
|
for (unsigned i = 0, N = Elements.size(); i < N; ++i) {
|
|
auto *DT = cast<DIDerivedType>(Elements[i]);
|
|
if (getName() == DT->getName())
|
|
return resolve(DT->getBaseType());
|
|
}
|
|
}
|
|
return Ty;
|
|
}
|
|
|
|
ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const {
|
|
if (FrameIndexExprs.size() == 1)
|
|
return FrameIndexExprs;
|
|
|
|
assert(llvm::all_of(FrameIndexExprs,
|
|
[](const FrameIndexExpr &A) {
|
|
return A.Expr->isFragment();
|
|
}) &&
|
|
"multiple FI expressions without DW_OP_LLVM_fragment");
|
|
std::sort(FrameIndexExprs.begin(), FrameIndexExprs.end(),
|
|
[](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool {
|
|
return A.Expr->getFragmentInfo()->OffsetInBits <
|
|
B.Expr->getFragmentInfo()->OffsetInBits;
|
|
});
|
|
|
|
return FrameIndexExprs;
|
|
}
|
|
|
|
void DbgVariable::addMMIEntry(const DbgVariable &V) {
|
|
assert(DebugLocListIndex == ~0U && !MInsn && "not an MMI entry");
|
|
assert(V.DebugLocListIndex == ~0U && !V.MInsn && "not an MMI entry");
|
|
assert(V.Var == Var && "conflicting variable");
|
|
assert(V.IA == IA && "conflicting inlined-at location");
|
|
|
|
assert(!FrameIndexExprs.empty() && "Expected an MMI entry");
|
|
assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry");
|
|
|
|
// FIXME: This logic should not be necessary anymore, as we now have proper
|
|
// deduplication. However, without it, we currently run into the assertion
|
|
// below, which means that we are likely dealing with broken input, i.e. two
|
|
// non-fragment entries for the same variable at different frame indices.
|
|
if (FrameIndexExprs.size()) {
|
|
auto *Expr = FrameIndexExprs.back().Expr;
|
|
if (!Expr || !Expr->isFragment())
|
|
return;
|
|
}
|
|
|
|
for (const auto &FIE : V.FrameIndexExprs)
|
|
// Ignore duplicate entries.
|
|
if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) {
|
|
return FIE.FI == Other.FI && FIE.Expr == Other.Expr;
|
|
}))
|
|
FrameIndexExprs.push_back(FIE);
|
|
|
|
assert((FrameIndexExprs.size() == 1 ||
|
|
llvm::all_of(FrameIndexExprs,
|
|
[](FrameIndexExpr &FIE) {
|
|
return FIE.Expr && FIE.Expr->isFragment();
|
|
})) &&
|
|
"conflicting locations for variable");
|
|
}
|
|
|
|
static const DwarfAccelTable::Atom TypeAtoms[] = {
|
|
DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset, dwarf::DW_FORM_data4),
|
|
DwarfAccelTable::Atom(dwarf::DW_ATOM_die_tag, dwarf::DW_FORM_data2),
|
|
DwarfAccelTable::Atom(dwarf::DW_ATOM_type_flags, dwarf::DW_FORM_data1)};
|
|
|
|
DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M)
|
|
: DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()),
|
|
InfoHolder(A, "info_string", DIEValueAllocator),
|
|
SkeletonHolder(A, "skel_string", DIEValueAllocator),
|
|
IsDarwin(A->TM.getTargetTriple().isOSDarwin()),
|
|
AccelNames(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset,
|
|
dwarf::DW_FORM_data4)),
|
|
AccelObjC(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset,
|
|
dwarf::DW_FORM_data4)),
|
|
AccelNamespace(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset,
|
|
dwarf::DW_FORM_data4)),
|
|
AccelTypes(TypeAtoms) {
|
|
const Triple &TT = Asm->TM.getTargetTriple();
|
|
|
|
// Make sure we know our "debugger tuning." The target option takes
|
|
// precedence; fall back to triple-based defaults.
|
|
if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default)
|
|
DebuggerTuning = Asm->TM.Options.DebuggerTuning;
|
|
else if (IsDarwin)
|
|
DebuggerTuning = DebuggerKind::LLDB;
|
|
else if (TT.isPS4CPU())
|
|
DebuggerTuning = DebuggerKind::SCE;
|
|
else
|
|
DebuggerTuning = DebuggerKind::GDB;
|
|
|
|
// Turn on accelerator tables for LLDB by default.
|
|
if (DwarfAccelTables == Default)
|
|
HasDwarfAccelTables = tuneForLLDB();
|
|
else
|
|
HasDwarfAccelTables = DwarfAccelTables == Enable;
|
|
|
|
HasAppleExtensionAttributes = tuneForLLDB();
|
|
|
|
// Handle split DWARF.
|
|
HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty();
|
|
|
|
// SCE defaults to linkage names only for abstract subprograms.
|
|
if (DwarfLinkageNames == DefaultLinkageNames)
|
|
UseAllLinkageNames = !tuneForSCE();
|
|
else
|
|
UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames;
|
|
|
|
unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion;
|
|
unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
|
|
: MMI->getModule()->getDwarfVersion();
|
|
// Use dwarf 4 by default if nothing is requested.
|
|
DwarfVersion = DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION;
|
|
|
|
// Work around a GDB bug. GDB doesn't support the standard opcode;
|
|
// SCE doesn't support GNU's; LLDB prefers the standard opcode, which
|
|
// is defined as of DWARF 3.
|
|
// See GDB bug 11616 - DW_OP_form_tls_address is unimplemented
|
|
// https://sourceware.org/bugzilla/show_bug.cgi?id=11616
|
|
UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3;
|
|
|
|
// GDB does not fully support the DWARF 4 representation for bitfields.
|
|
UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB();
|
|
|
|
Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion);
|
|
}
|
|
|
|
// Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h.
|
|
DwarfDebug::~DwarfDebug() = default;
|
|
|
|
static bool isObjCClass(StringRef Name) {
|
|
return Name.startswith("+") || Name.startswith("-");
|
|
}
|
|
|
|
static bool hasObjCCategory(StringRef Name) {
|
|
if (!isObjCClass(Name))
|
|
return false;
|
|
|
|
return Name.find(") ") != StringRef::npos;
|
|
}
|
|
|
|
static void getObjCClassCategory(StringRef In, StringRef &Class,
|
|
StringRef &Category) {
|
|
if (!hasObjCCategory(In)) {
|
|
Class = In.slice(In.find('[') + 1, In.find(' '));
|
|
Category = "";
|
|
return;
|
|
}
|
|
|
|
Class = In.slice(In.find('[') + 1, In.find('('));
|
|
Category = In.slice(In.find('[') + 1, In.find(' '));
|
|
}
|
|
|
|
static StringRef getObjCMethodName(StringRef In) {
|
|
return In.slice(In.find(' ') + 1, In.find(']'));
|
|
}
|
|
|
|
// Add the various names to the Dwarf accelerator table names.
|
|
// TODO: Determine whether or not we should add names for programs
|
|
// that do not have a DW_AT_name or DW_AT_linkage_name field - this
|
|
// is only slightly different than the lookup of non-standard ObjC names.
|
|
void DwarfDebug::addSubprogramNames(const DISubprogram *SP, DIE &Die) {
|
|
if (!SP->isDefinition())
|
|
return;
|
|
addAccelName(SP->getName(), Die);
|
|
|
|
// If the linkage name is different than the name, go ahead and output
|
|
// that as well into the name table.
|
|
if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName())
|
|
addAccelName(SP->getLinkageName(), Die);
|
|
|
|
// If this is an Objective-C selector name add it to the ObjC accelerator
|
|
// too.
|
|
if (isObjCClass(SP->getName())) {
|
|
StringRef Class, Category;
|
|
getObjCClassCategory(SP->getName(), Class, Category);
|
|
addAccelObjC(Class, Die);
|
|
if (Category != "")
|
|
addAccelObjC(Category, Die);
|
|
// Also add the base method name to the name table.
|
|
addAccelName(getObjCMethodName(SP->getName()), Die);
|
|
}
|
|
}
|
|
|
|
/// Check whether we should create a DIE for the given Scope, return true
|
|
/// if we don't create a DIE (the corresponding DIE is null).
|
|
bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
|
|
if (Scope->isAbstractScope())
|
|
return false;
|
|
|
|
// We don't create a DIE if there is no Range.
|
|
const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
|
|
if (Ranges.empty())
|
|
return true;
|
|
|
|
if (Ranges.size() > 1)
|
|
return false;
|
|
|
|
// We don't create a DIE if we have a single Range and the end label
|
|
// is null.
|
|
return !getLabelAfterInsn(Ranges.front().second);
|
|
}
|
|
|
|
template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) {
|
|
F(CU);
|
|
if (auto *SkelCU = CU.getSkeleton())
|
|
if (CU.getCUNode()->getSplitDebugInlining())
|
|
F(*SkelCU);
|
|
}
|
|
|
|
bool DwarfDebug::shareAcrossDWOCUs() const {
|
|
return SplitDwarfCrossCuReferences;
|
|
}
|
|
|
|
void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU,
|
|
LexicalScope *Scope) {
|
|
assert(Scope && Scope->getScopeNode());
|
|
assert(Scope->isAbstractScope());
|
|
assert(!Scope->getInlinedAt());
|
|
|
|
auto *SP = cast<DISubprogram>(Scope->getScopeNode());
|
|
|
|
// Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
|
|
// was inlined from another compile unit.
|
|
if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining())
|
|
// Avoid building the original CU if it won't be used
|
|
SrcCU.constructAbstractSubprogramScopeDIE(Scope);
|
|
else {
|
|
auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
|
|
if (auto *SkelCU = CU.getSkeleton()) {
|
|
(shareAcrossDWOCUs() ? CU : SrcCU)
|
|
.constructAbstractSubprogramScopeDIE(Scope);
|
|
if (CU.getCUNode()->getSplitDebugInlining())
|
|
SkelCU->constructAbstractSubprogramScopeDIE(Scope);
|
|
} else
|
|
CU.constructAbstractSubprogramScopeDIE(Scope);
|
|
}
|
|
}
|
|
|
|
void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const {
|
|
if (!U.hasDwarfPubSections())
|
|
return;
|
|
|
|
U.addFlag(D, dwarf::DW_AT_GNU_pubnames);
|
|
}
|
|
|
|
// Create new DwarfCompileUnit for the given metadata node with tag
|
|
// DW_TAG_compile_unit.
|
|
DwarfCompileUnit &
|
|
DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) {
|
|
if (auto *CU = CUMap.lookup(DIUnit))
|
|
return *CU;
|
|
StringRef FN = DIUnit->getFilename();
|
|
CompilationDir = DIUnit->getDirectory();
|
|
|
|
auto OwnedUnit = llvm::make_unique<DwarfCompileUnit>(
|
|
InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder);
|
|
DwarfCompileUnit &NewCU = *OwnedUnit;
|
|
DIE &Die = NewCU.getUnitDie();
|
|
InfoHolder.addUnit(std::move(OwnedUnit));
|
|
if (useSplitDwarf()) {
|
|
NewCU.setSkeleton(constructSkeletonCU(NewCU));
|
|
NewCU.addString(Die, dwarf::DW_AT_GNU_dwo_name,
|
|
Asm->TM.Options.MCOptions.SplitDwarfFile);
|
|
}
|
|
|
|
for (auto *IE : DIUnit->getImportedEntities())
|
|
NewCU.addImportedEntity(IE);
|
|
|
|
// LTO with assembly output shares a single line table amongst multiple CUs.
|
|
// To avoid the compilation directory being ambiguous, let the line table
|
|
// explicitly describe the directory of all files, never relying on the
|
|
// compilation directory.
|
|
if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU)
|
|
Asm->OutStreamer->getContext().setMCLineTableCompilationDir(
|
|
NewCU.getUniqueID(), CompilationDir);
|
|
|
|
StringRef Producer = DIUnit->getProducer();
|
|
StringRef Flags = DIUnit->getFlags();
|
|
if (!Flags.empty()) {
|
|
std::string ProducerWithFlags = Producer.str() + " " + Flags.str();
|
|
NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags);
|
|
} else
|
|
NewCU.addString(Die, dwarf::DW_AT_producer, Producer);
|
|
|
|
NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
|
|
DIUnit->getSourceLanguage());
|
|
NewCU.addString(Die, dwarf::DW_AT_name, FN);
|
|
|
|
if (!useSplitDwarf()) {
|
|
NewCU.initStmtList();
|
|
|
|
// If we're using split dwarf the compilation dir is going to be in the
|
|
// skeleton CU and so we don't need to duplicate it here.
|
|
if (!CompilationDir.empty())
|
|
NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
|
|
|
|
addGnuPubAttributes(NewCU, Die);
|
|
}
|
|
|
|
if (useAppleExtensionAttributes()) {
|
|
if (DIUnit->isOptimized())
|
|
NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized);
|
|
|
|
StringRef Flags = DIUnit->getFlags();
|
|
if (!Flags.empty())
|
|
NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags);
|
|
|
|
if (unsigned RVer = DIUnit->getRuntimeVersion())
|
|
NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
|
|
dwarf::DW_FORM_data1, RVer);
|
|
}
|
|
|
|
if (useSplitDwarf())
|
|
NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection());
|
|
else
|
|
NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
|
|
|
|
if (DIUnit->getDWOId()) {
|
|
// This CU is either a clang module DWO or a skeleton CU.
|
|
NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8,
|
|
DIUnit->getDWOId());
|
|
if (!DIUnit->getSplitDebugFilename().empty())
|
|
// This is a prefabricated skeleton CU.
|
|
NewCU.addString(Die, dwarf::DW_AT_GNU_dwo_name,
|
|
DIUnit->getSplitDebugFilename());
|
|
}
|
|
|
|
CUMap.insert({DIUnit, &NewCU});
|
|
CUDieMap.insert({&Die, &NewCU});
|
|
return NewCU;
|
|
}
|
|
|
|
void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU,
|
|
const DIImportedEntity *N) {
|
|
if (isa<DILocalScope>(N->getScope()))
|
|
return;
|
|
if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope()))
|
|
D->addChild(TheCU.constructImportedEntityDIE(N));
|
|
}
|
|
|
|
/// Sort and unique GVEs by comparing their fragment offset.
|
|
static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &
|
|
sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) {
|
|
std::sort(GVEs.begin(), GVEs.end(),
|
|
[](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) {
|
|
// Sort order: first null exprs, then exprs without fragment
|
|
// info, then sort by fragment offset in bits.
|
|
// FIXME: Come up with a more comprehensive comparator so
|
|
// the sorting isn't non-deterministic, and so the following
|
|
// std::unique call works correctly.
|
|
if (!A.Expr || !B.Expr)
|
|
return !!B.Expr;
|
|
auto FragmentA = A.Expr->getFragmentInfo();
|
|
auto FragmentB = B.Expr->getFragmentInfo();
|
|
if (!FragmentA || !FragmentB)
|
|
return !!FragmentB;
|
|
return FragmentA->OffsetInBits < FragmentB->OffsetInBits;
|
|
});
|
|
GVEs.erase(std::unique(GVEs.begin(), GVEs.end(),
|
|
[](DwarfCompileUnit::GlobalExpr A,
|
|
DwarfCompileUnit::GlobalExpr B) {
|
|
return A.Expr == B.Expr;
|
|
}),
|
|
GVEs.end());
|
|
return GVEs;
|
|
}
|
|
|
|
// Emit all Dwarf sections that should come prior to the content. Create
|
|
// global DIEs and emit initial debug info sections. This is invoked by
|
|
// the target AsmPrinter.
|
|
void DwarfDebug::beginModule() {
|
|
NamedRegionTimer T(DbgTimerName, DbgTimerDescription, DWARFGroupName,
|
|
DWARFGroupDescription, TimePassesIsEnabled);
|
|
if (DisableDebugInfoPrinting)
|
|
return;
|
|
|
|
const Module *M = MMI->getModule();
|
|
|
|
unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(),
|
|
M->debug_compile_units_end());
|
|
// Tell MMI whether we have debug info.
|
|
MMI->setDebugInfoAvailability(NumDebugCUs > 0);
|
|
SingleCU = NumDebugCUs == 1;
|
|
DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>>
|
|
GVMap;
|
|
for (const GlobalVariable &Global : M->globals()) {
|
|
SmallVector<DIGlobalVariableExpression *, 1> GVs;
|
|
Global.getDebugInfo(GVs);
|
|
for (auto *GVE : GVs)
|
|
GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()});
|
|
}
|
|
|
|
for (DICompileUnit *CUNode : M->debug_compile_units()) {
|
|
// FIXME: Move local imported entities into a list attached to the
|
|
// subprogram, then this search won't be needed and a
|
|
// getImportedEntities().empty() test should go below with the rest.
|
|
bool HasNonLocalImportedEntities = llvm::any_of(
|
|
CUNode->getImportedEntities(), [](const DIImportedEntity *IE) {
|
|
return !isa<DILocalScope>(IE->getScope());
|
|
});
|
|
|
|
if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() &&
|
|
CUNode->getRetainedTypes().empty() &&
|
|
CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty())
|
|
continue;
|
|
|
|
DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode);
|
|
|
|
// Global Variables.
|
|
for (auto *GVE : CUNode->getGlobalVariables()) {
|
|
// Don't bother adding DIGlobalVariableExpressions listed in the CU if we
|
|
// already know about the variable and it isn't adding a constant
|
|
// expression.
|
|
auto &GVMapEntry = GVMap[GVE->getVariable()];
|
|
auto *Expr = GVE->getExpression();
|
|
if (!GVMapEntry.size() || (Expr && Expr->isConstant()))
|
|
GVMapEntry.push_back({nullptr, Expr});
|
|
}
|
|
DenseSet<DIGlobalVariable *> Processed;
|
|
for (auto *GVE : CUNode->getGlobalVariables()) {
|
|
DIGlobalVariable *GV = GVE->getVariable();
|
|
if (Processed.insert(GV).second)
|
|
CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV]));
|
|
}
|
|
|
|
for (auto *Ty : CUNode->getEnumTypes()) {
|
|
// The enum types array by design contains pointers to
|
|
// MDNodes rather than DIRefs. Unique them here.
|
|
CU.getOrCreateTypeDIE(cast<DIType>(Ty));
|
|
}
|
|
for (auto *Ty : CUNode->getRetainedTypes()) {
|
|
// The retained types array by design contains pointers to
|
|
// MDNodes rather than DIRefs. Unique them here.
|
|
if (DIType *RT = dyn_cast<DIType>(Ty))
|
|
// There is no point in force-emitting a forward declaration.
|
|
CU.getOrCreateTypeDIE(RT);
|
|
}
|
|
// Emit imported_modules last so that the relevant context is already
|
|
// available.
|
|
for (auto *IE : CUNode->getImportedEntities())
|
|
constructAndAddImportedEntityDIE(CU, IE);
|
|
}
|
|
}
|
|
|
|
void DwarfDebug::finishVariableDefinitions() {
|
|
for (const auto &Var : ConcreteVariables) {
|
|
DIE *VariableDie = Var->getDIE();
|
|
assert(VariableDie);
|
|
// FIXME: Consider the time-space tradeoff of just storing the unit pointer
|
|
// in the ConcreteVariables list, rather than looking it up again here.
|
|
// DIE::getUnit isn't simple - it walks parent pointers, etc.
|
|
DwarfCompileUnit *Unit = CUDieMap.lookup(VariableDie->getUnitDie());
|
|
assert(Unit);
|
|
Unit->finishVariableDefinition(*Var);
|
|
}
|
|
}
|
|
|
|
void DwarfDebug::finishSubprogramDefinitions() {
|
|
for (const DISubprogram *SP : ProcessedSPNodes) {
|
|
assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug);
|
|
forBothCUs(
|
|
getOrCreateDwarfCompileUnit(SP->getUnit()),
|
|
[&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); });
|
|
}
|
|
}
|
|
|
|
void DwarfDebug::finalizeModuleInfo() {
|
|
const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
|
|
|
|
finishSubprogramDefinitions();
|
|
|
|
finishVariableDefinitions();
|
|
|
|
// Include the DWO file name in the hash if there's more than one CU.
|
|
// This handles ThinLTO's situation where imported CUs may very easily be
|
|
// duplicate with the same CU partially imported into another ThinLTO unit.
|
|
StringRef DWOName;
|
|
if (CUMap.size() > 1)
|
|
DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile;
|
|
|
|
// Handle anything that needs to be done on a per-unit basis after
|
|
// all other generation.
|
|
for (const auto &P : CUMap) {
|
|
auto &TheCU = *P.second;
|
|
// Emit DW_AT_containing_type attribute to connect types with their
|
|
// vtable holding type.
|
|
TheCU.constructContainingTypeDIEs();
|
|
|
|
// Add CU specific attributes if we need to add any.
|
|
// If we're splitting the dwarf out now that we've got the entire
|
|
// CU then add the dwo id to it.
|
|
auto *SkCU = TheCU.getSkeleton();
|
|
if (useSplitDwarf()) {
|
|
// Emit a unique identifier for this CU.
|
|
uint64_t ID =
|
|
DIEHash(Asm).computeCUSignature(DWOName, TheCU.getUnitDie());
|
|
TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
|
|
dwarf::DW_FORM_data8, ID);
|
|
SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
|
|
dwarf::DW_FORM_data8, ID);
|
|
|
|
// We don't keep track of which addresses are used in which CU so this
|
|
// is a bit pessimistic under LTO.
|
|
if (!AddrPool.isEmpty()) {
|
|
const MCSymbol *Sym = TLOF.getDwarfAddrSection()->getBeginSymbol();
|
|
SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_addr_base,
|
|
Sym, Sym);
|
|
}
|
|
if (!SkCU->getRangeLists().empty()) {
|
|
const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol();
|
|
SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base,
|
|
Sym, Sym);
|
|
}
|
|
}
|
|
|
|
// If we have code split among multiple sections or non-contiguous
|
|
// ranges of code then emit a DW_AT_ranges attribute on the unit that will
|
|
// remain in the .o file, otherwise add a DW_AT_low_pc.
|
|
// FIXME: We should use ranges allow reordering of code ala
|
|
// .subsections_via_symbols in mach-o. This would mean turning on
|
|
// ranges for all subprogram DIEs for mach-o.
|
|
DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
|
|
if (unsigned NumRanges = TheCU.getRanges().size()) {
|
|
if (NumRanges > 1)
|
|
// A DW_AT_low_pc attribute may also be specified in combination with
|
|
// DW_AT_ranges to specify the default base address for use in
|
|
// location lists (see Section 2.6.2) and range lists (see Section
|
|
// 2.17.3).
|
|
U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0);
|
|
else
|
|
U.setBaseAddress(TheCU.getRanges().front().getStart());
|
|
U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges());
|
|
}
|
|
|
|
auto *CUNode = cast<DICompileUnit>(P.first);
|
|
// If compile Unit has macros, emit "DW_AT_macro_info" attribute.
|
|
if (CUNode->getMacros())
|
|
U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info,
|
|
U.getMacroLabelBegin(),
|
|
TLOF.getDwarfMacinfoSection()->getBeginSymbol());
|
|
}
|
|
|
|
// Emit all frontend-produced Skeleton CUs, i.e., Clang modules.
|
|
for (auto *CUNode : MMI->getModule()->debug_compile_units())
|
|
if (CUNode->getDWOId())
|
|
getOrCreateDwarfCompileUnit(CUNode);
|
|
|
|
// Compute DIE offsets and sizes.
|
|
InfoHolder.computeSizeAndOffsets();
|
|
if (useSplitDwarf())
|
|
SkeletonHolder.computeSizeAndOffsets();
|
|
}
|
|
|
|
// Emit all Dwarf sections that should come after the content.
|
|
void DwarfDebug::endModule() {
|
|
assert(CurFn == nullptr);
|
|
assert(CurMI == nullptr);
|
|
|
|
// If we aren't actually generating debug info (check beginModule -
|
|
// conditionalized on !DisableDebugInfoPrinting and the presence of the
|
|
// llvm.dbg.cu metadata node)
|
|
if (!MMI->hasDebugInfo())
|
|
return;
|
|
|
|
// Finalize the debug info for the module.
|
|
finalizeModuleInfo();
|
|
|
|
emitDebugStr();
|
|
|
|
if (useSplitDwarf())
|
|
emitDebugLocDWO();
|
|
else
|
|
// Emit info into a debug loc section.
|
|
emitDebugLoc();
|
|
|
|
// Corresponding abbreviations into a abbrev section.
|
|
emitAbbreviations();
|
|
|
|
// Emit all the DIEs into a debug info section.
|
|
emitDebugInfo();
|
|
|
|
// Emit info into a debug aranges section.
|
|
if (GenerateARangeSection)
|
|
emitDebugARanges();
|
|
|
|
// Emit info into a debug ranges section.
|
|
emitDebugRanges();
|
|
|
|
// Emit info into a debug macinfo section.
|
|
emitDebugMacinfo();
|
|
|
|
if (useSplitDwarf()) {
|
|
emitDebugStrDWO();
|
|
emitDebugInfoDWO();
|
|
emitDebugAbbrevDWO();
|
|
emitDebugLineDWO();
|
|
// Emit DWO addresses.
|
|
AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection());
|
|
}
|
|
|
|
// Emit info into the dwarf accelerator table sections.
|
|
if (useDwarfAccelTables()) {
|
|
emitAccelNames();
|
|
emitAccelObjC();
|
|
emitAccelNamespaces();
|
|
emitAccelTypes();
|
|
}
|
|
|
|
// Emit the pubnames and pubtypes sections if requested.
|
|
emitDebugPubSections();
|
|
|
|
// clean up.
|
|
// FIXME: AbstractVariables.clear();
|
|
}
|
|
|
|
void DwarfDebug::ensureAbstractVariableIsCreated(DwarfCompileUnit &CU, InlinedVariable IV,
|
|
const MDNode *ScopeNode) {
|
|
const DILocalVariable *Cleansed = nullptr;
|
|
if (CU.getExistingAbstractVariable(IV, Cleansed))
|
|
return;
|
|
|
|
CU.createAbstractVariable(Cleansed, LScopes.getOrCreateAbstractScope(
|
|
cast<DILocalScope>(ScopeNode)));
|
|
}
|
|
|
|
void DwarfDebug::ensureAbstractVariableIsCreatedIfScoped(DwarfCompileUnit &CU,
|
|
InlinedVariable IV, const MDNode *ScopeNode) {
|
|
const DILocalVariable *Cleansed = nullptr;
|
|
if (CU.getExistingAbstractVariable(IV, Cleansed))
|
|
return;
|
|
|
|
if (LexicalScope *Scope =
|
|
LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode)))
|
|
CU.createAbstractVariable(Cleansed, Scope);
|
|
}
|
|
|
|
// Collect variable information from side table maintained by MF.
|
|
void DwarfDebug::collectVariableInfoFromMFTable(
|
|
DwarfCompileUnit &TheCU, DenseSet<InlinedVariable> &Processed) {
|
|
SmallDenseMap<InlinedVariable, DbgVariable *> MFVars;
|
|
for (const auto &VI : Asm->MF->getVariableDbgInfo()) {
|
|
if (!VI.Var)
|
|
continue;
|
|
assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
|
|
"Expected inlined-at fields to agree");
|
|
|
|
InlinedVariable Var(VI.Var, VI.Loc->getInlinedAt());
|
|
Processed.insert(Var);
|
|
LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
|
|
|
|
// If variable scope is not found then skip this variable.
|
|
if (!Scope)
|
|
continue;
|
|
|
|
ensureAbstractVariableIsCreatedIfScoped(TheCU, Var, Scope->getScopeNode());
|
|
auto RegVar = llvm::make_unique<DbgVariable>(Var.first, Var.second);
|
|
RegVar->initializeMMI(VI.Expr, VI.Slot);
|
|
if (DbgVariable *DbgVar = MFVars.lookup(Var))
|
|
DbgVar->addMMIEntry(*RegVar);
|
|
else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) {
|
|
MFVars.insert({Var, RegVar.get()});
|
|
ConcreteVariables.push_back(std::move(RegVar));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Get .debug_loc entry for the instruction range starting at MI.
|
|
static DebugLocEntry::Value getDebugLocValue(const MachineInstr *MI) {
|
|
const DIExpression *Expr = MI->getDebugExpression();
|
|
assert(MI->getNumOperands() == 4);
|
|
if (MI->getOperand(0).isReg()) {
|
|
auto RegOp = MI->getOperand(0);
|
|
auto Op1 = MI->getOperand(1);
|
|
// If the second operand is an immediate, this is a
|
|
// register-indirect address.
|
|
assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset");
|
|
MachineLocation MLoc(RegOp.getReg(), Op1.isImm());
|
|
return DebugLocEntry::Value(Expr, MLoc);
|
|
}
|
|
if (MI->getOperand(0).isImm())
|
|
return DebugLocEntry::Value(Expr, MI->getOperand(0).getImm());
|
|
if (MI->getOperand(0).isFPImm())
|
|
return DebugLocEntry::Value(Expr, MI->getOperand(0).getFPImm());
|
|
if (MI->getOperand(0).isCImm())
|
|
return DebugLocEntry::Value(Expr, MI->getOperand(0).getCImm());
|
|
|
|
llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!");
|
|
}
|
|
|
|
/// \brief If this and Next are describing different fragments of the same
|
|
/// variable, merge them by appending Next's values to the current
|
|
/// list of values.
|
|
/// Return true if the merge was successful.
|
|
bool DebugLocEntry::MergeValues(const DebugLocEntry &Next) {
|
|
if (Begin == Next.Begin) {
|
|
auto *FirstExpr = cast<DIExpression>(Values[0].Expression);
|
|
auto *FirstNextExpr = cast<DIExpression>(Next.Values[0].Expression);
|
|
if (!FirstExpr->isFragment() || !FirstNextExpr->isFragment())
|
|
return false;
|
|
|
|
// We can only merge entries if none of the fragments overlap any others.
|
|
// In doing so, we can take advantage of the fact that both lists are
|
|
// sorted.
|
|
for (unsigned i = 0, j = 0; i < Values.size(); ++i) {
|
|
for (; j < Next.Values.size(); ++j) {
|
|
int res = DebugHandlerBase::fragmentCmp(
|
|
cast<DIExpression>(Values[i].Expression),
|
|
cast<DIExpression>(Next.Values[j].Expression));
|
|
if (res == 0) // The two expressions overlap, we can't merge.
|
|
return false;
|
|
// Values[i] is entirely before Next.Values[j],
|
|
// so go back to the next entry of Values.
|
|
else if (res == -1)
|
|
break;
|
|
// Next.Values[j] is entirely before Values[i], so go on to the
|
|
// next entry of Next.Values.
|
|
}
|
|
}
|
|
|
|
addValues(Next.Values);
|
|
End = Next.End;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Build the location list for all DBG_VALUEs in the function that
|
|
/// describe the same variable. If the ranges of several independent
|
|
/// fragments of the same variable overlap partially, split them up and
|
|
/// combine the ranges. The resulting DebugLocEntries are will have
|
|
/// strict monotonically increasing begin addresses and will never
|
|
/// overlap.
|
|
//
|
|
// Input:
|
|
//
|
|
// Ranges History [var, loc, fragment ofs size]
|
|
// 0 | [x, (reg0, fragment 0, 32)]
|
|
// 1 | | [x, (reg1, fragment 32, 32)] <- IsFragmentOfPrevEntry
|
|
// 2 | | ...
|
|
// 3 | [clobber reg0]
|
|
// 4 [x, (mem, fragment 0, 64)] <- overlapping with both previous fragments of
|
|
// x.
|
|
//
|
|
// Output:
|
|
//
|
|
// [0-1] [x, (reg0, fragment 0, 32)]
|
|
// [1-3] [x, (reg0, fragment 0, 32), (reg1, fragment 32, 32)]
|
|
// [3-4] [x, (reg1, fragment 32, 32)]
|
|
// [4- ] [x, (mem, fragment 0, 64)]
|
|
void
|
|
DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
|
|
const DbgValueHistoryMap::InstrRanges &Ranges) {
|
|
SmallVector<DebugLocEntry::Value, 4> OpenRanges;
|
|
|
|
for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
|
|
const MachineInstr *Begin = I->first;
|
|
const MachineInstr *End = I->second;
|
|
assert(Begin->isDebugValue() && "Invalid History entry");
|
|
|
|
// Check if a variable is inaccessible in this range.
|
|
if (Begin->getNumOperands() > 1 &&
|
|
Begin->getOperand(0).isReg() && !Begin->getOperand(0).getReg()) {
|
|
OpenRanges.clear();
|
|
continue;
|
|
}
|
|
|
|
// If this fragment overlaps with any open ranges, truncate them.
|
|
const DIExpression *DIExpr = Begin->getDebugExpression();
|
|
auto Last = remove_if(OpenRanges, [&](DebugLocEntry::Value R) {
|
|
return fragmentsOverlap(DIExpr, R.getExpression());
|
|
});
|
|
OpenRanges.erase(Last, OpenRanges.end());
|
|
|
|
const MCSymbol *StartLabel = getLabelBeforeInsn(Begin);
|
|
assert(StartLabel && "Forgot label before DBG_VALUE starting a range!");
|
|
|
|
const MCSymbol *EndLabel;
|
|
if (End != nullptr)
|
|
EndLabel = getLabelAfterInsn(End);
|
|
else if (std::next(I) == Ranges.end())
|
|
EndLabel = Asm->getFunctionEnd();
|
|
else
|
|
EndLabel = getLabelBeforeInsn(std::next(I)->first);
|
|
assert(EndLabel && "Forgot label after instruction ending a range!");
|
|
|
|
DEBUG(dbgs() << "DotDebugLoc: " << *Begin << "\n");
|
|
|
|
auto Value = getDebugLocValue(Begin);
|
|
DebugLocEntry Loc(StartLabel, EndLabel, Value);
|
|
bool couldMerge = false;
|
|
|
|
// If this is a fragment, it may belong to the current DebugLocEntry.
|
|
if (DIExpr->isFragment()) {
|
|
// Add this value to the list of open ranges.
|
|
OpenRanges.push_back(Value);
|
|
|
|
// Attempt to add the fragment to the last entry.
|
|
if (!DebugLoc.empty())
|
|
if (DebugLoc.back().MergeValues(Loc))
|
|
couldMerge = true;
|
|
}
|
|
|
|
if (!couldMerge) {
|
|
// Need to add a new DebugLocEntry. Add all values from still
|
|
// valid non-overlapping fragments.
|
|
if (OpenRanges.size())
|
|
Loc.addValues(OpenRanges);
|
|
|
|
DebugLoc.push_back(std::move(Loc));
|
|
}
|
|
|
|
// Attempt to coalesce the ranges of two otherwise identical
|
|
// DebugLocEntries.
|
|
auto CurEntry = DebugLoc.rbegin();
|
|
DEBUG({
|
|
dbgs() << CurEntry->getValues().size() << " Values:\n";
|
|
for (auto &Value : CurEntry->getValues())
|
|
Value.dump();
|
|
dbgs() << "-----\n";
|
|
});
|
|
|
|
auto PrevEntry = std::next(CurEntry);
|
|
if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry))
|
|
DebugLoc.pop_back();
|
|
}
|
|
}
|
|
|
|
DbgVariable *DwarfDebug::createConcreteVariable(DwarfCompileUnit &TheCU,
|
|
LexicalScope &Scope,
|
|
InlinedVariable IV) {
|
|
ensureAbstractVariableIsCreatedIfScoped(TheCU, IV, Scope.getScopeNode());
|
|
ConcreteVariables.push_back(
|
|
llvm::make_unique<DbgVariable>(IV.first, IV.second));
|
|
InfoHolder.addScopeVariable(&Scope, ConcreteVariables.back().get());
|
|
return ConcreteVariables.back().get();
|
|
}
|
|
|
|
/// Determine whether a *singular* DBG_VALUE is valid for the entirety of its
|
|
/// enclosing lexical scope. The check ensures there are no other instructions
|
|
/// in the same lexical scope preceding the DBG_VALUE and that its range is
|
|
/// either open or otherwise rolls off the end of the scope.
|
|
static bool validThroughout(LexicalScopes &LScopes,
|
|
const MachineInstr *DbgValue,
|
|
const MachineInstr *RangeEnd) {
|
|
assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location");
|
|
auto MBB = DbgValue->getParent();
|
|
auto DL = DbgValue->getDebugLoc();
|
|
auto *LScope = LScopes.findLexicalScope(DL);
|
|
// Scope doesn't exist; this is a dead DBG_VALUE.
|
|
if (!LScope)
|
|
return false;
|
|
auto &LSRange = LScope->getRanges();
|
|
if (LSRange.size() == 0)
|
|
return false;
|
|
|
|
// Determine if the DBG_VALUE is valid at the beginning of its lexical block.
|
|
const MachineInstr *LScopeBegin = LSRange.front().first;
|
|
// Early exit if the lexical scope begins outside of the current block.
|
|
if (LScopeBegin->getParent() != MBB)
|
|
return false;
|
|
MachineBasicBlock::const_reverse_iterator Pred(DbgValue);
|
|
for (++Pred; Pred != MBB->rend(); ++Pred) {
|
|
if (Pred->getFlag(MachineInstr::FrameSetup))
|
|
break;
|
|
auto PredDL = Pred->getDebugLoc();
|
|
if (!PredDL || Pred->isMetaInstruction())
|
|
continue;
|
|
// Check whether the instruction preceding the DBG_VALUE is in the same
|
|
// (sub)scope as the DBG_VALUE.
|
|
if (DL->getScope() == PredDL->getScope())
|
|
return false;
|
|
auto *PredScope = LScopes.findLexicalScope(PredDL);
|
|
if (!PredScope || LScope->dominates(PredScope))
|
|
return false;
|
|
}
|
|
|
|
// If the range of the DBG_VALUE is open-ended, report success.
|
|
if (!RangeEnd)
|
|
return true;
|
|
|
|
// Fail if there are instructions belonging to our scope in another block.
|
|
const MachineInstr *LScopeEnd = LSRange.back().second;
|
|
if (LScopeEnd->getParent() != MBB)
|
|
return false;
|
|
|
|
// Single, constant DBG_VALUEs in the prologue are promoted to be live
|
|
// throughout the function. This is a hack, presumably for DWARF v2 and not
|
|
// necessarily correct. It would be much better to use a dbg.declare instead
|
|
// if we know the constant is live throughout the scope.
|
|
if (DbgValue->getOperand(0).isImm() && MBB->pred_empty())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// Find variables for each lexical scope.
|
|
void DwarfDebug::collectVariableInfo(DwarfCompileUnit &TheCU,
|
|
const DISubprogram *SP,
|
|
DenseSet<InlinedVariable> &Processed) {
|
|
// Grab the variable info that was squirreled away in the MMI side-table.
|
|
collectVariableInfoFromMFTable(TheCU, Processed);
|
|
|
|
for (const auto &I : DbgValues) {
|
|
InlinedVariable IV = I.first;
|
|
if (Processed.count(IV))
|
|
continue;
|
|
|
|
// Instruction ranges, specifying where IV is accessible.
|
|
const auto &Ranges = I.second;
|
|
if (Ranges.empty())
|
|
continue;
|
|
|
|
LexicalScope *Scope = nullptr;
|
|
if (const DILocation *IA = IV.second)
|
|
Scope = LScopes.findInlinedScope(IV.first->getScope(), IA);
|
|
else
|
|
Scope = LScopes.findLexicalScope(IV.first->getScope());
|
|
// If variable scope is not found then skip this variable.
|
|
if (!Scope)
|
|
continue;
|
|
|
|
Processed.insert(IV);
|
|
DbgVariable *RegVar = createConcreteVariable(TheCU, *Scope, IV);
|
|
|
|
const MachineInstr *MInsn = Ranges.front().first;
|
|
assert(MInsn->isDebugValue() && "History must begin with debug value");
|
|
|
|
// Check if there is a single DBG_VALUE, valid throughout the var's scope.
|
|
if (Ranges.size() == 1 &&
|
|
validThroughout(LScopes, MInsn, Ranges.front().second)) {
|
|
RegVar->initializeDbgValue(MInsn);
|
|
continue;
|
|
}
|
|
|
|
// Handle multiple DBG_VALUE instructions describing one variable.
|
|
DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn);
|
|
|
|
// Build the location list for this variable.
|
|
SmallVector<DebugLocEntry, 8> Entries;
|
|
buildLocationList(Entries, Ranges);
|
|
|
|
// If the variable has a DIBasicType, extract it. Basic types cannot have
|
|
// unique identifiers, so don't bother resolving the type with the
|
|
// identifier map.
|
|
const DIBasicType *BT = dyn_cast<DIBasicType>(
|
|
static_cast<const Metadata *>(IV.first->getType()));
|
|
|
|
// Finalize the entry by lowering it into a DWARF bytestream.
|
|
for (auto &Entry : Entries)
|
|
Entry.finalize(*Asm, List, BT);
|
|
}
|
|
|
|
// Collect info for variables that were optimized out.
|
|
for (const DILocalVariable *DV : SP->getVariables()) {
|
|
if (Processed.insert(InlinedVariable(DV, nullptr)).second)
|
|
if (LexicalScope *Scope = LScopes.findLexicalScope(DV->getScope()))
|
|
createConcreteVariable(TheCU, *Scope, InlinedVariable(DV, nullptr));
|
|
}
|
|
}
|
|
|
|
// Process beginning of an instruction.
|
|
void DwarfDebug::beginInstruction(const MachineInstr *MI) {
|
|
DebugHandlerBase::beginInstruction(MI);
|
|
assert(CurMI);
|
|
|
|
const auto *SP = MI->getMF()->getFunction()->getSubprogram();
|
|
if (!SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
|
|
return;
|
|
|
|
// Check if source location changes, but ignore DBG_VALUE and CFI locations.
|
|
if (MI->isMetaInstruction())
|
|
return;
|
|
const DebugLoc &DL = MI->getDebugLoc();
|
|
// When we emit a line-0 record, we don't update PrevInstLoc; so look at
|
|
// the last line number actually emitted, to see if it was line 0.
|
|
unsigned LastAsmLine =
|
|
Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine();
|
|
|
|
if (DL == PrevInstLoc) {
|
|
// If we have an ongoing unspecified location, nothing to do here.
|
|
if (!DL)
|
|
return;
|
|
// We have an explicit location, same as the previous location.
|
|
// But we might be coming back to it after a line 0 record.
|
|
if (LastAsmLine == 0 && DL.getLine() != 0) {
|
|
// Reinstate the source location but not marked as a statement.
|
|
const MDNode *Scope = DL.getScope();
|
|
recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (!DL) {
|
|
// We have an unspecified location, which might want to be line 0.
|
|
// If we have already emitted a line-0 record, don't repeat it.
|
|
if (LastAsmLine == 0)
|
|
return;
|
|
// If user said Don't Do That, don't do that.
|
|
if (UnknownLocations == Disable)
|
|
return;
|
|
// See if we have a reason to emit a line-0 record now.
|
|
// Reasons to emit a line-0 record include:
|
|
// - User asked for it (UnknownLocations).
|
|
// - Instruction has a label, so it's referenced from somewhere else,
|
|
// possibly debug information; we want it to have a source location.
|
|
// - Instruction is at the top of a block; we don't want to inherit the
|
|
// location from the physically previous (maybe unrelated) block.
|
|
if (UnknownLocations == Enable || PrevLabel ||
|
|
(PrevInstBB && PrevInstBB != MI->getParent())) {
|
|
// Preserve the file and column numbers, if we can, to save space in
|
|
// the encoded line table.
|
|
// Do not update PrevInstLoc, it remembers the last non-0 line.
|
|
const MDNode *Scope = nullptr;
|
|
unsigned Column = 0;
|
|
if (PrevInstLoc) {
|
|
Scope = PrevInstLoc.getScope();
|
|
Column = PrevInstLoc.getCol();
|
|
}
|
|
recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// We have an explicit location, different from the previous location.
|
|
// Don't repeat a line-0 record, but otherwise emit the new location.
|
|
// (The new location might be an explicit line 0, which we do emit.)
|
|
if (PrevInstLoc && DL.getLine() == 0 && LastAsmLine == 0)
|
|
return;
|
|
unsigned Flags = 0;
|
|
if (DL == PrologEndLoc) {
|
|
Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT;
|
|
PrologEndLoc = DebugLoc();
|
|
}
|
|
// If the line changed, we call that a new statement; unless we went to
|
|
// line 0 and came back, in which case it is not a new statement.
|
|
unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine;
|
|
if (DL.getLine() && DL.getLine() != OldLine)
|
|
Flags |= DWARF2_FLAG_IS_STMT;
|
|
|
|
const MDNode *Scope = DL.getScope();
|
|
recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
|
|
|
|
// If we're not at line 0, remember this location.
|
|
if (DL.getLine())
|
|
PrevInstLoc = DL;
|
|
}
|
|
|
|
static DebugLoc findPrologueEndLoc(const MachineFunction *MF) {
|
|
// First known non-DBG_VALUE and non-frame setup location marks
|
|
// the beginning of the function body.
|
|
for (const auto &MBB : *MF)
|
|
for (const auto &MI : MBB)
|
|
if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
|
|
MI.getDebugLoc())
|
|
return MI.getDebugLoc();
|
|
return DebugLoc();
|
|
}
|
|
|
|
// Gather pre-function debug information. Assumes being called immediately
|
|
// after the function entry point has been emitted.
|
|
void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) {
|
|
CurFn = MF;
|
|
|
|
auto *SP = MF->getFunction()->getSubprogram();
|
|
assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode());
|
|
if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
|
|
return;
|
|
|
|
DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
|
|
|
|
// Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
|
|
// belongs to so that we add to the correct per-cu line table in the
|
|
// non-asm case.
|
|
if (Asm->OutStreamer->hasRawTextSupport())
|
|
// Use a single line table if we are generating assembly.
|
|
Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
|
|
else
|
|
Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID());
|
|
|
|
// Record beginning of function.
|
|
PrologEndLoc = findPrologueEndLoc(MF);
|
|
if (PrologEndLoc) {
|
|
// We'd like to list the prologue as "not statements" but GDB behaves
|
|
// poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
|
|
auto *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram();
|
|
recordSourceLine(SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT);
|
|
}
|
|
}
|
|
|
|
void DwarfDebug::skippedNonDebugFunction() {
|
|
// If we don't have a subprogram for this function then there will be a hole
|
|
// in the range information. Keep note of this by setting the previously used
|
|
// section to nullptr.
|
|
PrevCU = nullptr;
|
|
CurFn = nullptr;
|
|
}
|
|
|
|
// Gather and emit post-function debug information.
|
|
void DwarfDebug::endFunctionImpl(const MachineFunction *MF) {
|
|
const DISubprogram *SP = MF->getFunction()->getSubprogram();
|
|
|
|
assert(CurFn == MF &&
|
|
"endFunction should be called with the same function as beginFunction");
|
|
|
|
// Set DwarfDwarfCompileUnitID in MCContext to default value.
|
|
Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
|
|
|
|
LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
|
|
assert(!FnScope || SP == FnScope->getScopeNode());
|
|
DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit());
|
|
|
|
DenseSet<InlinedVariable> ProcessedVars;
|
|
collectVariableInfo(TheCU, SP, ProcessedVars);
|
|
|
|
// Add the range of this function to the list of ranges for the CU.
|
|
TheCU.addRange(RangeSpan(Asm->getFunctionBegin(), Asm->getFunctionEnd()));
|
|
|
|
// Under -gmlt, skip building the subprogram if there are no inlined
|
|
// subroutines inside it. But with -fdebug-info-for-profiling, the subprogram
|
|
// is still needed as we need its source location.
|
|
if (!TheCU.getCUNode()->getDebugInfoForProfiling() &&
|
|
TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly &&
|
|
LScopes.getAbstractScopesList().empty() && !IsDarwin) {
|
|
assert(InfoHolder.getScopeVariables().empty());
|
|
PrevLabel = nullptr;
|
|
CurFn = nullptr;
|
|
return;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
size_t NumAbstractScopes = LScopes.getAbstractScopesList().size();
|
|
#endif
|
|
// Construct abstract scopes.
|
|
for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
|
|
auto *SP = cast<DISubprogram>(AScope->getScopeNode());
|
|
// Collect info for variables that were optimized out.
|
|
for (const DILocalVariable *DV : SP->getVariables()) {
|
|
if (!ProcessedVars.insert(InlinedVariable(DV, nullptr)).second)
|
|
continue;
|
|
ensureAbstractVariableIsCreated(TheCU, InlinedVariable(DV, nullptr),
|
|
DV->getScope());
|
|
assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes
|
|
&& "ensureAbstractVariableIsCreated inserted abstract scopes");
|
|
}
|
|
constructAbstractSubprogramScopeDIE(TheCU, AScope);
|
|
}
|
|
|
|
ProcessedSPNodes.insert(SP);
|
|
TheCU.constructSubprogramScopeDIE(SP, FnScope);
|
|
if (auto *SkelCU = TheCU.getSkeleton())
|
|
if (!LScopes.getAbstractScopesList().empty() &&
|
|
TheCU.getCUNode()->getSplitDebugInlining())
|
|
SkelCU->constructSubprogramScopeDIE(SP, FnScope);
|
|
|
|
// Clear debug info
|
|
// Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
|
|
// DbgVariables except those that are also in AbstractVariables (since they
|
|
// can be used cross-function)
|
|
InfoHolder.getScopeVariables().clear();
|
|
PrevLabel = nullptr;
|
|
CurFn = nullptr;
|
|
}
|
|
|
|
// Register a source line with debug info. Returns the unique label that was
|
|
// emitted and which provides correspondence to the source line list.
|
|
void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
|
|
unsigned Flags) {
|
|
StringRef Fn;
|
|
StringRef Dir;
|
|
unsigned Src = 1;
|
|
unsigned Discriminator = 0;
|
|
if (auto *Scope = cast_or_null<DIScope>(S)) {
|
|
Fn = Scope->getFilename();
|
|
Dir = Scope->getDirectory();
|
|
if (Line != 0 && getDwarfVersion() >= 4)
|
|
if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope))
|
|
Discriminator = LBF->getDiscriminator();
|
|
|
|
unsigned CUID = Asm->OutStreamer->getContext().getDwarfCompileUnitID();
|
|
Src = static_cast<DwarfCompileUnit &>(*InfoHolder.getUnits()[CUID])
|
|
.getOrCreateSourceID(Fn, Dir);
|
|
}
|
|
Asm->OutStreamer->EmitDwarfLocDirective(Src, Line, Col, Flags, 0,
|
|
Discriminator, Fn);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Emit Methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Emit the debug info section.
|
|
void DwarfDebug::emitDebugInfo() {
|
|
DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
|
|
Holder.emitUnits(/* UseOffsets */ false);
|
|
}
|
|
|
|
// Emit the abbreviation section.
|
|
void DwarfDebug::emitAbbreviations() {
|
|
DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
|
|
|
|
Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection());
|
|
}
|
|
|
|
void DwarfDebug::emitAccel(DwarfAccelTable &Accel, MCSection *Section,
|
|
StringRef TableName) {
|
|
Accel.FinalizeTable(Asm, TableName);
|
|
Asm->OutStreamer->SwitchSection(Section);
|
|
|
|
// Emit the full data.
|
|
Accel.emit(Asm, Section->getBeginSymbol(), this);
|
|
}
|
|
|
|
// Emit visible names into a hashed accelerator table section.
|
|
void DwarfDebug::emitAccelNames() {
|
|
emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(),
|
|
"Names");
|
|
}
|
|
|
|
// Emit objective C classes and categories into a hashed accelerator table
|
|
// section.
|
|
void DwarfDebug::emitAccelObjC() {
|
|
emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(),
|
|
"ObjC");
|
|
}
|
|
|
|
// Emit namespace dies into a hashed accelerator table.
|
|
void DwarfDebug::emitAccelNamespaces() {
|
|
emitAccel(AccelNamespace,
|
|
Asm->getObjFileLowering().getDwarfAccelNamespaceSection(),
|
|
"namespac");
|
|
}
|
|
|
|
// Emit type dies into a hashed accelerator table.
|
|
void DwarfDebug::emitAccelTypes() {
|
|
emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(),
|
|
"types");
|
|
}
|
|
|
|
// Public name handling.
|
|
// The format for the various pubnames:
|
|
//
|
|
// dwarf pubnames - offset/name pairs where the offset is the offset into the CU
|
|
// for the DIE that is named.
|
|
//
|
|
// gnu pubnames - offset/index value/name tuples where the offset is the offset
|
|
// into the CU and the index value is computed according to the type of value
|
|
// for the DIE that is named.
|
|
//
|
|
// For type units the offset is the offset of the skeleton DIE. For split dwarf
|
|
// it's the offset within the debug_info/debug_types dwo section, however, the
|
|
// reference in the pubname header doesn't change.
|
|
|
|
/// computeIndexValue - Compute the gdb index value for the DIE and CU.
|
|
static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU,
|
|
const DIE *Die) {
|
|
// Entities that ended up only in a Type Unit reference the CU instead (since
|
|
// the pub entry has offsets within the CU there's no real offset that can be
|
|
// provided anyway). As it happens all such entities (namespaces and types,
|
|
// types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out
|
|
// not to be true it would be necessary to persist this information from the
|
|
// point at which the entry is added to the index data structure - since by
|
|
// the time the index is built from that, the original type/namespace DIE in a
|
|
// type unit has already been destroyed so it can't be queried for properties
|
|
// like tag, etc.
|
|
if (Die->getTag() == dwarf::DW_TAG_compile_unit)
|
|
return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE,
|
|
dwarf::GIEL_EXTERNAL);
|
|
dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;
|
|
|
|
// We could have a specification DIE that has our most of our knowledge,
|
|
// look for that now.
|
|
if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) {
|
|
DIE &SpecDIE = SpecVal.getDIEEntry().getEntry();
|
|
if (SpecDIE.findAttribute(dwarf::DW_AT_external))
|
|
Linkage = dwarf::GIEL_EXTERNAL;
|
|
} else if (Die->findAttribute(dwarf::DW_AT_external))
|
|
Linkage = dwarf::GIEL_EXTERNAL;
|
|
|
|
switch (Die->getTag()) {
|
|
case dwarf::DW_TAG_class_type:
|
|
case dwarf::DW_TAG_structure_type:
|
|
case dwarf::DW_TAG_union_type:
|
|
case dwarf::DW_TAG_enumeration_type:
|
|
return dwarf::PubIndexEntryDescriptor(
|
|
dwarf::GIEK_TYPE, CU->getLanguage() != dwarf::DW_LANG_C_plus_plus
|
|
? dwarf::GIEL_STATIC
|
|
: dwarf::GIEL_EXTERNAL);
|
|
case dwarf::DW_TAG_typedef:
|
|
case dwarf::DW_TAG_base_type:
|
|
case dwarf::DW_TAG_subrange_type:
|
|
return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
|
|
case dwarf::DW_TAG_namespace:
|
|
return dwarf::GIEK_TYPE;
|
|
case dwarf::DW_TAG_subprogram:
|
|
return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
|
|
case dwarf::DW_TAG_variable:
|
|
return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
|
|
case dwarf::DW_TAG_enumerator:
|
|
return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
|
|
dwarf::GIEL_STATIC);
|
|
default:
|
|
return dwarf::GIEK_NONE;
|
|
}
|
|
}
|
|
|
|
/// emitDebugPubSections - Emit visible names and types into debug pubnames and
|
|
/// pubtypes sections.
|
|
void DwarfDebug::emitDebugPubSections() {
|
|
for (const auto &NU : CUMap) {
|
|
DwarfCompileUnit *TheU = NU.second;
|
|
if (!TheU->hasDwarfPubSections())
|
|
continue;
|
|
|
|
bool GnuStyle = TheU->getCUNode()->getGnuPubnames();
|
|
|
|
Asm->OutStreamer->SwitchSection(
|
|
GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
|
|
: Asm->getObjFileLowering().getDwarfPubNamesSection());
|
|
emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames());
|
|
|
|
Asm->OutStreamer->SwitchSection(
|
|
GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
|
|
: Asm->getObjFileLowering().getDwarfPubTypesSection());
|
|
emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes());
|
|
}
|
|
}
|
|
|
|
void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name,
|
|
DwarfCompileUnit *TheU,
|
|
const StringMap<const DIE *> &Globals) {
|
|
if (auto *Skeleton = TheU->getSkeleton())
|
|
TheU = Skeleton;
|
|
|
|
// Emit the header.
|
|
Asm->OutStreamer->AddComment("Length of Public " + Name + " Info");
|
|
MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin");
|
|
MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end");
|
|
Asm->EmitLabelDifference(EndLabel, BeginLabel, 4);
|
|
|
|
Asm->OutStreamer->EmitLabel(BeginLabel);
|
|
|
|
Asm->OutStreamer->AddComment("DWARF Version");
|
|
Asm->EmitInt16(dwarf::DW_PUBNAMES_VERSION);
|
|
|
|
Asm->OutStreamer->AddComment("Offset of Compilation Unit Info");
|
|
Asm->emitDwarfSymbolReference(TheU->getLabelBegin());
|
|
|
|
Asm->OutStreamer->AddComment("Compilation Unit Length");
|
|
Asm->EmitInt32(TheU->getLength());
|
|
|
|
// Emit the pubnames for this compilation unit.
|
|
for (const auto &GI : Globals) {
|
|
const char *Name = GI.getKeyData();
|
|
const DIE *Entity = GI.second;
|
|
|
|
Asm->OutStreamer->AddComment("DIE offset");
|
|
Asm->EmitInt32(Entity->getOffset());
|
|
|
|
if (GnuStyle) {
|
|
dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity);
|
|
Asm->OutStreamer->AddComment(
|
|
Twine("Kind: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + ", " +
|
|
dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
|
|
Asm->EmitInt8(Desc.toBits());
|
|
}
|
|
|
|
Asm->OutStreamer->AddComment("External Name");
|
|
Asm->OutStreamer->EmitBytes(StringRef(Name, GI.getKeyLength() + 1));
|
|
}
|
|
|
|
Asm->OutStreamer->AddComment("End Mark");
|
|
Asm->EmitInt32(0);
|
|
Asm->OutStreamer->EmitLabel(EndLabel);
|
|
}
|
|
|
|
/// Emit null-terminated strings into a debug str section.
|
|
void DwarfDebug::emitDebugStr() {
|
|
DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
|
|
Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection());
|
|
}
|
|
|
|
void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
|
|
const DebugLocStream::Entry &Entry) {
|
|
auto &&Comments = DebugLocs.getComments(Entry);
|
|
auto Comment = Comments.begin();
|
|
auto End = Comments.end();
|
|
for (uint8_t Byte : DebugLocs.getBytes(Entry))
|
|
Streamer.EmitInt8(Byte, Comment != End ? *(Comment++) : "");
|
|
}
|
|
|
|
static void emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT,
|
|
ByteStreamer &Streamer,
|
|
const DebugLocEntry::Value &Value,
|
|
DwarfExpression &DwarfExpr) {
|
|
auto *DIExpr = Value.getExpression();
|
|
DIExpressionCursor ExprCursor(DIExpr);
|
|
DwarfExpr.addFragmentOffset(DIExpr);
|
|
// Regular entry.
|
|
if (Value.isInt()) {
|
|
if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed ||
|
|
BT->getEncoding() == dwarf::DW_ATE_signed_char))
|
|
DwarfExpr.addSignedConstant(Value.getInt());
|
|
else
|
|
DwarfExpr.addUnsignedConstant(Value.getInt());
|
|
} else if (Value.isLocation()) {
|
|
MachineLocation Location = Value.getLoc();
|
|
if (Location.isIndirect())
|
|
DwarfExpr.setMemoryLocationKind();
|
|
DIExpressionCursor Cursor(DIExpr);
|
|
const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
|
|
if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg()))
|
|
return;
|
|
return DwarfExpr.addExpression(std::move(Cursor));
|
|
} else if (Value.isConstantFP()) {
|
|
APInt RawBytes = Value.getConstantFP()->getValueAPF().bitcastToAPInt();
|
|
DwarfExpr.addUnsignedConstant(RawBytes);
|
|
}
|
|
DwarfExpr.addExpression(std::move(ExprCursor));
|
|
}
|
|
|
|
void DebugLocEntry::finalize(const AsmPrinter &AP,
|
|
DebugLocStream::ListBuilder &List,
|
|
const DIBasicType *BT) {
|
|
DebugLocStream::EntryBuilder Entry(List, Begin, End);
|
|
BufferByteStreamer Streamer = Entry.getStreamer();
|
|
DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer);
|
|
const DebugLocEntry::Value &Value = Values[0];
|
|
if (Value.isFragment()) {
|
|
// Emit all fragments that belong to the same variable and range.
|
|
assert(llvm::all_of(Values, [](DebugLocEntry::Value P) {
|
|
return P.isFragment();
|
|
}) && "all values are expected to be fragments");
|
|
assert(std::is_sorted(Values.begin(), Values.end()) &&
|
|
"fragments are expected to be sorted");
|
|
|
|
for (auto Fragment : Values)
|
|
emitDebugLocValue(AP, BT, Streamer, Fragment, DwarfExpr);
|
|
|
|
} else {
|
|
assert(Values.size() == 1 && "only fragments may have >1 value");
|
|
emitDebugLocValue(AP, BT, Streamer, Value, DwarfExpr);
|
|
}
|
|
DwarfExpr.finalize();
|
|
}
|
|
|
|
void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry) {
|
|
// Emit the size.
|
|
Asm->OutStreamer->AddComment("Loc expr size");
|
|
Asm->EmitInt16(DebugLocs.getBytes(Entry).size());
|
|
|
|
// Emit the entry.
|
|
APByteStreamer Streamer(*Asm);
|
|
emitDebugLocEntry(Streamer, Entry);
|
|
}
|
|
|
|
// Emit locations into the debug loc section.
|
|
void DwarfDebug::emitDebugLoc() {
|
|
if (DebugLocs.getLists().empty())
|
|
return;
|
|
|
|
// Start the dwarf loc section.
|
|
Asm->OutStreamer->SwitchSection(
|
|
Asm->getObjFileLowering().getDwarfLocSection());
|
|
unsigned char Size = Asm->MAI->getCodePointerSize();
|
|
for (const auto &List : DebugLocs.getLists()) {
|
|
Asm->OutStreamer->EmitLabel(List.Label);
|
|
const DwarfCompileUnit *CU = List.CU;
|
|
for (const auto &Entry : DebugLocs.getEntries(List)) {
|
|
// Set up the range. This range is relative to the entry point of the
|
|
// compile unit. This is a hard coded 0 for low_pc when we're emitting
|
|
// ranges, or the DW_AT_low_pc on the compile unit otherwise.
|
|
if (auto *Base = CU->getBaseAddress()) {
|
|
Asm->EmitLabelDifference(Entry.BeginSym, Base, Size);
|
|
Asm->EmitLabelDifference(Entry.EndSym, Base, Size);
|
|
} else {
|
|
Asm->OutStreamer->EmitSymbolValue(Entry.BeginSym, Size);
|
|
Asm->OutStreamer->EmitSymbolValue(Entry.EndSym, Size);
|
|
}
|
|
|
|
emitDebugLocEntryLocation(Entry);
|
|
}
|
|
Asm->OutStreamer->EmitIntValue(0, Size);
|
|
Asm->OutStreamer->EmitIntValue(0, Size);
|
|
}
|
|
}
|
|
|
|
void DwarfDebug::emitDebugLocDWO() {
|
|
Asm->OutStreamer->SwitchSection(
|
|
Asm->getObjFileLowering().getDwarfLocDWOSection());
|
|
for (const auto &List : DebugLocs.getLists()) {
|
|
Asm->OutStreamer->EmitLabel(List.Label);
|
|
for (const auto &Entry : DebugLocs.getEntries(List)) {
|
|
// Just always use start_length for now - at least that's one address
|
|
// rather than two. We could get fancier and try to, say, reuse an
|
|
// address we know we've emitted elsewhere (the start of the function?
|
|
// The start of the CU or CU subrange that encloses this range?)
|
|
Asm->EmitInt8(dwarf::DW_LLE_startx_length);
|
|
unsigned idx = AddrPool.getIndex(Entry.BeginSym);
|
|
Asm->EmitULEB128(idx);
|
|
Asm->EmitLabelDifference(Entry.EndSym, Entry.BeginSym, 4);
|
|
|
|
emitDebugLocEntryLocation(Entry);
|
|
}
|
|
Asm->EmitInt8(dwarf::DW_LLE_end_of_list);
|
|
}
|
|
}
|
|
|
|
struct ArangeSpan {
|
|
const MCSymbol *Start, *End;
|
|
};
|
|
|
|
// Emit a debug aranges section, containing a CU lookup for any
|
|
// address we can tie back to a CU.
|
|
void DwarfDebug::emitDebugARanges() {
|
|
// Provides a unique id per text section.
|
|
MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap;
|
|
|
|
// Filter labels by section.
|
|
for (const SymbolCU &SCU : ArangeLabels) {
|
|
if (SCU.Sym->isInSection()) {
|
|
// Make a note of this symbol and it's section.
|
|
MCSection *Section = &SCU.Sym->getSection();
|
|
if (!Section->getKind().isMetadata())
|
|
SectionMap[Section].push_back(SCU);
|
|
} else {
|
|
// Some symbols (e.g. common/bss on mach-o) can have no section but still
|
|
// appear in the output. This sucks as we rely on sections to build
|
|
// arange spans. We can do it without, but it's icky.
|
|
SectionMap[nullptr].push_back(SCU);
|
|
}
|
|
}
|
|
|
|
DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans;
|
|
|
|
for (auto &I : SectionMap) {
|
|
MCSection *Section = I.first;
|
|
SmallVector<SymbolCU, 8> &List = I.second;
|
|
if (List.size() < 1)
|
|
continue;
|
|
|
|
// If we have no section (e.g. common), just write out
|
|
// individual spans for each symbol.
|
|
if (!Section) {
|
|
for (const SymbolCU &Cur : List) {
|
|
ArangeSpan Span;
|
|
Span.Start = Cur.Sym;
|
|
Span.End = nullptr;
|
|
assert(Cur.CU);
|
|
Spans[Cur.CU].push_back(Span);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Sort the symbols by offset within the section.
|
|
std::sort(
|
|
List.begin(), List.end(), [&](const SymbolCU &A, const SymbolCU &B) {
|
|
unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0;
|
|
unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0;
|
|
|
|
// Symbols with no order assigned should be placed at the end.
|
|
// (e.g. section end labels)
|
|
if (IA == 0)
|
|
return false;
|
|
if (IB == 0)
|
|
return true;
|
|
return IA < IB;
|
|
});
|
|
|
|
// Insert a final terminator.
|
|
List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section)));
|
|
|
|
// Build spans between each label.
|
|
const MCSymbol *StartSym = List[0].Sym;
|
|
for (size_t n = 1, e = List.size(); n < e; n++) {
|
|
const SymbolCU &Prev = List[n - 1];
|
|
const SymbolCU &Cur = List[n];
|
|
|
|
// Try and build the longest span we can within the same CU.
|
|
if (Cur.CU != Prev.CU) {
|
|
ArangeSpan Span;
|
|
Span.Start = StartSym;
|
|
Span.End = Cur.Sym;
|
|
assert(Prev.CU);
|
|
Spans[Prev.CU].push_back(Span);
|
|
StartSym = Cur.Sym;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Start the dwarf aranges section.
|
|
Asm->OutStreamer->SwitchSection(
|
|
Asm->getObjFileLowering().getDwarfARangesSection());
|
|
|
|
unsigned PtrSize = Asm->MAI->getCodePointerSize();
|
|
|
|
// Build a list of CUs used.
|
|
std::vector<DwarfCompileUnit *> CUs;
|
|
for (const auto &it : Spans) {
|
|
DwarfCompileUnit *CU = it.first;
|
|
CUs.push_back(CU);
|
|
}
|
|
|
|
// Sort the CU list (again, to ensure consistent output order).
|
|
std::sort(CUs.begin(), CUs.end(),
|
|
[](const DwarfCompileUnit *A, const DwarfCompileUnit *B) {
|
|
return A->getUniqueID() < B->getUniqueID();
|
|
});
|
|
|
|
// Emit an arange table for each CU we used.
|
|
for (DwarfCompileUnit *CU : CUs) {
|
|
std::vector<ArangeSpan> &List = Spans[CU];
|
|
|
|
// Describe the skeleton CU's offset and length, not the dwo file's.
|
|
if (auto *Skel = CU->getSkeleton())
|
|
CU = Skel;
|
|
|
|
// Emit size of content not including length itself.
|
|
unsigned ContentSize =
|
|
sizeof(int16_t) + // DWARF ARange version number
|
|
sizeof(int32_t) + // Offset of CU in the .debug_info section
|
|
sizeof(int8_t) + // Pointer Size (in bytes)
|
|
sizeof(int8_t); // Segment Size (in bytes)
|
|
|
|
unsigned TupleSize = PtrSize * 2;
|
|
|
|
// 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
|
|
unsigned Padding =
|
|
OffsetToAlignment(sizeof(int32_t) + ContentSize, TupleSize);
|
|
|
|
ContentSize += Padding;
|
|
ContentSize += (List.size() + 1) * TupleSize;
|
|
|
|
// For each compile unit, write the list of spans it covers.
|
|
Asm->OutStreamer->AddComment("Length of ARange Set");
|
|
Asm->EmitInt32(ContentSize);
|
|
Asm->OutStreamer->AddComment("DWARF Arange version number");
|
|
Asm->EmitInt16(dwarf::DW_ARANGES_VERSION);
|
|
Asm->OutStreamer->AddComment("Offset Into Debug Info Section");
|
|
Asm->emitDwarfSymbolReference(CU->getLabelBegin());
|
|
Asm->OutStreamer->AddComment("Address Size (in bytes)");
|
|
Asm->EmitInt8(PtrSize);
|
|
Asm->OutStreamer->AddComment("Segment Size (in bytes)");
|
|
Asm->EmitInt8(0);
|
|
|
|
Asm->OutStreamer->emitFill(Padding, 0xff);
|
|
|
|
for (const ArangeSpan &Span : List) {
|
|
Asm->EmitLabelReference(Span.Start, PtrSize);
|
|
|
|
// Calculate the size as being from the span start to it's end.
|
|
if (Span.End) {
|
|
Asm->EmitLabelDifference(Span.End, Span.Start, PtrSize);
|
|
} else {
|
|
// For symbols without an end marker (e.g. common), we
|
|
// write a single arange entry containing just that one symbol.
|
|
uint64_t Size = SymSize[Span.Start];
|
|
if (Size == 0)
|
|
Size = 1;
|
|
|
|
Asm->OutStreamer->EmitIntValue(Size, PtrSize);
|
|
}
|
|
}
|
|
|
|
Asm->OutStreamer->AddComment("ARange terminator");
|
|
Asm->OutStreamer->EmitIntValue(0, PtrSize);
|
|
Asm->OutStreamer->EmitIntValue(0, PtrSize);
|
|
}
|
|
}
|
|
|
|
/// Emit address ranges into a debug ranges section.
|
|
void DwarfDebug::emitDebugRanges() {
|
|
if (CUMap.empty())
|
|
return;
|
|
|
|
// Start the dwarf ranges section.
|
|
Asm->OutStreamer->SwitchSection(
|
|
Asm->getObjFileLowering().getDwarfRangesSection());
|
|
|
|
// Size for our labels.
|
|
unsigned char Size = Asm->MAI->getCodePointerSize();
|
|
|
|
// Grab the specific ranges for the compile units in the module.
|
|
for (const auto &I : CUMap) {
|
|
DwarfCompileUnit *TheCU = I.second;
|
|
|
|
if (auto *Skel = TheCU->getSkeleton())
|
|
TheCU = Skel;
|
|
|
|
// Iterate over the misc ranges for the compile units in the module.
|
|
for (const RangeSpanList &List : TheCU->getRangeLists()) {
|
|
// Emit our symbol so we can find the beginning of the range.
|
|
Asm->OutStreamer->EmitLabel(List.getSym());
|
|
|
|
// Gather all the ranges that apply to the same section so they can share
|
|
// a base address entry.
|
|
MapVector<const MCSection *, std::vector<const RangeSpan *>> MV;
|
|
for (const RangeSpan &Range : List.getRanges()) {
|
|
MV[&Range.getStart()->getSection()].push_back(&Range);
|
|
}
|
|
|
|
auto *CUBase = TheCU->getBaseAddress();
|
|
bool BaseIsSet = false;
|
|
for (const auto &P : MV) {
|
|
// Don't bother with a base address entry if there's only one range in
|
|
// this section in this range list - for example ranges for a CU will
|
|
// usually consist of single regions from each of many sections
|
|
// (-ffunction-sections, or just C++ inline functions) except under LTO
|
|
// or optnone where there may be holes in a single CU's section
|
|
// contrubutions.
|
|
auto *Base = CUBase;
|
|
if (!Base && P.second.size() > 1 &&
|
|
UseDwarfRangesBaseAddressSpecifier) {
|
|
BaseIsSet = true;
|
|
// FIXME/use care: This may not be a useful base address if it's not
|
|
// the lowest address/range in this object.
|
|
Base = P.second.front()->getStart();
|
|
Asm->OutStreamer->EmitIntValue(-1, Size);
|
|
Asm->OutStreamer->EmitSymbolValue(Base, Size);
|
|
} else if (BaseIsSet) {
|
|
BaseIsSet = false;
|
|
Asm->OutStreamer->EmitIntValue(-1, Size);
|
|
Asm->OutStreamer->EmitIntValue(0, Size);
|
|
}
|
|
|
|
for (const auto *RS : P.second) {
|
|
const MCSymbol *Begin = RS->getStart();
|
|
const MCSymbol *End = RS->getEnd();
|
|
assert(Begin && "Range without a begin symbol?");
|
|
assert(End && "Range without an end symbol?");
|
|
if (Base) {
|
|
Asm->EmitLabelDifference(Begin, Base, Size);
|
|
Asm->EmitLabelDifference(End, Base, Size);
|
|
} else {
|
|
Asm->OutStreamer->EmitSymbolValue(Begin, Size);
|
|
Asm->OutStreamer->EmitSymbolValue(End, Size);
|
|
}
|
|
}
|
|
}
|
|
|
|
// And terminate the list with two 0 values.
|
|
Asm->OutStreamer->EmitIntValue(0, Size);
|
|
Asm->OutStreamer->EmitIntValue(0, Size);
|
|
}
|
|
}
|
|
}
|
|
|
|
void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) {
|
|
for (auto *MN : Nodes) {
|
|
if (auto *M = dyn_cast<DIMacro>(MN))
|
|
emitMacro(*M);
|
|
else if (auto *F = dyn_cast<DIMacroFile>(MN))
|
|
emitMacroFile(*F, U);
|
|
else
|
|
llvm_unreachable("Unexpected DI type!");
|
|
}
|
|
}
|
|
|
|
void DwarfDebug::emitMacro(DIMacro &M) {
|
|
Asm->EmitULEB128(M.getMacinfoType());
|
|
Asm->EmitULEB128(M.getLine());
|
|
StringRef Name = M.getName();
|
|
StringRef Value = M.getValue();
|
|
Asm->OutStreamer->EmitBytes(Name);
|
|
if (!Value.empty()) {
|
|
// There should be one space between macro name and macro value.
|
|
Asm->EmitInt8(' ');
|
|
Asm->OutStreamer->EmitBytes(Value);
|
|
}
|
|
Asm->EmitInt8('\0');
|
|
}
|
|
|
|
void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) {
|
|
assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file);
|
|
Asm->EmitULEB128(dwarf::DW_MACINFO_start_file);
|
|
Asm->EmitULEB128(F.getLine());
|
|
DIFile *File = F.getFile();
|
|
unsigned FID =
|
|
U.getOrCreateSourceID(File->getFilename(), File->getDirectory());
|
|
Asm->EmitULEB128(FID);
|
|
handleMacroNodes(F.getElements(), U);
|
|
Asm->EmitULEB128(dwarf::DW_MACINFO_end_file);
|
|
}
|
|
|
|
/// Emit macros into a debug macinfo section.
|
|
void DwarfDebug::emitDebugMacinfo() {
|
|
if (CUMap.empty())
|
|
return;
|
|
|
|
// Start the dwarf macinfo section.
|
|
Asm->OutStreamer->SwitchSection(
|
|
Asm->getObjFileLowering().getDwarfMacinfoSection());
|
|
|
|
for (const auto &P : CUMap) {
|
|
auto &TheCU = *P.second;
|
|
auto *SkCU = TheCU.getSkeleton();
|
|
DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
|
|
auto *CUNode = cast<DICompileUnit>(P.first);
|
|
Asm->OutStreamer->EmitLabel(U.getMacroLabelBegin());
|
|
handleMacroNodes(CUNode->getMacros(), U);
|
|
}
|
|
Asm->OutStreamer->AddComment("End Of Macro List Mark");
|
|
Asm->EmitInt8(0);
|
|
}
|
|
|
|
// DWARF5 Experimental Separate Dwarf emitters.
|
|
|
|
void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
|
|
std::unique_ptr<DwarfCompileUnit> NewU) {
|
|
NewU->addString(Die, dwarf::DW_AT_GNU_dwo_name,
|
|
Asm->TM.Options.MCOptions.SplitDwarfFile);
|
|
|
|
if (!CompilationDir.empty())
|
|
NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
|
|
|
|
addGnuPubAttributes(*NewU, Die);
|
|
|
|
SkeletonHolder.addUnit(std::move(NewU));
|
|
}
|
|
|
|
// This DIE has the following attributes: DW_AT_comp_dir, DW_AT_stmt_list,
|
|
// DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges, DW_AT_dwo_name, DW_AT_dwo_id,
|
|
// DW_AT_addr_base, DW_AT_ranges_base.
|
|
DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
|
|
|
|
auto OwnedUnit = llvm::make_unique<DwarfCompileUnit>(
|
|
CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder);
|
|
DwarfCompileUnit &NewCU = *OwnedUnit;
|
|
NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
|
|
|
|
NewCU.initStmtList();
|
|
|
|
initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit));
|
|
|
|
return NewCU;
|
|
}
|
|
|
|
// Emit the .debug_info.dwo section for separated dwarf. This contains the
|
|
// compile units that would normally be in debug_info.
|
|
void DwarfDebug::emitDebugInfoDWO() {
|
|
assert(useSplitDwarf() && "No split dwarf debug info?");
|
|
// Don't emit relocations into the dwo file.
|
|
InfoHolder.emitUnits(/* UseOffsets */ true);
|
|
}
|
|
|
|
// Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
|
|
// abbreviations for the .debug_info.dwo section.
|
|
void DwarfDebug::emitDebugAbbrevDWO() {
|
|
assert(useSplitDwarf() && "No split dwarf?");
|
|
InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection());
|
|
}
|
|
|
|
void DwarfDebug::emitDebugLineDWO() {
|
|
assert(useSplitDwarf() && "No split dwarf?");
|
|
Asm->OutStreamer->SwitchSection(
|
|
Asm->getObjFileLowering().getDwarfLineDWOSection());
|
|
SplitTypeUnitFileTable.Emit(*Asm->OutStreamer, MCDwarfLineTableParams());
|
|
}
|
|
|
|
// Emit the .debug_str.dwo section for separated dwarf. This contains the
|
|
// string section and is identical in format to traditional .debug_str
|
|
// sections.
|
|
void DwarfDebug::emitDebugStrDWO() {
|
|
assert(useSplitDwarf() && "No split dwarf?");
|
|
MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection();
|
|
InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
|
|
OffSec);
|
|
}
|
|
|
|
MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
|
|
if (!useSplitDwarf())
|
|
return nullptr;
|
|
if (SingleCU)
|
|
SplitTypeUnitFileTable.setCompilationDir(CU.getCUNode()->getDirectory());
|
|
return &SplitTypeUnitFileTable;
|
|
}
|
|
|
|
uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) {
|
|
MD5 Hash;
|
|
Hash.update(Identifier);
|
|
// ... take the least significant 8 bytes and return those. Our MD5
|
|
// implementation always returns its results in little endian, so we actually
|
|
// need the "high" word.
|
|
MD5::MD5Result Result;
|
|
Hash.final(Result);
|
|
return Result.high();
|
|
}
|
|
|
|
void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
|
|
StringRef Identifier, DIE &RefDie,
|
|
const DICompositeType *CTy) {
|
|
// Fast path if we're building some type units and one has already used the
|
|
// address pool we know we're going to throw away all this work anyway, so
|
|
// don't bother building dependent types.
|
|
if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed())
|
|
return;
|
|
|
|
auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0));
|
|
if (!Ins.second) {
|
|
CU.addDIETypeSignature(RefDie, Ins.first->second);
|
|
return;
|
|
}
|
|
|
|
bool TopLevelType = TypeUnitsUnderConstruction.empty();
|
|
AddrPool.resetUsedFlag();
|
|
|
|
auto OwnedUnit = llvm::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder,
|
|
getDwoLineTable(CU));
|
|
DwarfTypeUnit &NewTU = *OwnedUnit;
|
|
DIE &UnitDie = NewTU.getUnitDie();
|
|
TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy);
|
|
|
|
NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
|
|
CU.getLanguage());
|
|
|
|
uint64_t Signature = makeTypeSignature(Identifier);
|
|
NewTU.setTypeSignature(Signature);
|
|
Ins.first->second = Signature;
|
|
|
|
if (useSplitDwarf())
|
|
NewTU.setSection(Asm->getObjFileLowering().getDwarfTypesDWOSection());
|
|
else {
|
|
CU.applyStmtList(UnitDie);
|
|
NewTU.setSection(Asm->getObjFileLowering().getDwarfTypesSection(Signature));
|
|
}
|
|
|
|
NewTU.setType(NewTU.createTypeDIE(CTy));
|
|
|
|
if (TopLevelType) {
|
|
auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction);
|
|
TypeUnitsUnderConstruction.clear();
|
|
|
|
// Types referencing entries in the address table cannot be placed in type
|
|
// units.
|
|
if (AddrPool.hasBeenUsed()) {
|
|
|
|
// Remove all the types built while building this type.
|
|
// This is pessimistic as some of these types might not be dependent on
|
|
// the type that used an address.
|
|
for (const auto &TU : TypeUnitsToAdd)
|
|
TypeSignatures.erase(TU.second);
|
|
|
|
// Construct this type in the CU directly.
|
|
// This is inefficient because all the dependent types will be rebuilt
|
|
// from scratch, including building them in type units, discovering that
|
|
// they depend on addresses, throwing them out and rebuilding them.
|
|
CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy));
|
|
return;
|
|
}
|
|
|
|
// If the type wasn't dependent on fission addresses, finish adding the type
|
|
// and all its dependent types.
|
|
for (auto &TU : TypeUnitsToAdd) {
|
|
InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get());
|
|
InfoHolder.emitUnit(TU.first.get(), useSplitDwarf());
|
|
}
|
|
}
|
|
CU.addDIETypeSignature(RefDie, Signature);
|
|
}
|
|
|
|
// Accelerator table mutators - add each name along with its companion
|
|
// DIE to the proper table while ensuring that the name that we're going
|
|
// to reference is in the string table. We do this since the names we
|
|
// add may not only be identical to the names in the DIE.
|
|
void DwarfDebug::addAccelName(StringRef Name, const DIE &Die) {
|
|
if (!useDwarfAccelTables())
|
|
return;
|
|
AccelNames.AddName(InfoHolder.getStringPool().getEntry(*Asm, Name), &Die);
|
|
}
|
|
|
|
void DwarfDebug::addAccelObjC(StringRef Name, const DIE &Die) {
|
|
if (!useDwarfAccelTables())
|
|
return;
|
|
AccelObjC.AddName(InfoHolder.getStringPool().getEntry(*Asm, Name), &Die);
|
|
}
|
|
|
|
void DwarfDebug::addAccelNamespace(StringRef Name, const DIE &Die) {
|
|
if (!useDwarfAccelTables())
|
|
return;
|
|
AccelNamespace.AddName(InfoHolder.getStringPool().getEntry(*Asm, Name), &Die);
|
|
}
|
|
|
|
void DwarfDebug::addAccelType(StringRef Name, const DIE &Die, char Flags) {
|
|
if (!useDwarfAccelTables())
|
|
return;
|
|
AccelTypes.AddName(InfoHolder.getStringPool().getEntry(*Asm, Name), &Die);
|
|
}
|
|
|
|
uint16_t DwarfDebug::getDwarfVersion() const {
|
|
return Asm->OutStreamer->getContext().getDwarfVersion();
|
|
}
|