forked from OSchip/llvm-project
1028 lines
33 KiB
C++
1028 lines
33 KiB
C++
// BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines BugReporter, a utility class for generating
|
|
// PathDiagnostics for analyses based on GRSimpleVals.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Analysis/PathSensitive/BugReporter.h"
|
|
#include "clang/Analysis/PathSensitive/GRExprEngine.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/SourceLocation.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/CFG.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/Analysis/ProgramPoint.h"
|
|
#include "clang/Analysis/PathDiagnostic.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include <queue>
|
|
|
|
using namespace clang;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// static functions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static inline Stmt* GetStmt(ProgramPoint P) {
|
|
if (const PostStmt* PS = dyn_cast<PostStmt>(&P))
|
|
return PS->getStmt();
|
|
else if (const BlockEdge* BE = dyn_cast<BlockEdge>(&P))
|
|
return BE->getSrc()->getTerminator();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline const ExplodedNode<GRState>*
|
|
GetPredecessorNode(const ExplodedNode<GRState>* N) {
|
|
return N->pred_empty() ? NULL : *(N->pred_begin());
|
|
}
|
|
|
|
static inline const ExplodedNode<GRState>*
|
|
GetSuccessorNode(const ExplodedNode<GRState>* N) {
|
|
return N->succ_empty() ? NULL : *(N->succ_begin());
|
|
}
|
|
|
|
static Stmt* GetPreviousStmt(const ExplodedNode<GRState>* N) {
|
|
for (N = GetPredecessorNode(N); N; N = GetPredecessorNode(N))
|
|
if (Stmt *S = GetStmt(N->getLocation()))
|
|
return S;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static Stmt* GetNextStmt(const ExplodedNode<GRState>* N) {
|
|
for (N = GetSuccessorNode(N); N; N = GetSuccessorNode(N))
|
|
if (Stmt *S = GetStmt(N->getLocation()))
|
|
return S;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline Stmt* GetCurrentOrPreviousStmt(const ExplodedNode<GRState>* N) {
|
|
if (Stmt *S = GetStmt(N->getLocation()))
|
|
return S;
|
|
|
|
return GetPreviousStmt(N);
|
|
}
|
|
|
|
static inline Stmt* GetCurrentOrNextStmt(const ExplodedNode<GRState>* N) {
|
|
if (Stmt *S = GetStmt(N->getLocation()))
|
|
return S;
|
|
|
|
return GetNextStmt(N);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Diagnostics for 'execution continues on line XXX'.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static SourceLocation ExecutionContinues(SourceManager& SMgr,
|
|
const ExplodedNode<GRState>* N,
|
|
const Decl& D,
|
|
bool* OutHasStmt = 0) {
|
|
if (Stmt *S = GetNextStmt(N)) {
|
|
if (OutHasStmt) *OutHasStmt = true;
|
|
return S->getLocStart();
|
|
}
|
|
else {
|
|
if (OutHasStmt) *OutHasStmt = false;
|
|
return D.getBody()->getRBracLoc();
|
|
}
|
|
}
|
|
|
|
static SourceLocation ExecutionContinues(llvm::raw_string_ostream& os,
|
|
SourceManager& SMgr,
|
|
const ExplodedNode<GRState>* N,
|
|
const Decl& D) {
|
|
|
|
// Slow, but probably doesn't matter.
|
|
if (os.str().empty())
|
|
os << ' ';
|
|
|
|
bool hasStmt;
|
|
SourceLocation Loc = ExecutionContinues(SMgr, N, D, &hasStmt);
|
|
|
|
if (hasStmt)
|
|
os << "Execution continues on line "
|
|
<< SMgr.getInstantiationLineNumber(Loc) << '.';
|
|
else
|
|
os << "Execution jumps to the end of the "
|
|
<< (isa<ObjCMethodDecl>(D) ? "method" : "function") << '.';
|
|
|
|
return Loc;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Methods for BugType and subclasses.
|
|
//===----------------------------------------------------------------------===//
|
|
BugType::~BugType() {}
|
|
void BugType::FlushReports(BugReporter &BR) {}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Methods for BugReport and subclasses.
|
|
//===----------------------------------------------------------------------===//
|
|
BugReport::~BugReport() {}
|
|
RangedBugReport::~RangedBugReport() {}
|
|
|
|
Stmt* BugReport::getStmt(BugReporter& BR) const {
|
|
ProgramPoint ProgP = EndNode->getLocation();
|
|
Stmt *S = NULL;
|
|
|
|
if (BlockEntrance* BE = dyn_cast<BlockEntrance>(&ProgP)) {
|
|
if (BE->getBlock() == &BR.getCFG()->getExit()) S = GetPreviousStmt(EndNode);
|
|
}
|
|
if (!S) S = GetStmt(ProgP);
|
|
|
|
return S;
|
|
}
|
|
|
|
PathDiagnosticPiece*
|
|
BugReport::getEndPath(BugReporter& BR,
|
|
const ExplodedNode<GRState>* EndPathNode) {
|
|
|
|
Stmt* S = getStmt(BR);
|
|
|
|
if (!S)
|
|
return NULL;
|
|
|
|
FullSourceLoc L(S->getLocStart(), BR.getContext().getSourceManager());
|
|
PathDiagnosticPiece* P = new PathDiagnosticEventPiece(L, getDescription());
|
|
|
|
const SourceRange *Beg, *End;
|
|
getRanges(BR, Beg, End);
|
|
|
|
for (; Beg != End; ++Beg)
|
|
P->addRange(*Beg);
|
|
|
|
return P;
|
|
}
|
|
|
|
void BugReport::getRanges(BugReporter& BR, const SourceRange*& beg,
|
|
const SourceRange*& end) {
|
|
|
|
if (Expr* E = dyn_cast_or_null<Expr>(getStmt(BR))) {
|
|
R = E->getSourceRange();
|
|
assert(R.isValid());
|
|
beg = &R;
|
|
end = beg+1;
|
|
}
|
|
else
|
|
beg = end = 0;
|
|
}
|
|
|
|
SourceLocation BugReport::getLocation() const {
|
|
if (EndNode)
|
|
if (Stmt* S = GetCurrentOrPreviousStmt(EndNode)) {
|
|
// For member expressions, return the location of the '.' or '->'.
|
|
if (MemberExpr* ME = dyn_cast<MemberExpr>(S))
|
|
return ME->getMemberLoc();
|
|
|
|
return S->getLocStart();
|
|
}
|
|
|
|
return FullSourceLoc();
|
|
}
|
|
|
|
PathDiagnosticPiece* BugReport::VisitNode(const ExplodedNode<GRState>* N,
|
|
const ExplodedNode<GRState>* PrevN,
|
|
const ExplodedGraph<GRState>& G,
|
|
BugReporter& BR,
|
|
NodeResolver &NR) {
|
|
return NULL;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Methods for BugReporter and subclasses.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
BugReportEquivClass::~BugReportEquivClass() {
|
|
for (iterator I=begin(), E=end(); I!=E; ++I) delete *I;
|
|
}
|
|
|
|
GRBugReporter::~GRBugReporter() { FlushReports(); }
|
|
BugReporterData::~BugReporterData() {}
|
|
|
|
ExplodedGraph<GRState>&
|
|
GRBugReporter::getGraph() { return Eng.getGraph(); }
|
|
|
|
GRStateManager&
|
|
GRBugReporter::getStateManager() { return Eng.getStateManager(); }
|
|
|
|
BugReporter::~BugReporter() { FlushReports(); }
|
|
|
|
void BugReporter::FlushReports() {
|
|
if (BugTypes.isEmpty())
|
|
return;
|
|
|
|
// First flush the warnings for each BugType. This may end up creating new
|
|
// warnings and new BugTypes. Because ImmutableSet is a functional data
|
|
// structure, we do not need to worry about the iterators being invalidated.
|
|
for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I)
|
|
const_cast<BugType*>(*I)->FlushReports(*this);
|
|
|
|
// Iterate through BugTypes a second time. BugTypes may have been updated
|
|
// with new BugType objects and new warnings.
|
|
for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I) {
|
|
BugType *BT = const_cast<BugType*>(*I);
|
|
|
|
typedef llvm::FoldingSet<BugReportEquivClass> SetTy;
|
|
SetTy& EQClasses = BT->EQClasses;
|
|
|
|
for (SetTy::iterator EI=EQClasses.begin(), EE=EQClasses.end(); EI!=EE;++EI){
|
|
BugReportEquivClass& EQ = *EI;
|
|
FlushReport(EQ);
|
|
}
|
|
|
|
// Delete the BugType object. This will also delete the equivalence
|
|
// classes.
|
|
delete BT;
|
|
}
|
|
|
|
// Remove all references to the BugType objects.
|
|
BugTypes = F.GetEmptySet();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PathDiagnostics generation.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
typedef llvm::DenseMap<const ExplodedNode<GRState>*,
|
|
const ExplodedNode<GRState>*> NodeBackMap;
|
|
|
|
static std::pair<std::pair<ExplodedGraph<GRState>*, NodeBackMap*>,
|
|
std::pair<ExplodedNode<GRState>*, unsigned> >
|
|
MakeReportGraph(const ExplodedGraph<GRState>* G,
|
|
const ExplodedNode<GRState>** NStart,
|
|
const ExplodedNode<GRState>** NEnd) {
|
|
|
|
// Create the trimmed graph. It will contain the shortest paths from the
|
|
// error nodes to the root. In the new graph we should only have one
|
|
// error node unless there are two or more error nodes with the same minimum
|
|
// path length.
|
|
ExplodedGraph<GRState>* GTrim;
|
|
InterExplodedGraphMap<GRState>* NMap;
|
|
|
|
llvm::DenseMap<const void*, const void*> InverseMap;
|
|
llvm::tie(GTrim, NMap) = G->Trim(NStart, NEnd, &InverseMap);
|
|
|
|
// Create owning pointers for GTrim and NMap just to ensure that they are
|
|
// released when this function exists.
|
|
llvm::OwningPtr<ExplodedGraph<GRState> > AutoReleaseGTrim(GTrim);
|
|
llvm::OwningPtr<InterExplodedGraphMap<GRState> > AutoReleaseNMap(NMap);
|
|
|
|
// Find the (first) error node in the trimmed graph. We just need to consult
|
|
// the node map (NMap) which maps from nodes in the original graph to nodes
|
|
// in the new graph.
|
|
const ExplodedNode<GRState>* N = 0;
|
|
unsigned NodeIndex = 0;
|
|
|
|
for (const ExplodedNode<GRState>** I = NStart; I != NEnd; ++I)
|
|
if ((N = NMap->getMappedNode(*I))) {
|
|
NodeIndex = (I - NStart) / sizeof(*I);
|
|
break;
|
|
}
|
|
|
|
assert(N && "No error node found in the trimmed graph.");
|
|
|
|
// Create a new (third!) graph with a single path. This is the graph
|
|
// that will be returned to the caller.
|
|
ExplodedGraph<GRState> *GNew =
|
|
new ExplodedGraph<GRState>(GTrim->getCFG(), GTrim->getCodeDecl(),
|
|
GTrim->getContext());
|
|
|
|
// Sometimes the trimmed graph can contain a cycle. Perform a reverse BFS
|
|
// to the root node, and then construct a new graph that contains only
|
|
// a single path.
|
|
llvm::DenseMap<const void*,unsigned> Visited;
|
|
std::queue<const ExplodedNode<GRState>*> WS;
|
|
WS.push(N);
|
|
|
|
unsigned cnt = 0;
|
|
const ExplodedNode<GRState>* Root = 0;
|
|
|
|
while (!WS.empty()) {
|
|
const ExplodedNode<GRState>* Node = WS.front();
|
|
WS.pop();
|
|
|
|
if (Visited.find(Node) != Visited.end())
|
|
continue;
|
|
|
|
Visited[Node] = cnt++;
|
|
|
|
if (Node->pred_empty()) {
|
|
Root = Node;
|
|
break;
|
|
}
|
|
|
|
for (ExplodedNode<GRState>::const_pred_iterator I=Node->pred_begin(),
|
|
E=Node->pred_end(); I!=E; ++I)
|
|
WS.push(*I);
|
|
}
|
|
|
|
assert (Root);
|
|
|
|
// Now walk from the root down the BFS path, always taking the successor
|
|
// with the lowest number.
|
|
ExplodedNode<GRState> *Last = 0, *First = 0;
|
|
NodeBackMap *BM = new NodeBackMap();
|
|
|
|
for ( N = Root ;;) {
|
|
// Lookup the number associated with the current node.
|
|
llvm::DenseMap<const void*,unsigned>::iterator I = Visited.find(N);
|
|
assert (I != Visited.end());
|
|
|
|
// Create the equivalent node in the new graph with the same state
|
|
// and location.
|
|
ExplodedNode<GRState>* NewN =
|
|
GNew->getNode(N->getLocation(), N->getState());
|
|
|
|
// Store the mapping to the original node.
|
|
llvm::DenseMap<const void*, const void*>::iterator IMitr=InverseMap.find(N);
|
|
assert(IMitr != InverseMap.end() && "No mapping to original node.");
|
|
(*BM)[NewN] = (const ExplodedNode<GRState>*) IMitr->second;
|
|
|
|
// Link up the new node with the previous node.
|
|
if (Last)
|
|
NewN->addPredecessor(Last);
|
|
|
|
Last = NewN;
|
|
|
|
// Are we at the final node?
|
|
if (I->second == 0) {
|
|
First = NewN;
|
|
break;
|
|
}
|
|
|
|
// Find the next successor node. We choose the node that is marked
|
|
// with the lowest DFS number.
|
|
ExplodedNode<GRState>::const_succ_iterator SI = N->succ_begin();
|
|
ExplodedNode<GRState>::const_succ_iterator SE = N->succ_end();
|
|
N = 0;
|
|
|
|
for (unsigned MinVal = 0; SI != SE; ++SI) {
|
|
|
|
I = Visited.find(*SI);
|
|
|
|
if (I == Visited.end())
|
|
continue;
|
|
|
|
if (!N || I->second < MinVal) {
|
|
N = *SI;
|
|
MinVal = I->second;
|
|
}
|
|
}
|
|
|
|
assert (N);
|
|
}
|
|
|
|
assert (First);
|
|
return std::make_pair(std::make_pair(GNew, BM),
|
|
std::make_pair(First, NodeIndex));
|
|
}
|
|
|
|
static const VarDecl*
|
|
GetMostRecentVarDeclBinding(const ExplodedNode<GRState>* N,
|
|
GRStateManager& VMgr, SVal X) {
|
|
|
|
for ( ; N ; N = N->pred_empty() ? 0 : *N->pred_begin()) {
|
|
|
|
ProgramPoint P = N->getLocation();
|
|
|
|
if (!isa<PostStmt>(P))
|
|
continue;
|
|
|
|
DeclRefExpr* DR = dyn_cast<DeclRefExpr>(cast<PostStmt>(P).getStmt());
|
|
|
|
if (!DR)
|
|
continue;
|
|
|
|
SVal Y = VMgr.GetSVal(N->getState(), DR);
|
|
|
|
if (X != Y)
|
|
continue;
|
|
|
|
VarDecl* VD = dyn_cast<VarDecl>(DR->getDecl());
|
|
|
|
if (!VD)
|
|
continue;
|
|
|
|
return VD;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
namespace {
|
|
class VISIBILITY_HIDDEN NotableSymbolHandler
|
|
: public StoreManager::BindingsHandler {
|
|
|
|
SymbolRef Sym;
|
|
const GRState* PrevSt;
|
|
const Stmt* S;
|
|
GRStateManager& VMgr;
|
|
const ExplodedNode<GRState>* Pred;
|
|
PathDiagnostic& PD;
|
|
BugReporter& BR;
|
|
|
|
public:
|
|
|
|
NotableSymbolHandler(SymbolRef sym, const GRState* prevst, const Stmt* s,
|
|
GRStateManager& vmgr, const ExplodedNode<GRState>* pred,
|
|
PathDiagnostic& pd, BugReporter& br)
|
|
: Sym(sym), PrevSt(prevst), S(s), VMgr(vmgr), Pred(pred), PD(pd), BR(br) {}
|
|
|
|
bool HandleBinding(StoreManager& SMgr, Store store,
|
|
const MemRegion* R, SVal V) {
|
|
|
|
SymbolRef ScanSym;
|
|
|
|
if (loc::SymbolVal* SV = dyn_cast<loc::SymbolVal>(&V))
|
|
ScanSym = SV->getSymbol();
|
|
else if (nonloc::SymbolVal* SV = dyn_cast<nonloc::SymbolVal>(&V))
|
|
ScanSym = SV->getSymbol();
|
|
else
|
|
return true;
|
|
|
|
if (ScanSym != Sym)
|
|
return true;
|
|
|
|
// Check if the previous state has this binding.
|
|
SVal X = VMgr.GetSVal(PrevSt, loc::MemRegionVal(R));
|
|
|
|
if (X == V) // Same binding?
|
|
return true;
|
|
|
|
// Different binding. Only handle assignments for now. We don't pull
|
|
// this check out of the loop because we will eventually handle other
|
|
// cases.
|
|
|
|
VarDecl *VD = 0;
|
|
|
|
if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
|
|
if (!B->isAssignmentOp())
|
|
return true;
|
|
|
|
// What variable did we assign to?
|
|
DeclRefExpr* DR = dyn_cast<DeclRefExpr>(B->getLHS()->IgnoreParenCasts());
|
|
|
|
if (!DR)
|
|
return true;
|
|
|
|
VD = dyn_cast<VarDecl>(DR->getDecl());
|
|
}
|
|
else if (const DeclStmt* DS = dyn_cast<DeclStmt>(S)) {
|
|
// FIXME: Eventually CFGs won't have DeclStmts. Right now we
|
|
// assume that each DeclStmt has a single Decl. This invariant
|
|
// holds by contruction in the CFG.
|
|
VD = dyn_cast<VarDecl>(*DS->decl_begin());
|
|
}
|
|
|
|
if (!VD)
|
|
return true;
|
|
|
|
// What is the most recently referenced variable with this binding?
|
|
const VarDecl* MostRecent = GetMostRecentVarDeclBinding(Pred, VMgr, V);
|
|
|
|
if (!MostRecent)
|
|
return true;
|
|
|
|
// Create the diagnostic.
|
|
FullSourceLoc L(S->getLocStart(), BR.getSourceManager());
|
|
|
|
if (Loc::IsLocType(VD->getType())) {
|
|
std::string msg = "'" + std::string(VD->getNameAsString()) +
|
|
"' now aliases '" + MostRecent->getNameAsString() + "'";
|
|
|
|
PD.push_front(new PathDiagnosticEventPiece(L, msg));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
};
|
|
}
|
|
|
|
static void HandleNotableSymbol(const ExplodedNode<GRState>* N,
|
|
const Stmt* S,
|
|
SymbolRef Sym, BugReporter& BR,
|
|
PathDiagnostic& PD) {
|
|
|
|
const ExplodedNode<GRState>* Pred = N->pred_empty() ? 0 : *N->pred_begin();
|
|
const GRState* PrevSt = Pred ? Pred->getState() : 0;
|
|
|
|
if (!PrevSt)
|
|
return;
|
|
|
|
// Look at the region bindings of the current state that map to the
|
|
// specified symbol. Are any of them not in the previous state?
|
|
GRStateManager& VMgr = cast<GRBugReporter>(BR).getStateManager();
|
|
NotableSymbolHandler H(Sym, PrevSt, S, VMgr, Pred, PD, BR);
|
|
cast<GRBugReporter>(BR).getStateManager().iterBindings(N->getState(), H);
|
|
}
|
|
|
|
namespace {
|
|
class VISIBILITY_HIDDEN ScanNotableSymbols
|
|
: public StoreManager::BindingsHandler {
|
|
|
|
llvm::SmallSet<SymbolRef, 10> AlreadyProcessed;
|
|
const ExplodedNode<GRState>* N;
|
|
Stmt* S;
|
|
GRBugReporter& BR;
|
|
PathDiagnostic& PD;
|
|
|
|
public:
|
|
ScanNotableSymbols(const ExplodedNode<GRState>* n, Stmt* s, GRBugReporter& br,
|
|
PathDiagnostic& pd)
|
|
: N(n), S(s), BR(br), PD(pd) {}
|
|
|
|
bool HandleBinding(StoreManager& SMgr, Store store,
|
|
const MemRegion* R, SVal V) {
|
|
SymbolRef ScanSym;
|
|
|
|
if (loc::SymbolVal* SV = dyn_cast<loc::SymbolVal>(&V))
|
|
ScanSym = SV->getSymbol();
|
|
else if (nonloc::SymbolVal* SV = dyn_cast<nonloc::SymbolVal>(&V))
|
|
ScanSym = SV->getSymbol();
|
|
else
|
|
return true;
|
|
|
|
assert (ScanSym.isValid());
|
|
|
|
if (!BR.isNotable(ScanSym))
|
|
return true;
|
|
|
|
if (AlreadyProcessed.count(ScanSym))
|
|
return true;
|
|
|
|
AlreadyProcessed.insert(ScanSym);
|
|
|
|
HandleNotableSymbol(N, S, ScanSym, BR, PD);
|
|
return true;
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
namespace {
|
|
class VISIBILITY_HIDDEN NodeMapClosure : public BugReport::NodeResolver {
|
|
NodeBackMap& M;
|
|
public:
|
|
NodeMapClosure(NodeBackMap *m) : M(*m) {}
|
|
~NodeMapClosure() {}
|
|
|
|
const ExplodedNode<GRState>* getOriginalNode(const ExplodedNode<GRState>* N) {
|
|
NodeBackMap::iterator I = M.find(N);
|
|
return I == M.end() ? 0 : I->second;
|
|
}
|
|
};
|
|
}
|
|
|
|
/// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object
|
|
/// and collapses PathDiagosticPieces that are expanded by macros.
|
|
static void CompactPathDiagnostic(PathDiagnostic &PD, const SourceManager& SM) {
|
|
typedef std::vector<std::pair<PathDiagnosticMacroPiece*, SourceLocation> >
|
|
MacroStackTy;
|
|
|
|
typedef std::vector<PathDiagnosticPiece*>
|
|
PiecesTy;
|
|
|
|
MacroStackTy MacroStack;
|
|
PiecesTy Pieces;
|
|
|
|
for (PathDiagnostic::iterator I = PD.begin(), E = PD.end(); I!=E; ++I) {
|
|
// Get the location of the PathDiagnosticPiece.
|
|
const FullSourceLoc Loc = I->getLocation();
|
|
|
|
// Determine the instantiation location, which is the location we group
|
|
// related PathDiagnosticPieces.
|
|
SourceLocation InstantiationLoc = Loc.isMacroID() ?
|
|
SM.getInstantiationLoc(Loc) :
|
|
SourceLocation();
|
|
|
|
if (Loc.isFileID()) {
|
|
MacroStack.clear();
|
|
Pieces.push_back(&*I);
|
|
continue;
|
|
}
|
|
|
|
assert(Loc.isMacroID());
|
|
|
|
// Is the PathDiagnosticPiece within the same macro group?
|
|
if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
|
|
MacroStack.back().first->push_back(&*I);
|
|
continue;
|
|
}
|
|
|
|
// We aren't in the same group. Are we descending into a new macro
|
|
// or are part of an old one?
|
|
PathDiagnosticMacroPiece *MacroGroup = 0;
|
|
|
|
SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
|
|
SM.getInstantiationLoc(Loc) :
|
|
SourceLocation();
|
|
|
|
// Walk the entire macro stack.
|
|
while (!MacroStack.empty()) {
|
|
if (InstantiationLoc == MacroStack.back().second) {
|
|
MacroGroup = MacroStack.back().first;
|
|
break;
|
|
}
|
|
|
|
if (ParentInstantiationLoc == MacroStack.back().second) {
|
|
MacroGroup = MacroStack.back().first;
|
|
break;
|
|
}
|
|
|
|
MacroStack.pop_back();
|
|
}
|
|
|
|
if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
|
|
// Create a new macro group and add it to the stack.
|
|
PathDiagnosticMacroPiece *NewGroup = new PathDiagnosticMacroPiece(Loc);
|
|
|
|
if (MacroGroup)
|
|
MacroGroup->push_back(NewGroup);
|
|
else {
|
|
assert(InstantiationLoc.isFileID());
|
|
Pieces.push_back(NewGroup);
|
|
}
|
|
|
|
MacroGroup = NewGroup;
|
|
MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
|
|
}
|
|
|
|
// Finally, add the PathDiagnosticPiece to the group.
|
|
MacroGroup->push_back(&*I);
|
|
}
|
|
|
|
// Now take the pieces and construct a new PathDiagnostic.
|
|
PD.resetPath(false);
|
|
|
|
for (PiecesTy::iterator I=Pieces.begin(), E=Pieces.end(); I!=E; ++I) {
|
|
if (PathDiagnosticMacroPiece *MP=dyn_cast<PathDiagnosticMacroPiece>(*I))
|
|
if (!MP->containsEvent()) {
|
|
delete MP;
|
|
continue;
|
|
}
|
|
|
|
PD.push_back(*I);
|
|
}
|
|
}
|
|
|
|
void GRBugReporter::GeneratePathDiagnostic(PathDiagnostic& PD,
|
|
BugReportEquivClass& EQ) {
|
|
|
|
std::vector<const ExplodedNode<GRState>*> Nodes;
|
|
|
|
for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) {
|
|
const ExplodedNode<GRState>* N = I->getEndNode();
|
|
if (N) Nodes.push_back(N);
|
|
}
|
|
|
|
if (Nodes.empty())
|
|
return;
|
|
|
|
// Construct a new graph that contains only a single path from the error
|
|
// node to a root.
|
|
const std::pair<std::pair<ExplodedGraph<GRState>*, NodeBackMap*>,
|
|
std::pair<ExplodedNode<GRState>*, unsigned> >&
|
|
GPair = MakeReportGraph(&getGraph(), &Nodes[0], &Nodes[0] + Nodes.size());
|
|
|
|
// Find the BugReport with the original location.
|
|
BugReport *R = 0;
|
|
unsigned i = 0;
|
|
for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I, ++i)
|
|
if (i == GPair.second.second) { R = *I; break; }
|
|
|
|
assert(R && "No original report found for sliced graph.");
|
|
|
|
llvm::OwningPtr<ExplodedGraph<GRState> > ReportGraph(GPair.first.first);
|
|
llvm::OwningPtr<NodeBackMap> BackMap(GPair.first.second);
|
|
const ExplodedNode<GRState> *N = GPair.second.first;
|
|
|
|
// Start building the path diagnostic...
|
|
if (PathDiagnosticPiece* Piece = R->getEndPath(*this, N))
|
|
PD.push_back(Piece);
|
|
else
|
|
return;
|
|
|
|
const ExplodedNode<GRState>* NextNode = N->pred_empty()
|
|
? NULL : *(N->pred_begin());
|
|
|
|
ASTContext& Ctx = getContext();
|
|
SourceManager& SMgr = Ctx.getSourceManager();
|
|
NodeMapClosure NMC(BackMap.get());
|
|
|
|
while (NextNode) {
|
|
N = NextNode;
|
|
NextNode = GetPredecessorNode(N);
|
|
|
|
ProgramPoint P = N->getLocation();
|
|
|
|
if (const BlockEdge* BE = dyn_cast<BlockEdge>(&P)) {
|
|
CFGBlock* Src = BE->getSrc();
|
|
CFGBlock* Dst = BE->getDst();
|
|
Stmt* T = Src->getTerminator();
|
|
|
|
if (!T)
|
|
continue;
|
|
|
|
FullSourceLoc Start(T->getLocStart(), SMgr);
|
|
|
|
switch (T->getStmtClass()) {
|
|
default:
|
|
break;
|
|
|
|
case Stmt::GotoStmtClass:
|
|
case Stmt::IndirectGotoStmtClass: {
|
|
Stmt* S = GetNextStmt(N);
|
|
|
|
if (!S)
|
|
continue;
|
|
|
|
std::string sbuf;
|
|
llvm::raw_string_ostream os(sbuf);
|
|
SourceLocation End = S->getLocStart();
|
|
|
|
os << "Control jumps to line " << SMgr.getInstantiationLineNumber(End);
|
|
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
|
|
os.str()));
|
|
break;
|
|
}
|
|
|
|
case Stmt::SwitchStmtClass: {
|
|
// Figure out what case arm we took.
|
|
std::string sbuf;
|
|
llvm::raw_string_ostream os(sbuf);
|
|
SourceLocation End;
|
|
|
|
if (Stmt* S = Dst->getLabel()) {
|
|
End = S->getLocStart();
|
|
|
|
switch (S->getStmtClass()) {
|
|
default:
|
|
os << "No cases match in the switch statement. "
|
|
"Control jumps to line "
|
|
<< SMgr.getInstantiationLineNumber(End);
|
|
break;
|
|
case Stmt::DefaultStmtClass:
|
|
os << "Control jumps to the 'default' case at line "
|
|
<< SMgr.getInstantiationLineNumber(End);
|
|
break;
|
|
|
|
case Stmt::CaseStmtClass: {
|
|
os << "Control jumps to 'case ";
|
|
CaseStmt* Case = cast<CaseStmt>(S);
|
|
Expr* LHS = Case->getLHS()->IgnoreParenCasts();
|
|
|
|
// Determine if it is an enum.
|
|
bool GetRawInt = true;
|
|
|
|
if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(LHS)) {
|
|
// FIXME: Maybe this should be an assertion. Are there cases
|
|
// were it is not an EnumConstantDecl?
|
|
EnumConstantDecl* D =
|
|
dyn_cast<EnumConstantDecl>(DR->getDecl());
|
|
|
|
if (D) {
|
|
GetRawInt = false;
|
|
os << D->getNameAsString();
|
|
}
|
|
}
|
|
|
|
if (GetRawInt) {
|
|
|
|
// Not an enum.
|
|
Expr* CondE = cast<SwitchStmt>(T)->getCond();
|
|
unsigned bits = Ctx.getTypeSize(CondE->getType());
|
|
llvm::APSInt V(bits, false);
|
|
|
|
if (!LHS->isIntegerConstantExpr(V, Ctx, 0, true)) {
|
|
assert (false && "Case condition must be constant.");
|
|
continue;
|
|
}
|
|
|
|
os << V;
|
|
}
|
|
|
|
os << ":' at line " << SMgr.getInstantiationLineNumber(End);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
os << "'Default' branch taken. ";
|
|
End = ExecutionContinues(os, SMgr, N,
|
|
getStateManager().getCodeDecl());
|
|
}
|
|
|
|
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
|
|
os.str()));
|
|
break;
|
|
}
|
|
|
|
case Stmt::BreakStmtClass:
|
|
case Stmt::ContinueStmtClass: {
|
|
std::string sbuf;
|
|
llvm::raw_string_ostream os(sbuf);
|
|
SourceLocation End = ExecutionContinues(os, SMgr, N,
|
|
getStateManager().getCodeDecl());
|
|
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
|
|
os.str()));
|
|
break;
|
|
}
|
|
|
|
case Stmt::ConditionalOperatorClass: {
|
|
std::string sbuf;
|
|
llvm::raw_string_ostream os(sbuf);
|
|
os << "'?' condition evaluates to ";
|
|
|
|
if (*(Src->succ_begin()+1) == Dst)
|
|
os << "false";
|
|
else
|
|
os << "true";
|
|
|
|
SourceLocation End =
|
|
ExecutionContinues(SMgr, N, getStateManager().getCodeDecl());
|
|
|
|
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
|
|
os.str()));
|
|
break;
|
|
}
|
|
|
|
case Stmt::DoStmtClass: {
|
|
if (*(Src->succ_begin()) == Dst) {
|
|
std::string sbuf;
|
|
llvm::raw_string_ostream os(sbuf);
|
|
|
|
os << "Loop condition is true. ";
|
|
SourceLocation End =
|
|
ExecutionContinues(os, SMgr, N, getStateManager().getCodeDecl());
|
|
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
|
|
os.str()));
|
|
}
|
|
else {
|
|
SourceLocation End =
|
|
ExecutionContinues(SMgr, N, getStateManager().getCodeDecl());
|
|
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
|
|
"Loop condition is false. Exiting loop"));
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case Stmt::WhileStmtClass:
|
|
case Stmt::ForStmtClass: {
|
|
if (*(Src->succ_begin()+1) == Dst) {
|
|
std::string sbuf;
|
|
llvm::raw_string_ostream os(sbuf);
|
|
|
|
os << "Loop condition is false. ";
|
|
SourceLocation End =
|
|
ExecutionContinues(os, SMgr, N, getStateManager().getCodeDecl());
|
|
|
|
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
|
|
os.str()));
|
|
}
|
|
else {
|
|
SourceLocation End =
|
|
ExecutionContinues(SMgr, N, getStateManager().getCodeDecl());
|
|
|
|
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
|
|
"Loop condition is true. Entering loop body"));
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case Stmt::IfStmtClass: {
|
|
SourceLocation End =
|
|
ExecutionContinues(SMgr, N, getStateManager().getCodeDecl());
|
|
|
|
if (*(Src->succ_begin()+1) == Dst)
|
|
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
|
|
"Taking false branch"));
|
|
else
|
|
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
|
|
"Taking true branch"));
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (PathDiagnosticPiece* p = R->VisitNode(N, NextNode, *ReportGraph, *this,
|
|
NMC))
|
|
PD.push_front(p);
|
|
|
|
if (const PostStmt* PS = dyn_cast<PostStmt>(&P)) {
|
|
// Scan the region bindings, and see if a "notable" symbol has a new
|
|
// lval binding.
|
|
ScanNotableSymbols SNS(N, PS->getStmt(), *this, PD);
|
|
getStateManager().iterBindings(N->getState(), SNS);
|
|
}
|
|
}
|
|
|
|
// After constructing the full PathDiagnostic, do a pass over it to compact
|
|
// PathDiagnosticPieces that occur within a macro.
|
|
CompactPathDiagnostic(PD, getSourceManager());
|
|
}
|
|
|
|
|
|
void BugReporter::Register(BugType *BT) {
|
|
BugTypes = F.Add(BugTypes, BT);
|
|
}
|
|
|
|
void BugReporter::EmitReport(BugReport* R) {
|
|
// Compute the bug report's hash to determine its equivalence class.
|
|
llvm::FoldingSetNodeID ID;
|
|
R->Profile(ID);
|
|
|
|
// Lookup the equivance class. If there isn't one, create it.
|
|
BugType& BT = R->getBugType();
|
|
Register(&BT);
|
|
void *InsertPos;
|
|
BugReportEquivClass* EQ = BT.EQClasses.FindNodeOrInsertPos(ID, InsertPos);
|
|
|
|
if (!EQ) {
|
|
EQ = new BugReportEquivClass(R);
|
|
BT.EQClasses.InsertNode(EQ, InsertPos);
|
|
}
|
|
else
|
|
EQ->AddReport(R);
|
|
}
|
|
|
|
void BugReporter::FlushReport(BugReportEquivClass& EQ) {
|
|
assert(!EQ.Reports.empty());
|
|
BugReport &R = **EQ.begin();
|
|
|
|
// FIXME: Make sure we use the 'R' for the path that was actually used.
|
|
// Probably doesn't make a difference in practice.
|
|
BugType& BT = R.getBugType();
|
|
|
|
llvm::OwningPtr<PathDiagnostic> D(new PathDiagnostic(R.getBugType().getName(),
|
|
R.getDescription(),
|
|
BT.getCategory()));
|
|
GeneratePathDiagnostic(*D.get(), EQ);
|
|
|
|
// Get the meta data.
|
|
std::pair<const char**, const char**> Meta = R.getExtraDescriptiveText();
|
|
for (const char** s = Meta.first; s != Meta.second; ++s) D->addMeta(*s);
|
|
|
|
// Emit a summary diagnostic to the regular Diagnostics engine.
|
|
PathDiagnosticClient* PD = getPathDiagnosticClient();
|
|
const SourceRange *Beg = 0, *End = 0;
|
|
R.getRanges(*this, Beg, End);
|
|
Diagnostic& Diag = getDiagnostic();
|
|
FullSourceLoc L(R.getLocation(), getSourceManager());
|
|
unsigned ErrorDiag = Diag.getCustomDiagID(Diagnostic::Warning,
|
|
R.getDescription().c_str());
|
|
|
|
switch (End-Beg) {
|
|
default: assert(0 && "Don't handle this many ranges yet!");
|
|
case 0: Diag.Report(L, ErrorDiag); break;
|
|
case 1: Diag.Report(L, ErrorDiag) << Beg[0]; break;
|
|
case 2: Diag.Report(L, ErrorDiag) << Beg[0] << Beg[1]; break;
|
|
case 3: Diag.Report(L, ErrorDiag) << Beg[0] << Beg[1] << Beg[2]; break;
|
|
}
|
|
|
|
// Emit a full diagnostic for the path if we have a PathDiagnosticClient.
|
|
if (!PD)
|
|
return;
|
|
|
|
if (D->empty()) {
|
|
PathDiagnosticPiece* piece =
|
|
new PathDiagnosticEventPiece(L, R.getDescription());
|
|
|
|
for ( ; Beg != End; ++Beg) piece->addRange(*Beg);
|
|
D->push_back(piece);
|
|
}
|
|
|
|
PD->HandlePathDiagnostic(D.take());
|
|
}
|
|
|
|
void BugReporter::EmitBasicReport(const char* name, const char* str,
|
|
SourceLocation Loc,
|
|
SourceRange* RBeg, unsigned NumRanges) {
|
|
EmitBasicReport(name, "", str, Loc, RBeg, NumRanges);
|
|
}
|
|
|
|
void BugReporter::EmitBasicReport(const char* name, const char* category,
|
|
const char* str, SourceLocation Loc,
|
|
SourceRange* RBeg, unsigned NumRanges) {
|
|
|
|
// 'BT' will be owned by BugReporter as soon as we call 'EmitReport'.
|
|
BugType *BT = new BugType(name, category);
|
|
FullSourceLoc L = getContext().getFullLoc(Loc);
|
|
RangedBugReport *R = new DiagBugReport(*BT, str, L);
|
|
for ( ; NumRanges > 0 ; --NumRanges, ++RBeg) R->addRange(*RBeg);
|
|
EmitReport(R);
|
|
}
|