forked from OSchip/llvm-project
1312 lines
50 KiB
C++
1312 lines
50 KiB
C++
//===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ARMTargetTransformInfo.h"
|
|
#include "ARMSubtarget.h"
|
|
#include "MCTargetDesc/ARMAddressingModes.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/CodeGen/CostTable.h"
|
|
#include "llvm/CodeGen/ISDOpcodes.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/MC/SubtargetFeature.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/MachineValueType.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "armtti"
|
|
|
|
static cl::opt<bool> EnableMaskedLoadStores(
|
|
"enable-arm-maskedldst", cl::Hidden, cl::init(true),
|
|
cl::desc("Enable the generation of masked loads and stores"));
|
|
|
|
static cl::opt<bool> DisableLowOverheadLoops(
|
|
"disable-arm-loloops", cl::Hidden, cl::init(false),
|
|
cl::desc("Disable the generation of low-overhead loops"));
|
|
|
|
extern cl::opt<bool> DisableTailPredication;
|
|
|
|
extern cl::opt<bool> EnableMaskedGatherScatters;
|
|
|
|
bool ARMTTIImpl::areInlineCompatible(const Function *Caller,
|
|
const Function *Callee) const {
|
|
const TargetMachine &TM = getTLI()->getTargetMachine();
|
|
const FeatureBitset &CallerBits =
|
|
TM.getSubtargetImpl(*Caller)->getFeatureBits();
|
|
const FeatureBitset &CalleeBits =
|
|
TM.getSubtargetImpl(*Callee)->getFeatureBits();
|
|
|
|
// To inline a callee, all features not in the whitelist must match exactly.
|
|
bool MatchExact = (CallerBits & ~InlineFeatureWhitelist) ==
|
|
(CalleeBits & ~InlineFeatureWhitelist);
|
|
// For features in the whitelist, the callee's features must be a subset of
|
|
// the callers'.
|
|
bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeatureWhitelist) ==
|
|
(CalleeBits & InlineFeatureWhitelist);
|
|
return MatchExact && MatchSubset;
|
|
}
|
|
|
|
bool ARMTTIImpl::shouldFavorBackedgeIndex(const Loop *L) const {
|
|
if (L->getHeader()->getParent()->hasOptSize())
|
|
return false;
|
|
if (ST->hasMVEIntegerOps())
|
|
return false;
|
|
return ST->isMClass() && ST->isThumb2() && L->getNumBlocks() == 1;
|
|
}
|
|
|
|
bool ARMTTIImpl::shouldFavorPostInc() const {
|
|
if (ST->hasMVEIntegerOps())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
int ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
|
|
assert(Ty->isIntegerTy());
|
|
|
|
unsigned Bits = Ty->getPrimitiveSizeInBits();
|
|
if (Bits == 0 || Imm.getActiveBits() >= 64)
|
|
return 4;
|
|
|
|
int64_t SImmVal = Imm.getSExtValue();
|
|
uint64_t ZImmVal = Imm.getZExtValue();
|
|
if (!ST->isThumb()) {
|
|
if ((SImmVal >= 0 && SImmVal < 65536) ||
|
|
(ARM_AM::getSOImmVal(ZImmVal) != -1) ||
|
|
(ARM_AM::getSOImmVal(~ZImmVal) != -1))
|
|
return 1;
|
|
return ST->hasV6T2Ops() ? 2 : 3;
|
|
}
|
|
if (ST->isThumb2()) {
|
|
if ((SImmVal >= 0 && SImmVal < 65536) ||
|
|
(ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
|
|
(ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
|
|
return 1;
|
|
return ST->hasV6T2Ops() ? 2 : 3;
|
|
}
|
|
// Thumb1, any i8 imm cost 1.
|
|
if (Bits == 8 || (SImmVal >= 0 && SImmVal < 256))
|
|
return 1;
|
|
if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
|
|
return 2;
|
|
// Load from constantpool.
|
|
return 3;
|
|
}
|
|
|
|
// Constants smaller than 256 fit in the immediate field of
|
|
// Thumb1 instructions so we return a zero cost and 1 otherwise.
|
|
int ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
|
|
const APInt &Imm, Type *Ty) {
|
|
if (Imm.isNonNegative() && Imm.getLimitedValue() < 256)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int ARMTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, const APInt &Imm,
|
|
Type *Ty) {
|
|
// Division by a constant can be turned into multiplication, but only if we
|
|
// know it's constant. So it's not so much that the immediate is cheap (it's
|
|
// not), but that the alternative is worse.
|
|
// FIXME: this is probably unneeded with GlobalISel.
|
|
if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv ||
|
|
Opcode == Instruction::SRem || Opcode == Instruction::URem) &&
|
|
Idx == 1)
|
|
return 0;
|
|
|
|
if (Opcode == Instruction::And) {
|
|
// UXTB/UXTH
|
|
if (Imm == 255 || Imm == 65535)
|
|
return 0;
|
|
// Conversion to BIC is free, and means we can use ~Imm instead.
|
|
return std::min(getIntImmCost(Imm, Ty), getIntImmCost(~Imm, Ty));
|
|
}
|
|
|
|
if (Opcode == Instruction::Add)
|
|
// Conversion to SUB is free, and means we can use -Imm instead.
|
|
return std::min(getIntImmCost(Imm, Ty), getIntImmCost(-Imm, Ty));
|
|
|
|
if (Opcode == Instruction::ICmp && Imm.isNegative() &&
|
|
Ty->getIntegerBitWidth() == 32) {
|
|
int64_t NegImm = -Imm.getSExtValue();
|
|
if (ST->isThumb2() && NegImm < 1<<12)
|
|
// icmp X, #-C -> cmn X, #C
|
|
return 0;
|
|
if (ST->isThumb() && NegImm < 1<<8)
|
|
// icmp X, #-C -> adds X, #C
|
|
return 0;
|
|
}
|
|
|
|
// xor a, -1 can always be folded to MVN
|
|
if (Opcode == Instruction::Xor && Imm.isAllOnesValue())
|
|
return 0;
|
|
|
|
return getIntImmCost(Imm, Ty);
|
|
}
|
|
|
|
int ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
|
|
const Instruction *I) {
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
// Single to/from double precision conversions.
|
|
static const CostTblEntry NEONFltDblTbl[] = {
|
|
// Vector fptrunc/fpext conversions.
|
|
{ ISD::FP_ROUND, MVT::v2f64, 2 },
|
|
{ ISD::FP_EXTEND, MVT::v2f32, 2 },
|
|
{ ISD::FP_EXTEND, MVT::v4f32, 4 }
|
|
};
|
|
|
|
if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND ||
|
|
ISD == ISD::FP_EXTEND)) {
|
|
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
|
|
if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second))
|
|
return LT.first * Entry->Cost;
|
|
}
|
|
|
|
EVT SrcTy = TLI->getValueType(DL, Src);
|
|
EVT DstTy = TLI->getValueType(DL, Dst);
|
|
|
|
if (!SrcTy.isSimple() || !DstTy.isSimple())
|
|
return BaseT::getCastInstrCost(Opcode, Dst, Src);
|
|
|
|
// The extend of a load is free
|
|
if (I && isa<LoadInst>(I->getOperand(0))) {
|
|
static const TypeConversionCostTblEntry LoadConversionTbl[] = {
|
|
{ISD::SIGN_EXTEND, MVT::i32, MVT::i16, 0},
|
|
{ISD::ZERO_EXTEND, MVT::i32, MVT::i16, 0},
|
|
{ISD::SIGN_EXTEND, MVT::i32, MVT::i8, 0},
|
|
{ISD::ZERO_EXTEND, MVT::i32, MVT::i8, 0},
|
|
{ISD::SIGN_EXTEND, MVT::i16, MVT::i8, 0},
|
|
{ISD::ZERO_EXTEND, MVT::i16, MVT::i8, 0},
|
|
{ISD::SIGN_EXTEND, MVT::i64, MVT::i32, 1},
|
|
{ISD::ZERO_EXTEND, MVT::i64, MVT::i32, 1},
|
|
{ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 1},
|
|
{ISD::ZERO_EXTEND, MVT::i64, MVT::i16, 1},
|
|
{ISD::SIGN_EXTEND, MVT::i64, MVT::i8, 1},
|
|
{ISD::ZERO_EXTEND, MVT::i64, MVT::i8, 1},
|
|
};
|
|
if (const auto *Entry = ConvertCostTableLookup(
|
|
LoadConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
|
|
return Entry->Cost;
|
|
|
|
static const TypeConversionCostTblEntry MVELoadConversionTbl[] = {
|
|
{ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0},
|
|
{ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0},
|
|
{ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 0},
|
|
{ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 0},
|
|
{ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 0},
|
|
{ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 0},
|
|
};
|
|
if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
|
|
if (const auto *Entry =
|
|
ConvertCostTableLookup(MVELoadConversionTbl, ISD,
|
|
DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
|
|
return Entry->Cost;
|
|
}
|
|
}
|
|
|
|
// Some arithmetic, load and store operations have specific instructions
|
|
// to cast up/down their types automatically at no extra cost.
|
|
// TODO: Get these tables to know at least what the related operations are.
|
|
static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = {
|
|
{ ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
|
|
{ ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
|
|
{ ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 },
|
|
{ ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
|
|
|
|
// The number of vmovl instructions for the extension.
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
|
|
{ ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
|
|
|
|
// Operations that we legalize using splitting.
|
|
{ ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
|
|
{ ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
|
|
|
|
// Vector float <-> i32 conversions.
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
|
|
|
|
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
|
|
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 },
|
|
{ ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 },
|
|
{ ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 },
|
|
{ ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 },
|
|
|
|
{ ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 },
|
|
{ ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
|
|
|
|
// Vector double <-> i32 conversions.
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
|
|
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
|
|
|
|
{ ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 4 },
|
|
{ ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 4 },
|
|
{ ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 8 },
|
|
{ ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 8 }
|
|
};
|
|
|
|
if (SrcTy.isVector() && ST->hasNEON()) {
|
|
if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD,
|
|
DstTy.getSimpleVT(),
|
|
SrcTy.getSimpleVT()))
|
|
return Entry->Cost;
|
|
}
|
|
|
|
// Scalar float to integer conversions.
|
|
static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = {
|
|
{ ISD::FP_TO_SINT, MVT::i1, MVT::f32, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i1, MVT::f32, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i1, MVT::f64, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i1, MVT::f64, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i8, MVT::f32, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i8, MVT::f32, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i8, MVT::f64, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i8, MVT::f64, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i16, MVT::f32, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i16, MVT::f32, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i16, MVT::f64, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i16, MVT::f64, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i32, MVT::f32, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i32, MVT::f32, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i32, MVT::f64, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i32, MVT::f64, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i64, MVT::f32, 10 },
|
|
{ ISD::FP_TO_UINT, MVT::i64, MVT::f32, 10 },
|
|
{ ISD::FP_TO_SINT, MVT::i64, MVT::f64, 10 },
|
|
{ ISD::FP_TO_UINT, MVT::i64, MVT::f64, 10 }
|
|
};
|
|
if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
|
|
if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD,
|
|
DstTy.getSimpleVT(),
|
|
SrcTy.getSimpleVT()))
|
|
return Entry->Cost;
|
|
}
|
|
|
|
// Scalar integer to float conversions.
|
|
static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = {
|
|
{ ISD::SINT_TO_FP, MVT::f32, MVT::i1, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f32, MVT::i1, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f64, MVT::i1, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f64, MVT::i1, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f32, MVT::i8, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f32, MVT::i8, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f64, MVT::i8, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f64, MVT::i8, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f32, MVT::i16, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f32, MVT::i16, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f64, MVT::i16, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f64, MVT::i16, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f32, MVT::i32, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f32, MVT::i32, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f64, MVT::i32, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f64, MVT::i32, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f32, MVT::i64, 10 },
|
|
{ ISD::UINT_TO_FP, MVT::f32, MVT::i64, 10 },
|
|
{ ISD::SINT_TO_FP, MVT::f64, MVT::i64, 10 },
|
|
{ ISD::UINT_TO_FP, MVT::f64, MVT::i64, 10 }
|
|
};
|
|
|
|
if (SrcTy.isInteger() && ST->hasNEON()) {
|
|
if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl,
|
|
ISD, DstTy.getSimpleVT(),
|
|
SrcTy.getSimpleVT()))
|
|
return Entry->Cost;
|
|
}
|
|
|
|
// MVE extend costs, taken from codegen tests. i8->i16 or i16->i32 is one
|
|
// instruction, i8->i32 is two. i64 zexts are an VAND with a constant, sext
|
|
// are linearised so take more.
|
|
static const TypeConversionCostTblEntry MVEVectorConversionTbl[] = {
|
|
{ ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
|
|
{ ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 10 },
|
|
{ ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 2 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 10 },
|
|
{ ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
|
|
{ ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 8 },
|
|
{ ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 2 },
|
|
};
|
|
|
|
if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
|
|
if (const auto *Entry = ConvertCostTableLookup(MVEVectorConversionTbl,
|
|
ISD, DstTy.getSimpleVT(),
|
|
SrcTy.getSimpleVT()))
|
|
return Entry->Cost * ST->getMVEVectorCostFactor();
|
|
}
|
|
|
|
// Scalar integer conversion costs.
|
|
static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = {
|
|
// i16 -> i64 requires two dependent operations.
|
|
{ ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },
|
|
|
|
// Truncates on i64 are assumed to be free.
|
|
{ ISD::TRUNCATE, MVT::i32, MVT::i64, 0 },
|
|
{ ISD::TRUNCATE, MVT::i16, MVT::i64, 0 },
|
|
{ ISD::TRUNCATE, MVT::i8, MVT::i64, 0 },
|
|
{ ISD::TRUNCATE, MVT::i1, MVT::i64, 0 }
|
|
};
|
|
|
|
if (SrcTy.isInteger()) {
|
|
if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD,
|
|
DstTy.getSimpleVT(),
|
|
SrcTy.getSimpleVT()))
|
|
return Entry->Cost;
|
|
}
|
|
|
|
int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy()
|
|
? ST->getMVEVectorCostFactor()
|
|
: 1;
|
|
return BaseCost * BaseT::getCastInstrCost(Opcode, Dst, Src);
|
|
}
|
|
|
|
int ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
|
|
unsigned Index) {
|
|
// Penalize inserting into an D-subregister. We end up with a three times
|
|
// lower estimated throughput on swift.
|
|
if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement &&
|
|
ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32)
|
|
return 3;
|
|
|
|
if (ST->hasNEON() && (Opcode == Instruction::InsertElement ||
|
|
Opcode == Instruction::ExtractElement)) {
|
|
// Cross-class copies are expensive on many microarchitectures,
|
|
// so assume they are expensive by default.
|
|
if (ValTy->getVectorElementType()->isIntegerTy())
|
|
return 3;
|
|
|
|
// Even if it's not a cross class copy, this likely leads to mixing
|
|
// of NEON and VFP code and should be therefore penalized.
|
|
if (ValTy->isVectorTy() &&
|
|
ValTy->getScalarSizeInBits() <= 32)
|
|
return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U);
|
|
}
|
|
|
|
if (ST->hasMVEIntegerOps() && (Opcode == Instruction::InsertElement ||
|
|
Opcode == Instruction::ExtractElement)) {
|
|
// We say MVE moves costs at least the MVEVectorCostFactor, even though
|
|
// they are scalar instructions. This helps prevent mixing scalar and
|
|
// vector, to prevent vectorising where we end up just scalarising the
|
|
// result anyway.
|
|
return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index),
|
|
ST->getMVEVectorCostFactor()) *
|
|
ValTy->getVectorNumElements() / 2;
|
|
}
|
|
|
|
return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
|
|
}
|
|
|
|
int ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
|
|
const Instruction *I) {
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
// On NEON a vector select gets lowered to vbsl.
|
|
if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) {
|
|
// Lowering of some vector selects is currently far from perfect.
|
|
static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = {
|
|
{ ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
|
|
{ ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
|
|
{ ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
|
|
};
|
|
|
|
EVT SelCondTy = TLI->getValueType(DL, CondTy);
|
|
EVT SelValTy = TLI->getValueType(DL, ValTy);
|
|
if (SelCondTy.isSimple() && SelValTy.isSimple()) {
|
|
if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD,
|
|
SelCondTy.getSimpleVT(),
|
|
SelValTy.getSimpleVT()))
|
|
return Entry->Cost;
|
|
}
|
|
|
|
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
|
|
return LT.first;
|
|
}
|
|
|
|
int BaseCost = ST->hasMVEIntegerOps() && ValTy->isVectorTy()
|
|
? ST->getMVEVectorCostFactor()
|
|
: 1;
|
|
return BaseCost * BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
|
|
}
|
|
|
|
int ARMTTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
|
|
const SCEV *Ptr) {
|
|
// Address computations in vectorized code with non-consecutive addresses will
|
|
// likely result in more instructions compared to scalar code where the
|
|
// computation can more often be merged into the index mode. The resulting
|
|
// extra micro-ops can significantly decrease throughput.
|
|
unsigned NumVectorInstToHideOverhead = 10;
|
|
int MaxMergeDistance = 64;
|
|
|
|
if (ST->hasNEON()) {
|
|
if (Ty->isVectorTy() && SE &&
|
|
!BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
|
|
return NumVectorInstToHideOverhead;
|
|
|
|
// In many cases the address computation is not merged into the instruction
|
|
// addressing mode.
|
|
return 1;
|
|
}
|
|
return BaseT::getAddressComputationCost(Ty, SE, Ptr);
|
|
}
|
|
|
|
bool ARMTTIImpl::isLegalMaskedLoad(Type *DataTy, MaybeAlign Alignment) {
|
|
if (!EnableMaskedLoadStores || !ST->hasMVEIntegerOps())
|
|
return false;
|
|
|
|
if (auto *VecTy = dyn_cast<VectorType>(DataTy)) {
|
|
// Don't support v2i1 yet.
|
|
if (VecTy->getNumElements() == 2)
|
|
return false;
|
|
|
|
// We don't support extending fp types.
|
|
unsigned VecWidth = DataTy->getPrimitiveSizeInBits();
|
|
if (VecWidth != 128 && VecTy->getElementType()->isFloatingPointTy())
|
|
return false;
|
|
}
|
|
|
|
unsigned EltWidth = DataTy->getScalarSizeInBits();
|
|
return (EltWidth == 32 && (!Alignment || Alignment >= 4)) ||
|
|
(EltWidth == 16 && (!Alignment || Alignment >= 2)) ||
|
|
(EltWidth == 8);
|
|
}
|
|
|
|
bool ARMTTIImpl::isLegalMaskedGather(Type *Ty, MaybeAlign Alignment) {
|
|
if (!EnableMaskedGatherScatters || !ST->hasMVEIntegerOps())
|
|
return false;
|
|
|
|
// This method is called in 2 places:
|
|
// - from the vectorizer with a scalar type, in which case we need to get
|
|
// this as good as we can with the limited info we have (and rely on the cost
|
|
// model for the rest).
|
|
// - from the masked intrinsic lowering pass with the actual vector type.
|
|
// For MVE, we have a custom lowering pass that will already have custom
|
|
// legalised any gathers that we can to MVE intrinsics, and want to expand all
|
|
// the rest. The pass runs before the masked intrinsic lowering pass, so if we
|
|
// are here, we know we want to expand.
|
|
if (isa<VectorType>(Ty))
|
|
return false;
|
|
|
|
unsigned EltWidth = Ty->getScalarSizeInBits();
|
|
return ((EltWidth == 32 && (!Alignment || Alignment >= 4)) ||
|
|
(EltWidth == 16 && (!Alignment || Alignment >= 2)) || EltWidth == 8);
|
|
}
|
|
|
|
int ARMTTIImpl::getMemcpyCost(const Instruction *I) {
|
|
const MemCpyInst *MI = dyn_cast<MemCpyInst>(I);
|
|
assert(MI && "MemcpyInst expected");
|
|
ConstantInt *C = dyn_cast<ConstantInt>(MI->getLength());
|
|
|
|
// To model the cost of a library call, we assume 1 for the call, and
|
|
// 3 for the argument setup.
|
|
const unsigned LibCallCost = 4;
|
|
|
|
// If 'size' is not a constant, a library call will be generated.
|
|
if (!C)
|
|
return LibCallCost;
|
|
|
|
const unsigned Size = C->getValue().getZExtValue();
|
|
const unsigned DstAlign = MI->getDestAlignment();
|
|
const unsigned SrcAlign = MI->getSourceAlignment();
|
|
const Function *F = I->getParent()->getParent();
|
|
const unsigned Limit = TLI->getMaxStoresPerMemmove(F->hasMinSize());
|
|
std::vector<EVT> MemOps;
|
|
|
|
// MemOps will be poplulated with a list of data types that needs to be
|
|
// loaded and stored. That's why we multiply the number of elements by 2 to
|
|
// get the cost for this memcpy.
|
|
if (getTLI()->findOptimalMemOpLowering(
|
|
MemOps, Limit, Size, DstAlign, SrcAlign, false /*IsMemset*/,
|
|
false /*ZeroMemset*/, false /*MemcpyStrSrc*/, false /*AllowOverlap*/,
|
|
MI->getDestAddressSpace(), MI->getSourceAddressSpace(),
|
|
F->getAttributes()))
|
|
return MemOps.size() * 2;
|
|
|
|
// If we can't find an optimal memop lowering, return the default cost
|
|
return LibCallCost;
|
|
}
|
|
|
|
int ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
|
|
Type *SubTp) {
|
|
if (ST->hasNEON()) {
|
|
if (Kind == TTI::SK_Broadcast) {
|
|
static const CostTblEntry NEONDupTbl[] = {
|
|
// VDUP handles these cases.
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v4i16, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v8i8, 1},
|
|
|
|
{ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}};
|
|
|
|
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
|
|
|
|
if (const auto *Entry =
|
|
CostTableLookup(NEONDupTbl, ISD::VECTOR_SHUFFLE, LT.second))
|
|
return LT.first * Entry->Cost;
|
|
}
|
|
if (Kind == TTI::SK_Reverse) {
|
|
static const CostTblEntry NEONShuffleTbl[] = {
|
|
// Reverse shuffle cost one instruction if we are shuffling within a
|
|
// double word (vrev) or two if we shuffle a quad word (vrev, vext).
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v4i16, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v8i8, 1},
|
|
|
|
{ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v8i16, 2},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}};
|
|
|
|
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
|
|
|
|
if (const auto *Entry =
|
|
CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second))
|
|
return LT.first * Entry->Cost;
|
|
}
|
|
if (Kind == TTI::SK_Select) {
|
|
static const CostTblEntry NEONSelShuffleTbl[] = {
|
|
// Select shuffle cost table for ARM. Cost is the number of
|
|
// instructions
|
|
// required to create the shuffled vector.
|
|
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
|
|
|
|
{ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v4i16, 2},
|
|
|
|
{ISD::VECTOR_SHUFFLE, MVT::v8i16, 16},
|
|
|
|
{ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}};
|
|
|
|
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
|
|
if (const auto *Entry = CostTableLookup(NEONSelShuffleTbl,
|
|
ISD::VECTOR_SHUFFLE, LT.second))
|
|
return LT.first * Entry->Cost;
|
|
}
|
|
}
|
|
if (ST->hasMVEIntegerOps()) {
|
|
if (Kind == TTI::SK_Broadcast) {
|
|
static const CostTblEntry MVEDupTbl[] = {
|
|
// VDUP handles these cases.
|
|
{ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v16i8, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v8f16, 1}};
|
|
|
|
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
|
|
|
|
if (const auto *Entry = CostTableLookup(MVEDupTbl, ISD::VECTOR_SHUFFLE,
|
|
LT.second))
|
|
return LT.first * Entry->Cost * ST->getMVEVectorCostFactor();
|
|
}
|
|
}
|
|
int BaseCost = ST->hasMVEIntegerOps() && Tp->isVectorTy()
|
|
? ST->getMVEVectorCostFactor()
|
|
: 1;
|
|
return BaseCost * BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
|
|
}
|
|
|
|
int ARMTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
|
|
TTI::OperandValueKind Op1Info,
|
|
TTI::OperandValueKind Op2Info,
|
|
TTI::OperandValueProperties Opd1PropInfo,
|
|
TTI::OperandValueProperties Opd2PropInfo,
|
|
ArrayRef<const Value *> Args,
|
|
const Instruction *CxtI) {
|
|
int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
|
|
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
|
|
|
|
if (ST->hasNEON()) {
|
|
const unsigned FunctionCallDivCost = 20;
|
|
const unsigned ReciprocalDivCost = 10;
|
|
static const CostTblEntry CostTbl[] = {
|
|
// Division.
|
|
// These costs are somewhat random. Choose a cost of 20 to indicate that
|
|
// vectorizing devision (added function call) is going to be very expensive.
|
|
// Double registers types.
|
|
{ ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost},
|
|
{ ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost},
|
|
{ ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost},
|
|
{ ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost},
|
|
{ ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost},
|
|
{ ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost},
|
|
{ ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost},
|
|
{ ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost},
|
|
{ ISD::SDIV, MVT::v4i16, ReciprocalDivCost},
|
|
{ ISD::UDIV, MVT::v4i16, ReciprocalDivCost},
|
|
{ ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost},
|
|
{ ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost},
|
|
{ ISD::SDIV, MVT::v8i8, ReciprocalDivCost},
|
|
{ ISD::UDIV, MVT::v8i8, ReciprocalDivCost},
|
|
{ ISD::SREM, MVT::v8i8, 8 * FunctionCallDivCost},
|
|
{ ISD::UREM, MVT::v8i8, 8 * FunctionCallDivCost},
|
|
// Quad register types.
|
|
{ ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost},
|
|
{ ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost},
|
|
{ ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost},
|
|
{ ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost},
|
|
{ ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost},
|
|
{ ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost},
|
|
{ ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost},
|
|
{ ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost},
|
|
{ ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost},
|
|
{ ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost},
|
|
{ ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost},
|
|
{ ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost},
|
|
{ ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost},
|
|
{ ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost},
|
|
{ ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost},
|
|
{ ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost},
|
|
// Multiplication.
|
|
};
|
|
|
|
if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second))
|
|
return LT.first * Entry->Cost;
|
|
|
|
int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
|
|
Opd1PropInfo, Opd2PropInfo);
|
|
|
|
// This is somewhat of a hack. The problem that we are facing is that SROA
|
|
// creates a sequence of shift, and, or instructions to construct values.
|
|
// These sequences are recognized by the ISel and have zero-cost. Not so for
|
|
// the vectorized code. Because we have support for v2i64 but not i64 those
|
|
// sequences look particularly beneficial to vectorize.
|
|
// To work around this we increase the cost of v2i64 operations to make them
|
|
// seem less beneficial.
|
|
if (LT.second == MVT::v2i64 &&
|
|
Op2Info == TargetTransformInfo::OK_UniformConstantValue)
|
|
Cost += 4;
|
|
|
|
return Cost;
|
|
}
|
|
|
|
// If this operation is a shift on arm/thumb2, it might well be folded into
|
|
// the following instruction, hence having a cost of 0.
|
|
auto LooksLikeAFreeShift = [&]() {
|
|
if (ST->isThumb1Only() || Ty->isVectorTy())
|
|
return false;
|
|
|
|
if (!CxtI || !CxtI->hasOneUse() || !CxtI->isShift())
|
|
return false;
|
|
if (Op2Info != TargetTransformInfo::OK_UniformConstantValue)
|
|
return false;
|
|
|
|
// Folded into a ADC/ADD/AND/BIC/CMP/EOR/MVN/ORR/ORN/RSB/SBC/SUB
|
|
switch (cast<Instruction>(CxtI->user_back())->getOpcode()) {
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::And:
|
|
case Instruction::Xor:
|
|
case Instruction::Or:
|
|
case Instruction::ICmp:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
};
|
|
if (LooksLikeAFreeShift())
|
|
return 0;
|
|
|
|
int BaseCost = ST->hasMVEIntegerOps() && Ty->isVectorTy()
|
|
? ST->getMVEVectorCostFactor()
|
|
: 1;
|
|
|
|
// The rest of this mostly follows what is done in BaseT::getArithmeticInstrCost,
|
|
// without treating floats as more expensive that scalars or increasing the
|
|
// costs for custom operations. The results is also multiplied by the
|
|
// MVEVectorCostFactor where appropriate.
|
|
if (TLI->isOperationLegalOrCustomOrPromote(ISDOpcode, LT.second))
|
|
return LT.first * BaseCost;
|
|
|
|
// Else this is expand, assume that we need to scalarize this op.
|
|
if (Ty->isVectorTy()) {
|
|
unsigned Num = Ty->getVectorNumElements();
|
|
unsigned Cost = getArithmeticInstrCost(Opcode, Ty->getScalarType());
|
|
// Return the cost of multiple scalar invocation plus the cost of
|
|
// inserting and extracting the values.
|
|
return BaseT::getScalarizationOverhead(Ty, Args) + Num * Cost;
|
|
}
|
|
|
|
return BaseCost;
|
|
}
|
|
|
|
int ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
|
|
MaybeAlign Alignment, unsigned AddressSpace,
|
|
const Instruction *I) {
|
|
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
|
|
|
|
if (ST->hasNEON() && Src->isVectorTy() &&
|
|
(Alignment && *Alignment != Align(16)) &&
|
|
Src->getVectorElementType()->isDoubleTy()) {
|
|
// Unaligned loads/stores are extremely inefficient.
|
|
// We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr.
|
|
return LT.first * 4;
|
|
}
|
|
int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy()
|
|
? ST->getMVEVectorCostFactor()
|
|
: 1;
|
|
return BaseCost * LT.first;
|
|
}
|
|
|
|
int ARMTTIImpl::getInterleavedMemoryOpCost(
|
|
unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
|
|
unsigned Alignment, unsigned AddressSpace, bool UseMaskForCond,
|
|
bool UseMaskForGaps) {
|
|
assert(Factor >= 2 && "Invalid interleave factor");
|
|
assert(isa<VectorType>(VecTy) && "Expect a vector type");
|
|
|
|
// vldN/vstN doesn't support vector types of i64/f64 element.
|
|
bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64;
|
|
|
|
if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits &&
|
|
!UseMaskForCond && !UseMaskForGaps) {
|
|
unsigned NumElts = VecTy->getVectorNumElements();
|
|
auto *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor);
|
|
|
|
// vldN/vstN only support legal vector types of size 64 or 128 in bits.
|
|
// Accesses having vector types that are a multiple of 128 bits can be
|
|
// matched to more than one vldN/vstN instruction.
|
|
int BaseCost = ST->hasMVEIntegerOps() ? ST->getMVEVectorCostFactor() : 1;
|
|
if (NumElts % Factor == 0 &&
|
|
TLI->isLegalInterleavedAccessType(Factor, SubVecTy, DL))
|
|
return Factor * BaseCost * TLI->getNumInterleavedAccesses(SubVecTy, DL);
|
|
|
|
// Some smaller than legal interleaved patterns are cheap as we can make
|
|
// use of the vmovn or vrev patterns to interleave a standard load. This is
|
|
// true for v4i8, v8i8 and v4i16 at least (but not for v4f16 as it is
|
|
// promoted differently). The cost of 2 here is then a load and vrev or
|
|
// vmovn.
|
|
if (ST->hasMVEIntegerOps() && Factor == 2 && NumElts / Factor > 2 &&
|
|
VecTy->isIntOrIntVectorTy() && DL.getTypeSizeInBits(SubVecTy) <= 64)
|
|
return 2 * BaseCost;
|
|
}
|
|
|
|
return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
|
|
Alignment, AddressSpace,
|
|
UseMaskForCond, UseMaskForGaps);
|
|
}
|
|
|
|
bool ARMTTIImpl::isLoweredToCall(const Function *F) {
|
|
if (!F->isIntrinsic())
|
|
BaseT::isLoweredToCall(F);
|
|
|
|
// Assume all Arm-specific intrinsics map to an instruction.
|
|
if (F->getName().startswith("llvm.arm"))
|
|
return false;
|
|
|
|
switch (F->getIntrinsicID()) {
|
|
default: break;
|
|
case Intrinsic::powi:
|
|
case Intrinsic::sin:
|
|
case Intrinsic::cos:
|
|
case Intrinsic::pow:
|
|
case Intrinsic::log:
|
|
case Intrinsic::log10:
|
|
case Intrinsic::log2:
|
|
case Intrinsic::exp:
|
|
case Intrinsic::exp2:
|
|
return true;
|
|
case Intrinsic::sqrt:
|
|
case Intrinsic::fabs:
|
|
case Intrinsic::copysign:
|
|
case Intrinsic::floor:
|
|
case Intrinsic::ceil:
|
|
case Intrinsic::trunc:
|
|
case Intrinsic::rint:
|
|
case Intrinsic::nearbyint:
|
|
case Intrinsic::round:
|
|
case Intrinsic::canonicalize:
|
|
case Intrinsic::lround:
|
|
case Intrinsic::llround:
|
|
case Intrinsic::lrint:
|
|
case Intrinsic::llrint:
|
|
if (F->getReturnType()->isDoubleTy() && !ST->hasFP64())
|
|
return true;
|
|
if (F->getReturnType()->isHalfTy() && !ST->hasFullFP16())
|
|
return true;
|
|
// Some operations can be handled by vector instructions and assume
|
|
// unsupported vectors will be expanded into supported scalar ones.
|
|
// TODO Handle scalar operations properly.
|
|
return !ST->hasFPARMv8Base() && !ST->hasVFP2Base();
|
|
case Intrinsic::masked_store:
|
|
case Intrinsic::masked_load:
|
|
case Intrinsic::masked_gather:
|
|
case Intrinsic::masked_scatter:
|
|
return !ST->hasMVEIntegerOps();
|
|
case Intrinsic::sadd_with_overflow:
|
|
case Intrinsic::uadd_with_overflow:
|
|
case Intrinsic::ssub_with_overflow:
|
|
case Intrinsic::usub_with_overflow:
|
|
case Intrinsic::sadd_sat:
|
|
case Intrinsic::uadd_sat:
|
|
case Intrinsic::ssub_sat:
|
|
case Intrinsic::usub_sat:
|
|
return false;
|
|
}
|
|
|
|
return BaseT::isLoweredToCall(F);
|
|
}
|
|
|
|
bool ARMTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
|
|
AssumptionCache &AC,
|
|
TargetLibraryInfo *LibInfo,
|
|
HardwareLoopInfo &HWLoopInfo) {
|
|
// Low-overhead branches are only supported in the 'low-overhead branch'
|
|
// extension of v8.1-m.
|
|
if (!ST->hasLOB() || DisableLowOverheadLoops)
|
|
return false;
|
|
|
|
if (!SE.hasLoopInvariantBackedgeTakenCount(L))
|
|
return false;
|
|
|
|
const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
|
|
if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
|
|
return false;
|
|
|
|
const SCEV *TripCountSCEV =
|
|
SE.getAddExpr(BackedgeTakenCount,
|
|
SE.getOne(BackedgeTakenCount->getType()));
|
|
|
|
// We need to store the trip count in LR, a 32-bit register.
|
|
if (SE.getUnsignedRangeMax(TripCountSCEV).getBitWidth() > 32)
|
|
return false;
|
|
|
|
// Making a call will trash LR and clear LO_BRANCH_INFO, so there's little
|
|
// point in generating a hardware loop if that's going to happen.
|
|
auto MaybeCall = [this](Instruction &I) {
|
|
const ARMTargetLowering *TLI = getTLI();
|
|
unsigned ISD = TLI->InstructionOpcodeToISD(I.getOpcode());
|
|
EVT VT = TLI->getValueType(DL, I.getType(), true);
|
|
if (TLI->getOperationAction(ISD, VT) == TargetLowering::LibCall)
|
|
return true;
|
|
|
|
// Check if an intrinsic will be lowered to a call and assume that any
|
|
// other CallInst will generate a bl.
|
|
if (auto *Call = dyn_cast<CallInst>(&I)) {
|
|
if (isa<IntrinsicInst>(Call)) {
|
|
if (const Function *F = Call->getCalledFunction())
|
|
return isLoweredToCall(F);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// FPv5 provides conversions between integer, double-precision,
|
|
// single-precision, and half-precision formats.
|
|
switch (I.getOpcode()) {
|
|
default:
|
|
break;
|
|
case Instruction::FPToSI:
|
|
case Instruction::FPToUI:
|
|
case Instruction::SIToFP:
|
|
case Instruction::UIToFP:
|
|
case Instruction::FPTrunc:
|
|
case Instruction::FPExt:
|
|
return !ST->hasFPARMv8Base();
|
|
}
|
|
|
|
// FIXME: Unfortunately the approach of checking the Operation Action does
|
|
// not catch all cases of Legalization that use library calls. Our
|
|
// Legalization step categorizes some transformations into library calls as
|
|
// Custom, Expand or even Legal when doing type legalization. So for now
|
|
// we have to special case for instance the SDIV of 64bit integers and the
|
|
// use of floating point emulation.
|
|
if (VT.isInteger() && VT.getSizeInBits() >= 64) {
|
|
switch (ISD) {
|
|
default:
|
|
break;
|
|
case ISD::SDIV:
|
|
case ISD::UDIV:
|
|
case ISD::SREM:
|
|
case ISD::UREM:
|
|
case ISD::SDIVREM:
|
|
case ISD::UDIVREM:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Assume all other non-float operations are supported.
|
|
if (!VT.isFloatingPoint())
|
|
return false;
|
|
|
|
// We'll need a library call to handle most floats when using soft.
|
|
if (TLI->useSoftFloat()) {
|
|
switch (I.getOpcode()) {
|
|
default:
|
|
return true;
|
|
case Instruction::Alloca:
|
|
case Instruction::Load:
|
|
case Instruction::Store:
|
|
case Instruction::Select:
|
|
case Instruction::PHI:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// We'll need a libcall to perform double precision operations on a single
|
|
// precision only FPU.
|
|
if (I.getType()->isDoubleTy() && !ST->hasFP64())
|
|
return true;
|
|
|
|
// Likewise for half precision arithmetic.
|
|
if (I.getType()->isHalfTy() && !ST->hasFullFP16())
|
|
return true;
|
|
|
|
return false;
|
|
};
|
|
|
|
auto IsHardwareLoopIntrinsic = [](Instruction &I) {
|
|
if (auto *Call = dyn_cast<IntrinsicInst>(&I)) {
|
|
switch (Call->getIntrinsicID()) {
|
|
default:
|
|
break;
|
|
case Intrinsic::set_loop_iterations:
|
|
case Intrinsic::test_set_loop_iterations:
|
|
case Intrinsic::loop_decrement:
|
|
case Intrinsic::loop_decrement_reg:
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
};
|
|
|
|
// Scan the instructions to see if there's any that we know will turn into a
|
|
// call or if this loop is already a low-overhead loop.
|
|
auto ScanLoop = [&](Loop *L) {
|
|
for (auto *BB : L->getBlocks()) {
|
|
for (auto &I : *BB) {
|
|
if (MaybeCall(I) || IsHardwareLoopIntrinsic(I))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
};
|
|
|
|
// Visit inner loops.
|
|
for (auto Inner : *L)
|
|
if (!ScanLoop(Inner))
|
|
return false;
|
|
|
|
if (!ScanLoop(L))
|
|
return false;
|
|
|
|
// TODO: Check whether the trip count calculation is expensive. If L is the
|
|
// inner loop but we know it has a low trip count, calculating that trip
|
|
// count (in the parent loop) may be detrimental.
|
|
|
|
LLVMContext &C = L->getHeader()->getContext();
|
|
HWLoopInfo.CounterInReg = true;
|
|
HWLoopInfo.IsNestingLegal = false;
|
|
HWLoopInfo.PerformEntryTest = true;
|
|
HWLoopInfo.CountType = Type::getInt32Ty(C);
|
|
HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
|
|
return true;
|
|
}
|
|
|
|
static bool canTailPredicateInstruction(Instruction &I, int &ICmpCount) {
|
|
// We don't allow icmp's, and because we only look at single block loops,
|
|
// we simply count the icmps, i.e. there should only be 1 for the backedge.
|
|
if (isa<ICmpInst>(&I) && ++ICmpCount > 1)
|
|
return false;
|
|
|
|
if (isa<FCmpInst>(&I))
|
|
return false;
|
|
|
|
// We could allow extending/narrowing FP loads/stores, but codegen is
|
|
// too inefficient so reject this for now.
|
|
if (isa<FPExtInst>(&I) || isa<FPTruncInst>(&I))
|
|
return false;
|
|
|
|
// Extends have to be extending-loads
|
|
if (isa<SExtInst>(&I) || isa<ZExtInst>(&I) )
|
|
if (!I.getOperand(0)->hasOneUse() || !isa<LoadInst>(I.getOperand(0)))
|
|
return false;
|
|
|
|
// Truncs have to be narrowing-stores
|
|
if (isa<TruncInst>(&I) )
|
|
if (!I.hasOneUse() || !isa<StoreInst>(*I.user_begin()))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// To set up a tail-predicated loop, we need to know the total number of
|
|
// elements processed by that loop. Thus, we need to determine the element
|
|
// size and:
|
|
// 1) it should be uniform for all operations in the vector loop, so we
|
|
// e.g. don't want any widening/narrowing operations.
|
|
// 2) it should be smaller than i64s because we don't have vector operations
|
|
// that work on i64s.
|
|
// 3) we don't want elements to be reversed or shuffled, to make sure the
|
|
// tail-predication masks/predicates the right lanes.
|
|
//
|
|
static bool canTailPredicateLoop(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
|
|
const DataLayout &DL,
|
|
const LoopAccessInfo *LAI) {
|
|
PredicatedScalarEvolution PSE = LAI->getPSE();
|
|
int ICmpCount = 0;
|
|
int Stride = 0;
|
|
|
|
LLVM_DEBUG(dbgs() << "tail-predication: checking allowed instructions\n");
|
|
SmallVector<Instruction *, 16> LoadStores;
|
|
for (BasicBlock *BB : L->blocks()) {
|
|
for (Instruction &I : BB->instructionsWithoutDebug()) {
|
|
if (isa<PHINode>(&I))
|
|
continue;
|
|
if (!canTailPredicateInstruction(I, ICmpCount)) {
|
|
LLVM_DEBUG(dbgs() << "Instruction not allowed: "; I.dump());
|
|
return false;
|
|
}
|
|
|
|
Type *T = I.getType();
|
|
if (T->isPointerTy())
|
|
T = T->getPointerElementType();
|
|
|
|
if (T->getScalarSizeInBits() > 32) {
|
|
LLVM_DEBUG(dbgs() << "Unsupported Type: "; T->dump());
|
|
return false;
|
|
}
|
|
|
|
if (isa<StoreInst>(I) || isa<LoadInst>(I)) {
|
|
Value *Ptr = isa<LoadInst>(I) ? I.getOperand(0) : I.getOperand(1);
|
|
int64_t NextStride = getPtrStride(PSE, Ptr, L);
|
|
// TODO: for now only allow consecutive strides of 1. We could support
|
|
// other strides as long as it is uniform, but let's keep it simple for
|
|
// now.
|
|
if (Stride == 0 && NextStride == 1) {
|
|
Stride = NextStride;
|
|
continue;
|
|
}
|
|
if (Stride != NextStride) {
|
|
LLVM_DEBUG(dbgs() << "Different strides found, can't "
|
|
"tail-predicate\n.");
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "tail-predication: all instructions allowed!\n");
|
|
return true;
|
|
}
|
|
|
|
bool ARMTTIImpl::preferPredicateOverEpilogue(Loop *L, LoopInfo *LI,
|
|
ScalarEvolution &SE,
|
|
AssumptionCache &AC,
|
|
TargetLibraryInfo *TLI,
|
|
DominatorTree *DT,
|
|
const LoopAccessInfo *LAI) {
|
|
if (DisableTailPredication)
|
|
return false;
|
|
|
|
// Creating a predicated vector loop is the first step for generating a
|
|
// tail-predicated hardware loop, for which we need the MVE masked
|
|
// load/stores instructions:
|
|
if (!ST->hasMVEIntegerOps())
|
|
return false;
|
|
|
|
// For now, restrict this to single block loops.
|
|
if (L->getNumBlocks() > 1) {
|
|
LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: not a single block "
|
|
"loop.\n");
|
|
return false;
|
|
}
|
|
|
|
assert(L->empty() && "preferPredicateOverEpilogue: inner-loop expected");
|
|
|
|
HardwareLoopInfo HWLoopInfo(L);
|
|
if (!HWLoopInfo.canAnalyze(*LI)) {
|
|
LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
|
|
"analyzable.\n");
|
|
return false;
|
|
}
|
|
|
|
// This checks if we have the low-overhead branch architecture
|
|
// extension, and if we will create a hardware-loop:
|
|
if (!isHardwareLoopProfitable(L, SE, AC, TLI, HWLoopInfo)) {
|
|
LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
|
|
"profitable.\n");
|
|
return false;
|
|
}
|
|
|
|
if (!HWLoopInfo.isHardwareLoopCandidate(SE, *LI, *DT)) {
|
|
LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
|
|
"a candidate.\n");
|
|
return false;
|
|
}
|
|
|
|
return canTailPredicateLoop(L, LI, SE, DL, LAI);
|
|
}
|
|
|
|
|
|
void ARMTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
|
|
TTI::UnrollingPreferences &UP) {
|
|
// Only currently enable these preferences for M-Class cores.
|
|
if (!ST->isMClass())
|
|
return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP);
|
|
|
|
// Disable loop unrolling for Oz and Os.
|
|
UP.OptSizeThreshold = 0;
|
|
UP.PartialOptSizeThreshold = 0;
|
|
if (L->getHeader()->getParent()->hasOptSize())
|
|
return;
|
|
|
|
// Only enable on Thumb-2 targets.
|
|
if (!ST->isThumb2())
|
|
return;
|
|
|
|
SmallVector<BasicBlock*, 4> ExitingBlocks;
|
|
L->getExitingBlocks(ExitingBlocks);
|
|
LLVM_DEBUG(dbgs() << "Loop has:\n"
|
|
<< "Blocks: " << L->getNumBlocks() << "\n"
|
|
<< "Exit blocks: " << ExitingBlocks.size() << "\n");
|
|
|
|
// Only allow another exit other than the latch. This acts as an early exit
|
|
// as it mirrors the profitability calculation of the runtime unroller.
|
|
if (ExitingBlocks.size() > 2)
|
|
return;
|
|
|
|
// Limit the CFG of the loop body for targets with a branch predictor.
|
|
// Allowing 4 blocks permits if-then-else diamonds in the body.
|
|
if (ST->hasBranchPredictor() && L->getNumBlocks() > 4)
|
|
return;
|
|
|
|
// Scan the loop: don't unroll loops with calls as this could prevent
|
|
// inlining.
|
|
unsigned Cost = 0;
|
|
for (auto *BB : L->getBlocks()) {
|
|
for (auto &I : *BB) {
|
|
// Don't unroll vectorised loop. MVE does not benefit from it as much as
|
|
// scalar code.
|
|
if (I.getType()->isVectorTy())
|
|
return;
|
|
|
|
if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
|
|
ImmutableCallSite CS(&I);
|
|
if (const Function *F = CS.getCalledFunction()) {
|
|
if (!isLoweredToCall(F))
|
|
continue;
|
|
}
|
|
return;
|
|
}
|
|
|
|
SmallVector<const Value*, 4> Operands(I.value_op_begin(),
|
|
I.value_op_end());
|
|
Cost += getUserCost(&I, Operands);
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n");
|
|
|
|
UP.Partial = true;
|
|
UP.Runtime = true;
|
|
UP.UpperBound = true;
|
|
UP.UnrollRemainder = true;
|
|
UP.DefaultUnrollRuntimeCount = 4;
|
|
UP.UnrollAndJam = true;
|
|
UP.UnrollAndJamInnerLoopThreshold = 60;
|
|
|
|
// Force unrolling small loops can be very useful because of the branch
|
|
// taken cost of the backedge.
|
|
if (Cost < 12)
|
|
UP.Force = true;
|
|
}
|
|
|
|
bool ARMTTIImpl::useReductionIntrinsic(unsigned Opcode, Type *Ty,
|
|
TTI::ReductionFlags Flags) const {
|
|
assert(isa<VectorType>(Ty) && "Expected Ty to be a vector type");
|
|
unsigned ScalarBits = Ty->getScalarSizeInBits();
|
|
if (!ST->hasMVEIntegerOps())
|
|
return false;
|
|
|
|
switch (Opcode) {
|
|
case Instruction::FAdd:
|
|
case Instruction::FMul:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
case Instruction::Mul:
|
|
case Instruction::FCmp:
|
|
return false;
|
|
case Instruction::ICmp:
|
|
case Instruction::Add:
|
|
return ScalarBits < 64 && ScalarBits * Ty->getVectorNumElements() == 128;
|
|
default:
|
|
llvm_unreachable("Unhandled reduction opcode");
|
|
}
|
|
return false;
|
|
}
|