llvm-project/llvm/tools/llvm-opt-report/OptReport.cpp

531 lines
18 KiB
C++

//===------------------ llvm-opt-report/OptReport.cpp ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief This file implements a tool that can parse the YAML optimization
/// records and generate an optimization summary annotated source listing
/// report.
///
//===----------------------------------------------------------------------===//
#include "llvm/Support/CommandLine.h"
#include "llvm/Demangle/Demangle.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorOr.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/LineIterator.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Program.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Signals.h"
#include "llvm/Support/YAMLTraits.h"
#include <cstdlib>
#include <map>
#include <set>
using namespace llvm;
using namespace llvm::yaml;
static cl::opt<bool> Help("h", cl::desc("Alias for -help"), cl::Hidden);
// Mark all our options with this category, everything else (except for -version
// and -help) will be hidden.
static cl::OptionCategory
OptReportCategory("llvm-opt-report options");
static cl::opt<std::string>
InputFileName(cl::Positional, cl::desc("<input>"), cl::init("-"),
cl::cat(OptReportCategory));
static cl::opt<std::string>
OutputFileName("o", cl::desc("Output file"), cl::init("-"),
cl::cat(OptReportCategory));
static cl::opt<std::string>
InputRelDir("r", cl::desc("Root for relative input paths"), cl::init(""),
cl::cat(OptReportCategory));
static cl::opt<bool>
Succinct("s", cl::desc("Don't include vectorization factors, etc."),
cl::init(false), cl::cat(OptReportCategory));
static cl::opt<bool>
NoDemangle("no-demangle", cl::desc("Don't demangle function names"),
cl::init(false), cl::cat(OptReportCategory));
namespace {
// For each location in the source file, the common per-transformation state
// collected.
struct OptReportLocationItemInfo {
bool Analyzed = false;
bool Transformed = false;
OptReportLocationItemInfo &operator |= (
const OptReportLocationItemInfo &RHS) {
Analyzed |= RHS.Analyzed;
Transformed |= RHS.Transformed;
return *this;
}
bool operator < (const OptReportLocationItemInfo &RHS) const {
if (Analyzed < RHS.Analyzed)
return true;
else if (Analyzed > RHS.Analyzed)
return false;
else if (Transformed < RHS.Transformed)
return true;
return false;
}
};
// The per-location information collected for producing an optimization report.
struct OptReportLocationInfo {
OptReportLocationItemInfo Inlined;
OptReportLocationItemInfo Unrolled;
OptReportLocationItemInfo Vectorized;
int VectorizationFactor = 1;
int InterleaveCount = 1;
int UnrollCount = 1;
OptReportLocationInfo &operator |= (const OptReportLocationInfo &RHS) {
Inlined |= RHS.Inlined;
Unrolled |= RHS.Unrolled;
Vectorized |= RHS.Vectorized;
VectorizationFactor =
std::max(VectorizationFactor, RHS.VectorizationFactor);
InterleaveCount = std::max(InterleaveCount, RHS.InterleaveCount);
UnrollCount = std::max(UnrollCount, RHS.UnrollCount);
return *this;
}
bool operator < (const OptReportLocationInfo &RHS) const {
if (Inlined < RHS.Inlined)
return true;
else if (RHS.Inlined < Inlined)
return false;
else if (Unrolled < RHS.Unrolled)
return true;
else if (RHS.Unrolled < Unrolled)
return false;
else if (Vectorized < RHS.Vectorized)
return true;
else if (RHS.Vectorized < Vectorized || Succinct)
return false;
else if (VectorizationFactor < RHS.VectorizationFactor)
return true;
else if (VectorizationFactor > RHS.VectorizationFactor)
return false;
else if (InterleaveCount < RHS.InterleaveCount)
return true;
else if (InterleaveCount > RHS.InterleaveCount)
return false;
else if (UnrollCount < RHS.UnrollCount)
return true;
return false;
}
};
typedef std::map<std::string, std::map<int, std::map<std::string, std::map<int,
OptReportLocationInfo>>>> LocationInfoTy;
} // anonymous namespace
static void collectLocationInfo(yaml::Stream &Stream,
LocationInfoTy &LocationInfo) {
SmallVector<char, 8> Tmp;
// Note: We're using the YAML parser here directly, instead of using the
// YAMLTraits implementation, because the YAMLTraits implementation does not
// support a way to handle only a subset of the input keys (it will error out
// if there is an input key that you don't map to your class), and
// furthermore, it does not provide a way to handle the Args sequence of
// key/value pairs, where the order must be captured and the 'String' key
// might be repeated.
for (auto &Doc : Stream) {
auto *Root = dyn_cast<yaml::MappingNode>(Doc.getRoot());
if (!Root)
continue;
bool Transformed = Root->getRawTag() == "!Passed";
std::string Pass, File, Function;
int Line = 0, Column = 1;
int VectorizationFactor = 1;
int InterleaveCount = 1;
int UnrollCount = 1;
for (auto &RootChild : *Root) {
auto *Key = dyn_cast<yaml::ScalarNode>(RootChild.getKey());
if (!Key)
continue;
StringRef KeyName = Key->getValue(Tmp);
if (KeyName == "Pass") {
auto *Value = dyn_cast<yaml::ScalarNode>(RootChild.getValue());
if (!Value)
continue;
Pass = Value->getValue(Tmp);
} else if (KeyName == "Function") {
auto *Value = dyn_cast<yaml::ScalarNode>(RootChild.getValue());
if (!Value)
continue;
Function = Value->getValue(Tmp);
} else if (KeyName == "DebugLoc") {
auto *DebugLoc = dyn_cast<yaml::MappingNode>(RootChild.getValue());
if (!DebugLoc)
continue;
for (auto &DLChild : *DebugLoc) {
auto *DLKey = dyn_cast<yaml::ScalarNode>(DLChild.getKey());
if (!DLKey)
continue;
StringRef DLKeyName = DLKey->getValue(Tmp);
if (DLKeyName == "File") {
auto *Value = dyn_cast<yaml::ScalarNode>(DLChild.getValue());
if (!Value)
continue;
File = Value->getValue(Tmp);
} else if (DLKeyName == "Line") {
auto *Value = dyn_cast<yaml::ScalarNode>(DLChild.getValue());
if (!Value)
continue;
Value->getValue(Tmp).getAsInteger(10, Line);
} else if (DLKeyName == "Column") {
auto *Value = dyn_cast<yaml::ScalarNode>(DLChild.getValue());
if (!Value)
continue;
Value->getValue(Tmp).getAsInteger(10, Column);
}
}
} else if (KeyName == "Args") {
auto *Args = dyn_cast<yaml::SequenceNode>(RootChild.getValue());
if (!Args)
continue;
for (auto &ArgChild : *Args) {
auto *ArgMap = dyn_cast<yaml::MappingNode>(&ArgChild);
if (!ArgMap)
continue;
for (auto &ArgKV : *ArgMap) {
auto *ArgKey = dyn_cast<yaml::ScalarNode>(ArgKV.getKey());
if (!ArgKey)
continue;
StringRef ArgKeyName = ArgKey->getValue(Tmp);
if (ArgKeyName == "VectorizationFactor") {
auto *Value = dyn_cast<yaml::ScalarNode>(ArgKV.getValue());
if (!Value)
continue;
Value->getValue(Tmp).getAsInteger(10, VectorizationFactor);
} else if (ArgKeyName == "InterleaveCount") {
auto *Value = dyn_cast<yaml::ScalarNode>(ArgKV.getValue());
if (!Value)
continue;
Value->getValue(Tmp).getAsInteger(10, InterleaveCount);
} else if (ArgKeyName == "UnrollCount") {
auto *Value = dyn_cast<yaml::ScalarNode>(ArgKV.getValue());
if (!Value)
continue;
Value->getValue(Tmp).getAsInteger(10, UnrollCount);
}
}
}
}
}
if (Line < 1 || File.empty())
continue;
// We track information on both actual and potential transformations. This
// way, if there are multiple possible things on a line that are, or could
// have been transformed, we can indicate that explicitly in the output.
auto UpdateLLII = [Transformed](OptReportLocationItemInfo &LLII) {
LLII.Analyzed = true;
if (Transformed)
LLII.Transformed = true;
};
if (Pass == "inline") {
auto &LI = LocationInfo[File][Line][Function][Column];
UpdateLLII(LI.Inlined);
} else if (Pass == "loop-unroll") {
auto &LI = LocationInfo[File][Line][Function][Column];
LI.UnrollCount = UnrollCount;
UpdateLLII(LI.Unrolled);
} else if (Pass == "loop-vectorize") {
auto &LI = LocationInfo[File][Line][Function][Column];
LI.VectorizationFactor = VectorizationFactor;
LI.InterleaveCount = InterleaveCount;
UpdateLLII(LI.Vectorized);
}
}
}
static bool readLocationInfo(LocationInfoTy &LocationInfo) {
ErrorOr<std::unique_ptr<MemoryBuffer>> Buf =
MemoryBuffer::getFileOrSTDIN(InputFileName);
if (std::error_code EC = Buf.getError()) {
errs() << "error: Can't open file " << InputFileName << ": " <<
EC.message() << "\n";
return false;
}
SourceMgr SM;
yaml::Stream Stream(Buf.get()->getBuffer(), SM);
collectLocationInfo(Stream, LocationInfo);
return true;
}
static bool writeReport(LocationInfoTy &LocationInfo) {
std::error_code EC;
llvm::raw_fd_ostream OS(OutputFileName, EC,
llvm::sys::fs::F_Text);
if (EC) {
errs() << "error: Can't open file " << OutputFileName << ": " <<
EC.message() << "\n";
return false;
}
bool FirstFile = true;
for (auto &FI : LocationInfo) {
SmallString<128> FileName(FI.first);
if (!InputRelDir.empty()) {
if (std::error_code EC = sys::fs::make_absolute(InputRelDir, FileName)) {
errs() << "error: Can't resolve file path to " << FileName << ": " <<
EC.message() << "\n";
return false;
}
}
const auto &FileInfo = FI.second;
ErrorOr<std::unique_ptr<MemoryBuffer>> Buf =
MemoryBuffer::getFile(FileName);
if (std::error_code EC = Buf.getError()) {
errs() << "error: Can't open file " << FileName << ": " <<
EC.message() << "\n";
return false;
}
if (FirstFile)
FirstFile = false;
else
OS << "\n";
OS << "< " << FileName << "\n";
// Figure out how many characters we need for the vectorization factors
// and similar.
OptReportLocationInfo MaxLI;
for (auto &FLI : FileInfo)
for (auto &FI : FLI.second)
for (auto &LI : FI.second)
MaxLI |= LI.second;
bool NothingInlined = !MaxLI.Inlined.Transformed;
bool NothingUnrolled = !MaxLI.Unrolled.Transformed;
bool NothingVectorized = !MaxLI.Vectorized.Transformed;
unsigned VFDigits = llvm::utostr(MaxLI.VectorizationFactor).size();
unsigned ICDigits = llvm::utostr(MaxLI.InterleaveCount).size();
unsigned UCDigits = llvm::utostr(MaxLI.UnrollCount).size();
// Figure out how many characters we need for the line numbers.
int64_t NumLines = 0;
for (line_iterator LI(*Buf.get(), false); LI != line_iterator(); ++LI)
++NumLines;
unsigned LNDigits = llvm::utostr(NumLines).size();
for (line_iterator LI(*Buf.get(), false); LI != line_iterator(); ++LI) {
int64_t L = LI.line_number();
auto LII = FileInfo.find(L);
auto PrintLine = [&](bool PrintFuncName,
const std::set<std::string> &FuncNameSet) {
OptReportLocationInfo LLI;
std::map<int, OptReportLocationInfo> ColsInfo;
unsigned InlinedCols = 0, UnrolledCols = 0, VectorizedCols = 0;
if (LII != FileInfo.end() && !FuncNameSet.empty()) {
const auto &LineInfo = LII->second;
for (auto &CI : LineInfo.find(*FuncNameSet.begin())->second) {
int Col = CI.first;
ColsInfo[Col] = CI.second;
InlinedCols += CI.second.Inlined.Analyzed;
UnrolledCols += CI.second.Unrolled.Analyzed;
VectorizedCols += CI.second.Vectorized.Analyzed;
LLI |= CI.second;
}
}
if (PrintFuncName) {
OS << " > ";
bool FirstFunc = true;
for (const auto &FuncName : FuncNameSet) {
if (FirstFunc)
FirstFunc = false;
else
OS << ", ";
bool Printed = false;
if (!NoDemangle) {
int Status = 0;
char *Demangled =
itaniumDemangle(FuncName.c_str(), nullptr, nullptr, &Status);
if (Demangled && Status == 0) {
OS << Demangled;
Printed = true;
}
if (Demangled)
std::free(Demangled);
}
if (!Printed)
OS << FuncName;
}
OS << ":\n";
}
// We try to keep the output as concise as possible. If only one thing on
// a given line could have been inlined, vectorized, etc. then we can put
// the marker on the source line itself. If there are multiple options
// then we want to distinguish them by placing the marker for each
// transformation on a separate line following the source line. When we
// do this, we use a '^' character to point to the appropriate column in
// the source line.
std::string USpaces(Succinct ? 0 : UCDigits, ' ');
std::string VSpaces(Succinct ? 0 : VFDigits + ICDigits + 1, ' ');
auto UStr = [UCDigits](OptReportLocationInfo &LLI) {
std::string R;
raw_string_ostream RS(R);
if (!Succinct) {
RS << LLI.UnrollCount;
RS << std::string(UCDigits - RS.str().size(), ' ');
}
return RS.str();
};
auto VStr = [VFDigits,
ICDigits](OptReportLocationInfo &LLI) -> std::string {
std::string R;
raw_string_ostream RS(R);
if (!Succinct) {
RS << LLI.VectorizationFactor << "," << LLI.InterleaveCount;
RS << std::string(VFDigits + ICDigits + 1 - RS.str().size(), ' ');
}
return RS.str();
};
OS << llvm::format_decimal(L, LNDigits) << " ";
OS << (LLI.Inlined.Transformed && InlinedCols < 2 ? "I" :
(NothingInlined ? "" : " "));
OS << (LLI.Unrolled.Transformed && UnrolledCols < 2 ?
"U" + UStr(LLI) : (NothingUnrolled ? "" : " " + USpaces));
OS << (LLI.Vectorized.Transformed && VectorizedCols < 2 ?
"V" + VStr(LLI) : (NothingVectorized ? "" : " " + VSpaces));
OS << " | " << *LI << "\n";
for (auto &J : ColsInfo) {
if ((J.second.Inlined.Transformed && InlinedCols > 1) ||
(J.second.Unrolled.Transformed && UnrolledCols > 1) ||
(J.second.Vectorized.Transformed && VectorizedCols > 1)) {
OS << std::string(LNDigits + 1, ' ');
OS << (J.second.Inlined.Transformed &&
InlinedCols > 1 ? "I" : (NothingInlined ? "" : " "));
OS << (J.second.Unrolled.Transformed &&
UnrolledCols > 1 ? "U" + UStr(J.second) :
(NothingUnrolled ? "" : " " + USpaces));
OS << (J.second.Vectorized.Transformed &&
VectorizedCols > 1 ? "V" + VStr(J.second) :
(NothingVectorized ? "" : " " + VSpaces));
OS << " | " << std::string(J.first - 1, ' ') << "^\n";
}
}
};
// We need to figure out if the optimizations for this line were the same
// in each function context. If not, then we want to group the similar
// function contexts together and display each group separately. If
// they're all the same, then we only display the line once without any
// additional markings.
std::map<std::map<int, OptReportLocationInfo>,
std::set<std::string>> UniqueLIs;
OptReportLocationInfo AllLI;
if (LII != FileInfo.end()) {
const auto &FuncLineInfo = LII->second;
for (const auto &FLII : FuncLineInfo) {
UniqueLIs[FLII.second].insert(FLII.first);
for (const auto &OI : FLII.second)
AllLI |= OI.second;
}
}
bool NothingHappened = !AllLI.Inlined.Transformed &&
!AllLI.Unrolled.Transformed &&
!AllLI.Vectorized.Transformed;
if (UniqueLIs.size() > 1 && !NothingHappened) {
OS << " [[\n";
for (const auto &FSLI : UniqueLIs)
PrintLine(true, FSLI.second);
OS << " ]]\n";
} else if (UniqueLIs.size() == 1) {
PrintLine(false, UniqueLIs.begin()->second);
} else {
PrintLine(false, std::set<std::string>());
}
}
}
return true;
}
int main(int argc, const char **argv) {
sys::PrintStackTraceOnErrorSignal(argv[0]);
cl::HideUnrelatedOptions(OptReportCategory);
cl::ParseCommandLineOptions(
argc, argv,
"A tool to generate an optimization report from YAML optimization"
" record files.\n");
if (Help) {
cl::PrintHelpMessage();
return 0;
}
LocationInfoTy LocationInfo;
if (!readLocationInfo(LocationInfo))
return 1;
if (!writeReport(LocationInfo))
return 1;
return 0;
}