forked from OSchip/llvm-project
886 lines
34 KiB
C++
886 lines
34 KiB
C++
//===--- Cuda.cpp - Cuda Tool and ToolChain Implementations -----*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Cuda.h"
|
|
#include "CommonArgs.h"
|
|
#include "InputInfo.h"
|
|
#include "clang/Basic/Cuda.h"
|
|
#include "clang/Config/config.h"
|
|
#include "clang/Driver/Compilation.h"
|
|
#include "clang/Driver/Distro.h"
|
|
#include "clang/Driver/Driver.h"
|
|
#include "clang/Driver/DriverDiagnostic.h"
|
|
#include "clang/Driver/Options.h"
|
|
#include "llvm/Option/ArgList.h"
|
|
#include "llvm/Support/FileSystem.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Support/Process.h"
|
|
#include "llvm/Support/Program.h"
|
|
#include "llvm/Support/TargetParser.h"
|
|
#include "llvm/Support/VirtualFileSystem.h"
|
|
#include <system_error>
|
|
|
|
using namespace clang::driver;
|
|
using namespace clang::driver::toolchains;
|
|
using namespace clang::driver::tools;
|
|
using namespace clang;
|
|
using namespace llvm::opt;
|
|
|
|
// Parses the contents of version.txt in an CUDA installation. It should
|
|
// contain one line of the from e.g. "CUDA Version 7.5.2".
|
|
static CudaVersion ParseCudaVersionFile(const Driver &D, llvm::StringRef V) {
|
|
if (!V.startswith("CUDA Version "))
|
|
return CudaVersion::UNKNOWN;
|
|
V = V.substr(strlen("CUDA Version "));
|
|
SmallVector<StringRef,4> VersionParts;
|
|
V.split(VersionParts, '.');
|
|
if (VersionParts.size() < 2)
|
|
return CudaVersion::UNKNOWN;
|
|
std::string MajorMinor = join_items(".", VersionParts[0], VersionParts[1]);
|
|
CudaVersion Version = CudaStringToVersion(MajorMinor);
|
|
if (Version != CudaVersion::UNKNOWN)
|
|
return Version;
|
|
|
|
// Issue a warning and assume that the version we've found is compatible with
|
|
// the latest version we support.
|
|
D.Diag(diag::warn_drv_unknown_cuda_version)
|
|
<< MajorMinor << CudaVersionToString(CudaVersion::LATEST);
|
|
return CudaVersion::LATEST;
|
|
}
|
|
|
|
CudaInstallationDetector::CudaInstallationDetector(
|
|
const Driver &D, const llvm::Triple &HostTriple,
|
|
const llvm::opt::ArgList &Args)
|
|
: D(D) {
|
|
struct Candidate {
|
|
std::string Path;
|
|
bool StrictChecking;
|
|
|
|
Candidate(std::string Path, bool StrictChecking = false)
|
|
: Path(Path), StrictChecking(StrictChecking) {}
|
|
};
|
|
SmallVector<Candidate, 4> Candidates;
|
|
|
|
// In decreasing order so we prefer newer versions to older versions.
|
|
std::initializer_list<const char *> Versions = {"8.0", "7.5", "7.0"};
|
|
|
|
if (Args.hasArg(clang::driver::options::OPT_cuda_path_EQ)) {
|
|
Candidates.emplace_back(
|
|
Args.getLastArgValue(clang::driver::options::OPT_cuda_path_EQ).str());
|
|
} else if (HostTriple.isOSWindows()) {
|
|
for (const char *Ver : Versions)
|
|
Candidates.emplace_back(
|
|
D.SysRoot + "/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v" +
|
|
Ver);
|
|
} else {
|
|
if (!Args.hasArg(clang::driver::options::OPT_cuda_path_ignore_env)) {
|
|
// Try to find ptxas binary. If the executable is located in a directory
|
|
// called 'bin/', its parent directory might be a good guess for a valid
|
|
// CUDA installation.
|
|
// However, some distributions might installs 'ptxas' to /usr/bin. In that
|
|
// case the candidate would be '/usr' which passes the following checks
|
|
// because '/usr/include' exists as well. To avoid this case, we always
|
|
// check for the directory potentially containing files for libdevice,
|
|
// even if the user passes -nocudalib.
|
|
if (llvm::ErrorOr<std::string> ptxas =
|
|
llvm::sys::findProgramByName("ptxas")) {
|
|
SmallString<256> ptxasAbsolutePath;
|
|
llvm::sys::fs::real_path(*ptxas, ptxasAbsolutePath);
|
|
|
|
StringRef ptxasDir = llvm::sys::path::parent_path(ptxasAbsolutePath);
|
|
if (llvm::sys::path::filename(ptxasDir) == "bin")
|
|
Candidates.emplace_back(llvm::sys::path::parent_path(ptxasDir),
|
|
/*StrictChecking=*/true);
|
|
}
|
|
}
|
|
|
|
Candidates.emplace_back(D.SysRoot + "/usr/local/cuda");
|
|
for (const char *Ver : Versions)
|
|
Candidates.emplace_back(D.SysRoot + "/usr/local/cuda-" + Ver);
|
|
|
|
Distro Dist(D.getVFS(), llvm::Triple(llvm::sys::getProcessTriple()));
|
|
if (Dist.IsDebian() || Dist.IsUbuntu())
|
|
// Special case for Debian to have nvidia-cuda-toolkit work
|
|
// out of the box. More info on http://bugs.debian.org/882505
|
|
Candidates.emplace_back(D.SysRoot + "/usr/lib/cuda");
|
|
}
|
|
|
|
bool NoCudaLib = Args.hasArg(options::OPT_nogpulib);
|
|
|
|
for (const auto &Candidate : Candidates) {
|
|
InstallPath = Candidate.Path;
|
|
if (InstallPath.empty() || !D.getVFS().exists(InstallPath))
|
|
continue;
|
|
|
|
BinPath = InstallPath + "/bin";
|
|
IncludePath = InstallPath + "/include";
|
|
LibDevicePath = InstallPath + "/nvvm/libdevice";
|
|
|
|
auto &FS = D.getVFS();
|
|
if (!(FS.exists(IncludePath) && FS.exists(BinPath)))
|
|
continue;
|
|
bool CheckLibDevice = (!NoCudaLib || Candidate.StrictChecking);
|
|
if (CheckLibDevice && !FS.exists(LibDevicePath))
|
|
continue;
|
|
|
|
// On Linux, we have both lib and lib64 directories, and we need to choose
|
|
// based on our triple. On MacOS, we have only a lib directory.
|
|
//
|
|
// It's sufficient for our purposes to be flexible: If both lib and lib64
|
|
// exist, we choose whichever one matches our triple. Otherwise, if only
|
|
// lib exists, we use it.
|
|
if (HostTriple.isArch64Bit() && FS.exists(InstallPath + "/lib64"))
|
|
LibPath = InstallPath + "/lib64";
|
|
else if (FS.exists(InstallPath + "/lib"))
|
|
LibPath = InstallPath + "/lib";
|
|
else
|
|
continue;
|
|
|
|
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> VersionFile =
|
|
FS.getBufferForFile(InstallPath + "/version.txt");
|
|
if (!VersionFile) {
|
|
// CUDA 7.0 doesn't have a version.txt, so guess that's our version if
|
|
// version.txt isn't present.
|
|
Version = CudaVersion::CUDA_70;
|
|
} else {
|
|
Version = ParseCudaVersionFile(D, (*VersionFile)->getBuffer());
|
|
}
|
|
|
|
if (Version >= CudaVersion::CUDA_90) {
|
|
// CUDA-9+ uses single libdevice file for all GPU variants.
|
|
std::string FilePath = LibDevicePath + "/libdevice.10.bc";
|
|
if (FS.exists(FilePath)) {
|
|
for (const char *GpuArchName :
|
|
{"sm_30", "sm_32", "sm_35", "sm_37", "sm_50", "sm_52", "sm_53",
|
|
"sm_60", "sm_61", "sm_62", "sm_70", "sm_72", "sm_75"}) {
|
|
const CudaArch GpuArch = StringToCudaArch(GpuArchName);
|
|
if (Version >= MinVersionForCudaArch(GpuArch) &&
|
|
Version <= MaxVersionForCudaArch(GpuArch))
|
|
LibDeviceMap[GpuArchName] = FilePath;
|
|
}
|
|
}
|
|
} else {
|
|
std::error_code EC;
|
|
for (llvm::sys::fs::directory_iterator LI(LibDevicePath, EC), LE;
|
|
!EC && LI != LE; LI = LI.increment(EC)) {
|
|
StringRef FilePath = LI->path();
|
|
StringRef FileName = llvm::sys::path::filename(FilePath);
|
|
// Process all bitcode filenames that look like
|
|
// libdevice.compute_XX.YY.bc
|
|
const StringRef LibDeviceName = "libdevice.";
|
|
if (!(FileName.startswith(LibDeviceName) && FileName.endswith(".bc")))
|
|
continue;
|
|
StringRef GpuArch = FileName.slice(
|
|
LibDeviceName.size(), FileName.find('.', LibDeviceName.size()));
|
|
LibDeviceMap[GpuArch] = FilePath.str();
|
|
// Insert map entries for specific devices with this compute
|
|
// capability. NVCC's choice of the libdevice library version is
|
|
// rather peculiar and depends on the CUDA version.
|
|
if (GpuArch == "compute_20") {
|
|
LibDeviceMap["sm_20"] = FilePath;
|
|
LibDeviceMap["sm_21"] = FilePath;
|
|
LibDeviceMap["sm_32"] = FilePath;
|
|
} else if (GpuArch == "compute_30") {
|
|
LibDeviceMap["sm_30"] = FilePath;
|
|
if (Version < CudaVersion::CUDA_80) {
|
|
LibDeviceMap["sm_50"] = FilePath;
|
|
LibDeviceMap["sm_52"] = FilePath;
|
|
LibDeviceMap["sm_53"] = FilePath;
|
|
}
|
|
LibDeviceMap["sm_60"] = FilePath;
|
|
LibDeviceMap["sm_61"] = FilePath;
|
|
LibDeviceMap["sm_62"] = FilePath;
|
|
} else if (GpuArch == "compute_35") {
|
|
LibDeviceMap["sm_35"] = FilePath;
|
|
LibDeviceMap["sm_37"] = FilePath;
|
|
} else if (GpuArch == "compute_50") {
|
|
if (Version >= CudaVersion::CUDA_80) {
|
|
LibDeviceMap["sm_50"] = FilePath;
|
|
LibDeviceMap["sm_52"] = FilePath;
|
|
LibDeviceMap["sm_53"] = FilePath;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check that we have found at least one libdevice that we can link in if
|
|
// -nocudalib hasn't been specified.
|
|
if (LibDeviceMap.empty() && !NoCudaLib)
|
|
continue;
|
|
|
|
IsValid = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
void CudaInstallationDetector::AddCudaIncludeArgs(
|
|
const ArgList &DriverArgs, ArgStringList &CC1Args) const {
|
|
if (!DriverArgs.hasArg(options::OPT_nobuiltininc)) {
|
|
// Add cuda_wrappers/* to our system include path. This lets us wrap
|
|
// standard library headers.
|
|
SmallString<128> P(D.ResourceDir);
|
|
llvm::sys::path::append(P, "include");
|
|
llvm::sys::path::append(P, "cuda_wrappers");
|
|
CC1Args.push_back("-internal-isystem");
|
|
CC1Args.push_back(DriverArgs.MakeArgString(P));
|
|
}
|
|
|
|
if (DriverArgs.hasArg(options::OPT_nocudainc))
|
|
return;
|
|
|
|
if (!isValid()) {
|
|
D.Diag(diag::err_drv_no_cuda_installation);
|
|
return;
|
|
}
|
|
|
|
CC1Args.push_back("-internal-isystem");
|
|
CC1Args.push_back(DriverArgs.MakeArgString(getIncludePath()));
|
|
CC1Args.push_back("-include");
|
|
CC1Args.push_back("__clang_cuda_runtime_wrapper.h");
|
|
}
|
|
|
|
void CudaInstallationDetector::CheckCudaVersionSupportsArch(
|
|
CudaArch Arch) const {
|
|
if (Arch == CudaArch::UNKNOWN || Version == CudaVersion::UNKNOWN ||
|
|
ArchsWithBadVersion.count(Arch) > 0)
|
|
return;
|
|
|
|
auto MinVersion = MinVersionForCudaArch(Arch);
|
|
auto MaxVersion = MaxVersionForCudaArch(Arch);
|
|
if (Version < MinVersion || Version > MaxVersion) {
|
|
ArchsWithBadVersion.insert(Arch);
|
|
D.Diag(diag::err_drv_cuda_version_unsupported)
|
|
<< CudaArchToString(Arch) << CudaVersionToString(MinVersion)
|
|
<< CudaVersionToString(MaxVersion) << InstallPath
|
|
<< CudaVersionToString(Version);
|
|
}
|
|
}
|
|
|
|
void CudaInstallationDetector::print(raw_ostream &OS) const {
|
|
if (isValid())
|
|
OS << "Found CUDA installation: " << InstallPath << ", version "
|
|
<< CudaVersionToString(Version) << "\n";
|
|
}
|
|
|
|
namespace {
|
|
/// Debug info level for the NVPTX devices. We may need to emit different debug
|
|
/// info level for the host and for the device itselfi. This type controls
|
|
/// emission of the debug info for the devices. It either prohibits disable info
|
|
/// emission completely, or emits debug directives only, or emits same debug
|
|
/// info as for the host.
|
|
enum DeviceDebugInfoLevel {
|
|
DisableDebugInfo, /// Do not emit debug info for the devices.
|
|
DebugDirectivesOnly, /// Emit only debug directives.
|
|
EmitSameDebugInfoAsHost, /// Use the same debug info level just like for the
|
|
/// host.
|
|
};
|
|
} // anonymous namespace
|
|
|
|
/// Define debug info level for the NVPTX devices. If the debug info for both
|
|
/// the host and device are disabled (-g0/-ggdb0 or no debug options at all). If
|
|
/// only debug directives are requested for the both host and device
|
|
/// (-gline-directvies-only), or the debug info only for the device is disabled
|
|
/// (optimization is on and --cuda-noopt-device-debug was not specified), the
|
|
/// debug directves only must be emitted for the device. Otherwise, use the same
|
|
/// debug info level just like for the host (with the limitations of only
|
|
/// supported DWARF2 standard).
|
|
static DeviceDebugInfoLevel mustEmitDebugInfo(const ArgList &Args) {
|
|
const Arg *A = Args.getLastArg(options::OPT_O_Group);
|
|
bool IsDebugEnabled = !A || A->getOption().matches(options::OPT_O0) ||
|
|
Args.hasFlag(options::OPT_cuda_noopt_device_debug,
|
|
options::OPT_no_cuda_noopt_device_debug,
|
|
/*Default=*/false);
|
|
if (const Arg *A = Args.getLastArg(options::OPT_g_Group)) {
|
|
const Option &Opt = A->getOption();
|
|
if (Opt.matches(options::OPT_gN_Group)) {
|
|
if (Opt.matches(options::OPT_g0) || Opt.matches(options::OPT_ggdb0))
|
|
return DisableDebugInfo;
|
|
if (Opt.matches(options::OPT_gline_directives_only))
|
|
return DebugDirectivesOnly;
|
|
}
|
|
return IsDebugEnabled ? EmitSameDebugInfoAsHost : DebugDirectivesOnly;
|
|
}
|
|
return DisableDebugInfo;
|
|
}
|
|
|
|
void NVPTX::Assembler::ConstructJob(Compilation &C, const JobAction &JA,
|
|
const InputInfo &Output,
|
|
const InputInfoList &Inputs,
|
|
const ArgList &Args,
|
|
const char *LinkingOutput) const {
|
|
const auto &TC =
|
|
static_cast<const toolchains::CudaToolChain &>(getToolChain());
|
|
assert(TC.getTriple().isNVPTX() && "Wrong platform");
|
|
|
|
StringRef GPUArchName;
|
|
// If this is an OpenMP action we need to extract the device architecture
|
|
// from the -march=arch option. This option may come from -Xopenmp-target
|
|
// flag or the default value.
|
|
if (JA.isDeviceOffloading(Action::OFK_OpenMP)) {
|
|
GPUArchName = Args.getLastArgValue(options::OPT_march_EQ);
|
|
assert(!GPUArchName.empty() && "Must have an architecture passed in.");
|
|
} else
|
|
GPUArchName = JA.getOffloadingArch();
|
|
|
|
// Obtain architecture from the action.
|
|
CudaArch gpu_arch = StringToCudaArch(GPUArchName);
|
|
assert(gpu_arch != CudaArch::UNKNOWN &&
|
|
"Device action expected to have an architecture.");
|
|
|
|
// Check that our installation's ptxas supports gpu_arch.
|
|
if (!Args.hasArg(options::OPT_no_cuda_version_check)) {
|
|
TC.CudaInstallation.CheckCudaVersionSupportsArch(gpu_arch);
|
|
}
|
|
|
|
ArgStringList CmdArgs;
|
|
CmdArgs.push_back(TC.getTriple().isArch64Bit() ? "-m64" : "-m32");
|
|
DeviceDebugInfoLevel DIKind = mustEmitDebugInfo(Args);
|
|
if (DIKind == EmitSameDebugInfoAsHost) {
|
|
// ptxas does not accept -g option if optimization is enabled, so
|
|
// we ignore the compiler's -O* options if we want debug info.
|
|
CmdArgs.push_back("-g");
|
|
CmdArgs.push_back("--dont-merge-basicblocks");
|
|
CmdArgs.push_back("--return-at-end");
|
|
} else if (Arg *A = Args.getLastArg(options::OPT_O_Group)) {
|
|
// Map the -O we received to -O{0,1,2,3}.
|
|
//
|
|
// TODO: Perhaps we should map host -O2 to ptxas -O3. -O3 is ptxas's
|
|
// default, so it may correspond more closely to the spirit of clang -O2.
|
|
|
|
// -O3 seems like the least-bad option when -Osomething is specified to
|
|
// clang but it isn't handled below.
|
|
StringRef OOpt = "3";
|
|
if (A->getOption().matches(options::OPT_O4) ||
|
|
A->getOption().matches(options::OPT_Ofast))
|
|
OOpt = "3";
|
|
else if (A->getOption().matches(options::OPT_O0))
|
|
OOpt = "0";
|
|
else if (A->getOption().matches(options::OPT_O)) {
|
|
// -Os, -Oz, and -O(anything else) map to -O2, for lack of better options.
|
|
OOpt = llvm::StringSwitch<const char *>(A->getValue())
|
|
.Case("1", "1")
|
|
.Case("2", "2")
|
|
.Case("3", "3")
|
|
.Case("s", "2")
|
|
.Case("z", "2")
|
|
.Default("2");
|
|
}
|
|
CmdArgs.push_back(Args.MakeArgString(llvm::Twine("-O") + OOpt));
|
|
} else {
|
|
// If no -O was passed, pass -O0 to ptxas -- no opt flag should correspond
|
|
// to no optimizations, but ptxas's default is -O3.
|
|
CmdArgs.push_back("-O0");
|
|
}
|
|
if (DIKind == DebugDirectivesOnly)
|
|
CmdArgs.push_back("-lineinfo");
|
|
|
|
// Pass -v to ptxas if it was passed to the driver.
|
|
if (Args.hasArg(options::OPT_v))
|
|
CmdArgs.push_back("-v");
|
|
|
|
CmdArgs.push_back("--gpu-name");
|
|
CmdArgs.push_back(Args.MakeArgString(CudaArchToString(gpu_arch)));
|
|
CmdArgs.push_back("--output-file");
|
|
CmdArgs.push_back(Args.MakeArgString(TC.getInputFilename(Output)));
|
|
for (const auto& II : Inputs)
|
|
CmdArgs.push_back(Args.MakeArgString(II.getFilename()));
|
|
|
|
for (const auto& A : Args.getAllArgValues(options::OPT_Xcuda_ptxas))
|
|
CmdArgs.push_back(Args.MakeArgString(A));
|
|
|
|
bool Relocatable = false;
|
|
if (JA.isOffloading(Action::OFK_OpenMP))
|
|
// In OpenMP we need to generate relocatable code.
|
|
Relocatable = Args.hasFlag(options::OPT_fopenmp_relocatable_target,
|
|
options::OPT_fnoopenmp_relocatable_target,
|
|
/*Default=*/true);
|
|
else if (JA.isOffloading(Action::OFK_Cuda))
|
|
Relocatable = Args.hasFlag(options::OPT_fgpu_rdc,
|
|
options::OPT_fno_gpu_rdc, /*Default=*/false);
|
|
|
|
if (Relocatable)
|
|
CmdArgs.push_back("-c");
|
|
|
|
const char *Exec;
|
|
if (Arg *A = Args.getLastArg(options::OPT_ptxas_path_EQ))
|
|
Exec = A->getValue();
|
|
else
|
|
Exec = Args.MakeArgString(TC.GetProgramPath("ptxas"));
|
|
C.addCommand(std::make_unique<Command>(JA, *this, Exec, CmdArgs, Inputs));
|
|
}
|
|
|
|
static bool shouldIncludePTX(const ArgList &Args, const char *gpu_arch) {
|
|
bool includePTX = true;
|
|
for (Arg *A : Args) {
|
|
if (!(A->getOption().matches(options::OPT_cuda_include_ptx_EQ) ||
|
|
A->getOption().matches(options::OPT_no_cuda_include_ptx_EQ)))
|
|
continue;
|
|
A->claim();
|
|
const StringRef ArchStr = A->getValue();
|
|
if (ArchStr == "all" || ArchStr == gpu_arch) {
|
|
includePTX = A->getOption().matches(options::OPT_cuda_include_ptx_EQ);
|
|
continue;
|
|
}
|
|
}
|
|
return includePTX;
|
|
}
|
|
|
|
// All inputs to this linker must be from CudaDeviceActions, as we need to look
|
|
// at the Inputs' Actions in order to figure out which GPU architecture they
|
|
// correspond to.
|
|
void NVPTX::Linker::ConstructJob(Compilation &C, const JobAction &JA,
|
|
const InputInfo &Output,
|
|
const InputInfoList &Inputs,
|
|
const ArgList &Args,
|
|
const char *LinkingOutput) const {
|
|
const auto &TC =
|
|
static_cast<const toolchains::CudaToolChain &>(getToolChain());
|
|
assert(TC.getTriple().isNVPTX() && "Wrong platform");
|
|
|
|
ArgStringList CmdArgs;
|
|
if (TC.CudaInstallation.version() <= CudaVersion::CUDA_100)
|
|
CmdArgs.push_back("--cuda");
|
|
CmdArgs.push_back(TC.getTriple().isArch64Bit() ? "-64" : "-32");
|
|
CmdArgs.push_back(Args.MakeArgString("--create"));
|
|
CmdArgs.push_back(Args.MakeArgString(Output.getFilename()));
|
|
if (mustEmitDebugInfo(Args) == EmitSameDebugInfoAsHost)
|
|
CmdArgs.push_back("-g");
|
|
|
|
for (const auto& II : Inputs) {
|
|
auto *A = II.getAction();
|
|
assert(A->getInputs().size() == 1 &&
|
|
"Device offload action is expected to have a single input");
|
|
const char *gpu_arch_str = A->getOffloadingArch();
|
|
assert(gpu_arch_str &&
|
|
"Device action expected to have associated a GPU architecture!");
|
|
CudaArch gpu_arch = StringToCudaArch(gpu_arch_str);
|
|
|
|
if (II.getType() == types::TY_PP_Asm &&
|
|
!shouldIncludePTX(Args, gpu_arch_str))
|
|
continue;
|
|
// We need to pass an Arch of the form "sm_XX" for cubin files and
|
|
// "compute_XX" for ptx.
|
|
const char *Arch =
|
|
(II.getType() == types::TY_PP_Asm)
|
|
? CudaVirtualArchToString(VirtualArchForCudaArch(gpu_arch))
|
|
: gpu_arch_str;
|
|
CmdArgs.push_back(Args.MakeArgString(llvm::Twine("--image=profile=") +
|
|
Arch + ",file=" + II.getFilename()));
|
|
}
|
|
|
|
for (const auto& A : Args.getAllArgValues(options::OPT_Xcuda_fatbinary))
|
|
CmdArgs.push_back(Args.MakeArgString(A));
|
|
|
|
const char *Exec = Args.MakeArgString(TC.GetProgramPath("fatbinary"));
|
|
C.addCommand(std::make_unique<Command>(JA, *this, Exec, CmdArgs, Inputs));
|
|
}
|
|
|
|
void NVPTX::OpenMPLinker::ConstructJob(Compilation &C, const JobAction &JA,
|
|
const InputInfo &Output,
|
|
const InputInfoList &Inputs,
|
|
const ArgList &Args,
|
|
const char *LinkingOutput) const {
|
|
const auto &TC =
|
|
static_cast<const toolchains::CudaToolChain &>(getToolChain());
|
|
assert(TC.getTriple().isNVPTX() && "Wrong platform");
|
|
|
|
ArgStringList CmdArgs;
|
|
|
|
// OpenMP uses nvlink to link cubin files. The result will be embedded in the
|
|
// host binary by the host linker.
|
|
assert(!JA.isHostOffloading(Action::OFK_OpenMP) &&
|
|
"CUDA toolchain not expected for an OpenMP host device.");
|
|
|
|
if (Output.isFilename()) {
|
|
CmdArgs.push_back("-o");
|
|
CmdArgs.push_back(Output.getFilename());
|
|
} else
|
|
assert(Output.isNothing() && "Invalid output.");
|
|
if (mustEmitDebugInfo(Args) == EmitSameDebugInfoAsHost)
|
|
CmdArgs.push_back("-g");
|
|
|
|
if (Args.hasArg(options::OPT_v))
|
|
CmdArgs.push_back("-v");
|
|
|
|
StringRef GPUArch =
|
|
Args.getLastArgValue(options::OPT_march_EQ);
|
|
assert(!GPUArch.empty() && "At least one GPU Arch required for ptxas.");
|
|
|
|
CmdArgs.push_back("-arch");
|
|
CmdArgs.push_back(Args.MakeArgString(GPUArch));
|
|
|
|
// Assume that the directory specified with --libomptarget_nvptx_path
|
|
// contains the static library libomptarget-nvptx.a.
|
|
if (const Arg *A = Args.getLastArg(options::OPT_libomptarget_nvptx_path_EQ))
|
|
CmdArgs.push_back(Args.MakeArgString(Twine("-L") + A->getValue()));
|
|
|
|
// Add paths specified in LIBRARY_PATH environment variable as -L options.
|
|
addDirectoryList(Args, CmdArgs, "-L", "LIBRARY_PATH");
|
|
|
|
// Add paths for the default clang library path.
|
|
SmallString<256> DefaultLibPath =
|
|
llvm::sys::path::parent_path(TC.getDriver().Dir);
|
|
llvm::sys::path::append(DefaultLibPath, "lib" CLANG_LIBDIR_SUFFIX);
|
|
CmdArgs.push_back(Args.MakeArgString(Twine("-L") + DefaultLibPath));
|
|
|
|
// Add linking against library implementing OpenMP calls on NVPTX target.
|
|
CmdArgs.push_back("-lomptarget-nvptx");
|
|
|
|
for (const auto &II : Inputs) {
|
|
if (II.getType() == types::TY_LLVM_IR ||
|
|
II.getType() == types::TY_LTO_IR ||
|
|
II.getType() == types::TY_LTO_BC ||
|
|
II.getType() == types::TY_LLVM_BC) {
|
|
C.getDriver().Diag(diag::err_drv_no_linker_llvm_support)
|
|
<< getToolChain().getTripleString();
|
|
continue;
|
|
}
|
|
|
|
// Currently, we only pass the input files to the linker, we do not pass
|
|
// any libraries that may be valid only for the host.
|
|
if (!II.isFilename())
|
|
continue;
|
|
|
|
const char *CubinF = C.addTempFile(
|
|
C.getArgs().MakeArgString(getToolChain().getInputFilename(II)));
|
|
|
|
CmdArgs.push_back(CubinF);
|
|
}
|
|
|
|
const char *Exec =
|
|
Args.MakeArgString(getToolChain().GetProgramPath("nvlink"));
|
|
C.addCommand(std::make_unique<Command>(JA, *this, Exec, CmdArgs, Inputs));
|
|
}
|
|
|
|
/// CUDA toolchain. Our assembler is ptxas, and our "linker" is fatbinary,
|
|
/// which isn't properly a linker but nonetheless performs the step of stitching
|
|
/// together object files from the assembler into a single blob.
|
|
|
|
CudaToolChain::CudaToolChain(const Driver &D, const llvm::Triple &Triple,
|
|
const ToolChain &HostTC, const ArgList &Args,
|
|
const Action::OffloadKind OK)
|
|
: ToolChain(D, Triple, Args), HostTC(HostTC),
|
|
CudaInstallation(D, HostTC.getTriple(), Args), OK(OK) {
|
|
if (CudaInstallation.isValid())
|
|
getProgramPaths().push_back(CudaInstallation.getBinPath());
|
|
// Lookup binaries into the driver directory, this is used to
|
|
// discover the clang-offload-bundler executable.
|
|
getProgramPaths().push_back(getDriver().Dir);
|
|
}
|
|
|
|
std::string CudaToolChain::getInputFilename(const InputInfo &Input) const {
|
|
// Only object files are changed, for example assembly files keep their .s
|
|
// extensions. CUDA also continues to use .o as they don't use nvlink but
|
|
// fatbinary.
|
|
if (!(OK == Action::OFK_OpenMP && Input.getType() == types::TY_Object))
|
|
return ToolChain::getInputFilename(Input);
|
|
|
|
// Replace extension for object files with cubin because nvlink relies on
|
|
// these particular file names.
|
|
SmallString<256> Filename(ToolChain::getInputFilename(Input));
|
|
llvm::sys::path::replace_extension(Filename, "cubin");
|
|
return Filename.str();
|
|
}
|
|
|
|
void CudaToolChain::addClangTargetOptions(
|
|
const llvm::opt::ArgList &DriverArgs,
|
|
llvm::opt::ArgStringList &CC1Args,
|
|
Action::OffloadKind DeviceOffloadingKind) const {
|
|
HostTC.addClangTargetOptions(DriverArgs, CC1Args, DeviceOffloadingKind);
|
|
|
|
StringRef GpuArch = DriverArgs.getLastArgValue(options::OPT_march_EQ);
|
|
assert(!GpuArch.empty() && "Must have an explicit GPU arch.");
|
|
assert((DeviceOffloadingKind == Action::OFK_OpenMP ||
|
|
DeviceOffloadingKind == Action::OFK_Cuda) &&
|
|
"Only OpenMP or CUDA offloading kinds are supported for NVIDIA GPUs.");
|
|
|
|
if (DeviceOffloadingKind == Action::OFK_Cuda) {
|
|
CC1Args.push_back("-fcuda-is-device");
|
|
|
|
if (DriverArgs.hasFlag(options::OPT_fcuda_approx_transcendentals,
|
|
options::OPT_fno_cuda_approx_transcendentals, false))
|
|
CC1Args.push_back("-fcuda-approx-transcendentals");
|
|
|
|
if (DriverArgs.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
|
|
false))
|
|
CC1Args.push_back("-fgpu-rdc");
|
|
}
|
|
|
|
if (DriverArgs.hasArg(options::OPT_nogpulib))
|
|
return;
|
|
|
|
std::string LibDeviceFile = CudaInstallation.getLibDeviceFile(GpuArch);
|
|
|
|
if (LibDeviceFile.empty()) {
|
|
if (DeviceOffloadingKind == Action::OFK_OpenMP &&
|
|
DriverArgs.hasArg(options::OPT_S))
|
|
return;
|
|
|
|
getDriver().Diag(diag::err_drv_no_cuda_libdevice) << GpuArch;
|
|
return;
|
|
}
|
|
|
|
CC1Args.push_back("-mlink-builtin-bitcode");
|
|
CC1Args.push_back(DriverArgs.MakeArgString(LibDeviceFile));
|
|
|
|
// New CUDA versions often introduce new instructions that are only supported
|
|
// by new PTX version, so we need to raise PTX level to enable them in NVPTX
|
|
// back-end.
|
|
const char *PtxFeature = nullptr;
|
|
switch(CudaInstallation.version()) {
|
|
case CudaVersion::CUDA_101:
|
|
PtxFeature = "+ptx64";
|
|
break;
|
|
case CudaVersion::CUDA_100:
|
|
PtxFeature = "+ptx63";
|
|
break;
|
|
case CudaVersion::CUDA_92:
|
|
PtxFeature = "+ptx61";
|
|
break;
|
|
case CudaVersion::CUDA_91:
|
|
PtxFeature = "+ptx61";
|
|
break;
|
|
case CudaVersion::CUDA_90:
|
|
PtxFeature = "+ptx60";
|
|
break;
|
|
default:
|
|
PtxFeature = "+ptx42";
|
|
}
|
|
CC1Args.append({"-target-feature", PtxFeature});
|
|
if (DriverArgs.hasFlag(options::OPT_fcuda_short_ptr,
|
|
options::OPT_fno_cuda_short_ptr, false))
|
|
CC1Args.append({"-mllvm", "--nvptx-short-ptr"});
|
|
|
|
if (CudaInstallation.version() >= CudaVersion::UNKNOWN)
|
|
CC1Args.push_back(DriverArgs.MakeArgString(
|
|
Twine("-target-sdk-version=") +
|
|
CudaVersionToString(CudaInstallation.version())));
|
|
|
|
if (DeviceOffloadingKind == Action::OFK_OpenMP) {
|
|
SmallVector<StringRef, 8> LibraryPaths;
|
|
if (const Arg *A = DriverArgs.getLastArg(options::OPT_libomptarget_nvptx_path_EQ))
|
|
LibraryPaths.push_back(A->getValue());
|
|
|
|
// Add user defined library paths from LIBRARY_PATH.
|
|
llvm::Optional<std::string> LibPath =
|
|
llvm::sys::Process::GetEnv("LIBRARY_PATH");
|
|
if (LibPath) {
|
|
SmallVector<StringRef, 8> Frags;
|
|
const char EnvPathSeparatorStr[] = {llvm::sys::EnvPathSeparator, '\0'};
|
|
llvm::SplitString(*LibPath, Frags, EnvPathSeparatorStr);
|
|
for (StringRef Path : Frags)
|
|
LibraryPaths.emplace_back(Path.trim());
|
|
}
|
|
|
|
// Add path to lib / lib64 folder.
|
|
SmallString<256> DefaultLibPath =
|
|
llvm::sys::path::parent_path(getDriver().Dir);
|
|
llvm::sys::path::append(DefaultLibPath, Twine("lib") + CLANG_LIBDIR_SUFFIX);
|
|
LibraryPaths.emplace_back(DefaultLibPath.c_str());
|
|
|
|
std::string LibOmpTargetName =
|
|
"libomptarget-nvptx-" + GpuArch.str() + ".bc";
|
|
bool FoundBCLibrary = false;
|
|
for (StringRef LibraryPath : LibraryPaths) {
|
|
SmallString<128> LibOmpTargetFile(LibraryPath);
|
|
llvm::sys::path::append(LibOmpTargetFile, LibOmpTargetName);
|
|
if (llvm::sys::fs::exists(LibOmpTargetFile)) {
|
|
CC1Args.push_back("-mlink-builtin-bitcode");
|
|
CC1Args.push_back(DriverArgs.MakeArgString(LibOmpTargetFile));
|
|
FoundBCLibrary = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!FoundBCLibrary)
|
|
getDriver().Diag(diag::warn_drv_omp_offload_target_missingbcruntime)
|
|
<< LibOmpTargetName;
|
|
}
|
|
}
|
|
|
|
llvm::DenormalMode CudaToolChain::getDefaultDenormalModeForType(
|
|
const llvm::opt::ArgList &DriverArgs, Action::OffloadKind DeviceOffloadKind,
|
|
const llvm::fltSemantics *FPType) const {
|
|
if (DeviceOffloadKind == Action::OFK_Cuda) {
|
|
if (FPType && FPType == &llvm::APFloat::IEEEsingle() &&
|
|
DriverArgs.hasFlag(options::OPT_fcuda_flush_denormals_to_zero,
|
|
options::OPT_fno_cuda_flush_denormals_to_zero,
|
|
false))
|
|
return llvm::DenormalMode::PreserveSign;
|
|
}
|
|
|
|
assert(DeviceOffloadKind != Action::OFK_Host);
|
|
return llvm::DenormalMode::IEEE;
|
|
}
|
|
|
|
bool CudaToolChain::supportsDebugInfoOption(const llvm::opt::Arg *A) const {
|
|
const Option &O = A->getOption();
|
|
return (O.matches(options::OPT_gN_Group) &&
|
|
!O.matches(options::OPT_gmodules)) ||
|
|
O.matches(options::OPT_g_Flag) ||
|
|
O.matches(options::OPT_ggdbN_Group) || O.matches(options::OPT_ggdb) ||
|
|
O.matches(options::OPT_gdwarf) || O.matches(options::OPT_gdwarf_2) ||
|
|
O.matches(options::OPT_gdwarf_3) || O.matches(options::OPT_gdwarf_4) ||
|
|
O.matches(options::OPT_gdwarf_5) ||
|
|
O.matches(options::OPT_gcolumn_info);
|
|
}
|
|
|
|
void CudaToolChain::adjustDebugInfoKind(
|
|
codegenoptions::DebugInfoKind &DebugInfoKind, const ArgList &Args) const {
|
|
switch (mustEmitDebugInfo(Args)) {
|
|
case DisableDebugInfo:
|
|
DebugInfoKind = codegenoptions::NoDebugInfo;
|
|
break;
|
|
case DebugDirectivesOnly:
|
|
DebugInfoKind = codegenoptions::DebugDirectivesOnly;
|
|
break;
|
|
case EmitSameDebugInfoAsHost:
|
|
// Use same debug info level as the host.
|
|
break;
|
|
}
|
|
}
|
|
|
|
void CudaToolChain::AddCudaIncludeArgs(const ArgList &DriverArgs,
|
|
ArgStringList &CC1Args) const {
|
|
// Check our CUDA version if we're going to include the CUDA headers.
|
|
if (!DriverArgs.hasArg(options::OPT_nocudainc) &&
|
|
!DriverArgs.hasArg(options::OPT_no_cuda_version_check)) {
|
|
StringRef Arch = DriverArgs.getLastArgValue(options::OPT_march_EQ);
|
|
assert(!Arch.empty() && "Must have an explicit GPU arch.");
|
|
CudaInstallation.CheckCudaVersionSupportsArch(StringToCudaArch(Arch));
|
|
}
|
|
CudaInstallation.AddCudaIncludeArgs(DriverArgs, CC1Args);
|
|
}
|
|
|
|
llvm::opt::DerivedArgList *
|
|
CudaToolChain::TranslateArgs(const llvm::opt::DerivedArgList &Args,
|
|
StringRef BoundArch,
|
|
Action::OffloadKind DeviceOffloadKind) const {
|
|
DerivedArgList *DAL =
|
|
HostTC.TranslateArgs(Args, BoundArch, DeviceOffloadKind);
|
|
if (!DAL)
|
|
DAL = new DerivedArgList(Args.getBaseArgs());
|
|
|
|
const OptTable &Opts = getDriver().getOpts();
|
|
|
|
// For OpenMP device offloading, append derived arguments. Make sure
|
|
// flags are not duplicated.
|
|
// Also append the compute capability.
|
|
if (DeviceOffloadKind == Action::OFK_OpenMP) {
|
|
for (Arg *A : Args) {
|
|
bool IsDuplicate = false;
|
|
for (Arg *DALArg : *DAL) {
|
|
if (A == DALArg) {
|
|
IsDuplicate = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!IsDuplicate)
|
|
DAL->append(A);
|
|
}
|
|
|
|
StringRef Arch = DAL->getLastArgValue(options::OPT_march_EQ);
|
|
if (Arch.empty())
|
|
DAL->AddJoinedArg(nullptr, Opts.getOption(options::OPT_march_EQ),
|
|
CLANG_OPENMP_NVPTX_DEFAULT_ARCH);
|
|
|
|
return DAL;
|
|
}
|
|
|
|
for (Arg *A : Args) {
|
|
if (A->getOption().matches(options::OPT_Xarch__)) {
|
|
// Skip this argument unless the architecture matches BoundArch
|
|
if (BoundArch.empty() || A->getValue(0) != BoundArch)
|
|
continue;
|
|
|
|
unsigned Index = Args.getBaseArgs().MakeIndex(A->getValue(1));
|
|
unsigned Prev = Index;
|
|
std::unique_ptr<Arg> XarchArg(Opts.ParseOneArg(Args, Index));
|
|
|
|
// If the argument parsing failed or more than one argument was
|
|
// consumed, the -Xarch_ argument's parameter tried to consume
|
|
// extra arguments. Emit an error and ignore.
|
|
//
|
|
// We also want to disallow any options which would alter the
|
|
// driver behavior; that isn't going to work in our model. We
|
|
// use isDriverOption() as an approximation, although things
|
|
// like -O4 are going to slip through.
|
|
if (!XarchArg || Index > Prev + 1) {
|
|
getDriver().Diag(diag::err_drv_invalid_Xarch_argument_with_args)
|
|
<< A->getAsString(Args);
|
|
continue;
|
|
} else if (XarchArg->getOption().hasFlag(options::DriverOption)) {
|
|
getDriver().Diag(diag::err_drv_invalid_Xarch_argument_isdriver)
|
|
<< A->getAsString(Args);
|
|
continue;
|
|
}
|
|
XarchArg->setBaseArg(A);
|
|
A = XarchArg.release();
|
|
DAL->AddSynthesizedArg(A);
|
|
}
|
|
DAL->append(A);
|
|
}
|
|
|
|
if (!BoundArch.empty()) {
|
|
DAL->eraseArg(options::OPT_march_EQ);
|
|
DAL->AddJoinedArg(nullptr, Opts.getOption(options::OPT_march_EQ), BoundArch);
|
|
}
|
|
return DAL;
|
|
}
|
|
|
|
Tool *CudaToolChain::buildAssembler() const {
|
|
return new tools::NVPTX::Assembler(*this);
|
|
}
|
|
|
|
Tool *CudaToolChain::buildLinker() const {
|
|
if (OK == Action::OFK_OpenMP)
|
|
return new tools::NVPTX::OpenMPLinker(*this);
|
|
return new tools::NVPTX::Linker(*this);
|
|
}
|
|
|
|
void CudaToolChain::addClangWarningOptions(ArgStringList &CC1Args) const {
|
|
HostTC.addClangWarningOptions(CC1Args);
|
|
}
|
|
|
|
ToolChain::CXXStdlibType
|
|
CudaToolChain::GetCXXStdlibType(const ArgList &Args) const {
|
|
return HostTC.GetCXXStdlibType(Args);
|
|
}
|
|
|
|
void CudaToolChain::AddClangSystemIncludeArgs(const ArgList &DriverArgs,
|
|
ArgStringList &CC1Args) const {
|
|
HostTC.AddClangSystemIncludeArgs(DriverArgs, CC1Args);
|
|
}
|
|
|
|
void CudaToolChain::AddClangCXXStdlibIncludeArgs(const ArgList &Args,
|
|
ArgStringList &CC1Args) const {
|
|
HostTC.AddClangCXXStdlibIncludeArgs(Args, CC1Args);
|
|
}
|
|
|
|
void CudaToolChain::AddIAMCUIncludeArgs(const ArgList &Args,
|
|
ArgStringList &CC1Args) const {
|
|
HostTC.AddIAMCUIncludeArgs(Args, CC1Args);
|
|
}
|
|
|
|
SanitizerMask CudaToolChain::getSupportedSanitizers() const {
|
|
// The CudaToolChain only supports sanitizers in the sense that it allows
|
|
// sanitizer arguments on the command line if they are supported by the host
|
|
// toolchain. The CudaToolChain will actually ignore any command line
|
|
// arguments for any of these "supported" sanitizers. That means that no
|
|
// sanitization of device code is actually supported at this time.
|
|
//
|
|
// This behavior is necessary because the host and device toolchains
|
|
// invocations often share the command line, so the device toolchain must
|
|
// tolerate flags meant only for the host toolchain.
|
|
return HostTC.getSupportedSanitizers();
|
|
}
|
|
|
|
VersionTuple CudaToolChain::computeMSVCVersion(const Driver *D,
|
|
const ArgList &Args) const {
|
|
return HostTC.computeMSVCVersion(D, Args);
|
|
}
|