forked from OSchip/llvm-project
335 lines
12 KiB
C++
335 lines
12 KiB
C++
//== SimpleConstraintManager.cpp --------------------------------*- C++ -*--==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines SimpleConstraintManager, a class that holds code shared
|
|
// between BasicConstraintManager and RangeConstraintManager.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SimpleConstraintManager.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
|
|
|
|
namespace clang {
|
|
|
|
namespace ento {
|
|
|
|
SimpleConstraintManager::~SimpleConstraintManager() {}
|
|
|
|
bool SimpleConstraintManager::canReasonAbout(SVal X) const {
|
|
Optional<nonloc::SymbolVal> SymVal = X.getAs<nonloc::SymbolVal>();
|
|
if (SymVal && SymVal->isExpression()) {
|
|
const SymExpr *SE = SymVal->getSymbol();
|
|
|
|
if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) {
|
|
switch (SIE->getOpcode()) {
|
|
// We don't reason yet about bitwise-constraints on symbolic values.
|
|
case BO_And:
|
|
case BO_Or:
|
|
case BO_Xor:
|
|
return false;
|
|
// We don't reason yet about these arithmetic constraints on
|
|
// symbolic values.
|
|
case BO_Mul:
|
|
case BO_Div:
|
|
case BO_Rem:
|
|
case BO_Shl:
|
|
case BO_Shr:
|
|
return false;
|
|
// All other cases.
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(SE)) {
|
|
if (BinaryOperator::isComparisonOp(SSE->getOpcode())) {
|
|
// We handle Loc <> Loc comparisons, but not (yet) NonLoc <> NonLoc.
|
|
if (Loc::isLocType(SSE->getLHS()->getType())) {
|
|
assert(Loc::isLocType(SSE->getRHS()->getType()));
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
ProgramStateRef SimpleConstraintManager::assume(ProgramStateRef state,
|
|
DefinedSVal Cond,
|
|
bool Assumption) {
|
|
// If we have a Loc value, cast it to a bool NonLoc first.
|
|
if (Optional<Loc> LV = Cond.getAs<Loc>()) {
|
|
SValBuilder &SVB = state->getStateManager().getSValBuilder();
|
|
QualType T;
|
|
const MemRegion *MR = LV->getAsRegion();
|
|
if (const TypedRegion *TR = dyn_cast_or_null<TypedRegion>(MR))
|
|
T = TR->getLocationType();
|
|
else
|
|
T = SVB.getContext().VoidPtrTy;
|
|
|
|
Cond = SVB.evalCast(*LV, SVB.getContext().BoolTy, T).castAs<DefinedSVal>();
|
|
}
|
|
|
|
return assume(state, Cond.castAs<NonLoc>(), Assumption);
|
|
}
|
|
|
|
ProgramStateRef SimpleConstraintManager::assume(ProgramStateRef state,
|
|
NonLoc cond,
|
|
bool assumption) {
|
|
state = assumeAux(state, cond, assumption);
|
|
if (NotifyAssumeClients && SU)
|
|
return SU->processAssume(state, cond, assumption);
|
|
return state;
|
|
}
|
|
|
|
|
|
ProgramStateRef
|
|
SimpleConstraintManager::assumeAuxForSymbol(ProgramStateRef State,
|
|
SymbolRef Sym, bool Assumption) {
|
|
BasicValueFactory &BVF = getBasicVals();
|
|
QualType T = Sym->getType();
|
|
|
|
// None of the constraint solvers currently support non-integer types.
|
|
if (!T->isIntegralOrEnumerationType())
|
|
return State;
|
|
|
|
const llvm::APSInt &zero = BVF.getValue(0, T);
|
|
if (Assumption)
|
|
return assumeSymNE(State, Sym, zero, zero);
|
|
else
|
|
return assumeSymEQ(State, Sym, zero, zero);
|
|
}
|
|
|
|
ProgramStateRef SimpleConstraintManager::assumeAux(ProgramStateRef state,
|
|
NonLoc Cond,
|
|
bool Assumption) {
|
|
|
|
// We cannot reason about SymSymExprs, and can only reason about some
|
|
// SymIntExprs.
|
|
if (!canReasonAbout(Cond)) {
|
|
// Just add the constraint to the expression without trying to simplify.
|
|
SymbolRef sym = Cond.getAsSymExpr();
|
|
return assumeAuxForSymbol(state, sym, Assumption);
|
|
}
|
|
|
|
switch (Cond.getSubKind()) {
|
|
default:
|
|
llvm_unreachable("'Assume' not implemented for this NonLoc");
|
|
|
|
case nonloc::SymbolValKind: {
|
|
nonloc::SymbolVal SV = Cond.castAs<nonloc::SymbolVal>();
|
|
SymbolRef sym = SV.getSymbol();
|
|
assert(sym);
|
|
|
|
// Handle SymbolData.
|
|
if (!SV.isExpression()) {
|
|
return assumeAuxForSymbol(state, sym, Assumption);
|
|
|
|
// Handle symbolic expression.
|
|
} else if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(sym)) {
|
|
// We can only simplify expressions whose RHS is an integer.
|
|
|
|
BinaryOperator::Opcode op = SE->getOpcode();
|
|
if (BinaryOperator::isComparisonOp(op)) {
|
|
if (!Assumption)
|
|
op = BinaryOperator::negateComparisonOp(op);
|
|
|
|
return assumeSymRel(state, SE->getLHS(), op, SE->getRHS());
|
|
}
|
|
|
|
} else if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(sym)) {
|
|
// Translate "a != b" to "(b - a) != 0".
|
|
// We invert the order of the operands as a heuristic for how loop
|
|
// conditions are usually written ("begin != end") as compared to length
|
|
// calculations ("end - begin"). The more correct thing to do would be to
|
|
// canonicalize "a - b" and "b - a", which would allow us to treat
|
|
// "a != b" and "b != a" the same.
|
|
SymbolManager &SymMgr = getSymbolManager();
|
|
BinaryOperator::Opcode Op = SSE->getOpcode();
|
|
assert(BinaryOperator::isComparisonOp(Op));
|
|
|
|
// For now, we only support comparing pointers.
|
|
assert(Loc::isLocType(SSE->getLHS()->getType()));
|
|
assert(Loc::isLocType(SSE->getRHS()->getType()));
|
|
QualType DiffTy = SymMgr.getContext().getPointerDiffType();
|
|
SymbolRef Subtraction = SymMgr.getSymSymExpr(SSE->getRHS(), BO_Sub,
|
|
SSE->getLHS(), DiffTy);
|
|
|
|
const llvm::APSInt &Zero = getBasicVals().getValue(0, DiffTy);
|
|
Op = BinaryOperator::reverseComparisonOp(Op);
|
|
if (!Assumption)
|
|
Op = BinaryOperator::negateComparisonOp(Op);
|
|
return assumeSymRel(state, Subtraction, Op, Zero);
|
|
}
|
|
|
|
// If we get here, there's nothing else we can do but treat the symbol as
|
|
// opaque.
|
|
return assumeAuxForSymbol(state, sym, Assumption);
|
|
}
|
|
|
|
case nonloc::ConcreteIntKind: {
|
|
bool b = Cond.castAs<nonloc::ConcreteInt>().getValue() != 0;
|
|
bool isFeasible = b ? Assumption : !Assumption;
|
|
return isFeasible ? state : nullptr;
|
|
}
|
|
|
|
case nonloc::LocAsIntegerKind:
|
|
return assume(state, Cond.castAs<nonloc::LocAsInteger>().getLoc(),
|
|
Assumption);
|
|
} // end switch
|
|
}
|
|
|
|
ProgramStateRef SimpleConstraintManager::assumeWithinInclusiveRange(
|
|
ProgramStateRef State, NonLoc Value, const llvm::APSInt &From,
|
|
const llvm::APSInt &To, bool InRange) {
|
|
|
|
assert(From.isUnsigned() == To.isUnsigned() &&
|
|
From.getBitWidth() == To.getBitWidth() &&
|
|
"Values should have same types!");
|
|
|
|
if (!canReasonAbout(Value)) {
|
|
// Just add the constraint to the expression without trying to simplify.
|
|
SymbolRef Sym = Value.getAsSymExpr();
|
|
assert(Sym);
|
|
return assumeSymWithinInclusiveRange(State, Sym, From, To, InRange);
|
|
}
|
|
|
|
switch (Value.getSubKind()) {
|
|
default:
|
|
llvm_unreachable("'assumeWithinInclusiveRange' is not implemented"
|
|
"for this NonLoc");
|
|
|
|
case nonloc::LocAsIntegerKind:
|
|
case nonloc::SymbolValKind: {
|
|
if (SymbolRef Sym = Value.getAsSymbol())
|
|
return assumeSymWithinInclusiveRange(State, Sym, From, To, InRange);
|
|
return State;
|
|
} // end switch
|
|
|
|
case nonloc::ConcreteIntKind: {
|
|
const llvm::APSInt &IntVal = Value.castAs<nonloc::ConcreteInt>().getValue();
|
|
bool IsInRange = IntVal >= From && IntVal <= To;
|
|
bool isFeasible = (IsInRange == InRange);
|
|
return isFeasible ? State : nullptr;
|
|
}
|
|
} // end switch
|
|
}
|
|
|
|
static void computeAdjustment(SymbolRef &Sym, llvm::APSInt &Adjustment) {
|
|
// Is it a "($sym+constant1)" expression?
|
|
if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(Sym)) {
|
|
BinaryOperator::Opcode Op = SE->getOpcode();
|
|
if (Op == BO_Add || Op == BO_Sub) {
|
|
Sym = SE->getLHS();
|
|
Adjustment = APSIntType(Adjustment).convert(SE->getRHS());
|
|
|
|
// Don't forget to negate the adjustment if it's being subtracted.
|
|
// This should happen /after/ promotion, in case the value being
|
|
// subtracted is, say, CHAR_MIN, and the promoted type is 'int'.
|
|
if (Op == BO_Sub)
|
|
Adjustment = -Adjustment;
|
|
}
|
|
}
|
|
}
|
|
|
|
ProgramStateRef SimpleConstraintManager::assumeSymRel(ProgramStateRef state,
|
|
const SymExpr *LHS,
|
|
BinaryOperator::Opcode op,
|
|
const llvm::APSInt& Int) {
|
|
assert(BinaryOperator::isComparisonOp(op) &&
|
|
"Non-comparison ops should be rewritten as comparisons to zero.");
|
|
|
|
// Get the type used for calculating wraparound.
|
|
BasicValueFactory &BVF = getBasicVals();
|
|
APSIntType WraparoundType = BVF.getAPSIntType(LHS->getType());
|
|
|
|
// We only handle simple comparisons of the form "$sym == constant"
|
|
// or "($sym+constant1) == constant2".
|
|
// The adjustment is "constant1" in the above expression. It's used to
|
|
// "slide" the solution range around for modular arithmetic. For example,
|
|
// x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which
|
|
// in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to
|
|
// the subclasses of SimpleConstraintManager to handle the adjustment.
|
|
SymbolRef Sym = LHS;
|
|
llvm::APSInt Adjustment = WraparoundType.getZeroValue();
|
|
computeAdjustment(Sym, Adjustment);
|
|
|
|
// Convert the right-hand side integer as necessary.
|
|
APSIntType ComparisonType = std::max(WraparoundType, APSIntType(Int));
|
|
llvm::APSInt ConvertedInt = ComparisonType.convert(Int);
|
|
|
|
// Prefer unsigned comparisons.
|
|
if (ComparisonType.getBitWidth() == WraparoundType.getBitWidth() &&
|
|
ComparisonType.isUnsigned() && !WraparoundType.isUnsigned())
|
|
Adjustment.setIsSigned(false);
|
|
|
|
switch (op) {
|
|
default:
|
|
llvm_unreachable("invalid operation not caught by assertion above");
|
|
|
|
case BO_EQ:
|
|
return assumeSymEQ(state, Sym, ConvertedInt, Adjustment);
|
|
|
|
case BO_NE:
|
|
return assumeSymNE(state, Sym, ConvertedInt, Adjustment);
|
|
|
|
case BO_GT:
|
|
return assumeSymGT(state, Sym, ConvertedInt, Adjustment);
|
|
|
|
case BO_GE:
|
|
return assumeSymGE(state, Sym, ConvertedInt, Adjustment);
|
|
|
|
case BO_LT:
|
|
return assumeSymLT(state, Sym, ConvertedInt, Adjustment);
|
|
|
|
case BO_LE:
|
|
return assumeSymLE(state, Sym, ConvertedInt, Adjustment);
|
|
} // end switch
|
|
}
|
|
|
|
ProgramStateRef
|
|
SimpleConstraintManager::assumeSymWithinInclusiveRange(ProgramStateRef State,
|
|
SymbolRef Sym,
|
|
const llvm::APSInt &From,
|
|
const llvm::APSInt &To,
|
|
bool InRange) {
|
|
// Get the type used for calculating wraparound.
|
|
BasicValueFactory &BVF = getBasicVals();
|
|
APSIntType WraparoundType = BVF.getAPSIntType(Sym->getType());
|
|
|
|
llvm::APSInt Adjustment = WraparoundType.getZeroValue();
|
|
SymbolRef AdjustedSym = Sym;
|
|
computeAdjustment(AdjustedSym, Adjustment);
|
|
|
|
// Convert the right-hand side integer as necessary.
|
|
APSIntType ComparisonType = std::max(WraparoundType, APSIntType(From));
|
|
llvm::APSInt ConvertedFrom = ComparisonType.convert(From);
|
|
llvm::APSInt ConvertedTo = ComparisonType.convert(To);
|
|
|
|
// Prefer unsigned comparisons.
|
|
if (ComparisonType.getBitWidth() == WraparoundType.getBitWidth() &&
|
|
ComparisonType.isUnsigned() && !WraparoundType.isUnsigned())
|
|
Adjustment.setIsSigned(false);
|
|
|
|
if (InRange)
|
|
return assumeSymbolWithinInclusiveRange(State, AdjustedSym, ConvertedFrom,
|
|
ConvertedTo, Adjustment);
|
|
return assumeSymbolOutOfInclusiveRange(State, AdjustedSym, ConvertedFrom,
|
|
ConvertedTo, Adjustment);
|
|
}
|
|
|
|
} // end of namespace ento
|
|
|
|
} // end of namespace clang
|