llvm-project/bolt/lib/Core/BinaryBasicBlock.cpp

621 lines
19 KiB
C++

//===- bolt/Core/BinaryBasicBlock.cpp - Low-level basic block -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the BinaryBasicBlock class.
//
//===----------------------------------------------------------------------===//
#include "bolt/Core/BinaryBasicBlock.h"
#include "bolt/Core/BinaryContext.h"
#include "bolt/Core/BinaryFunction.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/Errc.h"
#define DEBUG_TYPE "bolt"
namespace llvm {
namespace bolt {
constexpr uint32_t BinaryBasicBlock::INVALID_OFFSET;
bool operator<(const BinaryBasicBlock &LHS, const BinaryBasicBlock &RHS) {
return LHS.Index < RHS.Index;
}
bool BinaryBasicBlock::hasCFG() const { return getParent()->hasCFG(); }
bool BinaryBasicBlock::isEntryPoint() const {
return getParent()->isEntryPoint(*this);
}
bool BinaryBasicBlock::hasInstructions() const {
return getParent()->hasInstructions();
}
bool BinaryBasicBlock::hasJumpTable() const {
const MCInst *Inst = getLastNonPseudoInstr();
const JumpTable *JT = Inst ? Function->getJumpTable(*Inst) : nullptr;
return (JT != nullptr);
}
void BinaryBasicBlock::adjustNumPseudos(const MCInst &Inst, int Sign) {
BinaryContext &BC = Function->getBinaryContext();
if (BC.MIB->isPseudo(Inst))
NumPseudos += Sign;
}
BinaryBasicBlock::iterator BinaryBasicBlock::getFirstNonPseudo() {
const BinaryContext &BC = Function->getBinaryContext();
for (auto II = Instructions.begin(), E = Instructions.end(); II != E; ++II) {
if (!BC.MIB->isPseudo(*II))
return II;
}
return end();
}
BinaryBasicBlock::reverse_iterator BinaryBasicBlock::getLastNonPseudo() {
const BinaryContext &BC = Function->getBinaryContext();
for (auto RII = Instructions.rbegin(), E = Instructions.rend(); RII != E;
++RII) {
if (!BC.MIB->isPseudo(*RII))
return RII;
}
return rend();
}
bool BinaryBasicBlock::validateSuccessorInvariants() {
const MCInst *Inst = getLastNonPseudoInstr();
const JumpTable *JT = Inst ? Function->getJumpTable(*Inst) : nullptr;
BinaryContext &BC = Function->getBinaryContext();
bool Valid = true;
if (JT) {
// Note: for now we assume that successors do not reference labels from
// any overlapping jump tables. We only look at the entries for the jump
// table that is referenced at the last instruction.
const auto Range = JT->getEntriesForAddress(BC.MIB->getJumpTable(*Inst));
const std::vector<const MCSymbol *> Entries(
std::next(JT->Entries.begin(), Range.first),
std::next(JT->Entries.begin(), Range.second));
std::set<const MCSymbol *> UniqueSyms(Entries.begin(), Entries.end());
for (BinaryBasicBlock *Succ : Successors) {
auto Itr = UniqueSyms.find(Succ->getLabel());
if (Itr != UniqueSyms.end()) {
UniqueSyms.erase(Itr);
} else {
// Work on the assumption that jump table blocks don't
// have a conditional successor.
Valid = false;
errs() << "BOLT-WARNING: Jump table successor " << Succ->getName()
<< " not contained in the jump table.\n";
}
}
// If there are any leftover entries in the jump table, they
// must be one of the function end labels.
if (Valid) {
for (const MCSymbol *Sym : UniqueSyms) {
Valid &= (Sym == Function->getFunctionEndLabel() ||
Sym == Function->getFunctionColdEndLabel());
if (!Valid) {
errs() << "BOLT-WARNING: Jump table contains illegal entry: "
<< Sym->getName() << "\n";
}
}
}
} else {
// Unknown control flow.
if (Inst && BC.MIB->isIndirectBranch(*Inst))
return true;
const MCSymbol *TBB = nullptr;
const MCSymbol *FBB = nullptr;
MCInst *CondBranch = nullptr;
MCInst *UncondBranch = nullptr;
if (analyzeBranch(TBB, FBB, CondBranch, UncondBranch)) {
switch (Successors.size()) {
case 0:
Valid = !CondBranch && !UncondBranch;
break;
case 1: {
const bool HasCondBlock =
CondBranch && Function->getBasicBlockForLabel(
BC.MIB->getTargetSymbol(*CondBranch));
Valid = !CondBranch || !HasCondBlock;
break;
}
case 2:
Valid = (CondBranch &&
(TBB == getConditionalSuccessor(true)->getLabel() &&
((!UncondBranch && !FBB) ||
(UncondBranch &&
FBB == getConditionalSuccessor(false)->getLabel()))));
break;
}
}
}
if (!Valid) {
errs() << "BOLT-WARNING: CFG invalid in " << *getFunction() << " @ "
<< getName() << "\n";
if (JT) {
errs() << "Jump Table instruction addr = 0x"
<< Twine::utohexstr(BC.MIB->getJumpTable(*Inst)) << "\n";
JT->print(errs());
}
getFunction()->dump();
}
return Valid;
}
BinaryBasicBlock *BinaryBasicBlock::getSuccessor(const MCSymbol *Label) const {
if (!Label && succ_size() == 1)
return *succ_begin();
for (BinaryBasicBlock *BB : successors())
if (BB->getLabel() == Label)
return BB;
return nullptr;
}
BinaryBasicBlock *BinaryBasicBlock::getSuccessor(const MCSymbol *Label,
BinaryBranchInfo &BI) const {
auto BIIter = branch_info_begin();
for (BinaryBasicBlock *BB : successors()) {
if (BB->getLabel() == Label) {
BI = *BIIter;
return BB;
}
++BIIter;
}
return nullptr;
}
BinaryBasicBlock *BinaryBasicBlock::getLandingPad(const MCSymbol *Label) const {
for (BinaryBasicBlock *BB : landing_pads())
if (BB->getLabel() == Label)
return BB;
return nullptr;
}
int32_t BinaryBasicBlock::getCFIStateAtInstr(const MCInst *Instr) const {
assert(
getFunction()->getState() >= BinaryFunction::State::CFG &&
"can only calculate CFI state when function is in or past the CFG state");
const BinaryFunction::CFIInstrMapType &FDEProgram =
getFunction()->getFDEProgram();
// Find the last CFI preceding Instr in this basic block.
const MCInst *LastCFI = nullptr;
bool InstrSeen = (Instr == nullptr);
for (auto RII = Instructions.rbegin(), E = Instructions.rend(); RII != E;
++RII) {
if (!InstrSeen) {
InstrSeen = (&*RII == Instr);
continue;
}
if (Function->getBinaryContext().MIB->isCFI(*RII)) {
LastCFI = &*RII;
break;
}
}
assert(InstrSeen && "instruction expected in basic block");
// CFI state is the same as at basic block entry point.
if (!LastCFI)
return getCFIState();
// Fold all RememberState/RestoreState sequences, such as for:
//
// [ CFI #(K-1) ]
// RememberState (#K)
// ....
// RestoreState
// RememberState
// ....
// RestoreState
// [ GNU_args_size ]
// RememberState
// ....
// RestoreState <- LastCFI
//
// we return K - the most efficient state to (re-)generate.
int64_t State = LastCFI->getOperand(0).getImm();
while (State >= 0 &&
FDEProgram[State].getOperation() == MCCFIInstruction::OpRestoreState) {
int32_t Depth = 1;
--State;
assert(State >= 0 && "first CFI cannot be RestoreState");
while (Depth && State >= 0) {
const MCCFIInstruction &CFIInstr = FDEProgram[State];
if (CFIInstr.getOperation() == MCCFIInstruction::OpRestoreState)
++Depth;
else if (CFIInstr.getOperation() == MCCFIInstruction::OpRememberState)
--Depth;
--State;
}
assert(Depth == 0 && "unbalanced RememberState/RestoreState stack");
// Skip any GNU_args_size.
while (State >= 0 && FDEProgram[State].getOperation() ==
MCCFIInstruction::OpGnuArgsSize) {
--State;
}
}
assert((State + 1 >= 0) && "miscalculated CFI state");
return State + 1;
}
void BinaryBasicBlock::addSuccessor(BinaryBasicBlock *Succ, uint64_t Count,
uint64_t MispredictedCount) {
Successors.push_back(Succ);
BranchInfo.push_back({Count, MispredictedCount});
Succ->Predecessors.push_back(this);
}
void BinaryBasicBlock::replaceSuccessor(BinaryBasicBlock *Succ,
BinaryBasicBlock *NewSucc,
uint64_t Count,
uint64_t MispredictedCount) {
Succ->removePredecessor(this, /*Multiple=*/false);
auto I = succ_begin();
auto BI = BranchInfo.begin();
for (; I != succ_end(); ++I) {
assert(BI != BranchInfo.end() && "missing BranchInfo entry");
if (*I == Succ)
break;
++BI;
}
assert(I != succ_end() && "no such successor!");
*I = NewSucc;
*BI = BinaryBranchInfo{Count, MispredictedCount};
NewSucc->addPredecessor(this);
}
void BinaryBasicBlock::removeAllSuccessors() {
SmallPtrSet<BinaryBasicBlock *, 2> UniqSuccessors(succ_begin(), succ_end());
for (BinaryBasicBlock *SuccessorBB : UniqSuccessors)
SuccessorBB->removePredecessor(this);
Successors.clear();
BranchInfo.clear();
}
void BinaryBasicBlock::removeSuccessor(BinaryBasicBlock *Succ) {
Succ->removePredecessor(this, /*Multiple=*/false);
auto I = succ_begin();
auto BI = BranchInfo.begin();
for (; I != succ_end(); ++I) {
assert(BI != BranchInfo.end() && "missing BranchInfo entry");
if (*I == Succ)
break;
++BI;
}
assert(I != succ_end() && "no such successor!");
Successors.erase(I);
BranchInfo.erase(BI);
}
void BinaryBasicBlock::addPredecessor(BinaryBasicBlock *Pred) {
Predecessors.push_back(Pred);
}
void BinaryBasicBlock::removePredecessor(BinaryBasicBlock *Pred,
bool Multiple) {
// Note: the predecessor could be listed multiple times.
bool Erased = false;
for (auto PredI = Predecessors.begin(); PredI != Predecessors.end();) {
if (*PredI == Pred) {
Erased = true;
PredI = Predecessors.erase(PredI);
if (!Multiple)
return;
} else {
++PredI;
}
}
assert(Erased && "Pred is not a predecessor of this block!");
}
void BinaryBasicBlock::removeDuplicateConditionalSuccessor(MCInst *CondBranch) {
assert(succ_size() == 2 && Successors[0] == Successors[1] &&
"conditional successors expected");
BinaryBasicBlock *Succ = Successors[0];
const BinaryBranchInfo CondBI = BranchInfo[0];
const BinaryBranchInfo UncondBI = BranchInfo[1];
eraseInstruction(findInstruction(CondBranch));
Successors.clear();
BranchInfo.clear();
Successors.push_back(Succ);
uint64_t Count = COUNT_NO_PROFILE;
if (CondBI.Count != COUNT_NO_PROFILE && UncondBI.Count != COUNT_NO_PROFILE)
Count = CondBI.Count + UncondBI.Count;
BranchInfo.push_back({Count, 0});
}
void BinaryBasicBlock::adjustExecutionCount(double Ratio) {
auto adjustedCount = [&](uint64_t Count) -> uint64_t {
double NewCount = Count * Ratio;
if (!NewCount && Count && (Ratio > 0.0))
NewCount = 1;
return NewCount;
};
setExecutionCount(adjustedCount(getKnownExecutionCount()));
for (BinaryBranchInfo &BI : branch_info()) {
if (BI.Count != COUNT_NO_PROFILE)
BI.Count = adjustedCount(BI.Count);
if (BI.MispredictedCount != COUNT_INFERRED)
BI.MispredictedCount = adjustedCount(BI.MispredictedCount);
}
}
bool BinaryBasicBlock::analyzeBranch(const MCSymbol *&TBB, const MCSymbol *&FBB,
MCInst *&CondBranch,
MCInst *&UncondBranch) {
auto &MIB = Function->getBinaryContext().MIB;
return MIB->analyzeBranch(Instructions.begin(), Instructions.end(), TBB, FBB,
CondBranch, UncondBranch);
}
bool BinaryBasicBlock::isMacroOpFusionPair(const_iterator I) const {
auto &MIB = Function->getBinaryContext().MIB;
ArrayRef<MCInst> Insts = Instructions;
return MIB->isMacroOpFusionPair(Insts.slice(I - begin()));
}
BinaryBasicBlock::const_iterator
BinaryBasicBlock::getMacroOpFusionPair() const {
if (!Function->getBinaryContext().isX86())
return end();
if (getNumNonPseudos() < 2 || succ_size() != 2)
return end();
auto RI = getLastNonPseudo();
assert(RI != rend() && "cannot have an empty block with 2 successors");
BinaryContext &BC = Function->getBinaryContext();
// Skip instruction if it's an unconditional branch following
// a conditional one.
if (BC.MIB->isUnconditionalBranch(*RI))
++RI;
if (!BC.MIB->isConditionalBranch(*RI))
return end();
// Start checking with instruction preceding the conditional branch.
++RI;
if (RI == rend())
return end();
auto II = std::prev(RI.base()); // convert to a forward iterator
if (isMacroOpFusionPair(II))
return II;
return end();
}
MCInst *BinaryBasicBlock::getTerminatorBefore(MCInst *Pos) {
BinaryContext &BC = Function->getBinaryContext();
auto Itr = rbegin();
bool Check = Pos ? false : true;
MCInst *FirstTerminator = nullptr;
while (Itr != rend()) {
if (!Check) {
if (&*Itr == Pos)
Check = true;
++Itr;
continue;
}
if (BC.MIB->isTerminator(*Itr))
FirstTerminator = &*Itr;
++Itr;
}
return FirstTerminator;
}
bool BinaryBasicBlock::hasTerminatorAfter(MCInst *Pos) {
BinaryContext &BC = Function->getBinaryContext();
auto Itr = rbegin();
while (Itr != rend()) {
if (&*Itr == Pos)
return false;
if (BC.MIB->isTerminator(*Itr))
return true;
++Itr;
}
return false;
}
bool BinaryBasicBlock::swapConditionalSuccessors() {
if (succ_size() != 2)
return false;
std::swap(Successors[0], Successors[1]);
std::swap(BranchInfo[0], BranchInfo[1]);
return true;
}
void BinaryBasicBlock::addBranchInstruction(const BinaryBasicBlock *Successor) {
assert(isSuccessor(Successor));
BinaryContext &BC = Function->getBinaryContext();
MCInst NewInst;
std::unique_lock<std::shared_timed_mutex> Lock(BC.CtxMutex);
BC.MIB->createUncondBranch(NewInst, Successor->getLabel(), BC.Ctx.get());
Instructions.emplace_back(std::move(NewInst));
}
void BinaryBasicBlock::addTailCallInstruction(const MCSymbol *Target) {
BinaryContext &BC = Function->getBinaryContext();
MCInst NewInst;
BC.MIB->createTailCall(NewInst, Target, BC.Ctx.get());
Instructions.emplace_back(std::move(NewInst));
}
uint32_t BinaryBasicBlock::getNumCalls() const {
uint32_t N = 0;
BinaryContext &BC = Function->getBinaryContext();
for (const MCInst &Instr : Instructions) {
if (BC.MIB->isCall(Instr))
++N;
}
return N;
}
uint32_t BinaryBasicBlock::getNumPseudos() const {
#ifndef NDEBUG
BinaryContext &BC = Function->getBinaryContext();
uint32_t N = 0;
for (const MCInst &Instr : Instructions)
if (BC.MIB->isPseudo(Instr))
++N;
if (N != NumPseudos) {
errs() << "BOLT-ERROR: instructions for basic block " << getName()
<< " in function " << *Function << ": calculated pseudos " << N
<< ", set pseudos " << NumPseudos << ", size " << size() << '\n';
llvm_unreachable("pseudos mismatch");
}
#endif
return NumPseudos;
}
ErrorOr<std::pair<double, double>>
BinaryBasicBlock::getBranchStats(const BinaryBasicBlock *Succ) const {
if (Function->hasValidProfile()) {
uint64_t TotalCount = 0;
uint64_t TotalMispreds = 0;
for (const BinaryBranchInfo &BI : BranchInfo) {
if (BI.Count != COUNT_NO_PROFILE) {
TotalCount += BI.Count;
TotalMispreds += BI.MispredictedCount;
}
}
if (TotalCount > 0) {
auto Itr = std::find(Successors.begin(), Successors.end(), Succ);
assert(Itr != Successors.end());
const BinaryBranchInfo &BI = BranchInfo[Itr - Successors.begin()];
if (BI.Count && BI.Count != COUNT_NO_PROFILE) {
if (TotalMispreds == 0)
TotalMispreds = 1;
return std::make_pair(double(BI.Count) / TotalCount,
double(BI.MispredictedCount) / TotalMispreds);
}
}
}
return make_error_code(llvm::errc::result_out_of_range);
}
void BinaryBasicBlock::dump() const {
BinaryContext &BC = Function->getBinaryContext();
if (Label)
outs() << Label->getName() << ":\n";
BC.printInstructions(outs(), Instructions.begin(), Instructions.end(),
getOffset());
outs() << "preds:";
for (auto itr = pred_begin(); itr != pred_end(); ++itr) {
outs() << " " << (*itr)->getName();
}
outs() << "\nsuccs:";
for (auto itr = succ_begin(); itr != succ_end(); ++itr) {
outs() << " " << (*itr)->getName();
}
outs() << "\n";
}
uint64_t BinaryBasicBlock::estimateSize(const MCCodeEmitter *Emitter) const {
return Function->getBinaryContext().computeCodeSize(begin(), end(), Emitter);
}
BinaryBasicBlock::BinaryBranchInfo &
BinaryBasicBlock::getBranchInfo(const BinaryBasicBlock &Succ) {
auto BI = branch_info_begin();
for (BinaryBasicBlock *BB : successors()) {
if (&Succ == BB)
return *BI;
++BI;
}
llvm_unreachable("Invalid successor");
return *BI;
}
BinaryBasicBlock::BinaryBranchInfo &
BinaryBasicBlock::getBranchInfo(const MCSymbol *Label) {
auto BI = branch_info_begin();
for (BinaryBasicBlock *BB : successors()) {
if (BB->getLabel() == Label)
return *BI;
++BI;
}
llvm_unreachable("Invalid successor");
return *BI;
}
BinaryBasicBlock *BinaryBasicBlock::splitAt(iterator II) {
assert(II != end() && "expected iterator pointing to instruction");
BinaryBasicBlock *NewBlock = getFunction()->addBasicBlock(0);
// Adjust successors/predecessors and propagate the execution count.
moveAllSuccessorsTo(NewBlock);
addSuccessor(NewBlock, getExecutionCount(), 0);
// Set correct CFI state for the new block.
NewBlock->setCFIState(getCFIStateAtInstr(&*II));
// Move instructions over.
adjustNumPseudos(II, end(), -1);
NewBlock->addInstructions(II, end());
Instructions.erase(II, end());
return NewBlock;
}
void BinaryBasicBlock::updateOutputValues(const MCAsmLayout &Layout) {
if (!LocSyms)
return;
const uint64_t BBAddress = getOutputAddressRange().first;
const uint64_t BBOffset = Layout.getSymbolOffset(*getLabel());
for (const auto &LocSymKV : *LocSyms) {
const uint32_t InputFunctionOffset = LocSymKV.first;
const uint32_t OutputOffset = static_cast<uint32_t>(
Layout.getSymbolOffset(*LocSymKV.second) - BBOffset);
getOffsetTranslationTable().emplace_back(
std::make_pair(OutputOffset, InputFunctionOffset));
// Update reverse (relative to BAT) address lookup table for function.
if (getFunction()->requiresAddressTranslation()) {
getFunction()->getInputOffsetToAddressMap().emplace(
std::make_pair(InputFunctionOffset, OutputOffset + BBAddress));
}
}
LocSyms.reset(nullptr);
}
} // namespace bolt
} // namespace llvm