forked from OSchip/llvm-project
649 lines
21 KiB
C++
649 lines
21 KiB
C++
//===- bolt/Passes/FrameAnalysis.cpp --------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the FrameAnalysis class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "bolt/Passes/FrameAnalysis.h"
|
|
#include "bolt/Core/ParallelUtilities.h"
|
|
#include "bolt/Passes/CallGraphWalker.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/Support/Timer.h"
|
|
#include <fstream>
|
|
#include <stack>
|
|
|
|
#define DEBUG_TYPE "fa"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace opts {
|
|
extern cl::OptionCategory BoltOptCategory;
|
|
extern cl::opt<unsigned> Verbosity;
|
|
|
|
static cl::list<std::string>
|
|
FrameOptFunctionNames("funcs-fop", cl::CommaSeparated,
|
|
cl::desc("list of functions to apply frame opts"),
|
|
cl::value_desc("func1,func2,func3,..."));
|
|
|
|
static cl::opt<std::string> FrameOptFunctionNamesFile(
|
|
"funcs-file-fop",
|
|
cl::desc("file with list of functions to frame optimize"));
|
|
|
|
static cl::opt<bool> TimeFA("time-fa", cl::desc("time frame analysis steps"),
|
|
cl::ReallyHidden, cl::cat(BoltOptCategory));
|
|
|
|
static cl::opt<bool>
|
|
ExperimentalSW("experimental-shrink-wrapping",
|
|
cl::desc("process functions with stack pointer arithmetic"),
|
|
cl::ReallyHidden, cl::ZeroOrMore, cl::cat(BoltOptCategory));
|
|
|
|
bool shouldFrameOptimize(const llvm::bolt::BinaryFunction &Function) {
|
|
if (Function.hasUnknownControlFlow())
|
|
return false;
|
|
|
|
if (!FrameOptFunctionNamesFile.empty()) {
|
|
assert(!FrameOptFunctionNamesFile.empty() && "unexpected empty file name");
|
|
std::ifstream FuncsFile(FrameOptFunctionNamesFile, std::ios::in);
|
|
std::string FuncName;
|
|
while (std::getline(FuncsFile, FuncName))
|
|
FrameOptFunctionNames.push_back(FuncName);
|
|
FrameOptFunctionNamesFile = "";
|
|
}
|
|
|
|
bool IsValid = true;
|
|
if (!FrameOptFunctionNames.empty()) {
|
|
IsValid = false;
|
|
for (std::string &Name : FrameOptFunctionNames) {
|
|
if (Function.hasName(Name)) {
|
|
IsValid = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (!IsValid)
|
|
return false;
|
|
|
|
return IsValid;
|
|
}
|
|
} // namespace opts
|
|
|
|
namespace llvm {
|
|
namespace bolt {
|
|
|
|
raw_ostream &operator<<(raw_ostream &OS, const FrameIndexEntry &FIE) {
|
|
OS << "FrameIndexEntry<IsLoad: " << FIE.IsLoad << ", IsStore: " << FIE.IsStore
|
|
<< ", IsStoreFromReg: " << FIE.IsStoreFromReg
|
|
<< ", RegOrImm: " << FIE.RegOrImm << ", StackOffset: ";
|
|
if (FIE.StackOffset < 0)
|
|
OS << "-" << Twine::utohexstr(-FIE.StackOffset);
|
|
else
|
|
OS << "+" << Twine::utohexstr(FIE.StackOffset);
|
|
OS << ", Size: " << static_cast<int>(FIE.Size)
|
|
<< ", IsSimple: " << FIE.IsSimple << ">";
|
|
return OS;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// This class should be used to iterate through basic blocks in layout order
|
|
/// to analyze instructions for frame accesses. The user should call
|
|
/// enterNewBB() whenever starting analyzing a new BB and doNext() for each
|
|
/// instruction. After doNext(), if isValidAccess() returns true, it means the
|
|
/// current instruction accesses the frame and getFIE() may be used to obtain
|
|
/// details about this access.
|
|
class FrameAccessAnalysis {
|
|
/// We depend on Stack Pointer Tracking to figure out the current SP offset
|
|
/// value at a given program point
|
|
StackPointerTracking &SPT;
|
|
|
|
/// Context vars
|
|
const BinaryContext &BC;
|
|
const BinaryFunction &BF;
|
|
// Vars used for storing useful CFI info to give us a hint about how the stack
|
|
// is used in this function
|
|
int SPOffset{0};
|
|
int FPOffset{0};
|
|
int64_t CfaOffset{-8};
|
|
uint16_t CfaReg{7};
|
|
std::stack<std::pair<int64_t, uint16_t>> CFIStack;
|
|
/// Our pointer to access SPT info
|
|
const MCInst *Prev{nullptr};
|
|
/// Info about the last frame access
|
|
bool IsValidAccess{false};
|
|
bool EscapesStackAddress{false};
|
|
FrameIndexEntry FIE;
|
|
|
|
bool decodeFrameAccess(const MCInst &Inst) {
|
|
int32_t SrcImm = 0;
|
|
MCPhysReg Reg = 0;
|
|
int64_t StackOffset = 0;
|
|
bool IsIndexed = false;
|
|
if (!BC.MIB->isStackAccess(
|
|
Inst, FIE.IsLoad, FIE.IsStore, FIE.IsStoreFromReg, Reg, SrcImm,
|
|
FIE.StackPtrReg, StackOffset, FIE.Size, FIE.IsSimple, IsIndexed)) {
|
|
return true;
|
|
}
|
|
|
|
if (IsIndexed || (!FIE.Size && (FIE.IsLoad || FIE.IsStore))) {
|
|
LLVM_DEBUG(dbgs() << "Giving up on indexed memory access/unknown size\n");
|
|
LLVM_DEBUG(dbgs() << "Blame insn: ");
|
|
LLVM_DEBUG(BC.printInstruction(outs(), Inst, 0, &BF, true, false, false));
|
|
LLVM_DEBUG(Inst.dump());
|
|
return false;
|
|
}
|
|
|
|
assert(FIE.Size != 0 || (!FIE.IsLoad && !FIE.IsStore));
|
|
|
|
FIE.RegOrImm = SrcImm;
|
|
if (FIE.IsLoad || FIE.IsStoreFromReg)
|
|
FIE.RegOrImm = Reg;
|
|
|
|
if (FIE.StackPtrReg == BC.MIB->getStackPointer() && SPOffset != SPT.EMPTY &&
|
|
SPOffset != SPT.SUPERPOSITION) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "Adding access via SP while CFA reg is another one\n");
|
|
FIE.StackOffset = SPOffset + StackOffset;
|
|
} else if (FIE.StackPtrReg == BC.MIB->getFramePointer() &&
|
|
FPOffset != SPT.EMPTY && FPOffset != SPT.SUPERPOSITION) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "Adding access via FP while CFA reg is another one\n");
|
|
FIE.StackOffset = FPOffset + StackOffset;
|
|
} else if (FIE.StackPtrReg ==
|
|
*BC.MRI->getLLVMRegNum(CfaReg, /*isEH=*/false)) {
|
|
FIE.StackOffset = CfaOffset + StackOffset;
|
|
} else {
|
|
LLVM_DEBUG(
|
|
dbgs() << "Found stack access with reg different than cfa reg.\n");
|
|
LLVM_DEBUG(dbgs() << "\tCurrent CFA reg: " << CfaReg
|
|
<< "\n\tStack access reg: " << FIE.StackPtrReg << "\n");
|
|
LLVM_DEBUG(dbgs() << "Blame insn: ");
|
|
LLVM_DEBUG(Inst.dump());
|
|
return false;
|
|
}
|
|
IsValidAccess = true;
|
|
return true;
|
|
}
|
|
|
|
public:
|
|
FrameAccessAnalysis(BinaryFunction &BF, StackPointerTracking &SPT)
|
|
: SPT(SPT), BC(BF.getBinaryContext()), BF(BF) {}
|
|
|
|
void enterNewBB() { Prev = nullptr; }
|
|
const FrameIndexEntry &getFIE() const { return FIE; }
|
|
int getSPOffset() const { return SPOffset; }
|
|
bool isValidAccess() const { return IsValidAccess; }
|
|
bool doesEscapeStackAddress() const { return EscapesStackAddress; }
|
|
|
|
bool doNext(const BinaryBasicBlock &BB, const MCInst &Inst) {
|
|
IsValidAccess = false;
|
|
EscapesStackAddress = false;
|
|
std::tie(SPOffset, FPOffset) =
|
|
Prev ? *SPT.getStateAt(*Prev) : *SPT.getStateAt(BB);
|
|
Prev = &Inst;
|
|
// Use CFI information to keep track of which register is being used to
|
|
// access the frame
|
|
if (BC.MIB->isCFI(Inst)) {
|
|
const MCCFIInstruction *CFI = BF.getCFIFor(Inst);
|
|
switch (CFI->getOperation()) {
|
|
case MCCFIInstruction::OpDefCfa:
|
|
CfaOffset = CFI->getOffset();
|
|
LLVM_FALLTHROUGH;
|
|
case MCCFIInstruction::OpDefCfaRegister:
|
|
CfaReg = CFI->getRegister();
|
|
break;
|
|
case MCCFIInstruction::OpDefCfaOffset:
|
|
CfaOffset = CFI->getOffset();
|
|
break;
|
|
case MCCFIInstruction::OpRememberState:
|
|
CFIStack.push(std::make_pair(CfaOffset, CfaReg));
|
|
break;
|
|
case MCCFIInstruction::OpRestoreState: {
|
|
if (CFIStack.empty())
|
|
dbgs() << "Assertion is about to fail: " << BF.getPrintName() << "\n";
|
|
assert(!CFIStack.empty() && "Corrupt CFI stack");
|
|
std::pair<int64_t, uint16_t> &Elem = CFIStack.top();
|
|
CFIStack.pop();
|
|
CfaOffset = Elem.first;
|
|
CfaReg = Elem.second;
|
|
break;
|
|
}
|
|
case MCCFIInstruction::OpAdjustCfaOffset:
|
|
llvm_unreachable("Unhandled AdjustCfaOffset");
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (BC.MIB->escapesVariable(Inst, SPT.HasFramePointer)) {
|
|
EscapesStackAddress = true;
|
|
if (!opts::ExperimentalSW) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "Leaked stack address, giving up on this function.\n");
|
|
LLVM_DEBUG(dbgs() << "Blame insn: ");
|
|
LLVM_DEBUG(Inst.dump());
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return decodeFrameAccess(Inst);
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
void FrameAnalysis::addArgAccessesFor(MCInst &Inst, ArgAccesses &&AA) {
|
|
if (ErrorOr<ArgAccesses &> OldAA = getArgAccessesFor(Inst)) {
|
|
if (OldAA->AssumeEverything)
|
|
return;
|
|
*OldAA = std::move(AA);
|
|
return;
|
|
}
|
|
if (AA.AssumeEverything) {
|
|
// Index 0 in ArgAccessesVector represents an "assumeeverything" entry
|
|
BC.MIB->addAnnotation(Inst, "ArgAccessEntry", 0U);
|
|
return;
|
|
}
|
|
BC.MIB->addAnnotation(Inst, "ArgAccessEntry",
|
|
(unsigned)ArgAccessesVector.size());
|
|
ArgAccessesVector.emplace_back(std::move(AA));
|
|
}
|
|
|
|
void FrameAnalysis::addArgInStackAccessFor(MCInst &Inst,
|
|
const ArgInStackAccess &Arg) {
|
|
ErrorOr<ArgAccesses &> AA = getArgAccessesFor(Inst);
|
|
if (!AA) {
|
|
addArgAccessesFor(Inst, ArgAccesses(false));
|
|
AA = getArgAccessesFor(Inst);
|
|
assert(AA && "Object setup failed");
|
|
}
|
|
std::set<ArgInStackAccess> &Set = AA->Set;
|
|
assert(!AA->AssumeEverything && "Adding arg to AssumeEverything set");
|
|
Set.emplace(Arg);
|
|
}
|
|
|
|
void FrameAnalysis::addFIEFor(MCInst &Inst, const FrameIndexEntry &FIE) {
|
|
BC.MIB->addAnnotation(Inst, "FrameAccessEntry", (unsigned)FIEVector.size());
|
|
FIEVector.emplace_back(FIE);
|
|
}
|
|
|
|
ErrorOr<ArgAccesses &> FrameAnalysis::getArgAccessesFor(const MCInst &Inst) {
|
|
if (auto Idx = BC.MIB->tryGetAnnotationAs<unsigned>(Inst, "ArgAccessEntry")) {
|
|
assert(ArgAccessesVector.size() > *Idx && "Out of bounds");
|
|
return ArgAccessesVector[*Idx];
|
|
}
|
|
return make_error_code(errc::result_out_of_range);
|
|
}
|
|
|
|
ErrorOr<const ArgAccesses &>
|
|
FrameAnalysis::getArgAccessesFor(const MCInst &Inst) const {
|
|
if (auto Idx = BC.MIB->tryGetAnnotationAs<unsigned>(Inst, "ArgAccessEntry")) {
|
|
assert(ArgAccessesVector.size() > *Idx && "Out of bounds");
|
|
return ArgAccessesVector[*Idx];
|
|
}
|
|
return make_error_code(errc::result_out_of_range);
|
|
}
|
|
|
|
ErrorOr<const FrameIndexEntry &>
|
|
FrameAnalysis::getFIEFor(const MCInst &Inst) const {
|
|
if (auto Idx =
|
|
BC.MIB->tryGetAnnotationAs<unsigned>(Inst, "FrameAccessEntry")) {
|
|
assert(FIEVector.size() > *Idx && "Out of bounds");
|
|
return FIEVector[*Idx];
|
|
}
|
|
return make_error_code(errc::result_out_of_range);
|
|
}
|
|
|
|
void FrameAnalysis::traverseCG(BinaryFunctionCallGraph &CG) {
|
|
CallGraphWalker CGWalker(CG);
|
|
|
|
CGWalker.registerVisitor(
|
|
[&](BinaryFunction *Func) -> bool { return computeArgsAccessed(*Func); });
|
|
|
|
CGWalker.walk();
|
|
|
|
DEBUG_WITH_TYPE("ra", {
|
|
for (auto &MapEntry : ArgsTouchedMap) {
|
|
const BinaryFunction *Func = MapEntry.first;
|
|
const auto &Set = MapEntry.second;
|
|
dbgs() << "Args accessed for " << Func->getPrintName() << ": ";
|
|
if (!Set.empty() && Set.count(std::make_pair(-1, 0)))
|
|
dbgs() << "assume everything";
|
|
else
|
|
for (const std::pair<int64_t, uint8_t> &Entry : Set)
|
|
dbgs() << "[" << Entry.first << ", " << (int)Entry.second << "] ";
|
|
dbgs() << "\n";
|
|
}
|
|
});
|
|
}
|
|
|
|
bool FrameAnalysis::updateArgsTouchedFor(const BinaryFunction &BF, MCInst &Inst,
|
|
int CurOffset) {
|
|
if (!BC.MIB->isCall(Inst))
|
|
return false;
|
|
|
|
std::set<int64_t> Res;
|
|
const MCSymbol *TargetSymbol = BC.MIB->getTargetSymbol(Inst);
|
|
// If indirect call, we conservatively assume it accesses all stack positions
|
|
if (TargetSymbol == nullptr) {
|
|
addArgAccessesFor(Inst, ArgAccesses(/*AssumeEverything=*/true));
|
|
if (!FunctionsRequireAlignment.count(&BF)) {
|
|
FunctionsRequireAlignment.insert(&BF);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
const BinaryFunction *Function = BC.getFunctionForSymbol(TargetSymbol);
|
|
// Call to a function without a BinaryFunction object. Conservatively assume
|
|
// it accesses all stack positions
|
|
if (Function == nullptr) {
|
|
addArgAccessesFor(Inst, ArgAccesses(/*AssumeEverything=*/true));
|
|
if (!FunctionsRequireAlignment.count(&BF)) {
|
|
FunctionsRequireAlignment.insert(&BF);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
auto Iter = ArgsTouchedMap.find(Function);
|
|
|
|
bool Changed = false;
|
|
if (BC.MIB->isTailCall(Inst) && Iter != ArgsTouchedMap.end()) {
|
|
// Ignore checking CurOffset because we can't always reliably determine the
|
|
// offset specially after an epilogue, where tailcalls happen. It should be
|
|
// -8.
|
|
for (std::pair<int64_t, uint8_t> Elem : Iter->second) {
|
|
if (ArgsTouchedMap[&BF].find(Elem) == ArgsTouchedMap[&BF].end()) {
|
|
ArgsTouchedMap[&BF].emplace(Elem);
|
|
Changed = true;
|
|
}
|
|
}
|
|
}
|
|
if (FunctionsRequireAlignment.count(Function) &&
|
|
!FunctionsRequireAlignment.count(&BF)) {
|
|
Changed = true;
|
|
FunctionsRequireAlignment.insert(&BF);
|
|
}
|
|
if (Iter == ArgsTouchedMap.end())
|
|
return Changed;
|
|
|
|
if (CurOffset == StackPointerTracking::EMPTY ||
|
|
CurOffset == StackPointerTracking::SUPERPOSITION) {
|
|
addArgAccessesFor(Inst, ArgAccesses(/*AssumeEverything=*/true));
|
|
return Changed;
|
|
}
|
|
|
|
for (std::pair<int64_t, uint8_t> Elem : Iter->second) {
|
|
if (Elem.first == -1) {
|
|
addArgAccessesFor(Inst, ArgAccesses(/*AssumeEverything=*/true));
|
|
break;
|
|
}
|
|
LLVM_DEBUG(dbgs() << "Added arg in stack access annotation "
|
|
<< CurOffset + Elem.first << "\n");
|
|
addArgInStackAccessFor(
|
|
Inst, ArgInStackAccess{/*StackOffset=*/CurOffset + Elem.first,
|
|
/*Size=*/Elem.second});
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
bool FrameAnalysis::computeArgsAccessed(BinaryFunction &BF) {
|
|
if (!BF.isSimple() || !BF.hasCFG()) {
|
|
LLVM_DEBUG(dbgs() << "Treating " << BF.getPrintName()
|
|
<< " conservatively.\n");
|
|
ArgsTouchedMap[&BF].emplace(std::make_pair(-1, 0));
|
|
if (!FunctionsRequireAlignment.count(&BF)) {
|
|
FunctionsRequireAlignment.insert(&BF);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Now computing args accessed for: " << BF.getPrintName()
|
|
<< "\n");
|
|
bool UpdatedArgsTouched = false;
|
|
bool NoInfo = false;
|
|
FrameAccessAnalysis FAA(BF, getSPT(BF));
|
|
|
|
for (BinaryBasicBlock *BB : BF.getLayout().blocks()) {
|
|
FAA.enterNewBB();
|
|
|
|
for (MCInst &Inst : *BB) {
|
|
if (!FAA.doNext(*BB, Inst) || FAA.doesEscapeStackAddress()) {
|
|
ArgsTouchedMap[&BF].emplace(std::make_pair(-1, 0));
|
|
NoInfo = true;
|
|
break;
|
|
}
|
|
|
|
// Check for calls -- attach stack accessing info to them regarding their
|
|
// target
|
|
if (updateArgsTouchedFor(BF, Inst, FAA.getSPOffset()))
|
|
UpdatedArgsTouched = true;
|
|
|
|
// Check for stack accesses that affect callers
|
|
if (!FAA.isValidAccess())
|
|
continue;
|
|
|
|
const FrameIndexEntry &FIE = FAA.getFIE();
|
|
if (FIE.StackOffset < 0)
|
|
continue;
|
|
if (ArgsTouchedMap[&BF].find(std::make_pair(FIE.StackOffset, FIE.Size)) !=
|
|
ArgsTouchedMap[&BF].end())
|
|
continue;
|
|
|
|
// Record accesses to the previous stack frame
|
|
ArgsTouchedMap[&BF].emplace(std::make_pair(FIE.StackOffset, FIE.Size));
|
|
UpdatedArgsTouched = true;
|
|
LLVM_DEBUG({
|
|
dbgs() << "Arg access offset " << FIE.StackOffset << " added to:\n";
|
|
BC.printInstruction(dbgs(), Inst, 0, &BF, true);
|
|
});
|
|
}
|
|
if (NoInfo)
|
|
break;
|
|
}
|
|
if (FunctionsRequireAlignment.count(&BF))
|
|
return UpdatedArgsTouched;
|
|
|
|
if (NoInfo) {
|
|
FunctionsRequireAlignment.insert(&BF);
|
|
return true;
|
|
}
|
|
|
|
for (BinaryBasicBlock &BB : BF) {
|
|
for (MCInst &Inst : BB) {
|
|
if (BC.MIB->requiresAlignedAddress(Inst)) {
|
|
FunctionsRequireAlignment.insert(&BF);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return UpdatedArgsTouched;
|
|
}
|
|
|
|
bool FrameAnalysis::restoreFrameIndex(BinaryFunction &BF) {
|
|
FrameAccessAnalysis FAA(BF, getSPT(BF));
|
|
|
|
LLVM_DEBUG(dbgs() << "Restoring frame indices for \"" << BF.getPrintName()
|
|
<< "\"\n");
|
|
for (BinaryBasicBlock *BB : BF.getLayout().blocks()) {
|
|
LLVM_DEBUG(dbgs() << "\tNow at BB " << BB->getName() << "\n");
|
|
FAA.enterNewBB();
|
|
|
|
for (MCInst &Inst : *BB) {
|
|
if (!FAA.doNext(*BB, Inst))
|
|
return false;
|
|
LLVM_DEBUG({
|
|
dbgs() << "\t\tNow at ";
|
|
Inst.dump();
|
|
dbgs() << "\t\t\tSP offset is " << FAA.getSPOffset() << "\n";
|
|
});
|
|
|
|
if (FAA.doesEscapeStackAddress()) {
|
|
if (!FunctionsWithStackArithmetic.count(&BF))
|
|
FunctionsWithStackArithmetic.insert(&BF);
|
|
continue;
|
|
}
|
|
|
|
if (!FAA.isValidAccess())
|
|
continue;
|
|
|
|
const FrameIndexEntry &FIE = FAA.getFIE();
|
|
|
|
addFIEFor(Inst, FIE);
|
|
LLVM_DEBUG({
|
|
dbgs() << "Frame index annotation " << FIE << " added to:\n";
|
|
BC.printInstruction(dbgs(), Inst, 0, &BF, true);
|
|
});
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void FrameAnalysis::cleanAnnotations() {
|
|
NamedRegionTimer T("cleanannotations", "clean annotations", "FA",
|
|
"FA breakdown", opts::TimeFA);
|
|
|
|
ParallelUtilities::WorkFuncTy CleanFunction = [&](BinaryFunction &BF) {
|
|
for (BinaryBasicBlock &BB : BF) {
|
|
for (MCInst &Inst : BB) {
|
|
BC.MIB->removeAnnotation(Inst, "ArgAccessEntry");
|
|
BC.MIB->removeAnnotation(Inst, "FrameAccessEntry");
|
|
}
|
|
}
|
|
};
|
|
|
|
ParallelUtilities::runOnEachFunction(
|
|
BC, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR, CleanFunction,
|
|
ParallelUtilities::PredicateTy(nullptr), "cleanAnnotations");
|
|
}
|
|
|
|
FrameAnalysis::FrameAnalysis(BinaryContext &BC, BinaryFunctionCallGraph &CG)
|
|
: BC(BC) {
|
|
// Position 0 of the vector should be always associated with "assume access
|
|
// everything".
|
|
ArgAccessesVector.emplace_back(ArgAccesses(/*AssumeEverything*/ true));
|
|
|
|
if (!opts::NoThreads) {
|
|
NamedRegionTimer T1("precomputespt", "pre-compute spt", "FA",
|
|
"FA breakdown", opts::TimeFA);
|
|
preComputeSPT();
|
|
}
|
|
|
|
{
|
|
NamedRegionTimer T1("traversecg", "traverse call graph", "FA",
|
|
"FA breakdown", opts::TimeFA);
|
|
traverseCG(CG);
|
|
}
|
|
|
|
for (auto &I : BC.getBinaryFunctions()) {
|
|
CountDenominator += I.second.getFunctionScore();
|
|
|
|
// "shouldOptimize" for passes that run after finalize
|
|
if (!(I.second.isSimple() && I.second.hasCFG() && !I.second.isIgnored()) ||
|
|
!opts::shouldFrameOptimize(I.second)) {
|
|
++NumFunctionsNotOptimized;
|
|
continue;
|
|
}
|
|
|
|
{
|
|
NamedRegionTimer T1("restorefi", "restore frame index", "FA",
|
|
"FA breakdown", opts::TimeFA);
|
|
if (!restoreFrameIndex(I.second)) {
|
|
++NumFunctionsFailedRestoreFI;
|
|
CountFunctionsFailedRestoreFI += I.second.getFunctionScore();
|
|
continue;
|
|
}
|
|
}
|
|
AnalyzedFunctions.insert(&I.second);
|
|
}
|
|
|
|
{
|
|
NamedRegionTimer T1("clearspt", "clear spt", "FA", "FA breakdown",
|
|
opts::TimeFA);
|
|
clearSPTMap();
|
|
|
|
// Clean up memory allocated for annotation values
|
|
if (!opts::NoThreads)
|
|
for (MCPlusBuilder::AllocatorIdTy Id : SPTAllocatorsId)
|
|
BC.MIB->freeValuesAllocator(Id);
|
|
}
|
|
}
|
|
|
|
void FrameAnalysis::printStats() {
|
|
outs() << "BOLT-INFO: FRAME ANALYSIS: " << NumFunctionsNotOptimized
|
|
<< " function(s) were not optimized.\n"
|
|
<< "BOLT-INFO: FRAME ANALYSIS: " << NumFunctionsFailedRestoreFI
|
|
<< " function(s) "
|
|
<< format("(%.1lf%% dyn cov)",
|
|
(100.0 * CountFunctionsFailedRestoreFI / CountDenominator))
|
|
<< " could not have its frame indices restored.\n";
|
|
}
|
|
|
|
void FrameAnalysis::clearSPTMap() {
|
|
if (opts::NoThreads) {
|
|
SPTMap.clear();
|
|
return;
|
|
}
|
|
|
|
ParallelUtilities::WorkFuncTy ClearFunctionSPT = [&](BinaryFunction &BF) {
|
|
std::unique_ptr<StackPointerTracking> &SPTPtr = SPTMap.find(&BF)->second;
|
|
SPTPtr.reset();
|
|
};
|
|
|
|
ParallelUtilities::PredicateTy SkipFunc = [&](const BinaryFunction &BF) {
|
|
return !BF.isSimple() || !BF.hasCFG();
|
|
};
|
|
|
|
ParallelUtilities::runOnEachFunction(
|
|
BC, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR, ClearFunctionSPT,
|
|
SkipFunc, "clearSPTMap");
|
|
|
|
SPTMap.clear();
|
|
}
|
|
|
|
void FrameAnalysis::preComputeSPT() {
|
|
// Make sure that the SPTMap is empty
|
|
assert(SPTMap.size() == 0);
|
|
|
|
// Create map entries to allow lock-free parallel execution
|
|
for (auto &BFI : BC.getBinaryFunctions()) {
|
|
BinaryFunction &BF = BFI.second;
|
|
if (!BF.isSimple() || !BF.hasCFG())
|
|
continue;
|
|
SPTMap.emplace(&BF, std::unique_ptr<StackPointerTracking>());
|
|
}
|
|
|
|
// Create an index for the SPT annotation to allow lock-free parallel
|
|
// execution
|
|
BC.MIB->getOrCreateAnnotationIndex("StackPointerTracking");
|
|
|
|
// Run SPT in parallel
|
|
ParallelUtilities::WorkFuncWithAllocTy ProcessFunction =
|
|
[&](BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocId) {
|
|
std::unique_ptr<StackPointerTracking> &SPTPtr =
|
|
SPTMap.find(&BF)->second;
|
|
SPTPtr = std::make_unique<StackPointerTracking>(BF, AllocId);
|
|
SPTPtr->run();
|
|
};
|
|
|
|
ParallelUtilities::PredicateTy SkipPredicate = [&](const BinaryFunction &BF) {
|
|
return !BF.isSimple() || !BF.hasCFG();
|
|
};
|
|
|
|
ParallelUtilities::runOnEachFunctionWithUniqueAllocId(
|
|
BC, ParallelUtilities::SchedulingPolicy::SP_BB_QUADRATIC, ProcessFunction,
|
|
SkipPredicate, "preComputeSPT");
|
|
}
|
|
|
|
} // namespace bolt
|
|
} // namespace llvm
|