forked from OSchip/llvm-project
9920 lines
375 KiB
C++
9920 lines
375 KiB
C++
//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements semantic analysis for expressions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Sema/SemaInternal.h"
|
|
#include "clang/Sema/Initialization.h"
|
|
#include "clang/Sema/Lookup.h"
|
|
#include "clang/Sema/AnalysisBasedWarnings.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/CXXInheritance.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/EvaluatedExprVisitor.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/ExprObjC.h"
|
|
#include "clang/AST/RecursiveASTVisitor.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
#include "clang/Basic/PartialDiagnostic.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Lex/LiteralSupport.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "clang/Sema/DeclSpec.h"
|
|
#include "clang/Sema/Designator.h"
|
|
#include "clang/Sema/Scope.h"
|
|
#include "clang/Sema/ScopeInfo.h"
|
|
#include "clang/Sema/ParsedTemplate.h"
|
|
#include "clang/Sema/Template.h"
|
|
using namespace clang;
|
|
using namespace sema;
|
|
|
|
|
|
/// \brief Determine whether the use of this declaration is valid, and
|
|
/// emit any corresponding diagnostics.
|
|
///
|
|
/// This routine diagnoses various problems with referencing
|
|
/// declarations that can occur when using a declaration. For example,
|
|
/// it might warn if a deprecated or unavailable declaration is being
|
|
/// used, or produce an error (and return true) if a C++0x deleted
|
|
/// function is being used.
|
|
///
|
|
/// If IgnoreDeprecated is set to true, this should not warn about deprecated
|
|
/// decls.
|
|
///
|
|
/// \returns true if there was an error (this declaration cannot be
|
|
/// referenced), false otherwise.
|
|
///
|
|
bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
|
|
bool UnknownObjCClass) {
|
|
if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
|
|
// If there were any diagnostics suppressed by template argument deduction,
|
|
// emit them now.
|
|
llvm::DenseMap<Decl *, llvm::SmallVector<PartialDiagnosticAt, 1> >::iterator
|
|
Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
|
|
if (Pos != SuppressedDiagnostics.end()) {
|
|
llvm::SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
|
|
for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
|
|
Diag(Suppressed[I].first, Suppressed[I].second);
|
|
|
|
// Clear out the list of suppressed diagnostics, so that we don't emit
|
|
// them again for this specialization. However, we don't obsolete this
|
|
// entry from the table, because we want to avoid ever emitting these
|
|
// diagnostics again.
|
|
Suppressed.clear();
|
|
}
|
|
}
|
|
|
|
// See if this is an auto-typed variable whose initializer we are parsing.
|
|
if (ParsingInitForAutoVars.count(D)) {
|
|
Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
|
|
<< D->getDeclName();
|
|
return true;
|
|
}
|
|
|
|
// See if this is a deleted function.
|
|
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
if (FD->isDeleted()) {
|
|
Diag(Loc, diag::err_deleted_function_use);
|
|
Diag(D->getLocation(), diag::note_unavailable_here) << true;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// See if this declaration is unavailable or deprecated.
|
|
std::string Message;
|
|
switch (D->getAvailability(&Message)) {
|
|
case AR_Available:
|
|
case AR_NotYetIntroduced:
|
|
break;
|
|
|
|
case AR_Deprecated:
|
|
EmitDeprecationWarning(D, Message, Loc, UnknownObjCClass);
|
|
break;
|
|
|
|
case AR_Unavailable:
|
|
if (Message.empty()) {
|
|
if (!UnknownObjCClass)
|
|
Diag(Loc, diag::err_unavailable) << D->getDeclName();
|
|
else
|
|
Diag(Loc, diag::warn_unavailable_fwdclass_message)
|
|
<< D->getDeclName();
|
|
}
|
|
else
|
|
Diag(Loc, diag::err_unavailable_message)
|
|
<< D->getDeclName() << Message;
|
|
Diag(D->getLocation(), diag::note_unavailable_here) << 0;
|
|
break;
|
|
}
|
|
|
|
// Warn if this is used but marked unused.
|
|
if (D->hasAttr<UnusedAttr>())
|
|
Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief Retrieve the message suffix that should be added to a
|
|
/// diagnostic complaining about the given function being deleted or
|
|
/// unavailable.
|
|
std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
|
|
// FIXME: C++0x implicitly-deleted special member functions could be
|
|
// detected here so that we could improve diagnostics to say, e.g.,
|
|
// "base class 'A' had a deleted copy constructor".
|
|
if (FD->isDeleted())
|
|
return std::string();
|
|
|
|
std::string Message;
|
|
if (FD->getAvailability(&Message))
|
|
return ": " + Message;
|
|
|
|
return std::string();
|
|
}
|
|
|
|
/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
|
|
/// (and other functions in future), which have been declared with sentinel
|
|
/// attribute. It warns if call does not have the sentinel argument.
|
|
///
|
|
void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
|
|
Expr **Args, unsigned NumArgs) {
|
|
const SentinelAttr *attr = D->getAttr<SentinelAttr>();
|
|
if (!attr)
|
|
return;
|
|
|
|
// FIXME: In C++0x, if any of the arguments are parameter pack
|
|
// expansions, we can't check for the sentinel now.
|
|
int sentinelPos = attr->getSentinel();
|
|
int nullPos = attr->getNullPos();
|
|
|
|
// FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
|
|
// base class. Then we won't be needing two versions of the same code.
|
|
unsigned int i = 0;
|
|
bool warnNotEnoughArgs = false;
|
|
int isMethod = 0;
|
|
if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
|
|
// skip over named parameters.
|
|
ObjCMethodDecl::param_iterator P, E = MD->param_end();
|
|
for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
|
|
if (nullPos)
|
|
--nullPos;
|
|
else
|
|
++i;
|
|
}
|
|
warnNotEnoughArgs = (P != E || i >= NumArgs);
|
|
isMethod = 1;
|
|
} else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
// skip over named parameters.
|
|
ObjCMethodDecl::param_iterator P, E = FD->param_end();
|
|
for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
|
|
if (nullPos)
|
|
--nullPos;
|
|
else
|
|
++i;
|
|
}
|
|
warnNotEnoughArgs = (P != E || i >= NumArgs);
|
|
} else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
|
|
// block or function pointer call.
|
|
QualType Ty = V->getType();
|
|
if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
|
|
const FunctionType *FT = Ty->isFunctionPointerType()
|
|
? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
|
|
: Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
|
|
if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
|
|
unsigned NumArgsInProto = Proto->getNumArgs();
|
|
unsigned k;
|
|
for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
|
|
if (nullPos)
|
|
--nullPos;
|
|
else
|
|
++i;
|
|
}
|
|
warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
|
|
}
|
|
if (Ty->isBlockPointerType())
|
|
isMethod = 2;
|
|
} else
|
|
return;
|
|
} else
|
|
return;
|
|
|
|
if (warnNotEnoughArgs) {
|
|
Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
|
|
Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
|
|
return;
|
|
}
|
|
int sentinel = i;
|
|
while (sentinelPos > 0 && i < NumArgs-1) {
|
|
--sentinelPos;
|
|
++i;
|
|
}
|
|
if (sentinelPos > 0) {
|
|
Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
|
|
Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
|
|
return;
|
|
}
|
|
while (i < NumArgs-1) {
|
|
++i;
|
|
++sentinel;
|
|
}
|
|
Expr *sentinelExpr = Args[sentinel];
|
|
if (!sentinelExpr) return;
|
|
if (sentinelExpr->isTypeDependent()) return;
|
|
if (sentinelExpr->isValueDependent()) return;
|
|
|
|
// nullptr_t is always treated as null.
|
|
if (sentinelExpr->getType()->isNullPtrType()) return;
|
|
|
|
if (sentinelExpr->getType()->isAnyPointerType() &&
|
|
sentinelExpr->IgnoreParenCasts()->isNullPointerConstant(Context,
|
|
Expr::NPC_ValueDependentIsNull))
|
|
return;
|
|
|
|
// Unfortunately, __null has type 'int'.
|
|
if (isa<GNUNullExpr>(sentinelExpr)) return;
|
|
|
|
Diag(Loc, diag::warn_missing_sentinel) << isMethod;
|
|
Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
|
|
}
|
|
|
|
SourceRange Sema::getExprRange(ExprTy *E) const {
|
|
Expr *Ex = (Expr *)E;
|
|
return Ex? Ex->getSourceRange() : SourceRange();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Standard Promotions and Conversions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
|
|
void Sema::DefaultFunctionArrayConversion(Expr *&E) {
|
|
QualType Ty = E->getType();
|
|
assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
|
|
|
|
if (Ty->isFunctionType())
|
|
ImpCastExprToType(E, Context.getPointerType(Ty),
|
|
CK_FunctionToPointerDecay);
|
|
else if (Ty->isArrayType()) {
|
|
// In C90 mode, arrays only promote to pointers if the array expression is
|
|
// an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
|
|
// type 'array of type' is converted to an expression that has type 'pointer
|
|
// to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
|
|
// that has type 'array of type' ...". The relevant change is "an lvalue"
|
|
// (C90) to "an expression" (C99).
|
|
//
|
|
// C++ 4.2p1:
|
|
// An lvalue or rvalue of type "array of N T" or "array of unknown bound of
|
|
// T" can be converted to an rvalue of type "pointer to T".
|
|
//
|
|
if (getLangOptions().C99 || getLangOptions().CPlusPlus || E->isLValue())
|
|
ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
|
|
CK_ArrayToPointerDecay);
|
|
}
|
|
}
|
|
|
|
void Sema::DefaultLvalueConversion(Expr *&E) {
|
|
// C++ [conv.lval]p1:
|
|
// A glvalue of a non-function, non-array type T can be
|
|
// converted to a prvalue.
|
|
if (!E->isGLValue()) return;
|
|
|
|
QualType T = E->getType();
|
|
assert(!T.isNull() && "r-value conversion on typeless expression?");
|
|
|
|
// Create a load out of an ObjCProperty l-value, if necessary.
|
|
if (E->getObjectKind() == OK_ObjCProperty) {
|
|
ConvertPropertyForRValue(E);
|
|
if (!E->isGLValue())
|
|
return;
|
|
}
|
|
|
|
// We don't want to throw lvalue-to-rvalue casts on top of
|
|
// expressions of certain types in C++.
|
|
if (getLangOptions().CPlusPlus &&
|
|
(E->getType() == Context.OverloadTy ||
|
|
T->isDependentType() ||
|
|
T->isRecordType()))
|
|
return;
|
|
|
|
// The C standard is actually really unclear on this point, and
|
|
// DR106 tells us what the result should be but not why. It's
|
|
// generally best to say that void types just doesn't undergo
|
|
// lvalue-to-rvalue at all. Note that expressions of unqualified
|
|
// 'void' type are never l-values, but qualified void can be.
|
|
if (T->isVoidType())
|
|
return;
|
|
|
|
// C++ [conv.lval]p1:
|
|
// [...] If T is a non-class type, the type of the prvalue is the
|
|
// cv-unqualified version of T. Otherwise, the type of the
|
|
// rvalue is T.
|
|
//
|
|
// C99 6.3.2.1p2:
|
|
// If the lvalue has qualified type, the value has the unqualified
|
|
// version of the type of the lvalue; otherwise, the value has the
|
|
// type of the lvalue.
|
|
if (T.hasQualifiers())
|
|
T = T.getUnqualifiedType();
|
|
|
|
CheckArrayAccess(E);
|
|
|
|
E = ImplicitCastExpr::Create(Context, T, CK_LValueToRValue,
|
|
E, 0, VK_RValue);
|
|
}
|
|
|
|
void Sema::DefaultFunctionArrayLvalueConversion(Expr *&E) {
|
|
DefaultFunctionArrayConversion(E);
|
|
DefaultLvalueConversion(E);
|
|
}
|
|
|
|
|
|
/// UsualUnaryConversions - Performs various conversions that are common to most
|
|
/// operators (C99 6.3). The conversions of array and function types are
|
|
/// sometimes surpressed. For example, the array->pointer conversion doesn't
|
|
/// apply if the array is an argument to the sizeof or address (&) operators.
|
|
/// In these instances, this routine should *not* be called.
|
|
Expr *Sema::UsualUnaryConversions(Expr *&E) {
|
|
// First, convert to an r-value.
|
|
DefaultFunctionArrayLvalueConversion(E);
|
|
|
|
QualType Ty = E->getType();
|
|
assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
|
|
|
|
// Try to perform integral promotions if the object has a theoretically
|
|
// promotable type.
|
|
if (Ty->isIntegralOrUnscopedEnumerationType()) {
|
|
// C99 6.3.1.1p2:
|
|
//
|
|
// The following may be used in an expression wherever an int or
|
|
// unsigned int may be used:
|
|
// - an object or expression with an integer type whose integer
|
|
// conversion rank is less than or equal to the rank of int
|
|
// and unsigned int.
|
|
// - A bit-field of type _Bool, int, signed int, or unsigned int.
|
|
//
|
|
// If an int can represent all values of the original type, the
|
|
// value is converted to an int; otherwise, it is converted to an
|
|
// unsigned int. These are called the integer promotions. All
|
|
// other types are unchanged by the integer promotions.
|
|
|
|
QualType PTy = Context.isPromotableBitField(E);
|
|
if (!PTy.isNull()) {
|
|
ImpCastExprToType(E, PTy, CK_IntegralCast);
|
|
return E;
|
|
}
|
|
if (Ty->isPromotableIntegerType()) {
|
|
QualType PT = Context.getPromotedIntegerType(Ty);
|
|
ImpCastExprToType(E, PT, CK_IntegralCast);
|
|
return E;
|
|
}
|
|
}
|
|
|
|
return E;
|
|
}
|
|
|
|
/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
|
|
/// do not have a prototype. Arguments that have type float are promoted to
|
|
/// double. All other argument types are converted by UsualUnaryConversions().
|
|
void Sema::DefaultArgumentPromotion(Expr *&Expr) {
|
|
QualType Ty = Expr->getType();
|
|
assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
|
|
|
|
UsualUnaryConversions(Expr);
|
|
|
|
// If this is a 'float' (CVR qualified or typedef) promote to double.
|
|
if (Ty->isSpecificBuiltinType(BuiltinType::Float))
|
|
return ImpCastExprToType(Expr, Context.DoubleTy, CK_FloatingCast);
|
|
}
|
|
|
|
/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
|
|
/// will warn if the resulting type is not a POD type, and rejects ObjC
|
|
/// interfaces passed by value. This returns true if the argument type is
|
|
/// completely illegal.
|
|
bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT,
|
|
FunctionDecl *FDecl) {
|
|
DefaultArgumentPromotion(Expr);
|
|
|
|
// __builtin_va_start takes the second argument as a "varargs" argument, but
|
|
// it doesn't actually do anything with it. It doesn't need to be non-pod
|
|
// etc.
|
|
if (FDecl && FDecl->getBuiltinID() == Builtin::BI__builtin_va_start)
|
|
return false;
|
|
|
|
if (Expr->getType()->isObjCObjectType() &&
|
|
DiagRuntimeBehavior(Expr->getLocStart(), 0,
|
|
PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
|
|
<< Expr->getType() << CT))
|
|
return true;
|
|
|
|
if (!Expr->getType()->isPODType() &&
|
|
DiagRuntimeBehavior(Expr->getLocStart(), 0,
|
|
PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
|
|
<< Expr->getType() << CT))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// UsualArithmeticConversions - Performs various conversions that are common to
|
|
/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
|
|
/// routine returns the first non-arithmetic type found. The client is
|
|
/// responsible for emitting appropriate error diagnostics.
|
|
/// FIXME: verify the conversion rules for "complex int" are consistent with
|
|
/// GCC.
|
|
QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
|
|
bool isCompAssign) {
|
|
if (!isCompAssign)
|
|
UsualUnaryConversions(lhsExpr);
|
|
|
|
UsualUnaryConversions(rhsExpr);
|
|
|
|
// For conversion purposes, we ignore any qualifiers.
|
|
// For example, "const float" and "float" are equivalent.
|
|
QualType lhs =
|
|
Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
|
|
QualType rhs =
|
|
Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
|
|
|
|
// If both types are identical, no conversion is needed.
|
|
if (lhs == rhs)
|
|
return lhs;
|
|
|
|
// If either side is a non-arithmetic type (e.g. a pointer), we are done.
|
|
// The caller can deal with this (e.g. pointer + int).
|
|
if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
|
|
return lhs;
|
|
|
|
// Apply unary and bitfield promotions to the LHS's type.
|
|
QualType lhs_unpromoted = lhs;
|
|
if (lhs->isPromotableIntegerType())
|
|
lhs = Context.getPromotedIntegerType(lhs);
|
|
QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr);
|
|
if (!LHSBitfieldPromoteTy.isNull())
|
|
lhs = LHSBitfieldPromoteTy;
|
|
if (lhs != lhs_unpromoted && !isCompAssign)
|
|
ImpCastExprToType(lhsExpr, lhs, CK_IntegralCast);
|
|
|
|
// If both types are identical, no conversion is needed.
|
|
if (lhs == rhs)
|
|
return lhs;
|
|
|
|
// At this point, we have two different arithmetic types.
|
|
|
|
// Handle complex types first (C99 6.3.1.8p1).
|
|
bool LHSComplexFloat = lhs->isComplexType();
|
|
bool RHSComplexFloat = rhs->isComplexType();
|
|
if (LHSComplexFloat || RHSComplexFloat) {
|
|
// if we have an integer operand, the result is the complex type.
|
|
|
|
if (!RHSComplexFloat && !rhs->isRealFloatingType()) {
|
|
if (rhs->isIntegerType()) {
|
|
QualType fp = cast<ComplexType>(lhs)->getElementType();
|
|
ImpCastExprToType(rhsExpr, fp, CK_IntegralToFloating);
|
|
ImpCastExprToType(rhsExpr, lhs, CK_FloatingRealToComplex);
|
|
} else {
|
|
assert(rhs->isComplexIntegerType());
|
|
ImpCastExprToType(rhsExpr, lhs, CK_IntegralComplexToFloatingComplex);
|
|
}
|
|
return lhs;
|
|
}
|
|
|
|
if (!LHSComplexFloat && !lhs->isRealFloatingType()) {
|
|
if (!isCompAssign) {
|
|
// int -> float -> _Complex float
|
|
if (lhs->isIntegerType()) {
|
|
QualType fp = cast<ComplexType>(rhs)->getElementType();
|
|
ImpCastExprToType(lhsExpr, fp, CK_IntegralToFloating);
|
|
ImpCastExprToType(lhsExpr, rhs, CK_FloatingRealToComplex);
|
|
} else {
|
|
assert(lhs->isComplexIntegerType());
|
|
ImpCastExprToType(lhsExpr, rhs, CK_IntegralComplexToFloatingComplex);
|
|
}
|
|
}
|
|
return rhs;
|
|
}
|
|
|
|
// This handles complex/complex, complex/float, or float/complex.
|
|
// When both operands are complex, the shorter operand is converted to the
|
|
// type of the longer, and that is the type of the result. This corresponds
|
|
// to what is done when combining two real floating-point operands.
|
|
// The fun begins when size promotion occur across type domains.
|
|
// From H&S 6.3.4: When one operand is complex and the other is a real
|
|
// floating-point type, the less precise type is converted, within it's
|
|
// real or complex domain, to the precision of the other type. For example,
|
|
// when combining a "long double" with a "double _Complex", the
|
|
// "double _Complex" is promoted to "long double _Complex".
|
|
int order = Context.getFloatingTypeOrder(lhs, rhs);
|
|
|
|
// If both are complex, just cast to the more precise type.
|
|
if (LHSComplexFloat && RHSComplexFloat) {
|
|
if (order > 0) {
|
|
// _Complex float -> _Complex double
|
|
ImpCastExprToType(rhsExpr, lhs, CK_FloatingComplexCast);
|
|
return lhs;
|
|
|
|
} else if (order < 0) {
|
|
// _Complex float -> _Complex double
|
|
if (!isCompAssign)
|
|
ImpCastExprToType(lhsExpr, rhs, CK_FloatingComplexCast);
|
|
return rhs;
|
|
}
|
|
return lhs;
|
|
}
|
|
|
|
// If just the LHS is complex, the RHS needs to be converted,
|
|
// and the LHS might need to be promoted.
|
|
if (LHSComplexFloat) {
|
|
if (order > 0) { // LHS is wider
|
|
// float -> _Complex double
|
|
QualType fp = cast<ComplexType>(lhs)->getElementType();
|
|
ImpCastExprToType(rhsExpr, fp, CK_FloatingCast);
|
|
ImpCastExprToType(rhsExpr, lhs, CK_FloatingRealToComplex);
|
|
return lhs;
|
|
}
|
|
|
|
// RHS is at least as wide. Find its corresponding complex type.
|
|
QualType result = (order == 0 ? lhs : Context.getComplexType(rhs));
|
|
|
|
// double -> _Complex double
|
|
ImpCastExprToType(rhsExpr, result, CK_FloatingRealToComplex);
|
|
|
|
// _Complex float -> _Complex double
|
|
if (!isCompAssign && order < 0)
|
|
ImpCastExprToType(lhsExpr, result, CK_FloatingComplexCast);
|
|
|
|
return result;
|
|
}
|
|
|
|
// Just the RHS is complex, so the LHS needs to be converted
|
|
// and the RHS might need to be promoted.
|
|
assert(RHSComplexFloat);
|
|
|
|
if (order < 0) { // RHS is wider
|
|
// float -> _Complex double
|
|
if (!isCompAssign) {
|
|
QualType fp = cast<ComplexType>(rhs)->getElementType();
|
|
ImpCastExprToType(lhsExpr, fp, CK_FloatingCast);
|
|
ImpCastExprToType(lhsExpr, rhs, CK_FloatingRealToComplex);
|
|
}
|
|
return rhs;
|
|
}
|
|
|
|
// LHS is at least as wide. Find its corresponding complex type.
|
|
QualType result = (order == 0 ? rhs : Context.getComplexType(lhs));
|
|
|
|
// double -> _Complex double
|
|
if (!isCompAssign)
|
|
ImpCastExprToType(lhsExpr, result, CK_FloatingRealToComplex);
|
|
|
|
// _Complex float -> _Complex double
|
|
if (order > 0)
|
|
ImpCastExprToType(rhsExpr, result, CK_FloatingComplexCast);
|
|
|
|
return result;
|
|
}
|
|
|
|
// Now handle "real" floating types (i.e. float, double, long double).
|
|
bool LHSFloat = lhs->isRealFloatingType();
|
|
bool RHSFloat = rhs->isRealFloatingType();
|
|
if (LHSFloat || RHSFloat) {
|
|
// If we have two real floating types, convert the smaller operand
|
|
// to the bigger result.
|
|
if (LHSFloat && RHSFloat) {
|
|
int order = Context.getFloatingTypeOrder(lhs, rhs);
|
|
if (order > 0) {
|
|
ImpCastExprToType(rhsExpr, lhs, CK_FloatingCast);
|
|
return lhs;
|
|
}
|
|
|
|
assert(order < 0 && "illegal float comparison");
|
|
if (!isCompAssign)
|
|
ImpCastExprToType(lhsExpr, rhs, CK_FloatingCast);
|
|
return rhs;
|
|
}
|
|
|
|
// If we have an integer operand, the result is the real floating type.
|
|
if (LHSFloat) {
|
|
if (rhs->isIntegerType()) {
|
|
// Convert rhs to the lhs floating point type.
|
|
ImpCastExprToType(rhsExpr, lhs, CK_IntegralToFloating);
|
|
return lhs;
|
|
}
|
|
|
|
// Convert both sides to the appropriate complex float.
|
|
assert(rhs->isComplexIntegerType());
|
|
QualType result = Context.getComplexType(lhs);
|
|
|
|
// _Complex int -> _Complex float
|
|
ImpCastExprToType(rhsExpr, result, CK_IntegralComplexToFloatingComplex);
|
|
|
|
// float -> _Complex float
|
|
if (!isCompAssign)
|
|
ImpCastExprToType(lhsExpr, result, CK_FloatingRealToComplex);
|
|
|
|
return result;
|
|
}
|
|
|
|
assert(RHSFloat);
|
|
if (lhs->isIntegerType()) {
|
|
// Convert lhs to the rhs floating point type.
|
|
if (!isCompAssign)
|
|
ImpCastExprToType(lhsExpr, rhs, CK_IntegralToFloating);
|
|
return rhs;
|
|
}
|
|
|
|
// Convert both sides to the appropriate complex float.
|
|
assert(lhs->isComplexIntegerType());
|
|
QualType result = Context.getComplexType(rhs);
|
|
|
|
// _Complex int -> _Complex float
|
|
if (!isCompAssign)
|
|
ImpCastExprToType(lhsExpr, result, CK_IntegralComplexToFloatingComplex);
|
|
|
|
// float -> _Complex float
|
|
ImpCastExprToType(rhsExpr, result, CK_FloatingRealToComplex);
|
|
|
|
return result;
|
|
}
|
|
|
|
// Handle GCC complex int extension.
|
|
// FIXME: if the operands are (int, _Complex long), we currently
|
|
// don't promote the complex. Also, signedness?
|
|
const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
|
|
const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
|
|
if (lhsComplexInt && rhsComplexInt) {
|
|
int order = Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
|
|
rhsComplexInt->getElementType());
|
|
assert(order && "inequal types with equal element ordering");
|
|
if (order > 0) {
|
|
// _Complex int -> _Complex long
|
|
ImpCastExprToType(rhsExpr, lhs, CK_IntegralComplexCast);
|
|
return lhs;
|
|
}
|
|
|
|
if (!isCompAssign)
|
|
ImpCastExprToType(lhsExpr, rhs, CK_IntegralComplexCast);
|
|
return rhs;
|
|
} else if (lhsComplexInt) {
|
|
// int -> _Complex int
|
|
ImpCastExprToType(rhsExpr, lhs, CK_IntegralRealToComplex);
|
|
return lhs;
|
|
} else if (rhsComplexInt) {
|
|
// int -> _Complex int
|
|
if (!isCompAssign)
|
|
ImpCastExprToType(lhsExpr, rhs, CK_IntegralRealToComplex);
|
|
return rhs;
|
|
}
|
|
|
|
// Finally, we have two differing integer types.
|
|
// The rules for this case are in C99 6.3.1.8
|
|
int compare = Context.getIntegerTypeOrder(lhs, rhs);
|
|
bool lhsSigned = lhs->hasSignedIntegerRepresentation(),
|
|
rhsSigned = rhs->hasSignedIntegerRepresentation();
|
|
if (lhsSigned == rhsSigned) {
|
|
// Same signedness; use the higher-ranked type
|
|
if (compare >= 0) {
|
|
ImpCastExprToType(rhsExpr, lhs, CK_IntegralCast);
|
|
return lhs;
|
|
} else if (!isCompAssign)
|
|
ImpCastExprToType(lhsExpr, rhs, CK_IntegralCast);
|
|
return rhs;
|
|
} else if (compare != (lhsSigned ? 1 : -1)) {
|
|
// The unsigned type has greater than or equal rank to the
|
|
// signed type, so use the unsigned type
|
|
if (rhsSigned) {
|
|
ImpCastExprToType(rhsExpr, lhs, CK_IntegralCast);
|
|
return lhs;
|
|
} else if (!isCompAssign)
|
|
ImpCastExprToType(lhsExpr, rhs, CK_IntegralCast);
|
|
return rhs;
|
|
} else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
|
|
// The two types are different widths; if we are here, that
|
|
// means the signed type is larger than the unsigned type, so
|
|
// use the signed type.
|
|
if (lhsSigned) {
|
|
ImpCastExprToType(rhsExpr, lhs, CK_IntegralCast);
|
|
return lhs;
|
|
} else if (!isCompAssign)
|
|
ImpCastExprToType(lhsExpr, rhs, CK_IntegralCast);
|
|
return rhs;
|
|
} else {
|
|
// The signed type is higher-ranked than the unsigned type,
|
|
// but isn't actually any bigger (like unsigned int and long
|
|
// on most 32-bit systems). Use the unsigned type corresponding
|
|
// to the signed type.
|
|
QualType result =
|
|
Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
|
|
ImpCastExprToType(rhsExpr, result, CK_IntegralCast);
|
|
if (!isCompAssign)
|
|
ImpCastExprToType(lhsExpr, result, CK_IntegralCast);
|
|
return result;
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Semantic Analysis for various Expression Types
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
/// ActOnStringLiteral - The specified tokens were lexed as pasted string
|
|
/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
|
|
/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
|
|
/// multiple tokens. However, the common case is that StringToks points to one
|
|
/// string.
|
|
///
|
|
ExprResult
|
|
Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
|
|
assert(NumStringToks && "Must have at least one string!");
|
|
|
|
StringLiteralParser Literal(StringToks, NumStringToks, PP);
|
|
if (Literal.hadError)
|
|
return ExprError();
|
|
|
|
llvm::SmallVector<SourceLocation, 4> StringTokLocs;
|
|
for (unsigned i = 0; i != NumStringToks; ++i)
|
|
StringTokLocs.push_back(StringToks[i].getLocation());
|
|
|
|
QualType StrTy = Context.CharTy;
|
|
if (Literal.AnyWide)
|
|
StrTy = Context.getWCharType();
|
|
else if (Literal.Pascal)
|
|
StrTy = Context.UnsignedCharTy;
|
|
|
|
// A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
|
|
if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings)
|
|
StrTy.addConst();
|
|
|
|
// Get an array type for the string, according to C99 6.4.5. This includes
|
|
// the nul terminator character as well as the string length for pascal
|
|
// strings.
|
|
StrTy = Context.getConstantArrayType(StrTy,
|
|
llvm::APInt(32, Literal.GetNumStringChars()+1),
|
|
ArrayType::Normal, 0);
|
|
|
|
// Pass &StringTokLocs[0], StringTokLocs.size() to factory!
|
|
return Owned(StringLiteral::Create(Context, Literal.GetString(),
|
|
Literal.GetStringLength(),
|
|
Literal.AnyWide, StrTy,
|
|
&StringTokLocs[0],
|
|
StringTokLocs.size()));
|
|
}
|
|
|
|
enum CaptureResult {
|
|
/// No capture is required.
|
|
CR_NoCapture,
|
|
|
|
/// A capture is required.
|
|
CR_Capture,
|
|
|
|
/// A by-ref capture is required.
|
|
CR_CaptureByRef,
|
|
|
|
/// An error occurred when trying to capture the given variable.
|
|
CR_Error
|
|
};
|
|
|
|
/// Diagnose an uncapturable value reference.
|
|
///
|
|
/// \param var - the variable referenced
|
|
/// \param DC - the context which we couldn't capture through
|
|
static CaptureResult
|
|
diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
|
|
VarDecl *var, DeclContext *DC) {
|
|
switch (S.ExprEvalContexts.back().Context) {
|
|
case Sema::Unevaluated:
|
|
// The argument will never be evaluated, so don't complain.
|
|
return CR_NoCapture;
|
|
|
|
case Sema::PotentiallyEvaluated:
|
|
case Sema::PotentiallyEvaluatedIfUsed:
|
|
break;
|
|
|
|
case Sema::PotentiallyPotentiallyEvaluated:
|
|
// FIXME: delay these!
|
|
break;
|
|
}
|
|
|
|
// Don't diagnose about capture if we're not actually in code right
|
|
// now; in general, there are more appropriate places that will
|
|
// diagnose this.
|
|
if (!S.CurContext->isFunctionOrMethod()) return CR_NoCapture;
|
|
|
|
// Certain madnesses can happen with parameter declarations, which
|
|
// we want to ignore.
|
|
if (isa<ParmVarDecl>(var)) {
|
|
// - If the parameter still belongs to the translation unit, then
|
|
// we're actually just using one parameter in the declaration of
|
|
// the next. This is useful in e.g. VLAs.
|
|
if (isa<TranslationUnitDecl>(var->getDeclContext()))
|
|
return CR_NoCapture;
|
|
|
|
// - This particular madness can happen in ill-formed default
|
|
// arguments; claim it's okay and let downstream code handle it.
|
|
if (S.CurContext == var->getDeclContext()->getParent())
|
|
return CR_NoCapture;
|
|
}
|
|
|
|
DeclarationName functionName;
|
|
if (FunctionDecl *fn = dyn_cast<FunctionDecl>(var->getDeclContext()))
|
|
functionName = fn->getDeclName();
|
|
// FIXME: variable from enclosing block that we couldn't capture from!
|
|
|
|
S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
|
|
<< var->getIdentifier() << functionName;
|
|
S.Diag(var->getLocation(), diag::note_local_variable_declared_here)
|
|
<< var->getIdentifier();
|
|
|
|
return CR_Error;
|
|
}
|
|
|
|
/// There is a well-formed capture at a particular scope level;
|
|
/// propagate it through all the nested blocks.
|
|
static CaptureResult propagateCapture(Sema &S, unsigned validScopeIndex,
|
|
const BlockDecl::Capture &capture) {
|
|
VarDecl *var = capture.getVariable();
|
|
|
|
// Update all the inner blocks with the capture information.
|
|
for (unsigned i = validScopeIndex + 1, e = S.FunctionScopes.size();
|
|
i != e; ++i) {
|
|
BlockScopeInfo *innerBlock = cast<BlockScopeInfo>(S.FunctionScopes[i]);
|
|
innerBlock->Captures.push_back(
|
|
BlockDecl::Capture(capture.getVariable(), capture.isByRef(),
|
|
/*nested*/ true, capture.getCopyExpr()));
|
|
innerBlock->CaptureMap[var] = innerBlock->Captures.size(); // +1
|
|
}
|
|
|
|
return capture.isByRef() ? CR_CaptureByRef : CR_Capture;
|
|
}
|
|
|
|
/// shouldCaptureValueReference - Determine if a reference to the
|
|
/// given value in the current context requires a variable capture.
|
|
///
|
|
/// This also keeps the captures set in the BlockScopeInfo records
|
|
/// up-to-date.
|
|
static CaptureResult shouldCaptureValueReference(Sema &S, SourceLocation loc,
|
|
ValueDecl *value) {
|
|
// Only variables ever require capture.
|
|
VarDecl *var = dyn_cast<VarDecl>(value);
|
|
if (!var) return CR_NoCapture;
|
|
|
|
// Fast path: variables from the current context never require capture.
|
|
DeclContext *DC = S.CurContext;
|
|
if (var->getDeclContext() == DC) return CR_NoCapture;
|
|
|
|
// Only variables with local storage require capture.
|
|
// FIXME: What about 'const' variables in C++?
|
|
if (!var->hasLocalStorage()) return CR_NoCapture;
|
|
|
|
// Otherwise, we need to capture.
|
|
|
|
unsigned functionScopesIndex = S.FunctionScopes.size() - 1;
|
|
do {
|
|
// Only blocks (and eventually C++0x closures) can capture; other
|
|
// scopes don't work.
|
|
if (!isa<BlockDecl>(DC))
|
|
return diagnoseUncapturableValueReference(S, loc, var, DC);
|
|
|
|
BlockScopeInfo *blockScope =
|
|
cast<BlockScopeInfo>(S.FunctionScopes[functionScopesIndex]);
|
|
assert(blockScope->TheDecl == static_cast<BlockDecl*>(DC));
|
|
|
|
// Check whether we've already captured it in this block. If so,
|
|
// we're done.
|
|
if (unsigned indexPlus1 = blockScope->CaptureMap[var])
|
|
return propagateCapture(S, functionScopesIndex,
|
|
blockScope->Captures[indexPlus1 - 1]);
|
|
|
|
functionScopesIndex--;
|
|
DC = cast<BlockDecl>(DC)->getDeclContext();
|
|
} while (var->getDeclContext() != DC);
|
|
|
|
// Okay, we descended all the way to the block that defines the variable.
|
|
// Actually try to capture it.
|
|
QualType type = var->getType();
|
|
|
|
// Prohibit variably-modified types.
|
|
if (type->isVariablyModifiedType()) {
|
|
S.Diag(loc, diag::err_ref_vm_type);
|
|
S.Diag(var->getLocation(), diag::note_declared_at);
|
|
return CR_Error;
|
|
}
|
|
|
|
// Prohibit arrays, even in __block variables, but not references to
|
|
// them.
|
|
if (type->isArrayType()) {
|
|
S.Diag(loc, diag::err_ref_array_type);
|
|
S.Diag(var->getLocation(), diag::note_declared_at);
|
|
return CR_Error;
|
|
}
|
|
|
|
S.MarkDeclarationReferenced(loc, var);
|
|
|
|
// The BlocksAttr indicates the variable is bound by-reference.
|
|
bool byRef = var->hasAttr<BlocksAttr>();
|
|
|
|
// Build a copy expression.
|
|
Expr *copyExpr = 0;
|
|
if (!byRef && S.getLangOptions().CPlusPlus &&
|
|
!type->isDependentType() && type->isStructureOrClassType()) {
|
|
// According to the blocks spec, the capture of a variable from
|
|
// the stack requires a const copy constructor. This is not true
|
|
// of the copy/move done to move a __block variable to the heap.
|
|
type.addConst();
|
|
|
|
Expr *declRef = new (S.Context) DeclRefExpr(var, type, VK_LValue, loc);
|
|
ExprResult result =
|
|
S.PerformCopyInitialization(
|
|
InitializedEntity::InitializeBlock(var->getLocation(),
|
|
type, false),
|
|
loc, S.Owned(declRef));
|
|
|
|
// Build a full-expression copy expression if initialization
|
|
// succeeded and used a non-trivial constructor. Recover from
|
|
// errors by pretending that the copy isn't necessary.
|
|
if (!result.isInvalid() &&
|
|
!cast<CXXConstructExpr>(result.get())->getConstructor()->isTrivial()) {
|
|
result = S.MaybeCreateExprWithCleanups(result);
|
|
copyExpr = result.take();
|
|
}
|
|
}
|
|
|
|
// We're currently at the declarer; go back to the closure.
|
|
functionScopesIndex++;
|
|
BlockScopeInfo *blockScope =
|
|
cast<BlockScopeInfo>(S.FunctionScopes[functionScopesIndex]);
|
|
|
|
// Build a valid capture in this scope.
|
|
blockScope->Captures.push_back(
|
|
BlockDecl::Capture(var, byRef, /*nested*/ false, copyExpr));
|
|
blockScope->CaptureMap[var] = blockScope->Captures.size(); // +1
|
|
|
|
// Propagate that to inner captures if necessary.
|
|
return propagateCapture(S, functionScopesIndex,
|
|
blockScope->Captures.back());
|
|
}
|
|
|
|
static ExprResult BuildBlockDeclRefExpr(Sema &S, ValueDecl *vd,
|
|
const DeclarationNameInfo &NameInfo,
|
|
bool byRef) {
|
|
assert(isa<VarDecl>(vd) && "capturing non-variable");
|
|
|
|
VarDecl *var = cast<VarDecl>(vd);
|
|
assert(var->hasLocalStorage() && "capturing non-local");
|
|
assert(byRef == var->hasAttr<BlocksAttr>() && "byref set wrong");
|
|
|
|
QualType exprType = var->getType().getNonReferenceType();
|
|
|
|
BlockDeclRefExpr *BDRE;
|
|
if (!byRef) {
|
|
// The variable will be bound by copy; make it const within the
|
|
// closure, but record that this was done in the expression.
|
|
bool constAdded = !exprType.isConstQualified();
|
|
exprType.addConst();
|
|
|
|
BDRE = new (S.Context) BlockDeclRefExpr(var, exprType, VK_LValue,
|
|
NameInfo.getLoc(), false,
|
|
constAdded);
|
|
} else {
|
|
BDRE = new (S.Context) BlockDeclRefExpr(var, exprType, VK_LValue,
|
|
NameInfo.getLoc(), true);
|
|
}
|
|
|
|
return S.Owned(BDRE);
|
|
}
|
|
|
|
ExprResult
|
|
Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
|
|
SourceLocation Loc,
|
|
const CXXScopeSpec *SS) {
|
|
DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
|
|
return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
|
|
}
|
|
|
|
/// BuildDeclRefExpr - Build an expression that references a
|
|
/// declaration that does not require a closure capture.
|
|
ExprResult
|
|
Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
|
|
const DeclarationNameInfo &NameInfo,
|
|
const CXXScopeSpec *SS) {
|
|
MarkDeclarationReferenced(NameInfo.getLoc(), D);
|
|
|
|
Expr *E = DeclRefExpr::Create(Context,
|
|
SS? SS->getWithLocInContext(Context)
|
|
: NestedNameSpecifierLoc(),
|
|
D, NameInfo, Ty, VK);
|
|
|
|
// Just in case we're building an illegal pointer-to-member.
|
|
if (isa<FieldDecl>(D) && cast<FieldDecl>(D)->getBitWidth())
|
|
E->setObjectKind(OK_BitField);
|
|
|
|
return Owned(E);
|
|
}
|
|
|
|
static ExprResult
|
|
BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
|
|
const CXXScopeSpec &SS, FieldDecl *Field,
|
|
DeclAccessPair FoundDecl,
|
|
const DeclarationNameInfo &MemberNameInfo);
|
|
|
|
ExprResult
|
|
Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
|
|
SourceLocation loc,
|
|
IndirectFieldDecl *indirectField,
|
|
Expr *baseObjectExpr,
|
|
SourceLocation opLoc) {
|
|
// First, build the expression that refers to the base object.
|
|
|
|
bool baseObjectIsPointer = false;
|
|
Qualifiers baseQuals;
|
|
|
|
// Case 1: the base of the indirect field is not a field.
|
|
VarDecl *baseVariable = indirectField->getVarDecl();
|
|
CXXScopeSpec EmptySS;
|
|
if (baseVariable) {
|
|
assert(baseVariable->getType()->isRecordType());
|
|
|
|
// In principle we could have a member access expression that
|
|
// accesses an anonymous struct/union that's a static member of
|
|
// the base object's class. However, under the current standard,
|
|
// static data members cannot be anonymous structs or unions.
|
|
// Supporting this is as easy as building a MemberExpr here.
|
|
assert(!baseObjectExpr && "anonymous struct/union is static data member?");
|
|
|
|
DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
|
|
|
|
ExprResult result =
|
|
BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
|
|
if (result.isInvalid()) return ExprError();
|
|
|
|
baseObjectExpr = result.take();
|
|
baseObjectIsPointer = false;
|
|
baseQuals = baseObjectExpr->getType().getQualifiers();
|
|
|
|
// Case 2: the base of the indirect field is a field and the user
|
|
// wrote a member expression.
|
|
} else if (baseObjectExpr) {
|
|
// The caller provided the base object expression. Determine
|
|
// whether its a pointer and whether it adds any qualifiers to the
|
|
// anonymous struct/union fields we're looking into.
|
|
QualType objectType = baseObjectExpr->getType();
|
|
|
|
if (const PointerType *ptr = objectType->getAs<PointerType>()) {
|
|
baseObjectIsPointer = true;
|
|
objectType = ptr->getPointeeType();
|
|
} else {
|
|
baseObjectIsPointer = false;
|
|
}
|
|
baseQuals = objectType.getQualifiers();
|
|
|
|
// Case 3: the base of the indirect field is a field and we should
|
|
// build an implicit member access.
|
|
} else {
|
|
// We've found a member of an anonymous struct/union that is
|
|
// inside a non-anonymous struct/union, so in a well-formed
|
|
// program our base object expression is "this".
|
|
CXXMethodDecl *method = tryCaptureCXXThis();
|
|
if (!method) {
|
|
Diag(loc, diag::err_invalid_member_use_in_static_method)
|
|
<< indirectField->getDeclName();
|
|
return ExprError();
|
|
}
|
|
|
|
// Our base object expression is "this".
|
|
baseObjectExpr =
|
|
new (Context) CXXThisExpr(loc, method->getThisType(Context),
|
|
/*isImplicit=*/ true);
|
|
baseObjectIsPointer = true;
|
|
baseQuals = Qualifiers::fromCVRMask(method->getTypeQualifiers());
|
|
}
|
|
|
|
// Build the implicit member references to the field of the
|
|
// anonymous struct/union.
|
|
Expr *result = baseObjectExpr;
|
|
IndirectFieldDecl::chain_iterator
|
|
FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
|
|
|
|
// Build the first member access in the chain with full information.
|
|
if (!baseVariable) {
|
|
FieldDecl *field = cast<FieldDecl>(*FI);
|
|
|
|
// FIXME: use the real found-decl info!
|
|
DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess());
|
|
|
|
// Make a nameInfo that properly uses the anonymous name.
|
|
DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
|
|
|
|
result = BuildFieldReferenceExpr(*this, result, baseObjectIsPointer,
|
|
EmptySS, field, foundDecl,
|
|
memberNameInfo).take();
|
|
baseObjectIsPointer = false;
|
|
|
|
// FIXME: check qualified member access
|
|
}
|
|
|
|
// In all cases, we should now skip the first declaration in the chain.
|
|
++FI;
|
|
|
|
while (FI != FEnd) {
|
|
FieldDecl *field = cast<FieldDecl>(*FI++);
|
|
|
|
// FIXME: these are somewhat meaningless
|
|
DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
|
|
DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess());
|
|
|
|
result = BuildFieldReferenceExpr(*this, result, /*isarrow*/ false,
|
|
(FI == FEnd? SS : EmptySS), field,
|
|
foundDecl, memberNameInfo)
|
|
.take();
|
|
}
|
|
|
|
return Owned(result);
|
|
}
|
|
|
|
/// Decomposes the given name into a DeclarationNameInfo, its location, and
|
|
/// possibly a list of template arguments.
|
|
///
|
|
/// If this produces template arguments, it is permitted to call
|
|
/// DecomposeTemplateName.
|
|
///
|
|
/// This actually loses a lot of source location information for
|
|
/// non-standard name kinds; we should consider preserving that in
|
|
/// some way.
|
|
static void DecomposeUnqualifiedId(Sema &SemaRef,
|
|
const UnqualifiedId &Id,
|
|
TemplateArgumentListInfo &Buffer,
|
|
DeclarationNameInfo &NameInfo,
|
|
const TemplateArgumentListInfo *&TemplateArgs) {
|
|
if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
|
|
Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
|
|
Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
|
|
|
|
ASTTemplateArgsPtr TemplateArgsPtr(SemaRef,
|
|
Id.TemplateId->getTemplateArgs(),
|
|
Id.TemplateId->NumArgs);
|
|
SemaRef.translateTemplateArguments(TemplateArgsPtr, Buffer);
|
|
TemplateArgsPtr.release();
|
|
|
|
TemplateName TName = Id.TemplateId->Template.get();
|
|
SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
|
|
NameInfo = SemaRef.Context.getNameForTemplate(TName, TNameLoc);
|
|
TemplateArgs = &Buffer;
|
|
} else {
|
|
NameInfo = SemaRef.GetNameFromUnqualifiedId(Id);
|
|
TemplateArgs = 0;
|
|
}
|
|
}
|
|
|
|
/// Determines if the given class is provably not derived from all of
|
|
/// the prospective base classes.
|
|
static bool IsProvablyNotDerivedFrom(Sema &SemaRef,
|
|
CXXRecordDecl *Record,
|
|
const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) {
|
|
if (Bases.count(Record->getCanonicalDecl()))
|
|
return false;
|
|
|
|
RecordDecl *RD = Record->getDefinition();
|
|
if (!RD) return false;
|
|
Record = cast<CXXRecordDecl>(RD);
|
|
|
|
for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
|
|
E = Record->bases_end(); I != E; ++I) {
|
|
CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
|
|
CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
|
|
if (!BaseRT) return false;
|
|
|
|
CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
|
|
if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
enum IMAKind {
|
|
/// The reference is definitely not an instance member access.
|
|
IMA_Static,
|
|
|
|
/// The reference may be an implicit instance member access.
|
|
IMA_Mixed,
|
|
|
|
/// The reference may be to an instance member, but it is invalid if
|
|
/// so, because the context is not an instance method.
|
|
IMA_Mixed_StaticContext,
|
|
|
|
/// The reference may be to an instance member, but it is invalid if
|
|
/// so, because the context is from an unrelated class.
|
|
IMA_Mixed_Unrelated,
|
|
|
|
/// The reference is definitely an implicit instance member access.
|
|
IMA_Instance,
|
|
|
|
/// The reference may be to an unresolved using declaration.
|
|
IMA_Unresolved,
|
|
|
|
/// The reference may be to an unresolved using declaration and the
|
|
/// context is not an instance method.
|
|
IMA_Unresolved_StaticContext,
|
|
|
|
/// All possible referrents are instance members and the current
|
|
/// context is not an instance method.
|
|
IMA_Error_StaticContext,
|
|
|
|
/// All possible referrents are instance members of an unrelated
|
|
/// class.
|
|
IMA_Error_Unrelated
|
|
};
|
|
|
|
/// The given lookup names class member(s) and is not being used for
|
|
/// an address-of-member expression. Classify the type of access
|
|
/// according to whether it's possible that this reference names an
|
|
/// instance member. This is best-effort; it is okay to
|
|
/// conservatively answer "yes", in which case some errors will simply
|
|
/// not be caught until template-instantiation.
|
|
static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
|
|
const LookupResult &R) {
|
|
assert(!R.empty() && (*R.begin())->isCXXClassMember());
|
|
|
|
DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
|
|
bool isStaticContext =
|
|
(!isa<CXXMethodDecl>(DC) ||
|
|
cast<CXXMethodDecl>(DC)->isStatic());
|
|
|
|
if (R.isUnresolvableResult())
|
|
return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
|
|
|
|
// Collect all the declaring classes of instance members we find.
|
|
bool hasNonInstance = false;
|
|
bool hasField = false;
|
|
llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes;
|
|
for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
|
|
NamedDecl *D = *I;
|
|
|
|
if (D->isCXXInstanceMember()) {
|
|
if (dyn_cast<FieldDecl>(D))
|
|
hasField = true;
|
|
|
|
CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
|
|
Classes.insert(R->getCanonicalDecl());
|
|
}
|
|
else
|
|
hasNonInstance = true;
|
|
}
|
|
|
|
// If we didn't find any instance members, it can't be an implicit
|
|
// member reference.
|
|
if (Classes.empty())
|
|
return IMA_Static;
|
|
|
|
// If the current context is not an instance method, it can't be
|
|
// an implicit member reference.
|
|
if (isStaticContext) {
|
|
if (hasNonInstance)
|
|
return IMA_Mixed_StaticContext;
|
|
|
|
if (SemaRef.getLangOptions().CPlusPlus0x && hasField) {
|
|
// C++0x [expr.prim.general]p10:
|
|
// An id-expression that denotes a non-static data member or non-static
|
|
// member function of a class can only be used:
|
|
// (...)
|
|
// - if that id-expression denotes a non-static data member and it appears in an unevaluated operand.
|
|
const Sema::ExpressionEvaluationContextRecord& record = SemaRef.ExprEvalContexts.back();
|
|
bool isUnevaluatedExpression = record.Context == Sema::Unevaluated;
|
|
if (isUnevaluatedExpression)
|
|
return IMA_Mixed_StaticContext;
|
|
}
|
|
|
|
return IMA_Error_StaticContext;
|
|
}
|
|
|
|
// If we can prove that the current context is unrelated to all the
|
|
// declaring classes, it can't be an implicit member reference (in
|
|
// which case it's an error if any of those members are selected).
|
|
if (IsProvablyNotDerivedFrom(SemaRef,
|
|
cast<CXXMethodDecl>(DC)->getParent(),
|
|
Classes))
|
|
return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated);
|
|
|
|
return (hasNonInstance ? IMA_Mixed : IMA_Instance);
|
|
}
|
|
|
|
/// Diagnose a reference to a field with no object available.
|
|
static void DiagnoseInstanceReference(Sema &SemaRef,
|
|
const CXXScopeSpec &SS,
|
|
NamedDecl *rep,
|
|
const DeclarationNameInfo &nameInfo) {
|
|
SourceLocation Loc = nameInfo.getLoc();
|
|
SourceRange Range(Loc);
|
|
if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
|
|
|
|
if (isa<FieldDecl>(rep) || isa<IndirectFieldDecl>(rep)) {
|
|
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext)) {
|
|
if (MD->isStatic()) {
|
|
// "invalid use of member 'x' in static member function"
|
|
SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
|
|
<< Range << nameInfo.getName();
|
|
return;
|
|
}
|
|
}
|
|
|
|
SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
|
|
<< nameInfo.getName() << Range;
|
|
return;
|
|
}
|
|
|
|
SemaRef.Diag(Loc, diag::err_member_call_without_object) << Range;
|
|
}
|
|
|
|
/// Diagnose an empty lookup.
|
|
///
|
|
/// \return false if new lookup candidates were found
|
|
bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
|
|
CorrectTypoContext CTC) {
|
|
DeclarationName Name = R.getLookupName();
|
|
|
|
unsigned diagnostic = diag::err_undeclared_var_use;
|
|
unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
|
|
if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
|
|
Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
|
|
Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
|
|
diagnostic = diag::err_undeclared_use;
|
|
diagnostic_suggest = diag::err_undeclared_use_suggest;
|
|
}
|
|
|
|
// If the original lookup was an unqualified lookup, fake an
|
|
// unqualified lookup. This is useful when (for example) the
|
|
// original lookup would not have found something because it was a
|
|
// dependent name.
|
|
for (DeclContext *DC = SS.isEmpty() ? CurContext : 0;
|
|
DC; DC = DC->getParent()) {
|
|
if (isa<CXXRecordDecl>(DC)) {
|
|
LookupQualifiedName(R, DC);
|
|
|
|
if (!R.empty()) {
|
|
// Don't give errors about ambiguities in this lookup.
|
|
R.suppressDiagnostics();
|
|
|
|
CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
|
|
bool isInstance = CurMethod &&
|
|
CurMethod->isInstance() &&
|
|
DC == CurMethod->getParent();
|
|
|
|
// Give a code modification hint to insert 'this->'.
|
|
// TODO: fixit for inserting 'Base<T>::' in the other cases.
|
|
// Actually quite difficult!
|
|
if (isInstance) {
|
|
UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
|
|
CallsUndergoingInstantiation.back()->getCallee());
|
|
CXXMethodDecl *DepMethod = cast_or_null<CXXMethodDecl>(
|
|
CurMethod->getInstantiatedFromMemberFunction());
|
|
if (DepMethod) {
|
|
Diag(R.getNameLoc(), diagnostic) << Name
|
|
<< FixItHint::CreateInsertion(R.getNameLoc(), "this->");
|
|
QualType DepThisType = DepMethod->getThisType(Context);
|
|
CXXThisExpr *DepThis = new (Context) CXXThisExpr(
|
|
R.getNameLoc(), DepThisType, false);
|
|
TemplateArgumentListInfo TList;
|
|
if (ULE->hasExplicitTemplateArgs())
|
|
ULE->copyTemplateArgumentsInto(TList);
|
|
|
|
CXXScopeSpec SS;
|
|
SS.Adopt(ULE->getQualifierLoc());
|
|
CXXDependentScopeMemberExpr *DepExpr =
|
|
CXXDependentScopeMemberExpr::Create(
|
|
Context, DepThis, DepThisType, true, SourceLocation(),
|
|
SS.getWithLocInContext(Context), NULL,
|
|
R.getLookupNameInfo(), &TList);
|
|
CallsUndergoingInstantiation.back()->setCallee(DepExpr);
|
|
} else {
|
|
// FIXME: we should be able to handle this case too. It is correct
|
|
// to add this-> here. This is a workaround for PR7947.
|
|
Diag(R.getNameLoc(), diagnostic) << Name;
|
|
}
|
|
} else {
|
|
Diag(R.getNameLoc(), diagnostic) << Name;
|
|
}
|
|
|
|
// Do we really want to note all of these?
|
|
for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
|
|
Diag((*I)->getLocation(), diag::note_dependent_var_use);
|
|
|
|
// Tell the callee to try to recover.
|
|
return false;
|
|
}
|
|
|
|
R.clear();
|
|
}
|
|
}
|
|
|
|
// We didn't find anything, so try to correct for a typo.
|
|
DeclarationName Corrected;
|
|
if (S && (Corrected = CorrectTypo(R, S, &SS, 0, false, CTC))) {
|
|
if (!R.empty()) {
|
|
if (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin())) {
|
|
if (SS.isEmpty())
|
|
Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName()
|
|
<< FixItHint::CreateReplacement(R.getNameLoc(),
|
|
R.getLookupName().getAsString());
|
|
else
|
|
Diag(R.getNameLoc(), diag::err_no_member_suggest)
|
|
<< Name << computeDeclContext(SS, false) << R.getLookupName()
|
|
<< SS.getRange()
|
|
<< FixItHint::CreateReplacement(R.getNameLoc(),
|
|
R.getLookupName().getAsString());
|
|
if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
|
|
Diag(ND->getLocation(), diag::note_previous_decl)
|
|
<< ND->getDeclName();
|
|
|
|
// Tell the callee to try to recover.
|
|
return false;
|
|
}
|
|
|
|
if (isa<TypeDecl>(*R.begin()) || isa<ObjCInterfaceDecl>(*R.begin())) {
|
|
// FIXME: If we ended up with a typo for a type name or
|
|
// Objective-C class name, we're in trouble because the parser
|
|
// is in the wrong place to recover. Suggest the typo
|
|
// correction, but don't make it a fix-it since we're not going
|
|
// to recover well anyway.
|
|
if (SS.isEmpty())
|
|
Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName();
|
|
else
|
|
Diag(R.getNameLoc(), diag::err_no_member_suggest)
|
|
<< Name << computeDeclContext(SS, false) << R.getLookupName()
|
|
<< SS.getRange();
|
|
|
|
// Don't try to recover; it won't work.
|
|
return true;
|
|
}
|
|
} else {
|
|
// FIXME: We found a keyword. Suggest it, but don't provide a fix-it
|
|
// because we aren't able to recover.
|
|
if (SS.isEmpty())
|
|
Diag(R.getNameLoc(), diagnostic_suggest) << Name << Corrected;
|
|
else
|
|
Diag(R.getNameLoc(), diag::err_no_member_suggest)
|
|
<< Name << computeDeclContext(SS, false) << Corrected
|
|
<< SS.getRange();
|
|
return true;
|
|
}
|
|
R.clear();
|
|
}
|
|
|
|
// Emit a special diagnostic for failed member lookups.
|
|
// FIXME: computing the declaration context might fail here (?)
|
|
if (!SS.isEmpty()) {
|
|
Diag(R.getNameLoc(), diag::err_no_member)
|
|
<< Name << computeDeclContext(SS, false)
|
|
<< SS.getRange();
|
|
return true;
|
|
}
|
|
|
|
// Give up, we can't recover.
|
|
Diag(R.getNameLoc(), diagnostic) << Name;
|
|
return true;
|
|
}
|
|
|
|
ObjCPropertyDecl *Sema::canSynthesizeProvisionalIvar(IdentifierInfo *II) {
|
|
ObjCMethodDecl *CurMeth = getCurMethodDecl();
|
|
ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
|
|
if (!IDecl)
|
|
return 0;
|
|
ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
|
|
if (!ClassImpDecl)
|
|
return 0;
|
|
ObjCPropertyDecl *property = LookupPropertyDecl(IDecl, II);
|
|
if (!property)
|
|
return 0;
|
|
if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II))
|
|
if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic ||
|
|
PIDecl->getPropertyIvarDecl())
|
|
return 0;
|
|
return property;
|
|
}
|
|
|
|
bool Sema::canSynthesizeProvisionalIvar(ObjCPropertyDecl *Property) {
|
|
ObjCMethodDecl *CurMeth = getCurMethodDecl();
|
|
ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
|
|
if (!IDecl)
|
|
return false;
|
|
ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
|
|
if (!ClassImpDecl)
|
|
return false;
|
|
if (ObjCPropertyImplDecl *PIDecl
|
|
= ClassImpDecl->FindPropertyImplDecl(Property->getIdentifier()))
|
|
if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic ||
|
|
PIDecl->getPropertyIvarDecl())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static ObjCIvarDecl *SynthesizeProvisionalIvar(Sema &SemaRef,
|
|
LookupResult &Lookup,
|
|
IdentifierInfo *II,
|
|
SourceLocation NameLoc) {
|
|
ObjCMethodDecl *CurMeth = SemaRef.getCurMethodDecl();
|
|
bool LookForIvars;
|
|
if (Lookup.empty())
|
|
LookForIvars = true;
|
|
else if (CurMeth->isClassMethod())
|
|
LookForIvars = false;
|
|
else
|
|
LookForIvars = (Lookup.isSingleResult() &&
|
|
Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod() &&
|
|
(Lookup.getAsSingle<VarDecl>() != 0));
|
|
if (!LookForIvars)
|
|
return 0;
|
|
|
|
ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
|
|
if (!IDecl)
|
|
return 0;
|
|
ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
|
|
if (!ClassImpDecl)
|
|
return 0;
|
|
bool DynamicImplSeen = false;
|
|
ObjCPropertyDecl *property = SemaRef.LookupPropertyDecl(IDecl, II);
|
|
if (!property)
|
|
return 0;
|
|
if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II)) {
|
|
DynamicImplSeen =
|
|
(PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic);
|
|
// property implementation has a designated ivar. No need to assume a new
|
|
// one.
|
|
if (!DynamicImplSeen && PIDecl->getPropertyIvarDecl())
|
|
return 0;
|
|
}
|
|
if (!DynamicImplSeen) {
|
|
QualType PropType = SemaRef.Context.getCanonicalType(property->getType());
|
|
ObjCIvarDecl *Ivar = ObjCIvarDecl::Create(SemaRef.Context, ClassImpDecl,
|
|
NameLoc, NameLoc,
|
|
II, PropType, /*Dinfo=*/0,
|
|
ObjCIvarDecl::Private,
|
|
(Expr *)0, true);
|
|
ClassImpDecl->addDecl(Ivar);
|
|
IDecl->makeDeclVisibleInContext(Ivar, false);
|
|
property->setPropertyIvarDecl(Ivar);
|
|
return Ivar;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
ExprResult Sema::ActOnIdExpression(Scope *S,
|
|
CXXScopeSpec &SS,
|
|
UnqualifiedId &Id,
|
|
bool HasTrailingLParen,
|
|
bool isAddressOfOperand) {
|
|
assert(!(isAddressOfOperand && HasTrailingLParen) &&
|
|
"cannot be direct & operand and have a trailing lparen");
|
|
|
|
if (SS.isInvalid())
|
|
return ExprError();
|
|
|
|
TemplateArgumentListInfo TemplateArgsBuffer;
|
|
|
|
// Decompose the UnqualifiedId into the following data.
|
|
DeclarationNameInfo NameInfo;
|
|
const TemplateArgumentListInfo *TemplateArgs;
|
|
DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
|
|
|
|
DeclarationName Name = NameInfo.getName();
|
|
IdentifierInfo *II = Name.getAsIdentifierInfo();
|
|
SourceLocation NameLoc = NameInfo.getLoc();
|
|
|
|
// C++ [temp.dep.expr]p3:
|
|
// An id-expression is type-dependent if it contains:
|
|
// -- an identifier that was declared with a dependent type,
|
|
// (note: handled after lookup)
|
|
// -- a template-id that is dependent,
|
|
// (note: handled in BuildTemplateIdExpr)
|
|
// -- a conversion-function-id that specifies a dependent type,
|
|
// -- a nested-name-specifier that contains a class-name that
|
|
// names a dependent type.
|
|
// Determine whether this is a member of an unknown specialization;
|
|
// we need to handle these differently.
|
|
bool DependentID = false;
|
|
if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
|
|
Name.getCXXNameType()->isDependentType()) {
|
|
DependentID = true;
|
|
} else if (SS.isSet()) {
|
|
if (DeclContext *DC = computeDeclContext(SS, false)) {
|
|
if (RequireCompleteDeclContext(SS, DC))
|
|
return ExprError();
|
|
} else {
|
|
DependentID = true;
|
|
}
|
|
}
|
|
|
|
if (DependentID)
|
|
return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
|
|
TemplateArgs);
|
|
|
|
bool IvarLookupFollowUp = false;
|
|
// Perform the required lookup.
|
|
LookupResult R(*this, NameInfo, LookupOrdinaryName);
|
|
if (TemplateArgs) {
|
|
// Lookup the template name again to correctly establish the context in
|
|
// which it was found. This is really unfortunate as we already did the
|
|
// lookup to determine that it was a template name in the first place. If
|
|
// this becomes a performance hit, we can work harder to preserve those
|
|
// results until we get here but it's likely not worth it.
|
|
bool MemberOfUnknownSpecialization;
|
|
LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
|
|
MemberOfUnknownSpecialization);
|
|
|
|
if (MemberOfUnknownSpecialization ||
|
|
(R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
|
|
return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
|
|
TemplateArgs);
|
|
} else {
|
|
IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl());
|
|
LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
|
|
|
|
// If the result might be in a dependent base class, this is a dependent
|
|
// id-expression.
|
|
if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
|
|
return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
|
|
TemplateArgs);
|
|
|
|
// If this reference is in an Objective-C method, then we need to do
|
|
// some special Objective-C lookup, too.
|
|
if (IvarLookupFollowUp) {
|
|
ExprResult E(LookupInObjCMethod(R, S, II, true));
|
|
if (E.isInvalid())
|
|
return ExprError();
|
|
|
|
if (Expr *Ex = E.takeAs<Expr>())
|
|
return Owned(Ex);
|
|
|
|
// Synthesize ivars lazily.
|
|
if (getLangOptions().ObjCDefaultSynthProperties &&
|
|
getLangOptions().ObjCNonFragileABI2) {
|
|
if (SynthesizeProvisionalIvar(*this, R, II, NameLoc)) {
|
|
if (const ObjCPropertyDecl *Property =
|
|
canSynthesizeProvisionalIvar(II)) {
|
|
Diag(NameLoc, diag::warn_synthesized_ivar_access) << II;
|
|
Diag(Property->getLocation(), diag::note_property_declare);
|
|
}
|
|
return ActOnIdExpression(S, SS, Id, HasTrailingLParen,
|
|
isAddressOfOperand);
|
|
}
|
|
}
|
|
// for further use, this must be set to false if in class method.
|
|
IvarLookupFollowUp = getCurMethodDecl()->isInstanceMethod();
|
|
}
|
|
}
|
|
|
|
if (R.isAmbiguous())
|
|
return ExprError();
|
|
|
|
// Determine whether this name might be a candidate for
|
|
// argument-dependent lookup.
|
|
bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
|
|
|
|
if (R.empty() && !ADL) {
|
|
// Otherwise, this could be an implicitly declared function reference (legal
|
|
// in C90, extension in C99, forbidden in C++).
|
|
if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) {
|
|
NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
|
|
if (D) R.addDecl(D);
|
|
}
|
|
|
|
// If this name wasn't predeclared and if this is not a function
|
|
// call, diagnose the problem.
|
|
if (R.empty()) {
|
|
if (DiagnoseEmptyLookup(S, SS, R, CTC_Unknown))
|
|
return ExprError();
|
|
|
|
assert(!R.empty() &&
|
|
"DiagnoseEmptyLookup returned false but added no results");
|
|
|
|
// If we found an Objective-C instance variable, let
|
|
// LookupInObjCMethod build the appropriate expression to
|
|
// reference the ivar.
|
|
if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
|
|
R.clear();
|
|
ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
|
|
assert(E.isInvalid() || E.get());
|
|
return move(E);
|
|
}
|
|
}
|
|
}
|
|
|
|
// This is guaranteed from this point on.
|
|
assert(!R.empty() || ADL);
|
|
|
|
// Check whether this might be a C++ implicit instance member access.
|
|
// C++ [class.mfct.non-static]p3:
|
|
// When an id-expression that is not part of a class member access
|
|
// syntax and not used to form a pointer to member is used in the
|
|
// body of a non-static member function of class X, if name lookup
|
|
// resolves the name in the id-expression to a non-static non-type
|
|
// member of some class C, the id-expression is transformed into a
|
|
// class member access expression using (*this) as the
|
|
// postfix-expression to the left of the . operator.
|
|
//
|
|
// But we don't actually need to do this for '&' operands if R
|
|
// resolved to a function or overloaded function set, because the
|
|
// expression is ill-formed if it actually works out to be a
|
|
// non-static member function:
|
|
//
|
|
// C++ [expr.ref]p4:
|
|
// Otherwise, if E1.E2 refers to a non-static member function. . .
|
|
// [t]he expression can be used only as the left-hand operand of a
|
|
// member function call.
|
|
//
|
|
// There are other safeguards against such uses, but it's important
|
|
// to get this right here so that we don't end up making a
|
|
// spuriously dependent expression if we're inside a dependent
|
|
// instance method.
|
|
if (!R.empty() && (*R.begin())->isCXXClassMember()) {
|
|
bool MightBeImplicitMember;
|
|
if (!isAddressOfOperand)
|
|
MightBeImplicitMember = true;
|
|
else if (!SS.isEmpty())
|
|
MightBeImplicitMember = false;
|
|
else if (R.isOverloadedResult())
|
|
MightBeImplicitMember = false;
|
|
else if (R.isUnresolvableResult())
|
|
MightBeImplicitMember = true;
|
|
else
|
|
MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
|
|
isa<IndirectFieldDecl>(R.getFoundDecl());
|
|
|
|
if (MightBeImplicitMember)
|
|
return BuildPossibleImplicitMemberExpr(SS, R, TemplateArgs);
|
|
}
|
|
|
|
if (TemplateArgs)
|
|
return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs);
|
|
|
|
return BuildDeclarationNameExpr(SS, R, ADL);
|
|
}
|
|
|
|
/// Builds an expression which might be an implicit member expression.
|
|
ExprResult
|
|
Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
|
|
LookupResult &R,
|
|
const TemplateArgumentListInfo *TemplateArgs) {
|
|
switch (ClassifyImplicitMemberAccess(*this, R)) {
|
|
case IMA_Instance:
|
|
return BuildImplicitMemberExpr(SS, R, TemplateArgs, true);
|
|
|
|
case IMA_Mixed:
|
|
case IMA_Mixed_Unrelated:
|
|
case IMA_Unresolved:
|
|
return BuildImplicitMemberExpr(SS, R, TemplateArgs, false);
|
|
|
|
case IMA_Static:
|
|
case IMA_Mixed_StaticContext:
|
|
case IMA_Unresolved_StaticContext:
|
|
if (TemplateArgs)
|
|
return BuildTemplateIdExpr(SS, R, false, *TemplateArgs);
|
|
return BuildDeclarationNameExpr(SS, R, false);
|
|
|
|
case IMA_Error_StaticContext:
|
|
case IMA_Error_Unrelated:
|
|
DiagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
|
|
R.getLookupNameInfo());
|
|
return ExprError();
|
|
}
|
|
|
|
llvm_unreachable("unexpected instance member access kind");
|
|
return ExprError();
|
|
}
|
|
|
|
/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
|
|
/// declaration name, generally during template instantiation.
|
|
/// There's a large number of things which don't need to be done along
|
|
/// this path.
|
|
ExprResult
|
|
Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
|
|
const DeclarationNameInfo &NameInfo) {
|
|
DeclContext *DC;
|
|
if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext())
|
|
return BuildDependentDeclRefExpr(SS, NameInfo, 0);
|
|
|
|
if (RequireCompleteDeclContext(SS, DC))
|
|
return ExprError();
|
|
|
|
LookupResult R(*this, NameInfo, LookupOrdinaryName);
|
|
LookupQualifiedName(R, DC);
|
|
|
|
if (R.isAmbiguous())
|
|
return ExprError();
|
|
|
|
if (R.empty()) {
|
|
Diag(NameInfo.getLoc(), diag::err_no_member)
|
|
<< NameInfo.getName() << DC << SS.getRange();
|
|
return ExprError();
|
|
}
|
|
|
|
return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
|
|
}
|
|
|
|
/// LookupInObjCMethod - The parser has read a name in, and Sema has
|
|
/// detected that we're currently inside an ObjC method. Perform some
|
|
/// additional lookup.
|
|
///
|
|
/// Ideally, most of this would be done by lookup, but there's
|
|
/// actually quite a lot of extra work involved.
|
|
///
|
|
/// Returns a null sentinel to indicate trivial success.
|
|
ExprResult
|
|
Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
|
|
IdentifierInfo *II, bool AllowBuiltinCreation) {
|
|
SourceLocation Loc = Lookup.getNameLoc();
|
|
ObjCMethodDecl *CurMethod = getCurMethodDecl();
|
|
|
|
// There are two cases to handle here. 1) scoped lookup could have failed,
|
|
// in which case we should look for an ivar. 2) scoped lookup could have
|
|
// found a decl, but that decl is outside the current instance method (i.e.
|
|
// a global variable). In these two cases, we do a lookup for an ivar with
|
|
// this name, if the lookup sucedes, we replace it our current decl.
|
|
|
|
// If we're in a class method, we don't normally want to look for
|
|
// ivars. But if we don't find anything else, and there's an
|
|
// ivar, that's an error.
|
|
bool IsClassMethod = CurMethod->isClassMethod();
|
|
|
|
bool LookForIvars;
|
|
if (Lookup.empty())
|
|
LookForIvars = true;
|
|
else if (IsClassMethod)
|
|
LookForIvars = false;
|
|
else
|
|
LookForIvars = (Lookup.isSingleResult() &&
|
|
Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
|
|
ObjCInterfaceDecl *IFace = 0;
|
|
if (LookForIvars) {
|
|
IFace = CurMethod->getClassInterface();
|
|
ObjCInterfaceDecl *ClassDeclared;
|
|
if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
|
|
// Diagnose using an ivar in a class method.
|
|
if (IsClassMethod)
|
|
return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
|
|
<< IV->getDeclName());
|
|
|
|
// If we're referencing an invalid decl, just return this as a silent
|
|
// error node. The error diagnostic was already emitted on the decl.
|
|
if (IV->isInvalidDecl())
|
|
return ExprError();
|
|
|
|
// Check if referencing a field with __attribute__((deprecated)).
|
|
if (DiagnoseUseOfDecl(IV, Loc))
|
|
return ExprError();
|
|
|
|
// Diagnose the use of an ivar outside of the declaring class.
|
|
if (IV->getAccessControl() == ObjCIvarDecl::Private &&
|
|
ClassDeclared != IFace)
|
|
Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
|
|
|
|
// FIXME: This should use a new expr for a direct reference, don't
|
|
// turn this into Self->ivar, just return a BareIVarExpr or something.
|
|
IdentifierInfo &II = Context.Idents.get("self");
|
|
UnqualifiedId SelfName;
|
|
SelfName.setIdentifier(&II, SourceLocation());
|
|
CXXScopeSpec SelfScopeSpec;
|
|
ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
|
|
SelfName, false, false);
|
|
if (SelfExpr.isInvalid())
|
|
return ExprError();
|
|
|
|
Expr *SelfE = SelfExpr.take();
|
|
DefaultLvalueConversion(SelfE);
|
|
|
|
MarkDeclarationReferenced(Loc, IV);
|
|
return Owned(new (Context)
|
|
ObjCIvarRefExpr(IV, IV->getType(), Loc,
|
|
SelfE, true, true));
|
|
}
|
|
} else if (CurMethod->isInstanceMethod()) {
|
|
// We should warn if a local variable hides an ivar.
|
|
ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
|
|
ObjCInterfaceDecl *ClassDeclared;
|
|
if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
|
|
if (IV->getAccessControl() != ObjCIvarDecl::Private ||
|
|
IFace == ClassDeclared)
|
|
Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
|
|
}
|
|
}
|
|
|
|
if (Lookup.empty() && II && AllowBuiltinCreation) {
|
|
// FIXME. Consolidate this with similar code in LookupName.
|
|
if (unsigned BuiltinID = II->getBuiltinID()) {
|
|
if (!(getLangOptions().CPlusPlus &&
|
|
Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
|
|
NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
|
|
S, Lookup.isForRedeclaration(),
|
|
Lookup.getNameLoc());
|
|
if (D) Lookup.addDecl(D);
|
|
}
|
|
}
|
|
}
|
|
// Sentinel value saying that we didn't do anything special.
|
|
return Owned((Expr*) 0);
|
|
}
|
|
|
|
/// \brief Cast a base object to a member's actual type.
|
|
///
|
|
/// Logically this happens in three phases:
|
|
///
|
|
/// * First we cast from the base type to the naming class.
|
|
/// The naming class is the class into which we were looking
|
|
/// when we found the member; it's the qualifier type if a
|
|
/// qualifier was provided, and otherwise it's the base type.
|
|
///
|
|
/// * Next we cast from the naming class to the declaring class.
|
|
/// If the member we found was brought into a class's scope by
|
|
/// a using declaration, this is that class; otherwise it's
|
|
/// the class declaring the member.
|
|
///
|
|
/// * Finally we cast from the declaring class to the "true"
|
|
/// declaring class of the member. This conversion does not
|
|
/// obey access control.
|
|
bool
|
|
Sema::PerformObjectMemberConversion(Expr *&From,
|
|
NestedNameSpecifier *Qualifier,
|
|
NamedDecl *FoundDecl,
|
|
NamedDecl *Member) {
|
|
CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
|
|
if (!RD)
|
|
return false;
|
|
|
|
QualType DestRecordType;
|
|
QualType DestType;
|
|
QualType FromRecordType;
|
|
QualType FromType = From->getType();
|
|
bool PointerConversions = false;
|
|
if (isa<FieldDecl>(Member)) {
|
|
DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
|
|
|
|
if (FromType->getAs<PointerType>()) {
|
|
DestType = Context.getPointerType(DestRecordType);
|
|
FromRecordType = FromType->getPointeeType();
|
|
PointerConversions = true;
|
|
} else {
|
|
DestType = DestRecordType;
|
|
FromRecordType = FromType;
|
|
}
|
|
} else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
|
|
if (Method->isStatic())
|
|
return false;
|
|
|
|
DestType = Method->getThisType(Context);
|
|
DestRecordType = DestType->getPointeeType();
|
|
|
|
if (FromType->getAs<PointerType>()) {
|
|
FromRecordType = FromType->getPointeeType();
|
|
PointerConversions = true;
|
|
} else {
|
|
FromRecordType = FromType;
|
|
DestType = DestRecordType;
|
|
}
|
|
} else {
|
|
// No conversion necessary.
|
|
return false;
|
|
}
|
|
|
|
if (DestType->isDependentType() || FromType->isDependentType())
|
|
return false;
|
|
|
|
// If the unqualified types are the same, no conversion is necessary.
|
|
if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
|
|
return false;
|
|
|
|
SourceRange FromRange = From->getSourceRange();
|
|
SourceLocation FromLoc = FromRange.getBegin();
|
|
|
|
ExprValueKind VK = CastCategory(From);
|
|
|
|
// C++ [class.member.lookup]p8:
|
|
// [...] Ambiguities can often be resolved by qualifying a name with its
|
|
// class name.
|
|
//
|
|
// If the member was a qualified name and the qualified referred to a
|
|
// specific base subobject type, we'll cast to that intermediate type
|
|
// first and then to the object in which the member is declared. That allows
|
|
// one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
|
|
//
|
|
// class Base { public: int x; };
|
|
// class Derived1 : public Base { };
|
|
// class Derived2 : public Base { };
|
|
// class VeryDerived : public Derived1, public Derived2 { void f(); };
|
|
//
|
|
// void VeryDerived::f() {
|
|
// x = 17; // error: ambiguous base subobjects
|
|
// Derived1::x = 17; // okay, pick the Base subobject of Derived1
|
|
// }
|
|
if (Qualifier) {
|
|
QualType QType = QualType(Qualifier->getAsType(), 0);
|
|
assert(!QType.isNull() && "lookup done with dependent qualifier?");
|
|
assert(QType->isRecordType() && "lookup done with non-record type");
|
|
|
|
QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
|
|
|
|
// In C++98, the qualifier type doesn't actually have to be a base
|
|
// type of the object type, in which case we just ignore it.
|
|
// Otherwise build the appropriate casts.
|
|
if (IsDerivedFrom(FromRecordType, QRecordType)) {
|
|
CXXCastPath BasePath;
|
|
if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
|
|
FromLoc, FromRange, &BasePath))
|
|
return true;
|
|
|
|
if (PointerConversions)
|
|
QType = Context.getPointerType(QType);
|
|
ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
|
|
VK, &BasePath);
|
|
|
|
FromType = QType;
|
|
FromRecordType = QRecordType;
|
|
|
|
// If the qualifier type was the same as the destination type,
|
|
// we're done.
|
|
if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool IgnoreAccess = false;
|
|
|
|
// If we actually found the member through a using declaration, cast
|
|
// down to the using declaration's type.
|
|
//
|
|
// Pointer equality is fine here because only one declaration of a
|
|
// class ever has member declarations.
|
|
if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
|
|
assert(isa<UsingShadowDecl>(FoundDecl));
|
|
QualType URecordType = Context.getTypeDeclType(
|
|
cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
|
|
|
|
// We only need to do this if the naming-class to declaring-class
|
|
// conversion is non-trivial.
|
|
if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
|
|
assert(IsDerivedFrom(FromRecordType, URecordType));
|
|
CXXCastPath BasePath;
|
|
if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
|
|
FromLoc, FromRange, &BasePath))
|
|
return true;
|
|
|
|
QualType UType = URecordType;
|
|
if (PointerConversions)
|
|
UType = Context.getPointerType(UType);
|
|
ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
|
|
VK, &BasePath);
|
|
FromType = UType;
|
|
FromRecordType = URecordType;
|
|
}
|
|
|
|
// We don't do access control for the conversion from the
|
|
// declaring class to the true declaring class.
|
|
IgnoreAccess = true;
|
|
}
|
|
|
|
CXXCastPath BasePath;
|
|
if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
|
|
FromLoc, FromRange, &BasePath,
|
|
IgnoreAccess))
|
|
return true;
|
|
|
|
ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
|
|
VK, &BasePath);
|
|
return false;
|
|
}
|
|
|
|
/// \brief Build a MemberExpr AST node.
|
|
static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
|
|
const CXXScopeSpec &SS, ValueDecl *Member,
|
|
DeclAccessPair FoundDecl,
|
|
const DeclarationNameInfo &MemberNameInfo,
|
|
QualType Ty,
|
|
ExprValueKind VK, ExprObjectKind OK,
|
|
const TemplateArgumentListInfo *TemplateArgs = 0) {
|
|
return MemberExpr::Create(C, Base, isArrow, SS.getWithLocInContext(C),
|
|
Member, FoundDecl, MemberNameInfo,
|
|
TemplateArgs, Ty, VK, OK);
|
|
}
|
|
|
|
static ExprResult
|
|
BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
|
|
const CXXScopeSpec &SS, FieldDecl *Field,
|
|
DeclAccessPair FoundDecl,
|
|
const DeclarationNameInfo &MemberNameInfo) {
|
|
// x.a is an l-value if 'a' has a reference type. Otherwise:
|
|
// x.a is an l-value/x-value/pr-value if the base is (and note
|
|
// that *x is always an l-value), except that if the base isn't
|
|
// an ordinary object then we must have an rvalue.
|
|
ExprValueKind VK = VK_LValue;
|
|
ExprObjectKind OK = OK_Ordinary;
|
|
if (!IsArrow) {
|
|
if (BaseExpr->getObjectKind() == OK_Ordinary)
|
|
VK = BaseExpr->getValueKind();
|
|
else
|
|
VK = VK_RValue;
|
|
}
|
|
if (VK != VK_RValue && Field->isBitField())
|
|
OK = OK_BitField;
|
|
|
|
// Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
|
|
QualType MemberType = Field->getType();
|
|
if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
|
|
MemberType = Ref->getPointeeType();
|
|
VK = VK_LValue;
|
|
} else {
|
|
QualType BaseType = BaseExpr->getType();
|
|
if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType();
|
|
|
|
Qualifiers BaseQuals = BaseType.getQualifiers();
|
|
|
|
// GC attributes are never picked up by members.
|
|
BaseQuals.removeObjCGCAttr();
|
|
|
|
// CVR attributes from the base are picked up by members,
|
|
// except that 'mutable' members don't pick up 'const'.
|
|
if (Field->isMutable()) BaseQuals.removeConst();
|
|
|
|
Qualifiers MemberQuals
|
|
= S.Context.getCanonicalType(MemberType).getQualifiers();
|
|
|
|
// TR 18037 does not allow fields to be declared with address spaces.
|
|
assert(!MemberQuals.hasAddressSpace());
|
|
|
|
Qualifiers Combined = BaseQuals + MemberQuals;
|
|
if (Combined != MemberQuals)
|
|
MemberType = S.Context.getQualifiedType(MemberType, Combined);
|
|
}
|
|
|
|
S.MarkDeclarationReferenced(MemberNameInfo.getLoc(), Field);
|
|
if (S.PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
|
|
FoundDecl, Field))
|
|
return ExprError();
|
|
return S.Owned(BuildMemberExpr(S.Context, BaseExpr, IsArrow, SS,
|
|
Field, FoundDecl, MemberNameInfo,
|
|
MemberType, VK, OK));
|
|
}
|
|
|
|
/// Builds an implicit member access expression. The current context
|
|
/// is known to be an instance method, and the given unqualified lookup
|
|
/// set is known to contain only instance members, at least one of which
|
|
/// is from an appropriate type.
|
|
ExprResult
|
|
Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
|
|
LookupResult &R,
|
|
const TemplateArgumentListInfo *TemplateArgs,
|
|
bool IsKnownInstance) {
|
|
assert(!R.empty() && !R.isAmbiguous());
|
|
|
|
SourceLocation loc = R.getNameLoc();
|
|
|
|
// We may have found a field within an anonymous union or struct
|
|
// (C++ [class.union]).
|
|
// FIXME: template-ids inside anonymous structs?
|
|
if (IndirectFieldDecl *FD = R.getAsSingle<IndirectFieldDecl>())
|
|
return BuildAnonymousStructUnionMemberReference(SS, R.getNameLoc(), FD);
|
|
|
|
// If this is known to be an instance access, go ahead and build an
|
|
// implicit 'this' expression now.
|
|
// 'this' expression now.
|
|
CXXMethodDecl *method = tryCaptureCXXThis();
|
|
assert(method && "didn't correctly pre-flight capture of 'this'");
|
|
|
|
QualType thisType = method->getThisType(Context);
|
|
Expr *baseExpr = 0; // null signifies implicit access
|
|
if (IsKnownInstance) {
|
|
SourceLocation Loc = R.getNameLoc();
|
|
if (SS.getRange().isValid())
|
|
Loc = SS.getRange().getBegin();
|
|
baseExpr = new (Context) CXXThisExpr(loc, thisType, /*isImplicit=*/true);
|
|
}
|
|
|
|
return BuildMemberReferenceExpr(baseExpr, thisType,
|
|
/*OpLoc*/ SourceLocation(),
|
|
/*IsArrow*/ true,
|
|
SS,
|
|
/*FirstQualifierInScope*/ 0,
|
|
R, TemplateArgs);
|
|
}
|
|
|
|
bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
|
|
const LookupResult &R,
|
|
bool HasTrailingLParen) {
|
|
// Only when used directly as the postfix-expression of a call.
|
|
if (!HasTrailingLParen)
|
|
return false;
|
|
|
|
// Never if a scope specifier was provided.
|
|
if (SS.isSet())
|
|
return false;
|
|
|
|
// Only in C++ or ObjC++.
|
|
if (!getLangOptions().CPlusPlus)
|
|
return false;
|
|
|
|
// Turn off ADL when we find certain kinds of declarations during
|
|
// normal lookup:
|
|
for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
|
|
NamedDecl *D = *I;
|
|
|
|
// C++0x [basic.lookup.argdep]p3:
|
|
// -- a declaration of a class member
|
|
// Since using decls preserve this property, we check this on the
|
|
// original decl.
|
|
if (D->isCXXClassMember())
|
|
return false;
|
|
|
|
// C++0x [basic.lookup.argdep]p3:
|
|
// -- a block-scope function declaration that is not a
|
|
// using-declaration
|
|
// NOTE: we also trigger this for function templates (in fact, we
|
|
// don't check the decl type at all, since all other decl types
|
|
// turn off ADL anyway).
|
|
if (isa<UsingShadowDecl>(D))
|
|
D = cast<UsingShadowDecl>(D)->getTargetDecl();
|
|
else if (D->getDeclContext()->isFunctionOrMethod())
|
|
return false;
|
|
|
|
// C++0x [basic.lookup.argdep]p3:
|
|
// -- a declaration that is neither a function or a function
|
|
// template
|
|
// And also for builtin functions.
|
|
if (isa<FunctionDecl>(D)) {
|
|
FunctionDecl *FDecl = cast<FunctionDecl>(D);
|
|
|
|
// But also builtin functions.
|
|
if (FDecl->getBuiltinID() && FDecl->isImplicit())
|
|
return false;
|
|
} else if (!isa<FunctionTemplateDecl>(D))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/// Diagnoses obvious problems with the use of the given declaration
|
|
/// as an expression. This is only actually called for lookups that
|
|
/// were not overloaded, and it doesn't promise that the declaration
|
|
/// will in fact be used.
|
|
static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
|
|
if (isa<TypedefDecl>(D)) {
|
|
S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
|
|
return true;
|
|
}
|
|
|
|
if (isa<ObjCInterfaceDecl>(D)) {
|
|
S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
|
|
return true;
|
|
}
|
|
|
|
if (isa<NamespaceDecl>(D)) {
|
|
S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
ExprResult
|
|
Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
|
|
LookupResult &R,
|
|
bool NeedsADL) {
|
|
// If this is a single, fully-resolved result and we don't need ADL,
|
|
// just build an ordinary singleton decl ref.
|
|
if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
|
|
return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(),
|
|
R.getFoundDecl());
|
|
|
|
// We only need to check the declaration if there's exactly one
|
|
// result, because in the overloaded case the results can only be
|
|
// functions and function templates.
|
|
if (R.isSingleResult() &&
|
|
CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
|
|
return ExprError();
|
|
|
|
// Otherwise, just build an unresolved lookup expression. Suppress
|
|
// any lookup-related diagnostics; we'll hash these out later, when
|
|
// we've picked a target.
|
|
R.suppressDiagnostics();
|
|
|
|
UnresolvedLookupExpr *ULE
|
|
= UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
|
|
SS.getWithLocInContext(Context),
|
|
R.getLookupNameInfo(),
|
|
NeedsADL, R.isOverloadedResult(),
|
|
R.begin(), R.end());
|
|
|
|
return Owned(ULE);
|
|
}
|
|
|
|
/// \brief Complete semantic analysis for a reference to the given declaration.
|
|
ExprResult
|
|
Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
|
|
const DeclarationNameInfo &NameInfo,
|
|
NamedDecl *D) {
|
|
assert(D && "Cannot refer to a NULL declaration");
|
|
assert(!isa<FunctionTemplateDecl>(D) &&
|
|
"Cannot refer unambiguously to a function template");
|
|
|
|
SourceLocation Loc = NameInfo.getLoc();
|
|
if (CheckDeclInExpr(*this, Loc, D))
|
|
return ExprError();
|
|
|
|
if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
|
|
// Specifically diagnose references to class templates that are missing
|
|
// a template argument list.
|
|
Diag(Loc, diag::err_template_decl_ref)
|
|
<< Template << SS.getRange();
|
|
Diag(Template->getLocation(), diag::note_template_decl_here);
|
|
return ExprError();
|
|
}
|
|
|
|
// Make sure that we're referring to a value.
|
|
ValueDecl *VD = dyn_cast<ValueDecl>(D);
|
|
if (!VD) {
|
|
Diag(Loc, diag::err_ref_non_value)
|
|
<< D << SS.getRange();
|
|
Diag(D->getLocation(), diag::note_declared_at);
|
|
return ExprError();
|
|
}
|
|
|
|
// Check whether this declaration can be used. Note that we suppress
|
|
// this check when we're going to perform argument-dependent lookup
|
|
// on this function name, because this might not be the function
|
|
// that overload resolution actually selects.
|
|
if (DiagnoseUseOfDecl(VD, Loc))
|
|
return ExprError();
|
|
|
|
// Only create DeclRefExpr's for valid Decl's.
|
|
if (VD->isInvalidDecl())
|
|
return ExprError();
|
|
|
|
// Handle members of anonymous structs and unions. If we got here,
|
|
// and the reference is to a class member indirect field, then this
|
|
// must be the subject of a pointer-to-member expression.
|
|
if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
|
|
if (!indirectField->isCXXClassMember())
|
|
return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
|
|
indirectField);
|
|
|
|
// If the identifier reference is inside a block, and it refers to a value
|
|
// that is outside the block, create a BlockDeclRefExpr instead of a
|
|
// DeclRefExpr. This ensures the value is treated as a copy-in snapshot when
|
|
// the block is formed.
|
|
//
|
|
// We do not do this for things like enum constants, global variables, etc,
|
|
// as they do not get snapshotted.
|
|
//
|
|
switch (shouldCaptureValueReference(*this, NameInfo.getLoc(), VD)) {
|
|
case CR_Error:
|
|
return ExprError();
|
|
|
|
case CR_Capture:
|
|
assert(!SS.isSet() && "referenced local variable with scope specifier?");
|
|
return BuildBlockDeclRefExpr(*this, VD, NameInfo, /*byref*/ false);
|
|
|
|
case CR_CaptureByRef:
|
|
assert(!SS.isSet() && "referenced local variable with scope specifier?");
|
|
return BuildBlockDeclRefExpr(*this, VD, NameInfo, /*byref*/ true);
|
|
|
|
case CR_NoCapture: {
|
|
// If this reference is not in a block or if the referenced
|
|
// variable is within the block, create a normal DeclRefExpr.
|
|
|
|
QualType type = VD->getType();
|
|
ExprValueKind valueKind = VK_RValue;
|
|
|
|
switch (D->getKind()) {
|
|
// Ignore all the non-ValueDecl kinds.
|
|
#define ABSTRACT_DECL(kind)
|
|
#define VALUE(type, base)
|
|
#define DECL(type, base) \
|
|
case Decl::type:
|
|
#include "clang/AST/DeclNodes.inc"
|
|
llvm_unreachable("invalid value decl kind");
|
|
return ExprError();
|
|
|
|
// These shouldn't make it here.
|
|
case Decl::ObjCAtDefsField:
|
|
case Decl::ObjCIvar:
|
|
llvm_unreachable("forming non-member reference to ivar?");
|
|
return ExprError();
|
|
|
|
// Enum constants are always r-values and never references.
|
|
// Unresolved using declarations are dependent.
|
|
case Decl::EnumConstant:
|
|
case Decl::UnresolvedUsingValue:
|
|
valueKind = VK_RValue;
|
|
break;
|
|
|
|
// Fields and indirect fields that got here must be for
|
|
// pointer-to-member expressions; we just call them l-values for
|
|
// internal consistency, because this subexpression doesn't really
|
|
// exist in the high-level semantics.
|
|
case Decl::Field:
|
|
case Decl::IndirectField:
|
|
assert(getLangOptions().CPlusPlus &&
|
|
"building reference to field in C?");
|
|
|
|
// These can't have reference type in well-formed programs, but
|
|
// for internal consistency we do this anyway.
|
|
type = type.getNonReferenceType();
|
|
valueKind = VK_LValue;
|
|
break;
|
|
|
|
// Non-type template parameters are either l-values or r-values
|
|
// depending on the type.
|
|
case Decl::NonTypeTemplateParm: {
|
|
if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
|
|
type = reftype->getPointeeType();
|
|
valueKind = VK_LValue; // even if the parameter is an r-value reference
|
|
break;
|
|
}
|
|
|
|
// For non-references, we need to strip qualifiers just in case
|
|
// the template parameter was declared as 'const int' or whatever.
|
|
valueKind = VK_RValue;
|
|
type = type.getUnqualifiedType();
|
|
break;
|
|
}
|
|
|
|
case Decl::Var:
|
|
// In C, "extern void blah;" is valid and is an r-value.
|
|
if (!getLangOptions().CPlusPlus &&
|
|
!type.hasQualifiers() &&
|
|
type->isVoidType()) {
|
|
valueKind = VK_RValue;
|
|
break;
|
|
}
|
|
// fallthrough
|
|
|
|
case Decl::ImplicitParam:
|
|
case Decl::ParmVar:
|
|
// These are always l-values.
|
|
valueKind = VK_LValue;
|
|
type = type.getNonReferenceType();
|
|
break;
|
|
|
|
case Decl::Function: {
|
|
// Functions are l-values in C++.
|
|
if (getLangOptions().CPlusPlus) {
|
|
valueKind = VK_LValue;
|
|
break;
|
|
}
|
|
|
|
// C99 DR 316 says that, if a function type comes from a
|
|
// function definition (without a prototype), that type is only
|
|
// used for checking compatibility. Therefore, when referencing
|
|
// the function, we pretend that we don't have the full function
|
|
// type.
|
|
if (!cast<FunctionDecl>(VD)->hasPrototype())
|
|
if (const FunctionProtoType *proto = type->getAs<FunctionProtoType>())
|
|
type = Context.getFunctionNoProtoType(proto->getResultType(),
|
|
proto->getExtInfo());
|
|
|
|
// Functions are r-values in C.
|
|
valueKind = VK_RValue;
|
|
break;
|
|
}
|
|
|
|
case Decl::CXXMethod:
|
|
// C++ methods are l-values if static, r-values if non-static.
|
|
if (cast<CXXMethodDecl>(VD)->isStatic()) {
|
|
valueKind = VK_LValue;
|
|
break;
|
|
}
|
|
// fallthrough
|
|
|
|
case Decl::CXXConversion:
|
|
case Decl::CXXDestructor:
|
|
case Decl::CXXConstructor:
|
|
valueKind = VK_RValue;
|
|
break;
|
|
}
|
|
|
|
return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS);
|
|
}
|
|
|
|
}
|
|
|
|
llvm_unreachable("unknown capture result");
|
|
return ExprError();
|
|
}
|
|
|
|
ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
|
|
tok::TokenKind Kind) {
|
|
PredefinedExpr::IdentType IT;
|
|
|
|
switch (Kind) {
|
|
default: assert(0 && "Unknown simple primary expr!");
|
|
case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
|
|
case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
|
|
case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
|
|
}
|
|
|
|
// Pre-defined identifiers are of type char[x], where x is the length of the
|
|
// string.
|
|
|
|
Decl *currentDecl = getCurFunctionOrMethodDecl();
|
|
if (!currentDecl && getCurBlock())
|
|
currentDecl = getCurBlock()->TheDecl;
|
|
if (!currentDecl) {
|
|
Diag(Loc, diag::ext_predef_outside_function);
|
|
currentDecl = Context.getTranslationUnitDecl();
|
|
}
|
|
|
|
QualType ResTy;
|
|
if (cast<DeclContext>(currentDecl)->isDependentContext()) {
|
|
ResTy = Context.DependentTy;
|
|
} else {
|
|
unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
|
|
|
|
llvm::APInt LengthI(32, Length + 1);
|
|
ResTy = Context.CharTy.withConst();
|
|
ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
|
|
}
|
|
return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
|
|
}
|
|
|
|
ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
|
|
llvm::SmallString<16> CharBuffer;
|
|
bool Invalid = false;
|
|
llvm::StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
|
|
if (Invalid)
|
|
return ExprError();
|
|
|
|
CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
|
|
PP);
|
|
if (Literal.hadError())
|
|
return ExprError();
|
|
|
|
QualType Ty;
|
|
if (!getLangOptions().CPlusPlus)
|
|
Ty = Context.IntTy; // 'x' and L'x' -> int in C.
|
|
else if (Literal.isWide())
|
|
Ty = Context.WCharTy; // L'x' -> wchar_t in C++.
|
|
else if (Literal.isMultiChar())
|
|
Ty = Context.IntTy; // 'wxyz' -> int in C++.
|
|
else
|
|
Ty = Context.CharTy; // 'x' -> char in C++
|
|
|
|
return Owned(new (Context) CharacterLiteral(Literal.getValue(),
|
|
Literal.isWide(),
|
|
Ty, Tok.getLocation()));
|
|
}
|
|
|
|
ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
|
|
// Fast path for a single digit (which is quite common). A single digit
|
|
// cannot have a trigraph, escaped newline, radix prefix, or type suffix.
|
|
if (Tok.getLength() == 1) {
|
|
const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
|
|
unsigned IntSize = Context.Target.getIntWidth();
|
|
return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val-'0'),
|
|
Context.IntTy, Tok.getLocation()));
|
|
}
|
|
|
|
llvm::SmallString<512> IntegerBuffer;
|
|
// Add padding so that NumericLiteralParser can overread by one character.
|
|
IntegerBuffer.resize(Tok.getLength()+1);
|
|
const char *ThisTokBegin = &IntegerBuffer[0];
|
|
|
|
// Get the spelling of the token, which eliminates trigraphs, etc.
|
|
bool Invalid = false;
|
|
unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
|
|
if (Invalid)
|
|
return ExprError();
|
|
|
|
NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
|
|
Tok.getLocation(), PP);
|
|
if (Literal.hadError)
|
|
return ExprError();
|
|
|
|
Expr *Res;
|
|
|
|
if (Literal.isFloatingLiteral()) {
|
|
QualType Ty;
|
|
if (Literal.isFloat)
|
|
Ty = Context.FloatTy;
|
|
else if (!Literal.isLong)
|
|
Ty = Context.DoubleTy;
|
|
else
|
|
Ty = Context.LongDoubleTy;
|
|
|
|
const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
|
|
|
|
using llvm::APFloat;
|
|
APFloat Val(Format);
|
|
|
|
APFloat::opStatus result = Literal.GetFloatValue(Val);
|
|
|
|
// Overflow is always an error, but underflow is only an error if
|
|
// we underflowed to zero (APFloat reports denormals as underflow).
|
|
if ((result & APFloat::opOverflow) ||
|
|
((result & APFloat::opUnderflow) && Val.isZero())) {
|
|
unsigned diagnostic;
|
|
llvm::SmallString<20> buffer;
|
|
if (result & APFloat::opOverflow) {
|
|
diagnostic = diag::warn_float_overflow;
|
|
APFloat::getLargest(Format).toString(buffer);
|
|
} else {
|
|
diagnostic = diag::warn_float_underflow;
|
|
APFloat::getSmallest(Format).toString(buffer);
|
|
}
|
|
|
|
Diag(Tok.getLocation(), diagnostic)
|
|
<< Ty
|
|
<< llvm::StringRef(buffer.data(), buffer.size());
|
|
}
|
|
|
|
bool isExact = (result == APFloat::opOK);
|
|
Res = FloatingLiteral::Create(Context, Val, isExact, Ty, Tok.getLocation());
|
|
|
|
if (Ty == Context.DoubleTy) {
|
|
if (getLangOptions().SinglePrecisionConstants) {
|
|
ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast);
|
|
} else if (getLangOptions().OpenCL && !getOpenCLOptions().cl_khr_fp64) {
|
|
Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
|
|
ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast);
|
|
}
|
|
}
|
|
} else if (!Literal.isIntegerLiteral()) {
|
|
return ExprError();
|
|
} else {
|
|
QualType Ty;
|
|
|
|
// long long is a C99 feature.
|
|
if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
|
|
Literal.isLongLong)
|
|
Diag(Tok.getLocation(), diag::ext_longlong);
|
|
|
|
// Get the value in the widest-possible width.
|
|
llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
|
|
|
|
if (Literal.GetIntegerValue(ResultVal)) {
|
|
// If this value didn't fit into uintmax_t, warn and force to ull.
|
|
Diag(Tok.getLocation(), diag::warn_integer_too_large);
|
|
Ty = Context.UnsignedLongLongTy;
|
|
assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
|
|
"long long is not intmax_t?");
|
|
} else {
|
|
// If this value fits into a ULL, try to figure out what else it fits into
|
|
// according to the rules of C99 6.4.4.1p5.
|
|
|
|
// Octal, Hexadecimal, and integers with a U suffix are allowed to
|
|
// be an unsigned int.
|
|
bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
|
|
|
|
// Check from smallest to largest, picking the smallest type we can.
|
|
unsigned Width = 0;
|
|
if (!Literal.isLong && !Literal.isLongLong) {
|
|
// Are int/unsigned possibilities?
|
|
unsigned IntSize = Context.Target.getIntWidth();
|
|
|
|
// Does it fit in a unsigned int?
|
|
if (ResultVal.isIntN(IntSize)) {
|
|
// Does it fit in a signed int?
|
|
if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
|
|
Ty = Context.IntTy;
|
|
else if (AllowUnsigned)
|
|
Ty = Context.UnsignedIntTy;
|
|
Width = IntSize;
|
|
}
|
|
}
|
|
|
|
// Are long/unsigned long possibilities?
|
|
if (Ty.isNull() && !Literal.isLongLong) {
|
|
unsigned LongSize = Context.Target.getLongWidth();
|
|
|
|
// Does it fit in a unsigned long?
|
|
if (ResultVal.isIntN(LongSize)) {
|
|
// Does it fit in a signed long?
|
|
if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
|
|
Ty = Context.LongTy;
|
|
else if (AllowUnsigned)
|
|
Ty = Context.UnsignedLongTy;
|
|
Width = LongSize;
|
|
}
|
|
}
|
|
|
|
// Finally, check long long if needed.
|
|
if (Ty.isNull()) {
|
|
unsigned LongLongSize = Context.Target.getLongLongWidth();
|
|
|
|
// Does it fit in a unsigned long long?
|
|
if (ResultVal.isIntN(LongLongSize)) {
|
|
// Does it fit in a signed long long?
|
|
// To be compatible with MSVC, hex integer literals ending with the
|
|
// LL or i64 suffix are always signed in Microsoft mode.
|
|
if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
|
|
(getLangOptions().Microsoft && Literal.isLongLong)))
|
|
Ty = Context.LongLongTy;
|
|
else if (AllowUnsigned)
|
|
Ty = Context.UnsignedLongLongTy;
|
|
Width = LongLongSize;
|
|
}
|
|
}
|
|
|
|
// If we still couldn't decide a type, we probably have something that
|
|
// does not fit in a signed long long, but has no U suffix.
|
|
if (Ty.isNull()) {
|
|
Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
|
|
Ty = Context.UnsignedLongLongTy;
|
|
Width = Context.Target.getLongLongWidth();
|
|
}
|
|
|
|
if (ResultVal.getBitWidth() != Width)
|
|
ResultVal = ResultVal.trunc(Width);
|
|
}
|
|
Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
|
|
}
|
|
|
|
// If this is an imaginary literal, create the ImaginaryLiteral wrapper.
|
|
if (Literal.isImaginary)
|
|
Res = new (Context) ImaginaryLiteral(Res,
|
|
Context.getComplexType(Res->getType()));
|
|
|
|
return Owned(Res);
|
|
}
|
|
|
|
ExprResult Sema::ActOnParenExpr(SourceLocation L,
|
|
SourceLocation R, Expr *E) {
|
|
assert((E != 0) && "ActOnParenExpr() missing expr");
|
|
return Owned(new (Context) ParenExpr(L, R, E));
|
|
}
|
|
|
|
/// The UsualUnaryConversions() function is *not* called by this routine.
|
|
/// See C99 6.3.2.1p[2-4] for more details.
|
|
bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType exprType,
|
|
SourceLocation OpLoc,
|
|
SourceRange ExprRange,
|
|
UnaryExprOrTypeTrait ExprKind) {
|
|
if (exprType->isDependentType())
|
|
return false;
|
|
|
|
// C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
|
|
// the result is the size of the referenced type."
|
|
// C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
|
|
// result shall be the alignment of the referenced type."
|
|
if (const ReferenceType *Ref = exprType->getAs<ReferenceType>())
|
|
exprType = Ref->getPointeeType();
|
|
|
|
// [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
|
|
// scalar or vector data type argument..."
|
|
// Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
|
|
// type (C99 6.2.5p18) or void.
|
|
if (ExprKind == UETT_VecStep) {
|
|
if (!(exprType->isArithmeticType() || exprType->isVoidType() ||
|
|
exprType->isVectorType())) {
|
|
Diag(OpLoc, diag::err_vecstep_non_scalar_vector_type)
|
|
<< exprType << ExprRange;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// C99 6.5.3.4p1:
|
|
if (exprType->isFunctionType()) {
|
|
// alignof(function) is allowed as an extension.
|
|
if (ExprKind == UETT_SizeOf)
|
|
Diag(OpLoc, diag::ext_sizeof_function_type)
|
|
<< ExprRange;
|
|
return false;
|
|
}
|
|
|
|
// Allow sizeof(void)/alignof(void) as an extension. vec_step(void) is not
|
|
// an extension, as void is a built-in scalar type (OpenCL 1.1 6.1.1).
|
|
if (exprType->isVoidType()) {
|
|
if (ExprKind != UETT_VecStep)
|
|
Diag(OpLoc, diag::ext_sizeof_void_type)
|
|
<< ExprKind << ExprRange;
|
|
return false;
|
|
}
|
|
|
|
if (RequireCompleteType(OpLoc, exprType,
|
|
PDiag(diag::err_sizeof_alignof_incomplete_type)
|
|
<< ExprKind << ExprRange))
|
|
return true;
|
|
|
|
// Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
|
|
if (LangOpts.ObjCNonFragileABI && exprType->isObjCObjectType()) {
|
|
Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
|
|
<< exprType << (ExprKind == UETT_SizeOf)
|
|
<< ExprRange;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool CheckAlignOfExpr(Sema &S, Expr *E, SourceLocation OpLoc,
|
|
SourceRange ExprRange) {
|
|
E = E->IgnoreParens();
|
|
|
|
// alignof decl is always ok.
|
|
if (isa<DeclRefExpr>(E))
|
|
return false;
|
|
|
|
// Cannot know anything else if the expression is dependent.
|
|
if (E->isTypeDependent())
|
|
return false;
|
|
|
|
if (E->getBitField()) {
|
|
S. Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
|
|
return true;
|
|
}
|
|
|
|
// Alignment of a field access is always okay, so long as it isn't a
|
|
// bit-field.
|
|
if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
|
|
if (isa<FieldDecl>(ME->getMemberDecl()))
|
|
return false;
|
|
|
|
return S.CheckUnaryExprOrTypeTraitOperand(E->getType(), OpLoc, ExprRange,
|
|
UETT_AlignOf);
|
|
}
|
|
|
|
bool Sema::CheckVecStepExpr(Expr *E, SourceLocation OpLoc,
|
|
SourceRange ExprRange) {
|
|
E = E->IgnoreParens();
|
|
|
|
// Cannot know anything else if the expression is dependent.
|
|
if (E->isTypeDependent())
|
|
return false;
|
|
|
|
return CheckUnaryExprOrTypeTraitOperand(E->getType(), OpLoc, ExprRange,
|
|
UETT_VecStep);
|
|
}
|
|
|
|
/// \brief Build a sizeof or alignof expression given a type operand.
|
|
ExprResult
|
|
Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
|
|
SourceLocation OpLoc,
|
|
UnaryExprOrTypeTrait ExprKind,
|
|
SourceRange R) {
|
|
if (!TInfo)
|
|
return ExprError();
|
|
|
|
QualType T = TInfo->getType();
|
|
|
|
if (!T->isDependentType() &&
|
|
CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
|
|
return ExprError();
|
|
|
|
// C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
|
|
return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, TInfo,
|
|
Context.getSizeType(),
|
|
OpLoc, R.getEnd()));
|
|
}
|
|
|
|
/// \brief Build a sizeof or alignof expression given an expression
|
|
/// operand.
|
|
ExprResult
|
|
Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
|
|
UnaryExprOrTypeTrait ExprKind,
|
|
SourceRange R) {
|
|
// Verify that the operand is valid.
|
|
bool isInvalid = false;
|
|
if (E->isTypeDependent()) {
|
|
// Delay type-checking for type-dependent expressions.
|
|
} else if (ExprKind == UETT_AlignOf) {
|
|
isInvalid = CheckAlignOfExpr(*this, E, OpLoc, R);
|
|
} else if (ExprKind == UETT_VecStep) {
|
|
isInvalid = CheckVecStepExpr(E, OpLoc, R);
|
|
} else if (E->getBitField()) { // C99 6.5.3.4p1.
|
|
Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
|
|
isInvalid = true;
|
|
} else if (E->getType()->isPlaceholderType()) {
|
|
ExprResult PE = CheckPlaceholderExpr(E, OpLoc);
|
|
if (PE.isInvalid()) return ExprError();
|
|
return CreateUnaryExprOrTypeTraitExpr(PE.take(), OpLoc, ExprKind, R);
|
|
} else {
|
|
isInvalid = CheckUnaryExprOrTypeTraitOperand(E->getType(), OpLoc, R,
|
|
UETT_SizeOf);
|
|
}
|
|
|
|
if (isInvalid)
|
|
return ExprError();
|
|
|
|
// C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
|
|
return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, E,
|
|
Context.getSizeType(),
|
|
OpLoc, R.getEnd()));
|
|
}
|
|
|
|
/// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
|
|
/// expr and the same for @c alignof and @c __alignof
|
|
/// Note that the ArgRange is invalid if isType is false.
|
|
ExprResult
|
|
Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
|
|
UnaryExprOrTypeTrait ExprKind, bool isType,
|
|
void *TyOrEx, const SourceRange &ArgRange) {
|
|
// If error parsing type, ignore.
|
|
if (TyOrEx == 0) return ExprError();
|
|
|
|
if (isType) {
|
|
TypeSourceInfo *TInfo;
|
|
(void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
|
|
return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
|
|
}
|
|
|
|
Expr *ArgEx = (Expr *)TyOrEx;
|
|
ExprResult Result
|
|
= CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind,
|
|
ArgEx->getSourceRange());
|
|
|
|
return move(Result);
|
|
}
|
|
|
|
static QualType CheckRealImagOperand(Sema &S, Expr *&V, SourceLocation Loc,
|
|
bool isReal) {
|
|
if (V->isTypeDependent())
|
|
return S.Context.DependentTy;
|
|
|
|
// _Real and _Imag are only l-values for normal l-values.
|
|
if (V->getObjectKind() != OK_Ordinary)
|
|
S.DefaultLvalueConversion(V);
|
|
|
|
// These operators return the element type of a complex type.
|
|
if (const ComplexType *CT = V->getType()->getAs<ComplexType>())
|
|
return CT->getElementType();
|
|
|
|
// Otherwise they pass through real integer and floating point types here.
|
|
if (V->getType()->isArithmeticType())
|
|
return V->getType();
|
|
|
|
// Test for placeholders.
|
|
ExprResult PR = S.CheckPlaceholderExpr(V, Loc);
|
|
if (PR.isInvalid()) return QualType();
|
|
if (PR.take() != V) {
|
|
V = PR.take();
|
|
return CheckRealImagOperand(S, V, Loc, isReal);
|
|
}
|
|
|
|
// Reject anything else.
|
|
S.Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
|
|
<< (isReal ? "__real" : "__imag");
|
|
return QualType();
|
|
}
|
|
|
|
|
|
|
|
ExprResult
|
|
Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
|
|
tok::TokenKind Kind, Expr *Input) {
|
|
UnaryOperatorKind Opc;
|
|
switch (Kind) {
|
|
default: assert(0 && "Unknown unary op!");
|
|
case tok::plusplus: Opc = UO_PostInc; break;
|
|
case tok::minusminus: Opc = UO_PostDec; break;
|
|
}
|
|
|
|
return BuildUnaryOp(S, OpLoc, Opc, Input);
|
|
}
|
|
|
|
/// Expressions of certain arbitrary types are forbidden by C from
|
|
/// having l-value type. These are:
|
|
/// - 'void', but not qualified void
|
|
/// - function types
|
|
///
|
|
/// The exact rule here is C99 6.3.2.1:
|
|
/// An lvalue is an expression with an object type or an incomplete
|
|
/// type other than void.
|
|
static bool IsCForbiddenLValueType(ASTContext &C, QualType T) {
|
|
return ((T->isVoidType() && !T.hasQualifiers()) ||
|
|
T->isFunctionType());
|
|
}
|
|
|
|
ExprResult
|
|
Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
|
|
Expr *Idx, SourceLocation RLoc) {
|
|
// Since this might be a postfix expression, get rid of ParenListExprs.
|
|
ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
|
|
if (Result.isInvalid()) return ExprError();
|
|
Base = Result.take();
|
|
|
|
Expr *LHSExp = Base, *RHSExp = Idx;
|
|
|
|
if (getLangOptions().CPlusPlus &&
|
|
(LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
|
|
return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
|
|
Context.DependentTy,
|
|
VK_LValue, OK_Ordinary,
|
|
RLoc));
|
|
}
|
|
|
|
if (getLangOptions().CPlusPlus &&
|
|
(LHSExp->getType()->isRecordType() ||
|
|
LHSExp->getType()->isEnumeralType() ||
|
|
RHSExp->getType()->isRecordType() ||
|
|
RHSExp->getType()->isEnumeralType())) {
|
|
return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, Base, Idx);
|
|
}
|
|
|
|
return CreateBuiltinArraySubscriptExpr(Base, LLoc, Idx, RLoc);
|
|
}
|
|
|
|
|
|
ExprResult
|
|
Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
|
|
Expr *Idx, SourceLocation RLoc) {
|
|
Expr *LHSExp = Base;
|
|
Expr *RHSExp = Idx;
|
|
|
|
// Perform default conversions.
|
|
if (!LHSExp->getType()->getAs<VectorType>())
|
|
DefaultFunctionArrayLvalueConversion(LHSExp);
|
|
DefaultFunctionArrayLvalueConversion(RHSExp);
|
|
|
|
QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
|
|
ExprValueKind VK = VK_LValue;
|
|
ExprObjectKind OK = OK_Ordinary;
|
|
|
|
// C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
|
|
// to the expression *((e1)+(e2)). This means the array "Base" may actually be
|
|
// in the subscript position. As a result, we need to derive the array base
|
|
// and index from the expression types.
|
|
Expr *BaseExpr, *IndexExpr;
|
|
QualType ResultType;
|
|
if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
|
|
BaseExpr = LHSExp;
|
|
IndexExpr = RHSExp;
|
|
ResultType = Context.DependentTy;
|
|
} else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
|
|
BaseExpr = LHSExp;
|
|
IndexExpr = RHSExp;
|
|
ResultType = PTy->getPointeeType();
|
|
} else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
|
|
// Handle the uncommon case of "123[Ptr]".
|
|
BaseExpr = RHSExp;
|
|
IndexExpr = LHSExp;
|
|
ResultType = PTy->getPointeeType();
|
|
} else if (const ObjCObjectPointerType *PTy =
|
|
LHSTy->getAs<ObjCObjectPointerType>()) {
|
|
BaseExpr = LHSExp;
|
|
IndexExpr = RHSExp;
|
|
ResultType = PTy->getPointeeType();
|
|
} else if (const ObjCObjectPointerType *PTy =
|
|
RHSTy->getAs<ObjCObjectPointerType>()) {
|
|
// Handle the uncommon case of "123[Ptr]".
|
|
BaseExpr = RHSExp;
|
|
IndexExpr = LHSExp;
|
|
ResultType = PTy->getPointeeType();
|
|
} else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
|
|
BaseExpr = LHSExp; // vectors: V[123]
|
|
IndexExpr = RHSExp;
|
|
VK = LHSExp->getValueKind();
|
|
if (VK != VK_RValue)
|
|
OK = OK_VectorComponent;
|
|
|
|
// FIXME: need to deal with const...
|
|
ResultType = VTy->getElementType();
|
|
} else if (LHSTy->isArrayType()) {
|
|
// If we see an array that wasn't promoted by
|
|
// DefaultFunctionArrayLvalueConversion, it must be an array that
|
|
// wasn't promoted because of the C90 rule that doesn't
|
|
// allow promoting non-lvalue arrays. Warn, then
|
|
// force the promotion here.
|
|
Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
|
|
LHSExp->getSourceRange();
|
|
ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
|
|
CK_ArrayToPointerDecay);
|
|
LHSTy = LHSExp->getType();
|
|
|
|
BaseExpr = LHSExp;
|
|
IndexExpr = RHSExp;
|
|
ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
|
|
} else if (RHSTy->isArrayType()) {
|
|
// Same as previous, except for 123[f().a] case
|
|
Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
|
|
RHSExp->getSourceRange();
|
|
ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
|
|
CK_ArrayToPointerDecay);
|
|
RHSTy = RHSExp->getType();
|
|
|
|
BaseExpr = RHSExp;
|
|
IndexExpr = LHSExp;
|
|
ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
|
|
} else {
|
|
return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
|
|
<< LHSExp->getSourceRange() << RHSExp->getSourceRange());
|
|
}
|
|
// C99 6.5.2.1p1
|
|
if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
|
|
return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
|
|
<< IndexExpr->getSourceRange());
|
|
|
|
if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
|
|
IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
|
|
&& !IndexExpr->isTypeDependent())
|
|
Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
|
|
|
|
// C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
|
|
// C++ [expr.sub]p1: The type "T" shall be a completely-defined object
|
|
// type. Note that Functions are not objects, and that (in C99 parlance)
|
|
// incomplete types are not object types.
|
|
if (ResultType->isFunctionType()) {
|
|
Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
|
|
<< ResultType << BaseExpr->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
if (ResultType->isVoidType() && !getLangOptions().CPlusPlus) {
|
|
// GNU extension: subscripting on pointer to void
|
|
Diag(LLoc, diag::ext_gnu_void_ptr)
|
|
<< BaseExpr->getSourceRange();
|
|
|
|
// C forbids expressions of unqualified void type from being l-values.
|
|
// See IsCForbiddenLValueType.
|
|
if (!ResultType.hasQualifiers()) VK = VK_RValue;
|
|
} else if (!ResultType->isDependentType() &&
|
|
RequireCompleteType(LLoc, ResultType,
|
|
PDiag(diag::err_subscript_incomplete_type)
|
|
<< BaseExpr->getSourceRange()))
|
|
return ExprError();
|
|
|
|
// Diagnose bad cases where we step over interface counts.
|
|
if (ResultType->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
|
|
Diag(LLoc, diag::err_subscript_nonfragile_interface)
|
|
<< ResultType << BaseExpr->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
assert(VK == VK_RValue || LangOpts.CPlusPlus ||
|
|
!IsCForbiddenLValueType(Context, ResultType));
|
|
|
|
return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
|
|
ResultType, VK, OK, RLoc));
|
|
}
|
|
|
|
/// Check an ext-vector component access expression.
|
|
///
|
|
/// VK should be set in advance to the value kind of the base
|
|
/// expression.
|
|
static QualType
|
|
CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
|
|
SourceLocation OpLoc, const IdentifierInfo *CompName,
|
|
SourceLocation CompLoc) {
|
|
// FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
|
|
// see FIXME there.
|
|
//
|
|
// FIXME: This logic can be greatly simplified by splitting it along
|
|
// halving/not halving and reworking the component checking.
|
|
const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
|
|
|
|
// The vector accessor can't exceed the number of elements.
|
|
const char *compStr = CompName->getNameStart();
|
|
|
|
// This flag determines whether or not the component is one of the four
|
|
// special names that indicate a subset of exactly half the elements are
|
|
// to be selected.
|
|
bool HalvingSwizzle = false;
|
|
|
|
// This flag determines whether or not CompName has an 's' char prefix,
|
|
// indicating that it is a string of hex values to be used as vector indices.
|
|
bool HexSwizzle = *compStr == 's' || *compStr == 'S';
|
|
|
|
bool HasRepeated = false;
|
|
bool HasIndex[16] = {};
|
|
|
|
int Idx;
|
|
|
|
// Check that we've found one of the special components, or that the component
|
|
// names must come from the same set.
|
|
if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
|
|
!strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
|
|
HalvingSwizzle = true;
|
|
} else if (!HexSwizzle &&
|
|
(Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
|
|
do {
|
|
if (HasIndex[Idx]) HasRepeated = true;
|
|
HasIndex[Idx] = true;
|
|
compStr++;
|
|
} while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
|
|
} else {
|
|
if (HexSwizzle) compStr++;
|
|
while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
|
|
if (HasIndex[Idx]) HasRepeated = true;
|
|
HasIndex[Idx] = true;
|
|
compStr++;
|
|
}
|
|
}
|
|
|
|
if (!HalvingSwizzle && *compStr) {
|
|
// We didn't get to the end of the string. This means the component names
|
|
// didn't come from the same set *or* we encountered an illegal name.
|
|
S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
|
|
<< llvm::StringRef(compStr, 1) << SourceRange(CompLoc);
|
|
return QualType();
|
|
}
|
|
|
|
// Ensure no component accessor exceeds the width of the vector type it
|
|
// operates on.
|
|
if (!HalvingSwizzle) {
|
|
compStr = CompName->getNameStart();
|
|
|
|
if (HexSwizzle)
|
|
compStr++;
|
|
|
|
while (*compStr) {
|
|
if (!vecType->isAccessorWithinNumElements(*compStr++)) {
|
|
S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
|
|
<< baseType << SourceRange(CompLoc);
|
|
return QualType();
|
|
}
|
|
}
|
|
}
|
|
|
|
// The component accessor looks fine - now we need to compute the actual type.
|
|
// The vector type is implied by the component accessor. For example,
|
|
// vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
|
|
// vec4.s0 is a float, vec4.s23 is a vec3, etc.
|
|
// vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
|
|
unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
|
|
: CompName->getLength();
|
|
if (HexSwizzle)
|
|
CompSize--;
|
|
|
|
if (CompSize == 1)
|
|
return vecType->getElementType();
|
|
|
|
if (HasRepeated) VK = VK_RValue;
|
|
|
|
QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
|
|
// Now look up the TypeDefDecl from the vector type. Without this,
|
|
// diagostics look bad. We want extended vector types to appear built-in.
|
|
for (unsigned i = 0, E = S.ExtVectorDecls.size(); i != E; ++i) {
|
|
if (S.ExtVectorDecls[i]->getUnderlyingType() == VT)
|
|
return S.Context.getTypedefType(S.ExtVectorDecls[i]);
|
|
}
|
|
return VT; // should never get here (a typedef type should always be found).
|
|
}
|
|
|
|
static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
|
|
IdentifierInfo *Member,
|
|
const Selector &Sel,
|
|
ASTContext &Context) {
|
|
if (Member)
|
|
if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
|
|
return PD;
|
|
if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
|
|
return OMD;
|
|
|
|
for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
|
|
E = PDecl->protocol_end(); I != E; ++I) {
|
|
if (Decl *D = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
|
|
Context))
|
|
return D;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
|
|
IdentifierInfo *Member,
|
|
const Selector &Sel,
|
|
ASTContext &Context) {
|
|
// Check protocols on qualified interfaces.
|
|
Decl *GDecl = 0;
|
|
for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
|
|
E = QIdTy->qual_end(); I != E; ++I) {
|
|
if (Member)
|
|
if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
|
|
GDecl = PD;
|
|
break;
|
|
}
|
|
// Also must look for a getter or setter name which uses property syntax.
|
|
if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
|
|
GDecl = OMD;
|
|
break;
|
|
}
|
|
}
|
|
if (!GDecl) {
|
|
for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
|
|
E = QIdTy->qual_end(); I != E; ++I) {
|
|
// Search in the protocol-qualifier list of current protocol.
|
|
GDecl = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
|
|
Context);
|
|
if (GDecl)
|
|
return GDecl;
|
|
}
|
|
}
|
|
return GDecl;
|
|
}
|
|
|
|
ExprResult
|
|
Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
|
|
bool IsArrow, SourceLocation OpLoc,
|
|
const CXXScopeSpec &SS,
|
|
NamedDecl *FirstQualifierInScope,
|
|
const DeclarationNameInfo &NameInfo,
|
|
const TemplateArgumentListInfo *TemplateArgs) {
|
|
// Even in dependent contexts, try to diagnose base expressions with
|
|
// obviously wrong types, e.g.:
|
|
//
|
|
// T* t;
|
|
// t.f;
|
|
//
|
|
// In Obj-C++, however, the above expression is valid, since it could be
|
|
// accessing the 'f' property if T is an Obj-C interface. The extra check
|
|
// allows this, while still reporting an error if T is a struct pointer.
|
|
if (!IsArrow) {
|
|
const PointerType *PT = BaseType->getAs<PointerType>();
|
|
if (PT && (!getLangOptions().ObjC1 ||
|
|
PT->getPointeeType()->isRecordType())) {
|
|
assert(BaseExpr && "cannot happen with implicit member accesses");
|
|
Diag(NameInfo.getLoc(), diag::err_typecheck_member_reference_struct_union)
|
|
<< BaseType << BaseExpr->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
}
|
|
|
|
assert(BaseType->isDependentType() ||
|
|
NameInfo.getName().isDependentName() ||
|
|
isDependentScopeSpecifier(SS));
|
|
|
|
// Get the type being accessed in BaseType. If this is an arrow, the BaseExpr
|
|
// must have pointer type, and the accessed type is the pointee.
|
|
return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
|
|
IsArrow, OpLoc,
|
|
SS.getWithLocInContext(Context),
|
|
FirstQualifierInScope,
|
|
NameInfo, TemplateArgs));
|
|
}
|
|
|
|
/// We know that the given qualified member reference points only to
|
|
/// declarations which do not belong to the static type of the base
|
|
/// expression. Diagnose the problem.
|
|
static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
|
|
Expr *BaseExpr,
|
|
QualType BaseType,
|
|
const CXXScopeSpec &SS,
|
|
NamedDecl *rep,
|
|
const DeclarationNameInfo &nameInfo) {
|
|
// If this is an implicit member access, use a different set of
|
|
// diagnostics.
|
|
if (!BaseExpr)
|
|
return DiagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
|
|
|
|
SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
|
|
<< SS.getRange() << rep << BaseType;
|
|
}
|
|
|
|
// Check whether the declarations we found through a nested-name
|
|
// specifier in a member expression are actually members of the base
|
|
// type. The restriction here is:
|
|
//
|
|
// C++ [expr.ref]p2:
|
|
// ... In these cases, the id-expression shall name a
|
|
// member of the class or of one of its base classes.
|
|
//
|
|
// So it's perfectly legitimate for the nested-name specifier to name
|
|
// an unrelated class, and for us to find an overload set including
|
|
// decls from classes which are not superclasses, as long as the decl
|
|
// we actually pick through overload resolution is from a superclass.
|
|
bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
|
|
QualType BaseType,
|
|
const CXXScopeSpec &SS,
|
|
const LookupResult &R) {
|
|
const RecordType *BaseRT = BaseType->getAs<RecordType>();
|
|
if (!BaseRT) {
|
|
// We can't check this yet because the base type is still
|
|
// dependent.
|
|
assert(BaseType->isDependentType());
|
|
return false;
|
|
}
|
|
CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
|
|
|
|
for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
|
|
// If this is an implicit member reference and we find a
|
|
// non-instance member, it's not an error.
|
|
if (!BaseExpr && !(*I)->isCXXInstanceMember())
|
|
return false;
|
|
|
|
// Note that we use the DC of the decl, not the underlying decl.
|
|
DeclContext *DC = (*I)->getDeclContext();
|
|
while (DC->isTransparentContext())
|
|
DC = DC->getParent();
|
|
|
|
if (!DC->isRecord())
|
|
continue;
|
|
|
|
llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord;
|
|
MemberRecord.insert(cast<CXXRecordDecl>(DC)->getCanonicalDecl());
|
|
|
|
if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord))
|
|
return false;
|
|
}
|
|
|
|
DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
|
|
R.getRepresentativeDecl(),
|
|
R.getLookupNameInfo());
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
|
|
SourceRange BaseRange, const RecordType *RTy,
|
|
SourceLocation OpLoc, CXXScopeSpec &SS,
|
|
bool HasTemplateArgs) {
|
|
RecordDecl *RDecl = RTy->getDecl();
|
|
if (SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
|
|
SemaRef.PDiag(diag::err_typecheck_incomplete_tag)
|
|
<< BaseRange))
|
|
return true;
|
|
|
|
if (HasTemplateArgs) {
|
|
// LookupTemplateName doesn't expect these both to exist simultaneously.
|
|
QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
|
|
|
|
bool MOUS;
|
|
SemaRef.LookupTemplateName(R, 0, SS, ObjectType, false, MOUS);
|
|
return false;
|
|
}
|
|
|
|
DeclContext *DC = RDecl;
|
|
if (SS.isSet()) {
|
|
// If the member name was a qualified-id, look into the
|
|
// nested-name-specifier.
|
|
DC = SemaRef.computeDeclContext(SS, false);
|
|
|
|
if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
|
|
SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
|
|
<< SS.getRange() << DC;
|
|
return true;
|
|
}
|
|
|
|
assert(DC && "Cannot handle non-computable dependent contexts in lookup");
|
|
|
|
if (!isa<TypeDecl>(DC)) {
|
|
SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
|
|
<< DC << SS.getRange();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// The record definition is complete, now look up the member.
|
|
SemaRef.LookupQualifiedName(R, DC);
|
|
|
|
if (!R.empty())
|
|
return false;
|
|
|
|
// We didn't find anything with the given name, so try to correct
|
|
// for typos.
|
|
DeclarationName Name = R.getLookupName();
|
|
if (SemaRef.CorrectTypo(R, 0, &SS, DC, false, Sema::CTC_MemberLookup) &&
|
|
!R.empty() &&
|
|
(isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin()))) {
|
|
SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
|
|
<< Name << DC << R.getLookupName() << SS.getRange()
|
|
<< FixItHint::CreateReplacement(R.getNameLoc(),
|
|
R.getLookupName().getAsString());
|
|
if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
|
|
SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
|
|
<< ND->getDeclName();
|
|
return false;
|
|
} else {
|
|
R.clear();
|
|
R.setLookupName(Name);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
ExprResult
|
|
Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
|
|
SourceLocation OpLoc, bool IsArrow,
|
|
CXXScopeSpec &SS,
|
|
NamedDecl *FirstQualifierInScope,
|
|
const DeclarationNameInfo &NameInfo,
|
|
const TemplateArgumentListInfo *TemplateArgs) {
|
|
if (BaseType->isDependentType() ||
|
|
(SS.isSet() && isDependentScopeSpecifier(SS)))
|
|
return ActOnDependentMemberExpr(Base, BaseType,
|
|
IsArrow, OpLoc,
|
|
SS, FirstQualifierInScope,
|
|
NameInfo, TemplateArgs);
|
|
|
|
LookupResult R(*this, NameInfo, LookupMemberName);
|
|
|
|
// Implicit member accesses.
|
|
if (!Base) {
|
|
QualType RecordTy = BaseType;
|
|
if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
|
|
if (LookupMemberExprInRecord(*this, R, SourceRange(),
|
|
RecordTy->getAs<RecordType>(),
|
|
OpLoc, SS, TemplateArgs != 0))
|
|
return ExprError();
|
|
|
|
// Explicit member accesses.
|
|
} else {
|
|
ExprResult Result =
|
|
LookupMemberExpr(R, Base, IsArrow, OpLoc,
|
|
SS, /*ObjCImpDecl*/ 0, TemplateArgs != 0);
|
|
|
|
if (Result.isInvalid()) {
|
|
Owned(Base);
|
|
return ExprError();
|
|
}
|
|
|
|
if (Result.get())
|
|
return move(Result);
|
|
|
|
// LookupMemberExpr can modify Base, and thus change BaseType
|
|
BaseType = Base->getType();
|
|
}
|
|
|
|
return BuildMemberReferenceExpr(Base, BaseType,
|
|
OpLoc, IsArrow, SS, FirstQualifierInScope,
|
|
R, TemplateArgs);
|
|
}
|
|
|
|
ExprResult
|
|
Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
|
|
SourceLocation OpLoc, bool IsArrow,
|
|
const CXXScopeSpec &SS,
|
|
NamedDecl *FirstQualifierInScope,
|
|
LookupResult &R,
|
|
const TemplateArgumentListInfo *TemplateArgs,
|
|
bool SuppressQualifierCheck) {
|
|
QualType BaseType = BaseExprType;
|
|
if (IsArrow) {
|
|
assert(BaseType->isPointerType());
|
|
BaseType = BaseType->getAs<PointerType>()->getPointeeType();
|
|
}
|
|
R.setBaseObjectType(BaseType);
|
|
|
|
const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
|
|
DeclarationName MemberName = MemberNameInfo.getName();
|
|
SourceLocation MemberLoc = MemberNameInfo.getLoc();
|
|
|
|
if (R.isAmbiguous())
|
|
return ExprError();
|
|
|
|
if (R.empty()) {
|
|
// Rederive where we looked up.
|
|
DeclContext *DC = (SS.isSet()
|
|
? computeDeclContext(SS, false)
|
|
: BaseType->getAs<RecordType>()->getDecl());
|
|
|
|
Diag(R.getNameLoc(), diag::err_no_member)
|
|
<< MemberName << DC
|
|
<< (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
|
|
return ExprError();
|
|
}
|
|
|
|
// Diagnose lookups that find only declarations from a non-base
|
|
// type. This is possible for either qualified lookups (which may
|
|
// have been qualified with an unrelated type) or implicit member
|
|
// expressions (which were found with unqualified lookup and thus
|
|
// may have come from an enclosing scope). Note that it's okay for
|
|
// lookup to find declarations from a non-base type as long as those
|
|
// aren't the ones picked by overload resolution.
|
|
if ((SS.isSet() || !BaseExpr ||
|
|
(isa<CXXThisExpr>(BaseExpr) &&
|
|
cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
|
|
!SuppressQualifierCheck &&
|
|
CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
|
|
return ExprError();
|
|
|
|
// Construct an unresolved result if we in fact got an unresolved
|
|
// result.
|
|
if (R.isOverloadedResult() || R.isUnresolvableResult()) {
|
|
// Suppress any lookup-related diagnostics; we'll do these when we
|
|
// pick a member.
|
|
R.suppressDiagnostics();
|
|
|
|
UnresolvedMemberExpr *MemExpr
|
|
= UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
|
|
BaseExpr, BaseExprType,
|
|
IsArrow, OpLoc,
|
|
SS.getWithLocInContext(Context),
|
|
MemberNameInfo,
|
|
TemplateArgs, R.begin(), R.end());
|
|
|
|
return Owned(MemExpr);
|
|
}
|
|
|
|
assert(R.isSingleResult());
|
|
DeclAccessPair FoundDecl = R.begin().getPair();
|
|
NamedDecl *MemberDecl = R.getFoundDecl();
|
|
|
|
// FIXME: diagnose the presence of template arguments now.
|
|
|
|
// If the decl being referenced had an error, return an error for this
|
|
// sub-expr without emitting another error, in order to avoid cascading
|
|
// error cases.
|
|
if (MemberDecl->isInvalidDecl())
|
|
return ExprError();
|
|
|
|
// Handle the implicit-member-access case.
|
|
if (!BaseExpr) {
|
|
// If this is not an instance member, convert to a non-member access.
|
|
if (!MemberDecl->isCXXInstanceMember())
|
|
return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl);
|
|
|
|
SourceLocation Loc = R.getNameLoc();
|
|
if (SS.getRange().isValid())
|
|
Loc = SS.getRange().getBegin();
|
|
BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
|
|
}
|
|
|
|
bool ShouldCheckUse = true;
|
|
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
|
|
// Don't diagnose the use of a virtual member function unless it's
|
|
// explicitly qualified.
|
|
if (MD->isVirtual() && !SS.isSet())
|
|
ShouldCheckUse = false;
|
|
}
|
|
|
|
// Check the use of this member.
|
|
if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
|
|
Owned(BaseExpr);
|
|
return ExprError();
|
|
}
|
|
|
|
// Perform a property load on the base regardless of whether we
|
|
// actually need it for the declaration.
|
|
if (BaseExpr->getObjectKind() == OK_ObjCProperty)
|
|
ConvertPropertyForRValue(BaseExpr);
|
|
|
|
if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
|
|
return BuildFieldReferenceExpr(*this, BaseExpr, IsArrow,
|
|
SS, FD, FoundDecl, MemberNameInfo);
|
|
|
|
if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
|
|
// We may have found a field within an anonymous union or struct
|
|
// (C++ [class.union]).
|
|
return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
|
|
BaseExpr, OpLoc);
|
|
|
|
if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
|
|
MarkDeclarationReferenced(MemberLoc, Var);
|
|
return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
|
|
Var, FoundDecl, MemberNameInfo,
|
|
Var->getType().getNonReferenceType(),
|
|
VK_LValue, OK_Ordinary));
|
|
}
|
|
|
|
if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
|
|
MarkDeclarationReferenced(MemberLoc, MemberDecl);
|
|
return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
|
|
MemberFn, FoundDecl, MemberNameInfo,
|
|
MemberFn->getType(),
|
|
MemberFn->isInstance() ? VK_RValue : VK_LValue,
|
|
OK_Ordinary));
|
|
}
|
|
assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
|
|
|
|
if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
|
|
MarkDeclarationReferenced(MemberLoc, MemberDecl);
|
|
return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
|
|
Enum, FoundDecl, MemberNameInfo,
|
|
Enum->getType(), VK_RValue, OK_Ordinary));
|
|
}
|
|
|
|
Owned(BaseExpr);
|
|
|
|
// We found something that we didn't expect. Complain.
|
|
if (isa<TypeDecl>(MemberDecl))
|
|
Diag(MemberLoc, diag::err_typecheck_member_reference_type)
|
|
<< MemberName << BaseType << int(IsArrow);
|
|
else
|
|
Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
|
|
<< MemberName << BaseType << int(IsArrow);
|
|
|
|
Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
|
|
<< MemberName;
|
|
R.suppressDiagnostics();
|
|
return ExprError();
|
|
}
|
|
|
|
/// Given that normal member access failed on the given expression,
|
|
/// and given that the expression's type involves builtin-id or
|
|
/// builtin-Class, decide whether substituting in the redefinition
|
|
/// types would be profitable. The redefinition type is whatever
|
|
/// this translation unit tried to typedef to id/Class; we store
|
|
/// it to the side and then re-use it in places like this.
|
|
static bool ShouldTryAgainWithRedefinitionType(Sema &S, Expr *&base) {
|
|
const ObjCObjectPointerType *opty
|
|
= base->getType()->getAs<ObjCObjectPointerType>();
|
|
if (!opty) return false;
|
|
|
|
const ObjCObjectType *ty = opty->getObjectType();
|
|
|
|
QualType redef;
|
|
if (ty->isObjCId()) {
|
|
redef = S.Context.ObjCIdRedefinitionType;
|
|
} else if (ty->isObjCClass()) {
|
|
redef = S.Context.ObjCClassRedefinitionType;
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
// Do the substitution as long as the redefinition type isn't just a
|
|
// possibly-qualified pointer to builtin-id or builtin-Class again.
|
|
opty = redef->getAs<ObjCObjectPointerType>();
|
|
if (opty && !opty->getObjectType()->getInterface() != 0)
|
|
return false;
|
|
|
|
S.ImpCastExprToType(base, redef, CK_BitCast);
|
|
return true;
|
|
}
|
|
|
|
/// Look up the given member of the given non-type-dependent
|
|
/// expression. This can return in one of two ways:
|
|
/// * If it returns a sentinel null-but-valid result, the caller will
|
|
/// assume that lookup was performed and the results written into
|
|
/// the provided structure. It will take over from there.
|
|
/// * Otherwise, the returned expression will be produced in place of
|
|
/// an ordinary member expression.
|
|
///
|
|
/// The ObjCImpDecl bit is a gross hack that will need to be properly
|
|
/// fixed for ObjC++.
|
|
ExprResult
|
|
Sema::LookupMemberExpr(LookupResult &R, Expr *&BaseExpr,
|
|
bool &IsArrow, SourceLocation OpLoc,
|
|
CXXScopeSpec &SS,
|
|
Decl *ObjCImpDecl, bool HasTemplateArgs) {
|
|
assert(BaseExpr && "no base expression");
|
|
|
|
// Perform default conversions.
|
|
DefaultFunctionArrayConversion(BaseExpr);
|
|
if (IsArrow) DefaultLvalueConversion(BaseExpr);
|
|
|
|
QualType BaseType = BaseExpr->getType();
|
|
assert(!BaseType->isDependentType());
|
|
|
|
DeclarationName MemberName = R.getLookupName();
|
|
SourceLocation MemberLoc = R.getNameLoc();
|
|
|
|
// For later type-checking purposes, turn arrow accesses into dot
|
|
// accesses. The only access type we support that doesn't follow
|
|
// the C equivalence "a->b === (*a).b" is ObjC property accesses,
|
|
// and those never use arrows, so this is unaffected.
|
|
if (IsArrow) {
|
|
if (const PointerType *Ptr = BaseType->getAs<PointerType>())
|
|
BaseType = Ptr->getPointeeType();
|
|
else if (const ObjCObjectPointerType *Ptr
|
|
= BaseType->getAs<ObjCObjectPointerType>())
|
|
BaseType = Ptr->getPointeeType();
|
|
else if (BaseType->isRecordType()) {
|
|
// Recover from arrow accesses to records, e.g.:
|
|
// struct MyRecord foo;
|
|
// foo->bar
|
|
// This is actually well-formed in C++ if MyRecord has an
|
|
// overloaded operator->, but that should have been dealt with
|
|
// by now.
|
|
Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
|
|
<< BaseType << int(IsArrow) << BaseExpr->getSourceRange()
|
|
<< FixItHint::CreateReplacement(OpLoc, ".");
|
|
IsArrow = false;
|
|
} else {
|
|
Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
|
|
<< BaseType << BaseExpr->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
}
|
|
|
|
// Handle field access to simple records.
|
|
if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
|
|
if (LookupMemberExprInRecord(*this, R, BaseExpr->getSourceRange(),
|
|
RTy, OpLoc, SS, HasTemplateArgs))
|
|
return ExprError();
|
|
|
|
// Returning valid-but-null is how we indicate to the caller that
|
|
// the lookup result was filled in.
|
|
return Owned((Expr*) 0);
|
|
}
|
|
|
|
// Handle ivar access to Objective-C objects.
|
|
if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
|
|
IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
|
|
|
|
// There are three cases for the base type:
|
|
// - builtin id (qualified or unqualified)
|
|
// - builtin Class (qualified or unqualified)
|
|
// - an interface
|
|
ObjCInterfaceDecl *IDecl = OTy->getInterface();
|
|
if (!IDecl) {
|
|
// There's an implicit 'isa' ivar on all objects.
|
|
// But we only actually find it this way on objects of type 'id',
|
|
// apparently.
|
|
if (OTy->isObjCId() && Member->isStr("isa"))
|
|
return Owned(new (Context) ObjCIsaExpr(BaseExpr, IsArrow, MemberLoc,
|
|
Context.getObjCClassType()));
|
|
|
|
if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
|
|
return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
|
|
ObjCImpDecl, HasTemplateArgs);
|
|
goto fail;
|
|
}
|
|
|
|
ObjCInterfaceDecl *ClassDeclared;
|
|
ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
|
|
|
|
if (!IV) {
|
|
// Attempt to correct for typos in ivar names.
|
|
LookupResult Res(*this, R.getLookupName(), R.getNameLoc(),
|
|
LookupMemberName);
|
|
if (CorrectTypo(Res, 0, 0, IDecl, false,
|
|
IsArrow ? CTC_ObjCIvarLookup
|
|
: CTC_ObjCPropertyLookup) &&
|
|
(IV = Res.getAsSingle<ObjCIvarDecl>())) {
|
|
Diag(R.getNameLoc(),
|
|
diag::err_typecheck_member_reference_ivar_suggest)
|
|
<< IDecl->getDeclName() << MemberName << IV->getDeclName()
|
|
<< FixItHint::CreateReplacement(R.getNameLoc(),
|
|
IV->getNameAsString());
|
|
Diag(IV->getLocation(), diag::note_previous_decl)
|
|
<< IV->getDeclName();
|
|
} else {
|
|
Res.clear();
|
|
Res.setLookupName(Member);
|
|
|
|
Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
|
|
<< IDecl->getDeclName() << MemberName
|
|
<< BaseExpr->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
}
|
|
|
|
// If the decl being referenced had an error, return an error for this
|
|
// sub-expr without emitting another error, in order to avoid cascading
|
|
// error cases.
|
|
if (IV->isInvalidDecl())
|
|
return ExprError();
|
|
|
|
// Check whether we can reference this field.
|
|
if (DiagnoseUseOfDecl(IV, MemberLoc))
|
|
return ExprError();
|
|
if (IV->getAccessControl() != ObjCIvarDecl::Public &&
|
|
IV->getAccessControl() != ObjCIvarDecl::Package) {
|
|
ObjCInterfaceDecl *ClassOfMethodDecl = 0;
|
|
if (ObjCMethodDecl *MD = getCurMethodDecl())
|
|
ClassOfMethodDecl = MD->getClassInterface();
|
|
else if (ObjCImpDecl && getCurFunctionDecl()) {
|
|
// Case of a c-function declared inside an objc implementation.
|
|
// FIXME: For a c-style function nested inside an objc implementation
|
|
// class, there is no implementation context available, so we pass
|
|
// down the context as argument to this routine. Ideally, this context
|
|
// need be passed down in the AST node and somehow calculated from the
|
|
// AST for a function decl.
|
|
if (ObjCImplementationDecl *IMPD =
|
|
dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
|
|
ClassOfMethodDecl = IMPD->getClassInterface();
|
|
else if (ObjCCategoryImplDecl* CatImplClass =
|
|
dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
|
|
ClassOfMethodDecl = CatImplClass->getClassInterface();
|
|
}
|
|
|
|
if (IV->getAccessControl() == ObjCIvarDecl::Private) {
|
|
if (ClassDeclared != IDecl ||
|
|
ClassOfMethodDecl != ClassDeclared)
|
|
Diag(MemberLoc, diag::error_private_ivar_access)
|
|
<< IV->getDeclName();
|
|
} else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
|
|
// @protected
|
|
Diag(MemberLoc, diag::error_protected_ivar_access)
|
|
<< IV->getDeclName();
|
|
}
|
|
|
|
return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
|
|
MemberLoc, BaseExpr,
|
|
IsArrow));
|
|
}
|
|
|
|
// Objective-C property access.
|
|
const ObjCObjectPointerType *OPT;
|
|
if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
|
|
// This actually uses the base as an r-value.
|
|
DefaultLvalueConversion(BaseExpr);
|
|
assert(Context.hasSameUnqualifiedType(BaseType, BaseExpr->getType()));
|
|
|
|
IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
|
|
|
|
const ObjCObjectType *OT = OPT->getObjectType();
|
|
|
|
// id, with and without qualifiers.
|
|
if (OT->isObjCId()) {
|
|
// Check protocols on qualified interfaces.
|
|
Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
|
|
if (Decl *PMDecl = FindGetterSetterNameDecl(OPT, Member, Sel, Context)) {
|
|
if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
|
|
// Check the use of this declaration
|
|
if (DiagnoseUseOfDecl(PD, MemberLoc))
|
|
return ExprError();
|
|
|
|
return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
|
|
VK_LValue,
|
|
OK_ObjCProperty,
|
|
MemberLoc,
|
|
BaseExpr));
|
|
}
|
|
|
|
if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
|
|
// Check the use of this method.
|
|
if (DiagnoseUseOfDecl(OMD, MemberLoc))
|
|
return ExprError();
|
|
Selector SetterSel =
|
|
SelectorTable::constructSetterName(PP.getIdentifierTable(),
|
|
PP.getSelectorTable(), Member);
|
|
ObjCMethodDecl *SMD = 0;
|
|
if (Decl *SDecl = FindGetterSetterNameDecl(OPT, /*Property id*/0,
|
|
SetterSel, Context))
|
|
SMD = dyn_cast<ObjCMethodDecl>(SDecl);
|
|
QualType PType = OMD->getSendResultType();
|
|
|
|
ExprValueKind VK = VK_LValue;
|
|
if (!getLangOptions().CPlusPlus &&
|
|
IsCForbiddenLValueType(Context, PType))
|
|
VK = VK_RValue;
|
|
ExprObjectKind OK = (VK == VK_RValue ? OK_Ordinary : OK_ObjCProperty);
|
|
|
|
return Owned(new (Context) ObjCPropertyRefExpr(OMD, SMD, PType,
|
|
VK, OK,
|
|
MemberLoc, BaseExpr));
|
|
}
|
|
}
|
|
// Use of id.member can only be for a property reference. Do not
|
|
// use the 'id' redefinition in this case.
|
|
if (IsArrow && ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
|
|
return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
|
|
ObjCImpDecl, HasTemplateArgs);
|
|
|
|
return ExprError(Diag(MemberLoc, diag::err_property_not_found)
|
|
<< MemberName << BaseType);
|
|
}
|
|
|
|
// 'Class', unqualified only.
|
|
if (OT->isObjCClass()) {
|
|
// Only works in a method declaration (??!).
|
|
ObjCMethodDecl *MD = getCurMethodDecl();
|
|
if (!MD) {
|
|
if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
|
|
return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
|
|
ObjCImpDecl, HasTemplateArgs);
|
|
|
|
goto fail;
|
|
}
|
|
|
|
// Also must look for a getter name which uses property syntax.
|
|
Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
|
|
ObjCInterfaceDecl *IFace = MD->getClassInterface();
|
|
ObjCMethodDecl *Getter;
|
|
if ((Getter = IFace->lookupClassMethod(Sel))) {
|
|
// Check the use of this method.
|
|
if (DiagnoseUseOfDecl(Getter, MemberLoc))
|
|
return ExprError();
|
|
} else
|
|
Getter = IFace->lookupPrivateMethod(Sel, false);
|
|
// If we found a getter then this may be a valid dot-reference, we
|
|
// will look for the matching setter, in case it is needed.
|
|
Selector SetterSel =
|
|
SelectorTable::constructSetterName(PP.getIdentifierTable(),
|
|
PP.getSelectorTable(), Member);
|
|
ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
|
|
if (!Setter) {
|
|
// If this reference is in an @implementation, also check for 'private'
|
|
// methods.
|
|
Setter = IFace->lookupPrivateMethod(SetterSel, false);
|
|
}
|
|
// Look through local category implementations associated with the class.
|
|
if (!Setter)
|
|
Setter = IFace->getCategoryClassMethod(SetterSel);
|
|
|
|
if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
|
|
return ExprError();
|
|
|
|
if (Getter || Setter) {
|
|
QualType PType;
|
|
|
|
ExprValueKind VK = VK_LValue;
|
|
if (Getter) {
|
|
PType = Getter->getSendResultType();
|
|
if (!getLangOptions().CPlusPlus &&
|
|
IsCForbiddenLValueType(Context, PType))
|
|
VK = VK_RValue;
|
|
} else {
|
|
// Get the expression type from Setter's incoming parameter.
|
|
PType = (*(Setter->param_end() -1))->getType();
|
|
}
|
|
ExprObjectKind OK = (VK == VK_RValue ? OK_Ordinary : OK_ObjCProperty);
|
|
|
|
// FIXME: we must check that the setter has property type.
|
|
return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
|
|
PType, VK, OK,
|
|
MemberLoc, BaseExpr));
|
|
}
|
|
|
|
if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
|
|
return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
|
|
ObjCImpDecl, HasTemplateArgs);
|
|
|
|
return ExprError(Diag(MemberLoc, diag::err_property_not_found)
|
|
<< MemberName << BaseType);
|
|
}
|
|
|
|
// Normal property access.
|
|
return HandleExprPropertyRefExpr(OPT, BaseExpr, MemberName, MemberLoc,
|
|
SourceLocation(), QualType(), false);
|
|
}
|
|
|
|
// Handle 'field access' to vectors, such as 'V.xx'.
|
|
if (BaseType->isExtVectorType()) {
|
|
// FIXME: this expr should store IsArrow.
|
|
IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
|
|
ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr->getValueKind());
|
|
QualType ret = CheckExtVectorComponent(*this, BaseType, VK, OpLoc,
|
|
Member, MemberLoc);
|
|
if (ret.isNull())
|
|
return ExprError();
|
|
|
|
return Owned(new (Context) ExtVectorElementExpr(ret, VK, BaseExpr,
|
|
*Member, MemberLoc));
|
|
}
|
|
|
|
// Adjust builtin-sel to the appropriate redefinition type if that's
|
|
// not just a pointer to builtin-sel again.
|
|
if (IsArrow &&
|
|
BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
|
|
!Context.ObjCSelRedefinitionType->isObjCSelType()) {
|
|
ImpCastExprToType(BaseExpr, Context.ObjCSelRedefinitionType, CK_BitCast);
|
|
return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
|
|
ObjCImpDecl, HasTemplateArgs);
|
|
}
|
|
|
|
// Failure cases.
|
|
fail:
|
|
|
|
// Recover from dot accesses to pointers, e.g.:
|
|
// type *foo;
|
|
// foo.bar
|
|
// This is actually well-formed in two cases:
|
|
// - 'type' is an Objective C type
|
|
// - 'bar' is a pseudo-destructor name which happens to refer to
|
|
// the appropriate pointer type
|
|
if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
|
|
if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
|
|
MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
|
|
Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
|
|
<< BaseType << int(IsArrow) << BaseExpr->getSourceRange()
|
|
<< FixItHint::CreateReplacement(OpLoc, "->");
|
|
|
|
// Recurse as an -> access.
|
|
IsArrow = true;
|
|
return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
|
|
ObjCImpDecl, HasTemplateArgs);
|
|
}
|
|
}
|
|
|
|
// If the user is trying to apply -> or . to a function name, it's probably
|
|
// because they forgot parentheses to call that function.
|
|
bool TryCall = false;
|
|
bool Overloaded = false;
|
|
UnresolvedSet<8> AllOverloads;
|
|
if (const OverloadExpr *Overloads = dyn_cast<OverloadExpr>(BaseExpr)) {
|
|
AllOverloads.append(Overloads->decls_begin(), Overloads->decls_end());
|
|
TryCall = true;
|
|
Overloaded = true;
|
|
} else if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(BaseExpr)) {
|
|
if (FunctionDecl* Fun = dyn_cast<FunctionDecl>(DeclRef->getDecl())) {
|
|
AllOverloads.addDecl(Fun);
|
|
TryCall = true;
|
|
}
|
|
}
|
|
|
|
if (TryCall) {
|
|
// Plunder the overload set for something that would make the member
|
|
// expression valid.
|
|
UnresolvedSet<4> ViableOverloads;
|
|
bool HasViableZeroArgOverload = false;
|
|
for (OverloadExpr::decls_iterator it = AllOverloads.begin(),
|
|
DeclsEnd = AllOverloads.end(); it != DeclsEnd; ++it) {
|
|
// Our overload set may include TemplateDecls, which we'll ignore for the
|
|
// purposes of determining whether we can issue a '()' fixit.
|
|
if (const FunctionDecl *OverloadDecl = dyn_cast<FunctionDecl>(*it)) {
|
|
QualType ResultTy = OverloadDecl->getResultType();
|
|
if ((!IsArrow && ResultTy->isRecordType()) ||
|
|
(IsArrow && ResultTy->isPointerType() &&
|
|
ResultTy->getPointeeType()->isRecordType())) {
|
|
ViableOverloads.addDecl(*it);
|
|
if (OverloadDecl->getMinRequiredArguments() == 0) {
|
|
HasViableZeroArgOverload = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!HasViableZeroArgOverload || ViableOverloads.size() != 1) {
|
|
Diag(BaseExpr->getExprLoc(), diag::err_member_reference_needs_call)
|
|
<< (AllOverloads.size() > 1) << 0
|
|
<< BaseExpr->getSourceRange();
|
|
int ViableOverloadCount = ViableOverloads.size();
|
|
int I;
|
|
for (I = 0; I < ViableOverloadCount; ++I) {
|
|
// FIXME: Magic number for max shown overloads stolen from
|
|
// OverloadCandidateSet::NoteCandidates.
|
|
if (I >= 4 && Diags.getShowOverloads() == Diagnostic::Ovl_Best) {
|
|
break;
|
|
}
|
|
Diag(ViableOverloads[I].getDecl()->getSourceRange().getBegin(),
|
|
diag::note_member_ref_possible_intended_overload);
|
|
}
|
|
if (I != ViableOverloadCount) {
|
|
Diag(BaseExpr->getExprLoc(), diag::note_ovl_too_many_candidates)
|
|
<< int(ViableOverloadCount - I);
|
|
}
|
|
return ExprError();
|
|
}
|
|
} else {
|
|
// We don't have an expression that's convenient to get a Decl from, but we
|
|
// can at least check if the type is "function of 0 arguments which returns
|
|
// an acceptable type".
|
|
const FunctionType *Fun = NULL;
|
|
if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
|
|
if ((Fun = Ptr->getPointeeType()->getAs<FunctionType>())) {
|
|
TryCall = true;
|
|
}
|
|
} else if ((Fun = BaseType->getAs<FunctionType>())) {
|
|
TryCall = true;
|
|
}
|
|
|
|
if (TryCall) {
|
|
if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(Fun)) {
|
|
if (FPT->getNumArgs() == 0) {
|
|
QualType ResultTy = Fun->getResultType();
|
|
TryCall = (!IsArrow && ResultTy->isRecordType()) ||
|
|
(IsArrow && ResultTy->isPointerType() &&
|
|
ResultTy->getPointeeType()->isRecordType());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (TryCall) {
|
|
// At this point, we know BaseExpr looks like it's potentially callable with
|
|
// 0 arguments, and that it returns something of a reasonable type, so we
|
|
// can emit a fixit and carry on pretending that BaseExpr was actually a
|
|
// CallExpr.
|
|
SourceLocation ParenInsertionLoc =
|
|
PP.getLocForEndOfToken(BaseExpr->getLocEnd());
|
|
Diag(BaseExpr->getExprLoc(), diag::err_member_reference_needs_call)
|
|
<< int(Overloaded) << 1
|
|
<< BaseExpr->getSourceRange()
|
|
<< FixItHint::CreateInsertion(ParenInsertionLoc, "()");
|
|
ExprResult NewBase = ActOnCallExpr(0, BaseExpr, ParenInsertionLoc,
|
|
MultiExprArg(*this, 0, 0),
|
|
ParenInsertionLoc);
|
|
if (NewBase.isInvalid())
|
|
return ExprError();
|
|
BaseExpr = NewBase.takeAs<Expr>();
|
|
DefaultFunctionArrayConversion(BaseExpr);
|
|
return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
|
|
ObjCImpDecl, HasTemplateArgs);
|
|
}
|
|
|
|
Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
|
|
<< BaseType << BaseExpr->getSourceRange();
|
|
|
|
return ExprError();
|
|
}
|
|
|
|
/// The main callback when the parser finds something like
|
|
/// expression . [nested-name-specifier] identifier
|
|
/// expression -> [nested-name-specifier] identifier
|
|
/// where 'identifier' encompasses a fairly broad spectrum of
|
|
/// possibilities, including destructor and operator references.
|
|
///
|
|
/// \param OpKind either tok::arrow or tok::period
|
|
/// \param HasTrailingLParen whether the next token is '(', which
|
|
/// is used to diagnose mis-uses of special members that can
|
|
/// only be called
|
|
/// \param ObjCImpDecl the current ObjC @implementation decl;
|
|
/// this is an ugly hack around the fact that ObjC @implementations
|
|
/// aren't properly put in the context chain
|
|
ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
|
|
SourceLocation OpLoc,
|
|
tok::TokenKind OpKind,
|
|
CXXScopeSpec &SS,
|
|
UnqualifiedId &Id,
|
|
Decl *ObjCImpDecl,
|
|
bool HasTrailingLParen) {
|
|
if (SS.isSet() && SS.isInvalid())
|
|
return ExprError();
|
|
|
|
// Warn about the explicit constructor calls Microsoft extension.
|
|
if (getLangOptions().Microsoft &&
|
|
Id.getKind() == UnqualifiedId::IK_ConstructorName)
|
|
Diag(Id.getSourceRange().getBegin(),
|
|
diag::ext_ms_explicit_constructor_call);
|
|
|
|
TemplateArgumentListInfo TemplateArgsBuffer;
|
|
|
|
// Decompose the name into its component parts.
|
|
DeclarationNameInfo NameInfo;
|
|
const TemplateArgumentListInfo *TemplateArgs;
|
|
DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
|
|
NameInfo, TemplateArgs);
|
|
|
|
DeclarationName Name = NameInfo.getName();
|
|
bool IsArrow = (OpKind == tok::arrow);
|
|
|
|
NamedDecl *FirstQualifierInScope
|
|
= (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
|
|
static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
|
|
|
|
// This is a postfix expression, so get rid of ParenListExprs.
|
|
ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
|
|
if (Result.isInvalid()) return ExprError();
|
|
Base = Result.take();
|
|
|
|
if (Base->getType()->isDependentType() || Name.isDependentName() ||
|
|
isDependentScopeSpecifier(SS)) {
|
|
Result = ActOnDependentMemberExpr(Base, Base->getType(),
|
|
IsArrow, OpLoc,
|
|
SS, FirstQualifierInScope,
|
|
NameInfo, TemplateArgs);
|
|
} else {
|
|
LookupResult R(*this, NameInfo, LookupMemberName);
|
|
Result = LookupMemberExpr(R, Base, IsArrow, OpLoc,
|
|
SS, ObjCImpDecl, TemplateArgs != 0);
|
|
|
|
if (Result.isInvalid()) {
|
|
Owned(Base);
|
|
return ExprError();
|
|
}
|
|
|
|
if (Result.get()) {
|
|
// The only way a reference to a destructor can be used is to
|
|
// immediately call it, which falls into this case. If the
|
|
// next token is not a '(', produce a diagnostic and build the
|
|
// call now.
|
|
if (!HasTrailingLParen &&
|
|
Id.getKind() == UnqualifiedId::IK_DestructorName)
|
|
return DiagnoseDtorReference(NameInfo.getLoc(), Result.get());
|
|
|
|
return move(Result);
|
|
}
|
|
|
|
Result = BuildMemberReferenceExpr(Base, Base->getType(),
|
|
OpLoc, IsArrow, SS, FirstQualifierInScope,
|
|
R, TemplateArgs);
|
|
}
|
|
|
|
return move(Result);
|
|
}
|
|
|
|
ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
|
|
FunctionDecl *FD,
|
|
ParmVarDecl *Param) {
|
|
if (Param->hasUnparsedDefaultArg()) {
|
|
Diag(CallLoc,
|
|
diag::err_use_of_default_argument_to_function_declared_later) <<
|
|
FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
|
|
Diag(UnparsedDefaultArgLocs[Param],
|
|
diag::note_default_argument_declared_here);
|
|
return ExprError();
|
|
}
|
|
|
|
if (Param->hasUninstantiatedDefaultArg()) {
|
|
Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
|
|
|
|
// Instantiate the expression.
|
|
MultiLevelTemplateArgumentList ArgList
|
|
= getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
|
|
|
|
std::pair<const TemplateArgument *, unsigned> Innermost
|
|
= ArgList.getInnermost();
|
|
InstantiatingTemplate Inst(*this, CallLoc, Param, Innermost.first,
|
|
Innermost.second);
|
|
|
|
ExprResult Result;
|
|
{
|
|
// C++ [dcl.fct.default]p5:
|
|
// The names in the [default argument] expression are bound, and
|
|
// the semantic constraints are checked, at the point where the
|
|
// default argument expression appears.
|
|
ContextRAII SavedContext(*this, FD);
|
|
Result = SubstExpr(UninstExpr, ArgList);
|
|
}
|
|
if (Result.isInvalid())
|
|
return ExprError();
|
|
|
|
// Check the expression as an initializer for the parameter.
|
|
InitializedEntity Entity
|
|
= InitializedEntity::InitializeParameter(Context, Param);
|
|
InitializationKind Kind
|
|
= InitializationKind::CreateCopy(Param->getLocation(),
|
|
/*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin());
|
|
Expr *ResultE = Result.takeAs<Expr>();
|
|
|
|
InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
|
|
Result = InitSeq.Perform(*this, Entity, Kind,
|
|
MultiExprArg(*this, &ResultE, 1));
|
|
if (Result.isInvalid())
|
|
return ExprError();
|
|
|
|
// Build the default argument expression.
|
|
return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
|
|
Result.takeAs<Expr>()));
|
|
}
|
|
|
|
// If the default expression creates temporaries, we need to
|
|
// push them to the current stack of expression temporaries so they'll
|
|
// be properly destroyed.
|
|
// FIXME: We should really be rebuilding the default argument with new
|
|
// bound temporaries; see the comment in PR5810.
|
|
for (unsigned i = 0, e = Param->getNumDefaultArgTemporaries(); i != e; ++i) {
|
|
CXXTemporary *Temporary = Param->getDefaultArgTemporary(i);
|
|
MarkDeclarationReferenced(Param->getDefaultArg()->getLocStart(),
|
|
const_cast<CXXDestructorDecl*>(Temporary->getDestructor()));
|
|
ExprTemporaries.push_back(Temporary);
|
|
}
|
|
|
|
// We already type-checked the argument, so we know it works.
|
|
// Just mark all of the declarations in this potentially-evaluated expression
|
|
// as being "referenced".
|
|
MarkDeclarationsReferencedInExpr(Param->getDefaultArg());
|
|
return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
|
|
}
|
|
|
|
/// ConvertArgumentsForCall - Converts the arguments specified in
|
|
/// Args/NumArgs to the parameter types of the function FDecl with
|
|
/// function prototype Proto. Call is the call expression itself, and
|
|
/// Fn is the function expression. For a C++ member function, this
|
|
/// routine does not attempt to convert the object argument. Returns
|
|
/// true if the call is ill-formed.
|
|
bool
|
|
Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
|
|
FunctionDecl *FDecl,
|
|
const FunctionProtoType *Proto,
|
|
Expr **Args, unsigned NumArgs,
|
|
SourceLocation RParenLoc) {
|
|
// Bail out early if calling a builtin with custom typechecking.
|
|
// We don't need to do this in the
|
|
if (FDecl)
|
|
if (unsigned ID = FDecl->getBuiltinID())
|
|
if (Context.BuiltinInfo.hasCustomTypechecking(ID))
|
|
return false;
|
|
|
|
// C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
|
|
// assignment, to the types of the corresponding parameter, ...
|
|
unsigned NumArgsInProto = Proto->getNumArgs();
|
|
bool Invalid = false;
|
|
|
|
// If too few arguments are available (and we don't have default
|
|
// arguments for the remaining parameters), don't make the call.
|
|
if (NumArgs < NumArgsInProto) {
|
|
if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
|
|
return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
|
|
<< Fn->getType()->isBlockPointerType()
|
|
<< NumArgsInProto << NumArgs << Fn->getSourceRange();
|
|
Call->setNumArgs(Context, NumArgsInProto);
|
|
}
|
|
|
|
// If too many are passed and not variadic, error on the extras and drop
|
|
// them.
|
|
if (NumArgs > NumArgsInProto) {
|
|
if (!Proto->isVariadic()) {
|
|
Diag(Args[NumArgsInProto]->getLocStart(),
|
|
diag::err_typecheck_call_too_many_args)
|
|
<< Fn->getType()->isBlockPointerType()
|
|
<< NumArgsInProto << NumArgs << Fn->getSourceRange()
|
|
<< SourceRange(Args[NumArgsInProto]->getLocStart(),
|
|
Args[NumArgs-1]->getLocEnd());
|
|
|
|
// Emit the location of the prototype.
|
|
if (FDecl && !FDecl->getBuiltinID())
|
|
Diag(FDecl->getLocStart(),
|
|
diag::note_typecheck_call_too_many_args)
|
|
<< FDecl;
|
|
|
|
// This deletes the extra arguments.
|
|
Call->setNumArgs(Context, NumArgsInProto);
|
|
return true;
|
|
}
|
|
}
|
|
llvm::SmallVector<Expr *, 8> AllArgs;
|
|
VariadicCallType CallType =
|
|
Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
|
|
if (Fn->getType()->isBlockPointerType())
|
|
CallType = VariadicBlock; // Block
|
|
else if (isa<MemberExpr>(Fn))
|
|
CallType = VariadicMethod;
|
|
Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl,
|
|
Proto, 0, Args, NumArgs, AllArgs, CallType);
|
|
if (Invalid)
|
|
return true;
|
|
unsigned TotalNumArgs = AllArgs.size();
|
|
for (unsigned i = 0; i < TotalNumArgs; ++i)
|
|
Call->setArg(i, AllArgs[i]);
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
|
|
FunctionDecl *FDecl,
|
|
const FunctionProtoType *Proto,
|
|
unsigned FirstProtoArg,
|
|
Expr **Args, unsigned NumArgs,
|
|
llvm::SmallVector<Expr *, 8> &AllArgs,
|
|
VariadicCallType CallType) {
|
|
unsigned NumArgsInProto = Proto->getNumArgs();
|
|
unsigned NumArgsToCheck = NumArgs;
|
|
bool Invalid = false;
|
|
if (NumArgs != NumArgsInProto)
|
|
// Use default arguments for missing arguments
|
|
NumArgsToCheck = NumArgsInProto;
|
|
unsigned ArgIx = 0;
|
|
// Continue to check argument types (even if we have too few/many args).
|
|
for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
|
|
QualType ProtoArgType = Proto->getArgType(i);
|
|
|
|
Expr *Arg;
|
|
if (ArgIx < NumArgs) {
|
|
Arg = Args[ArgIx++];
|
|
|
|
if (RequireCompleteType(Arg->getSourceRange().getBegin(),
|
|
ProtoArgType,
|
|
PDiag(diag::err_call_incomplete_argument)
|
|
<< Arg->getSourceRange()))
|
|
return true;
|
|
|
|
// Pass the argument
|
|
ParmVarDecl *Param = 0;
|
|
if (FDecl && i < FDecl->getNumParams())
|
|
Param = FDecl->getParamDecl(i);
|
|
|
|
InitializedEntity Entity =
|
|
Param? InitializedEntity::InitializeParameter(Context, Param)
|
|
: InitializedEntity::InitializeParameter(Context, ProtoArgType);
|
|
ExprResult ArgE = PerformCopyInitialization(Entity,
|
|
SourceLocation(),
|
|
Owned(Arg));
|
|
if (ArgE.isInvalid())
|
|
return true;
|
|
|
|
Arg = ArgE.takeAs<Expr>();
|
|
} else {
|
|
ParmVarDecl *Param = FDecl->getParamDecl(i);
|
|
|
|
ExprResult ArgExpr =
|
|
BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
|
|
if (ArgExpr.isInvalid())
|
|
return true;
|
|
|
|
Arg = ArgExpr.takeAs<Expr>();
|
|
}
|
|
AllArgs.push_back(Arg);
|
|
}
|
|
|
|
// If this is a variadic call, handle args passed through "...".
|
|
if (CallType != VariadicDoesNotApply) {
|
|
// Promote the arguments (C99 6.5.2.2p7).
|
|
for (unsigned i = ArgIx; i != NumArgs; ++i) {
|
|
Expr *Arg = Args[i];
|
|
Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType, FDecl);
|
|
AllArgs.push_back(Arg);
|
|
}
|
|
}
|
|
return Invalid;
|
|
}
|
|
|
|
/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
|
|
/// This provides the location of the left/right parens and a list of comma
|
|
/// locations.
|
|
ExprResult
|
|
Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
|
|
MultiExprArg args, SourceLocation RParenLoc,
|
|
Expr *ExecConfig) {
|
|
unsigned NumArgs = args.size();
|
|
|
|
// Since this might be a postfix expression, get rid of ParenListExprs.
|
|
ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
|
|
if (Result.isInvalid()) return ExprError();
|
|
Fn = Result.take();
|
|
|
|
Expr **Args = args.release();
|
|
|
|
if (getLangOptions().CPlusPlus) {
|
|
// If this is a pseudo-destructor expression, build the call immediately.
|
|
if (isa<CXXPseudoDestructorExpr>(Fn)) {
|
|
if (NumArgs > 0) {
|
|
// Pseudo-destructor calls should not have any arguments.
|
|
Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
|
|
<< FixItHint::CreateRemoval(
|
|
SourceRange(Args[0]->getLocStart(),
|
|
Args[NumArgs-1]->getLocEnd()));
|
|
|
|
NumArgs = 0;
|
|
}
|
|
|
|
return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
|
|
VK_RValue, RParenLoc));
|
|
}
|
|
|
|
// Determine whether this is a dependent call inside a C++ template,
|
|
// in which case we won't do any semantic analysis now.
|
|
// FIXME: Will need to cache the results of name lookup (including ADL) in
|
|
// Fn.
|
|
bool Dependent = false;
|
|
if (Fn->isTypeDependent())
|
|
Dependent = true;
|
|
else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
|
|
Dependent = true;
|
|
|
|
if (Dependent) {
|
|
if (ExecConfig) {
|
|
return Owned(new (Context) CUDAKernelCallExpr(
|
|
Context, Fn, cast<CallExpr>(ExecConfig), Args, NumArgs,
|
|
Context.DependentTy, VK_RValue, RParenLoc));
|
|
} else {
|
|
return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
|
|
Context.DependentTy, VK_RValue,
|
|
RParenLoc));
|
|
}
|
|
}
|
|
|
|
// Determine whether this is a call to an object (C++ [over.call.object]).
|
|
if (Fn->getType()->isRecordType())
|
|
return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
|
|
RParenLoc));
|
|
|
|
Expr *NakedFn = Fn->IgnoreParens();
|
|
|
|
// Determine whether this is a call to an unresolved member function.
|
|
if (UnresolvedMemberExpr *MemE = dyn_cast<UnresolvedMemberExpr>(NakedFn)) {
|
|
// If lookup was unresolved but not dependent (i.e. didn't find
|
|
// an unresolved using declaration), it has to be an overloaded
|
|
// function set, which means it must contain either multiple
|
|
// declarations (all methods or method templates) or a single
|
|
// method template.
|
|
assert((MemE->getNumDecls() > 1) ||
|
|
isa<FunctionTemplateDecl>(
|
|
(*MemE->decls_begin())->getUnderlyingDecl()));
|
|
(void)MemE;
|
|
|
|
return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
|
|
RParenLoc);
|
|
}
|
|
|
|
// Determine whether this is a call to a member function.
|
|
if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(NakedFn)) {
|
|
NamedDecl *MemDecl = MemExpr->getMemberDecl();
|
|
if (isa<CXXMethodDecl>(MemDecl))
|
|
return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
|
|
RParenLoc);
|
|
}
|
|
|
|
// Determine whether this is a call to a pointer-to-member function.
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(NakedFn)) {
|
|
if (BO->getOpcode() == BO_PtrMemD ||
|
|
BO->getOpcode() == BO_PtrMemI) {
|
|
if (const FunctionProtoType *FPT
|
|
= BO->getType()->getAs<FunctionProtoType>()) {
|
|
QualType ResultTy = FPT->getCallResultType(Context);
|
|
ExprValueKind VK = Expr::getValueKindForType(FPT->getResultType());
|
|
|
|
// Check that the object type isn't more qualified than the
|
|
// member function we're calling.
|
|
Qualifiers FuncQuals = Qualifiers::fromCVRMask(FPT->getTypeQuals());
|
|
Qualifiers ObjectQuals
|
|
= BO->getOpcode() == BO_PtrMemD
|
|
? BO->getLHS()->getType().getQualifiers()
|
|
: BO->getLHS()->getType()->getAs<PointerType>()
|
|
->getPointeeType().getQualifiers();
|
|
|
|
Qualifiers Difference = ObjectQuals - FuncQuals;
|
|
Difference.removeObjCGCAttr();
|
|
Difference.removeAddressSpace();
|
|
if (Difference) {
|
|
std::string QualsString = Difference.getAsString();
|
|
Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
|
|
<< BO->getType().getUnqualifiedType()
|
|
<< QualsString
|
|
<< (QualsString.find(' ') == std::string::npos? 1 : 2);
|
|
}
|
|
|
|
CXXMemberCallExpr *TheCall
|
|
= new (Context) CXXMemberCallExpr(Context, Fn, Args,
|
|
NumArgs, ResultTy, VK,
|
|
RParenLoc);
|
|
|
|
if (CheckCallReturnType(FPT->getResultType(),
|
|
BO->getRHS()->getSourceRange().getBegin(),
|
|
TheCall, 0))
|
|
return ExprError();
|
|
|
|
if (ConvertArgumentsForCall(TheCall, BO, 0, FPT, Args, NumArgs,
|
|
RParenLoc))
|
|
return ExprError();
|
|
|
|
return MaybeBindToTemporary(TheCall);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we're directly calling a function, get the appropriate declaration.
|
|
// Also, in C++, keep track of whether we should perform argument-dependent
|
|
// lookup and whether there were any explicitly-specified template arguments.
|
|
|
|
Expr *NakedFn = Fn->IgnoreParens();
|
|
if (isa<UnresolvedLookupExpr>(NakedFn)) {
|
|
UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(NakedFn);
|
|
return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs,
|
|
RParenLoc, ExecConfig);
|
|
}
|
|
|
|
NamedDecl *NDecl = 0;
|
|
if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
|
|
if (UnOp->getOpcode() == UO_AddrOf)
|
|
NakedFn = UnOp->getSubExpr()->IgnoreParens();
|
|
|
|
if (isa<DeclRefExpr>(NakedFn))
|
|
NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
|
|
|
|
return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc,
|
|
ExecConfig);
|
|
}
|
|
|
|
ExprResult
|
|
Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
|
|
MultiExprArg execConfig, SourceLocation GGGLoc) {
|
|
FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
|
|
if (!ConfigDecl)
|
|
return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
|
|
<< "cudaConfigureCall");
|
|
QualType ConfigQTy = ConfigDecl->getType();
|
|
|
|
DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(
|
|
ConfigDecl, ConfigQTy, VK_LValue, LLLLoc);
|
|
|
|
return ActOnCallExpr(S, ConfigDR, LLLLoc, execConfig, GGGLoc, 0);
|
|
}
|
|
|
|
/// BuildResolvedCallExpr - Build a call to a resolved expression,
|
|
/// i.e. an expression not of \p OverloadTy. The expression should
|
|
/// unary-convert to an expression of function-pointer or
|
|
/// block-pointer type.
|
|
///
|
|
/// \param NDecl the declaration being called, if available
|
|
ExprResult
|
|
Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
|
|
SourceLocation LParenLoc,
|
|
Expr **Args, unsigned NumArgs,
|
|
SourceLocation RParenLoc,
|
|
Expr *Config) {
|
|
FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
|
|
|
|
// Promote the function operand.
|
|
UsualUnaryConversions(Fn);
|
|
|
|
// Make the call expr early, before semantic checks. This guarantees cleanup
|
|
// of arguments and function on error.
|
|
CallExpr *TheCall;
|
|
if (Config) {
|
|
TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
|
|
cast<CallExpr>(Config),
|
|
Args, NumArgs,
|
|
Context.BoolTy,
|
|
VK_RValue,
|
|
RParenLoc);
|
|
} else {
|
|
TheCall = new (Context) CallExpr(Context, Fn,
|
|
Args, NumArgs,
|
|
Context.BoolTy,
|
|
VK_RValue,
|
|
RParenLoc);
|
|
}
|
|
|
|
unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
|
|
|
|
// Bail out early if calling a builtin with custom typechecking.
|
|
if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
|
|
return CheckBuiltinFunctionCall(BuiltinID, TheCall);
|
|
|
|
const FunctionType *FuncT;
|
|
if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
|
|
// C99 6.5.2.2p1 - "The expression that denotes the called function shall
|
|
// have type pointer to function".
|
|
FuncT = PT->getPointeeType()->getAs<FunctionType>();
|
|
if (FuncT == 0)
|
|
return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
|
|
<< Fn->getType() << Fn->getSourceRange());
|
|
} else if (const BlockPointerType *BPT =
|
|
Fn->getType()->getAs<BlockPointerType>()) {
|
|
FuncT = BPT->getPointeeType()->castAs<FunctionType>();
|
|
} else {
|
|
return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
|
|
<< Fn->getType() << Fn->getSourceRange());
|
|
}
|
|
|
|
if (getLangOptions().CUDA) {
|
|
if (Config) {
|
|
// CUDA: Kernel calls must be to global functions
|
|
if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
|
|
return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
|
|
<< FDecl->getName() << Fn->getSourceRange());
|
|
|
|
// CUDA: Kernel function must have 'void' return type
|
|
if (!FuncT->getResultType()->isVoidType())
|
|
return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
|
|
<< Fn->getType() << Fn->getSourceRange());
|
|
}
|
|
}
|
|
|
|
// Check for a valid return type
|
|
if (CheckCallReturnType(FuncT->getResultType(),
|
|
Fn->getSourceRange().getBegin(), TheCall,
|
|
FDecl))
|
|
return ExprError();
|
|
|
|
// We know the result type of the call, set it.
|
|
TheCall->setType(FuncT->getCallResultType(Context));
|
|
TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType()));
|
|
|
|
if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
|
|
if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
|
|
RParenLoc))
|
|
return ExprError();
|
|
} else {
|
|
assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
|
|
|
|
if (FDecl) {
|
|
// Check if we have too few/too many template arguments, based
|
|
// on our knowledge of the function definition.
|
|
const FunctionDecl *Def = 0;
|
|
if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
|
|
const FunctionProtoType *Proto
|
|
= Def->getType()->getAs<FunctionProtoType>();
|
|
if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size()))
|
|
Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
|
|
<< (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
|
|
}
|
|
|
|
// If the function we're calling isn't a function prototype, but we have
|
|
// a function prototype from a prior declaratiom, use that prototype.
|
|
if (!FDecl->hasPrototype())
|
|
Proto = FDecl->getType()->getAs<FunctionProtoType>();
|
|
}
|
|
|
|
// Promote the arguments (C99 6.5.2.2p6).
|
|
for (unsigned i = 0; i != NumArgs; i++) {
|
|
Expr *Arg = Args[i];
|
|
|
|
if (Proto && i < Proto->getNumArgs()) {
|
|
InitializedEntity Entity
|
|
= InitializedEntity::InitializeParameter(Context,
|
|
Proto->getArgType(i));
|
|
ExprResult ArgE = PerformCopyInitialization(Entity,
|
|
SourceLocation(),
|
|
Owned(Arg));
|
|
if (ArgE.isInvalid())
|
|
return true;
|
|
|
|
Arg = ArgE.takeAs<Expr>();
|
|
|
|
} else {
|
|
DefaultArgumentPromotion(Arg);
|
|
}
|
|
|
|
if (RequireCompleteType(Arg->getSourceRange().getBegin(),
|
|
Arg->getType(),
|
|
PDiag(diag::err_call_incomplete_argument)
|
|
<< Arg->getSourceRange()))
|
|
return ExprError();
|
|
|
|
TheCall->setArg(i, Arg);
|
|
}
|
|
}
|
|
|
|
if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
|
|
if (!Method->isStatic())
|
|
return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
|
|
<< Fn->getSourceRange());
|
|
|
|
// Check for sentinels
|
|
if (NDecl)
|
|
DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
|
|
|
|
// Do special checking on direct calls to functions.
|
|
if (FDecl) {
|
|
if (CheckFunctionCall(FDecl, TheCall))
|
|
return ExprError();
|
|
|
|
if (BuiltinID)
|
|
return CheckBuiltinFunctionCall(BuiltinID, TheCall);
|
|
} else if (NDecl) {
|
|
if (CheckBlockCall(NDecl, TheCall))
|
|
return ExprError();
|
|
}
|
|
|
|
return MaybeBindToTemporary(TheCall);
|
|
}
|
|
|
|
ExprResult
|
|
Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
|
|
SourceLocation RParenLoc, Expr *InitExpr) {
|
|
assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
|
|
// FIXME: put back this assert when initializers are worked out.
|
|
//assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
|
|
|
|
TypeSourceInfo *TInfo;
|
|
QualType literalType = GetTypeFromParser(Ty, &TInfo);
|
|
if (!TInfo)
|
|
TInfo = Context.getTrivialTypeSourceInfo(literalType);
|
|
|
|
return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
|
|
}
|
|
|
|
ExprResult
|
|
Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
|
|
SourceLocation RParenLoc, Expr *literalExpr) {
|
|
QualType literalType = TInfo->getType();
|
|
|
|
if (literalType->isArrayType()) {
|
|
if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
|
|
PDiag(diag::err_illegal_decl_array_incomplete_type)
|
|
<< SourceRange(LParenLoc,
|
|
literalExpr->getSourceRange().getEnd())))
|
|
return ExprError();
|
|
if (literalType->isVariableArrayType())
|
|
return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
|
|
<< SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
|
|
} else if (!literalType->isDependentType() &&
|
|
RequireCompleteType(LParenLoc, literalType,
|
|
PDiag(diag::err_typecheck_decl_incomplete_type)
|
|
<< SourceRange(LParenLoc,
|
|
literalExpr->getSourceRange().getEnd())))
|
|
return ExprError();
|
|
|
|
InitializedEntity Entity
|
|
= InitializedEntity::InitializeTemporary(literalType);
|
|
InitializationKind Kind
|
|
= InitializationKind::CreateCast(SourceRange(LParenLoc, RParenLoc),
|
|
/*IsCStyleCast=*/true);
|
|
InitializationSequence InitSeq(*this, Entity, Kind, &literalExpr, 1);
|
|
ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
|
|
MultiExprArg(*this, &literalExpr, 1),
|
|
&literalType);
|
|
if (Result.isInvalid())
|
|
return ExprError();
|
|
literalExpr = Result.get();
|
|
|
|
bool isFileScope = getCurFunctionOrMethodDecl() == 0;
|
|
if (isFileScope) { // 6.5.2.5p3
|
|
if (CheckForConstantInitializer(literalExpr, literalType))
|
|
return ExprError();
|
|
}
|
|
|
|
// In C, compound literals are l-values for some reason.
|
|
ExprValueKind VK = getLangOptions().CPlusPlus ? VK_RValue : VK_LValue;
|
|
|
|
return Owned(new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
|
|
VK, literalExpr, isFileScope));
|
|
}
|
|
|
|
ExprResult
|
|
Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
|
|
SourceLocation RBraceLoc) {
|
|
unsigned NumInit = initlist.size();
|
|
Expr **InitList = initlist.release();
|
|
|
|
// Semantic analysis for initializers is done by ActOnDeclarator() and
|
|
// CheckInitializer() - it requires knowledge of the object being intialized.
|
|
|
|
InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList,
|
|
NumInit, RBraceLoc);
|
|
E->setType(Context.VoidTy); // FIXME: just a place holder for now.
|
|
return Owned(E);
|
|
}
|
|
|
|
/// Prepares for a scalar cast, performing all the necessary stages
|
|
/// except the final cast and returning the kind required.
|
|
static CastKind PrepareScalarCast(Sema &S, Expr *&Src, QualType DestTy) {
|
|
// Both Src and Dest are scalar types, i.e. arithmetic or pointer.
|
|
// Also, callers should have filtered out the invalid cases with
|
|
// pointers. Everything else should be possible.
|
|
|
|
QualType SrcTy = Src->getType();
|
|
if (S.Context.hasSameUnqualifiedType(SrcTy, DestTy))
|
|
return CK_NoOp;
|
|
|
|
switch (SrcTy->getScalarTypeKind()) {
|
|
case Type::STK_MemberPointer:
|
|
llvm_unreachable("member pointer type in C");
|
|
|
|
case Type::STK_Pointer:
|
|
switch (DestTy->getScalarTypeKind()) {
|
|
case Type::STK_Pointer:
|
|
return DestTy->isObjCObjectPointerType() ?
|
|
CK_AnyPointerToObjCPointerCast :
|
|
CK_BitCast;
|
|
case Type::STK_Bool:
|
|
return CK_PointerToBoolean;
|
|
case Type::STK_Integral:
|
|
return CK_PointerToIntegral;
|
|
case Type::STK_Floating:
|
|
case Type::STK_FloatingComplex:
|
|
case Type::STK_IntegralComplex:
|
|
case Type::STK_MemberPointer:
|
|
llvm_unreachable("illegal cast from pointer");
|
|
}
|
|
break;
|
|
|
|
case Type::STK_Bool: // casting from bool is like casting from an integer
|
|
case Type::STK_Integral:
|
|
switch (DestTy->getScalarTypeKind()) {
|
|
case Type::STK_Pointer:
|
|
if (Src->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNull))
|
|
return CK_NullToPointer;
|
|
return CK_IntegralToPointer;
|
|
case Type::STK_Bool:
|
|
return CK_IntegralToBoolean;
|
|
case Type::STK_Integral:
|
|
return CK_IntegralCast;
|
|
case Type::STK_Floating:
|
|
return CK_IntegralToFloating;
|
|
case Type::STK_IntegralComplex:
|
|
S.ImpCastExprToType(Src, DestTy->getAs<ComplexType>()->getElementType(),
|
|
CK_IntegralCast);
|
|
return CK_IntegralRealToComplex;
|
|
case Type::STK_FloatingComplex:
|
|
S.ImpCastExprToType(Src, DestTy->getAs<ComplexType>()->getElementType(),
|
|
CK_IntegralToFloating);
|
|
return CK_FloatingRealToComplex;
|
|
case Type::STK_MemberPointer:
|
|
llvm_unreachable("member pointer type in C");
|
|
}
|
|
break;
|
|
|
|
case Type::STK_Floating:
|
|
switch (DestTy->getScalarTypeKind()) {
|
|
case Type::STK_Floating:
|
|
return CK_FloatingCast;
|
|
case Type::STK_Bool:
|
|
return CK_FloatingToBoolean;
|
|
case Type::STK_Integral:
|
|
return CK_FloatingToIntegral;
|
|
case Type::STK_FloatingComplex:
|
|
S.ImpCastExprToType(Src, DestTy->getAs<ComplexType>()->getElementType(),
|
|
CK_FloatingCast);
|
|
return CK_FloatingRealToComplex;
|
|
case Type::STK_IntegralComplex:
|
|
S.ImpCastExprToType(Src, DestTy->getAs<ComplexType>()->getElementType(),
|
|
CK_FloatingToIntegral);
|
|
return CK_IntegralRealToComplex;
|
|
case Type::STK_Pointer:
|
|
llvm_unreachable("valid float->pointer cast?");
|
|
case Type::STK_MemberPointer:
|
|
llvm_unreachable("member pointer type in C");
|
|
}
|
|
break;
|
|
|
|
case Type::STK_FloatingComplex:
|
|
switch (DestTy->getScalarTypeKind()) {
|
|
case Type::STK_FloatingComplex:
|
|
return CK_FloatingComplexCast;
|
|
case Type::STK_IntegralComplex:
|
|
return CK_FloatingComplexToIntegralComplex;
|
|
case Type::STK_Floating: {
|
|
QualType ET = SrcTy->getAs<ComplexType>()->getElementType();
|
|
if (S.Context.hasSameType(ET, DestTy))
|
|
return CK_FloatingComplexToReal;
|
|
S.ImpCastExprToType(Src, ET, CK_FloatingComplexToReal);
|
|
return CK_FloatingCast;
|
|
}
|
|
case Type::STK_Bool:
|
|
return CK_FloatingComplexToBoolean;
|
|
case Type::STK_Integral:
|
|
S.ImpCastExprToType(Src, SrcTy->getAs<ComplexType>()->getElementType(),
|
|
CK_FloatingComplexToReal);
|
|
return CK_FloatingToIntegral;
|
|
case Type::STK_Pointer:
|
|
llvm_unreachable("valid complex float->pointer cast?");
|
|
case Type::STK_MemberPointer:
|
|
llvm_unreachable("member pointer type in C");
|
|
}
|
|
break;
|
|
|
|
case Type::STK_IntegralComplex:
|
|
switch (DestTy->getScalarTypeKind()) {
|
|
case Type::STK_FloatingComplex:
|
|
return CK_IntegralComplexToFloatingComplex;
|
|
case Type::STK_IntegralComplex:
|
|
return CK_IntegralComplexCast;
|
|
case Type::STK_Integral: {
|
|
QualType ET = SrcTy->getAs<ComplexType>()->getElementType();
|
|
if (S.Context.hasSameType(ET, DestTy))
|
|
return CK_IntegralComplexToReal;
|
|
S.ImpCastExprToType(Src, ET, CK_IntegralComplexToReal);
|
|
return CK_IntegralCast;
|
|
}
|
|
case Type::STK_Bool:
|
|
return CK_IntegralComplexToBoolean;
|
|
case Type::STK_Floating:
|
|
S.ImpCastExprToType(Src, SrcTy->getAs<ComplexType>()->getElementType(),
|
|
CK_IntegralComplexToReal);
|
|
return CK_IntegralToFloating;
|
|
case Type::STK_Pointer:
|
|
llvm_unreachable("valid complex int->pointer cast?");
|
|
case Type::STK_MemberPointer:
|
|
llvm_unreachable("member pointer type in C");
|
|
}
|
|
break;
|
|
}
|
|
|
|
llvm_unreachable("Unhandled scalar cast");
|
|
return CK_BitCast;
|
|
}
|
|
|
|
/// CheckCastTypes - Check type constraints for casting between types.
|
|
bool Sema::CheckCastTypes(SourceRange TyR, QualType castType,
|
|
Expr *&castExpr, CastKind& Kind, ExprValueKind &VK,
|
|
CXXCastPath &BasePath, bool FunctionalStyle) {
|
|
if (getLangOptions().CPlusPlus)
|
|
return CXXCheckCStyleCast(SourceRange(TyR.getBegin(),
|
|
castExpr->getLocEnd()),
|
|
castType, VK, castExpr, Kind, BasePath,
|
|
FunctionalStyle);
|
|
|
|
// We only support r-value casts in C.
|
|
VK = VK_RValue;
|
|
|
|
// C99 6.5.4p2: the cast type needs to be void or scalar and the expression
|
|
// type needs to be scalar.
|
|
if (castType->isVoidType()) {
|
|
// We don't necessarily do lvalue-to-rvalue conversions on this.
|
|
IgnoredValueConversions(castExpr);
|
|
|
|
// Cast to void allows any expr type.
|
|
Kind = CK_ToVoid;
|
|
return false;
|
|
}
|
|
|
|
DefaultFunctionArrayLvalueConversion(castExpr);
|
|
|
|
if (RequireCompleteType(TyR.getBegin(), castType,
|
|
diag::err_typecheck_cast_to_incomplete))
|
|
return true;
|
|
|
|
if (!castType->isScalarType() && !castType->isVectorType()) {
|
|
if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) &&
|
|
(castType->isStructureType() || castType->isUnionType())) {
|
|
// GCC struct/union extension: allow cast to self.
|
|
// FIXME: Check that the cast destination type is complete.
|
|
Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
|
|
<< castType << castExpr->getSourceRange();
|
|
Kind = CK_NoOp;
|
|
return false;
|
|
}
|
|
|
|
if (castType->isUnionType()) {
|
|
// GCC cast to union extension
|
|
RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
|
|
RecordDecl::field_iterator Field, FieldEnd;
|
|
for (Field = RD->field_begin(), FieldEnd = RD->field_end();
|
|
Field != FieldEnd; ++Field) {
|
|
if (Context.hasSameUnqualifiedType(Field->getType(),
|
|
castExpr->getType()) &&
|
|
!Field->isUnnamedBitfield()) {
|
|
Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
|
|
<< castExpr->getSourceRange();
|
|
break;
|
|
}
|
|
}
|
|
if (Field == FieldEnd)
|
|
return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
|
|
<< castExpr->getType() << castExpr->getSourceRange();
|
|
Kind = CK_ToUnion;
|
|
return false;
|
|
}
|
|
|
|
// Reject any other conversions to non-scalar types.
|
|
return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
|
|
<< castType << castExpr->getSourceRange();
|
|
}
|
|
|
|
// The type we're casting to is known to be a scalar or vector.
|
|
|
|
// Require the operand to be a scalar or vector.
|
|
if (!castExpr->getType()->isScalarType() &&
|
|
!castExpr->getType()->isVectorType()) {
|
|
return Diag(castExpr->getLocStart(),
|
|
diag::err_typecheck_expect_scalar_operand)
|
|
<< castExpr->getType() << castExpr->getSourceRange();
|
|
}
|
|
|
|
if (castType->isExtVectorType())
|
|
return CheckExtVectorCast(TyR, castType, castExpr, Kind);
|
|
|
|
if (castType->isVectorType()) {
|
|
if (castType->getAs<VectorType>()->getVectorKind() ==
|
|
VectorType::AltiVecVector &&
|
|
(castExpr->getType()->isIntegerType() ||
|
|
castExpr->getType()->isFloatingType())) {
|
|
Kind = CK_VectorSplat;
|
|
return false;
|
|
} else
|
|
return CheckVectorCast(TyR, castType, castExpr->getType(), Kind);
|
|
}
|
|
if (castExpr->getType()->isVectorType())
|
|
return CheckVectorCast(TyR, castExpr->getType(), castType, Kind);
|
|
|
|
// The source and target types are both scalars, i.e.
|
|
// - arithmetic types (fundamental, enum, and complex)
|
|
// - all kinds of pointers
|
|
// Note that member pointers were filtered out with C++, above.
|
|
|
|
if (isa<ObjCSelectorExpr>(castExpr))
|
|
return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
|
|
|
|
// If either type is a pointer, the other type has to be either an
|
|
// integer or a pointer.
|
|
if (!castType->isArithmeticType()) {
|
|
QualType castExprType = castExpr->getType();
|
|
if (!castExprType->isIntegralType(Context) &&
|
|
castExprType->isArithmeticType())
|
|
return Diag(castExpr->getLocStart(),
|
|
diag::err_cast_pointer_from_non_pointer_int)
|
|
<< castExprType << castExpr->getSourceRange();
|
|
} else if (!castExpr->getType()->isArithmeticType()) {
|
|
if (!castType->isIntegralType(Context) && castType->isArithmeticType())
|
|
return Diag(castExpr->getLocStart(),
|
|
diag::err_cast_pointer_to_non_pointer_int)
|
|
<< castType << castExpr->getSourceRange();
|
|
}
|
|
|
|
Kind = PrepareScalarCast(*this, castExpr, castType);
|
|
|
|
if (Kind == CK_BitCast)
|
|
CheckCastAlign(castExpr, castType, TyR);
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
|
|
CastKind &Kind) {
|
|
assert(VectorTy->isVectorType() && "Not a vector type!");
|
|
|
|
if (Ty->isVectorType() || Ty->isIntegerType()) {
|
|
if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
|
|
return Diag(R.getBegin(),
|
|
Ty->isVectorType() ?
|
|
diag::err_invalid_conversion_between_vectors :
|
|
diag::err_invalid_conversion_between_vector_and_integer)
|
|
<< VectorTy << Ty << R;
|
|
} else
|
|
return Diag(R.getBegin(),
|
|
diag::err_invalid_conversion_between_vector_and_scalar)
|
|
<< VectorTy << Ty << R;
|
|
|
|
Kind = CK_BitCast;
|
|
return false;
|
|
}
|
|
|
|
bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *&CastExpr,
|
|
CastKind &Kind) {
|
|
assert(DestTy->isExtVectorType() && "Not an extended vector type!");
|
|
|
|
QualType SrcTy = CastExpr->getType();
|
|
|
|
// If SrcTy is a VectorType, the total size must match to explicitly cast to
|
|
// an ExtVectorType.
|
|
if (SrcTy->isVectorType()) {
|
|
if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
|
|
return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
|
|
<< DestTy << SrcTy << R;
|
|
Kind = CK_BitCast;
|
|
return false;
|
|
}
|
|
|
|
// All non-pointer scalars can be cast to ExtVector type. The appropriate
|
|
// conversion will take place first from scalar to elt type, and then
|
|
// splat from elt type to vector.
|
|
if (SrcTy->isPointerType())
|
|
return Diag(R.getBegin(),
|
|
diag::err_invalid_conversion_between_vector_and_scalar)
|
|
<< DestTy << SrcTy << R;
|
|
|
|
QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
|
|
ImpCastExprToType(CastExpr, DestElemTy,
|
|
PrepareScalarCast(*this, CastExpr, DestElemTy));
|
|
|
|
Kind = CK_VectorSplat;
|
|
return false;
|
|
}
|
|
|
|
ExprResult
|
|
Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, ParsedType Ty,
|
|
SourceLocation RParenLoc, Expr *castExpr) {
|
|
assert((Ty != 0) && (castExpr != 0) &&
|
|
"ActOnCastExpr(): missing type or expr");
|
|
|
|
TypeSourceInfo *castTInfo;
|
|
QualType castType = GetTypeFromParser(Ty, &castTInfo);
|
|
if (!castTInfo)
|
|
castTInfo = Context.getTrivialTypeSourceInfo(castType);
|
|
|
|
// If the Expr being casted is a ParenListExpr, handle it specially.
|
|
if (isa<ParenListExpr>(castExpr))
|
|
return ActOnCastOfParenListExpr(S, LParenLoc, RParenLoc, castExpr,
|
|
castTInfo);
|
|
|
|
return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, castExpr);
|
|
}
|
|
|
|
ExprResult
|
|
Sema::BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty,
|
|
SourceLocation RParenLoc, Expr *castExpr) {
|
|
CastKind Kind = CK_Invalid;
|
|
ExprValueKind VK = VK_RValue;
|
|
CXXCastPath BasePath;
|
|
if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), Ty->getType(), castExpr,
|
|
Kind, VK, BasePath))
|
|
return ExprError();
|
|
|
|
return Owned(CStyleCastExpr::Create(Context,
|
|
Ty->getType().getNonLValueExprType(Context),
|
|
VK, Kind, castExpr, &BasePath, Ty,
|
|
LParenLoc, RParenLoc));
|
|
}
|
|
|
|
/// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
|
|
/// of comma binary operators.
|
|
ExprResult
|
|
Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *expr) {
|
|
ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
|
|
if (!E)
|
|
return Owned(expr);
|
|
|
|
ExprResult Result(E->getExpr(0));
|
|
|
|
for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
|
|
Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
|
|
E->getExpr(i));
|
|
|
|
if (Result.isInvalid()) return ExprError();
|
|
|
|
return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
|
|
}
|
|
|
|
ExprResult
|
|
Sema::ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc,
|
|
SourceLocation RParenLoc, Expr *Op,
|
|
TypeSourceInfo *TInfo) {
|
|
ParenListExpr *PE = cast<ParenListExpr>(Op);
|
|
QualType Ty = TInfo->getType();
|
|
bool isVectorLiteral = false;
|
|
|
|
// Check for an altivec or OpenCL literal,
|
|
// i.e. all the elements are integer constants.
|
|
if (getLangOptions().AltiVec && Ty->isVectorType()) {
|
|
if (PE->getNumExprs() == 0) {
|
|
Diag(PE->getExprLoc(), diag::err_altivec_empty_initializer);
|
|
return ExprError();
|
|
}
|
|
if (PE->getNumExprs() == 1) {
|
|
if (!PE->getExpr(0)->getType()->isVectorType())
|
|
isVectorLiteral = true;
|
|
}
|
|
else
|
|
isVectorLiteral = true;
|
|
}
|
|
|
|
// If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
|
|
// then handle it as such.
|
|
if (isVectorLiteral) {
|
|
llvm::SmallVector<Expr *, 8> initExprs;
|
|
// '(...)' form of vector initialization in AltiVec: the number of
|
|
// initializers must be one or must match the size of the vector.
|
|
// If a single value is specified in the initializer then it will be
|
|
// replicated to all the components of the vector
|
|
if (Ty->getAs<VectorType>()->getVectorKind() ==
|
|
VectorType::AltiVecVector) {
|
|
unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
|
|
// The number of initializers must be one or must match the size of the
|
|
// vector. If a single value is specified in the initializer then it will
|
|
// be replicated to all the components of the vector
|
|
if (PE->getNumExprs() == 1) {
|
|
QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
|
|
Expr *Literal = PE->getExpr(0);
|
|
ImpCastExprToType(Literal, ElemTy,
|
|
PrepareScalarCast(*this, Literal, ElemTy));
|
|
return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal);
|
|
}
|
|
else if (PE->getNumExprs() < numElems) {
|
|
Diag(PE->getExprLoc(),
|
|
diag::err_incorrect_number_of_vector_initializers);
|
|
return ExprError();
|
|
}
|
|
else
|
|
for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i)
|
|
initExprs.push_back(PE->getExpr(i));
|
|
}
|
|
else
|
|
for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i)
|
|
initExprs.push_back(PE->getExpr(i));
|
|
|
|
// FIXME: This means that pretty-printing the final AST will produce curly
|
|
// braces instead of the original commas.
|
|
InitListExpr *E = new (Context) InitListExpr(Context, LParenLoc,
|
|
&initExprs[0],
|
|
initExprs.size(), RParenLoc);
|
|
E->setType(Ty);
|
|
return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, E);
|
|
} else {
|
|
// This is not an AltiVec-style cast, so turn the ParenListExpr into a
|
|
// sequence of BinOp comma operators.
|
|
ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Op);
|
|
if (Result.isInvalid()) return ExprError();
|
|
return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Result.take());
|
|
}
|
|
}
|
|
|
|
ExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L,
|
|
SourceLocation R,
|
|
MultiExprArg Val,
|
|
ParsedType TypeOfCast) {
|
|
unsigned nexprs = Val.size();
|
|
Expr **exprs = reinterpret_cast<Expr**>(Val.release());
|
|
assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
|
|
Expr *expr;
|
|
if (nexprs == 1 && TypeOfCast && !TypeIsVectorType(TypeOfCast))
|
|
expr = new (Context) ParenExpr(L, R, exprs[0]);
|
|
else
|
|
expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
|
|
return Owned(expr);
|
|
}
|
|
|
|
/// \brief Emit a specialized diagnostic when one expression is a null pointer
|
|
/// constant and the other is not a pointer.
|
|
bool Sema::DiagnoseConditionalForNull(Expr *LHS, Expr *RHS,
|
|
SourceLocation QuestionLoc) {
|
|
Expr *NullExpr = LHS;
|
|
Expr *NonPointerExpr = RHS;
|
|
Expr::NullPointerConstantKind NullKind =
|
|
NullExpr->isNullPointerConstant(Context,
|
|
Expr::NPC_ValueDependentIsNotNull);
|
|
|
|
if (NullKind == Expr::NPCK_NotNull) {
|
|
NullExpr = RHS;
|
|
NonPointerExpr = LHS;
|
|
NullKind =
|
|
NullExpr->isNullPointerConstant(Context,
|
|
Expr::NPC_ValueDependentIsNotNull);
|
|
}
|
|
|
|
if (NullKind == Expr::NPCK_NotNull)
|
|
return false;
|
|
|
|
if (NullKind == Expr::NPCK_ZeroInteger) {
|
|
// In this case, check to make sure that we got here from a "NULL"
|
|
// string in the source code.
|
|
NullExpr = NullExpr->IgnoreParenImpCasts();
|
|
SourceLocation loc = NullExpr->getExprLoc();
|
|
if (!findMacroSpelling(loc, "NULL"))
|
|
return false;
|
|
}
|
|
|
|
int DiagType = (NullKind == Expr::NPCK_CXX0X_nullptr);
|
|
Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
|
|
<< NonPointerExpr->getType() << DiagType
|
|
<< NonPointerExpr->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
|
|
/// In that case, lhs = cond.
|
|
/// C99 6.5.15
|
|
QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
|
|
ExprValueKind &VK, ExprObjectKind &OK,
|
|
SourceLocation QuestionLoc) {
|
|
|
|
// If either LHS or RHS are overloaded functions, try to resolve them.
|
|
if (LHS->getType() == Context.OverloadTy ||
|
|
RHS->getType() == Context.OverloadTy) {
|
|
ExprResult LHSResult = CheckPlaceholderExpr(LHS, QuestionLoc);
|
|
if (LHSResult.isInvalid())
|
|
return QualType();
|
|
|
|
ExprResult RHSResult = CheckPlaceholderExpr(RHS, QuestionLoc);
|
|
if (RHSResult.isInvalid())
|
|
return QualType();
|
|
|
|
LHS = LHSResult.take();
|
|
RHS = RHSResult.take();
|
|
}
|
|
|
|
// C++ is sufficiently different to merit its own checker.
|
|
if (getLangOptions().CPlusPlus)
|
|
return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
|
|
|
|
VK = VK_RValue;
|
|
OK = OK_Ordinary;
|
|
|
|
UsualUnaryConversions(Cond);
|
|
UsualUnaryConversions(LHS);
|
|
UsualUnaryConversions(RHS);
|
|
QualType CondTy = Cond->getType();
|
|
QualType LHSTy = LHS->getType();
|
|
QualType RHSTy = RHS->getType();
|
|
|
|
// first, check the condition.
|
|
if (!CondTy->isScalarType()) { // C99 6.5.15p2
|
|
// OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar.
|
|
// Throw an error if its not either.
|
|
if (getLangOptions().OpenCL) {
|
|
if (!CondTy->isVectorType()) {
|
|
Diag(Cond->getLocStart(),
|
|
diag::err_typecheck_cond_expect_scalar_or_vector)
|
|
<< CondTy;
|
|
return QualType();
|
|
}
|
|
}
|
|
else {
|
|
Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
|
|
<< CondTy;
|
|
return QualType();
|
|
}
|
|
}
|
|
|
|
// Now check the two expressions.
|
|
if (LHSTy->isVectorType() || RHSTy->isVectorType())
|
|
return CheckVectorOperands(QuestionLoc, LHS, RHS);
|
|
|
|
// OpenCL: If the condition is a vector, and both operands are scalar,
|
|
// attempt to implicity convert them to the vector type to act like the
|
|
// built in select.
|
|
if (getLangOptions().OpenCL && CondTy->isVectorType()) {
|
|
// Both operands should be of scalar type.
|
|
if (!LHSTy->isScalarType()) {
|
|
Diag(LHS->getLocStart(), diag::err_typecheck_cond_expect_scalar)
|
|
<< CondTy;
|
|
return QualType();
|
|
}
|
|
if (!RHSTy->isScalarType()) {
|
|
Diag(RHS->getLocStart(), diag::err_typecheck_cond_expect_scalar)
|
|
<< CondTy;
|
|
return QualType();
|
|
}
|
|
// Implicity convert these scalars to the type of the condition.
|
|
ImpCastExprToType(LHS, CondTy, CK_IntegralCast);
|
|
ImpCastExprToType(RHS, CondTy, CK_IntegralCast);
|
|
}
|
|
|
|
// If both operands have arithmetic type, do the usual arithmetic conversions
|
|
// to find a common type: C99 6.5.15p3,5.
|
|
if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
|
|
UsualArithmeticConversions(LHS, RHS);
|
|
return LHS->getType();
|
|
}
|
|
|
|
// If both operands are the same structure or union type, the result is that
|
|
// type.
|
|
if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3
|
|
if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
|
|
if (LHSRT->getDecl() == RHSRT->getDecl())
|
|
// "If both the operands have structure or union type, the result has
|
|
// that type." This implies that CV qualifiers are dropped.
|
|
return LHSTy.getUnqualifiedType();
|
|
// FIXME: Type of conditional expression must be complete in C mode.
|
|
}
|
|
|
|
// C99 6.5.15p5: "If both operands have void type, the result has void type."
|
|
// The following || allows only one side to be void (a GCC-ism).
|
|
if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
|
|
if (!LHSTy->isVoidType())
|
|
Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
|
|
<< RHS->getSourceRange();
|
|
if (!RHSTy->isVoidType())
|
|
Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
|
|
<< LHS->getSourceRange();
|
|
ImpCastExprToType(LHS, Context.VoidTy, CK_ToVoid);
|
|
ImpCastExprToType(RHS, Context.VoidTy, CK_ToVoid);
|
|
return Context.VoidTy;
|
|
}
|
|
// C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
|
|
// the type of the other operand."
|
|
if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
|
|
RHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
|
|
// promote the null to a pointer.
|
|
ImpCastExprToType(RHS, LHSTy, CK_NullToPointer);
|
|
return LHSTy;
|
|
}
|
|
if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
|
|
LHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
|
|
ImpCastExprToType(LHS, RHSTy, CK_NullToPointer);
|
|
return RHSTy;
|
|
}
|
|
|
|
// All objective-c pointer type analysis is done here.
|
|
QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
|
|
QuestionLoc);
|
|
if (!compositeType.isNull())
|
|
return compositeType;
|
|
|
|
|
|
// Handle block pointer types.
|
|
if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
|
|
if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
|
|
if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
|
|
QualType destType = Context.getPointerType(Context.VoidTy);
|
|
ImpCastExprToType(LHS, destType, CK_BitCast);
|
|
ImpCastExprToType(RHS, destType, CK_BitCast);
|
|
return destType;
|
|
}
|
|
Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
|
|
<< LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
|
|
return QualType();
|
|
}
|
|
// We have 2 block pointer types.
|
|
if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
|
|
// Two identical block pointer types are always compatible.
|
|
return LHSTy;
|
|
}
|
|
// The block pointer types aren't identical, continue checking.
|
|
QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
|
|
QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
|
|
|
|
if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
|
|
rhptee.getUnqualifiedType())) {
|
|
Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
|
|
<< LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
|
|
// In this situation, we assume void* type. No especially good
|
|
// reason, but this is what gcc does, and we do have to pick
|
|
// to get a consistent AST.
|
|
QualType incompatTy = Context.getPointerType(Context.VoidTy);
|
|
ImpCastExprToType(LHS, incompatTy, CK_BitCast);
|
|
ImpCastExprToType(RHS, incompatTy, CK_BitCast);
|
|
return incompatTy;
|
|
}
|
|
// The block pointer types are compatible.
|
|
ImpCastExprToType(LHS, LHSTy, CK_BitCast);
|
|
ImpCastExprToType(RHS, LHSTy, CK_BitCast);
|
|
return LHSTy;
|
|
}
|
|
|
|
// Check constraints for C object pointers types (C99 6.5.15p3,6).
|
|
if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
|
|
// get the "pointed to" types
|
|
QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
|
|
QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
|
|
|
|
// ignore qualifiers on void (C99 6.5.15p3, clause 6)
|
|
if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
|
|
// Figure out necessary qualifiers (C99 6.5.15p6)
|
|
QualType destPointee
|
|
= Context.getQualifiedType(lhptee, rhptee.getQualifiers());
|
|
QualType destType = Context.getPointerType(destPointee);
|
|
// Add qualifiers if necessary.
|
|
ImpCastExprToType(LHS, destType, CK_NoOp);
|
|
// Promote to void*.
|
|
ImpCastExprToType(RHS, destType, CK_BitCast);
|
|
return destType;
|
|
}
|
|
if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
|
|
QualType destPointee
|
|
= Context.getQualifiedType(rhptee, lhptee.getQualifiers());
|
|
QualType destType = Context.getPointerType(destPointee);
|
|
// Add qualifiers if necessary.
|
|
ImpCastExprToType(RHS, destType, CK_NoOp);
|
|
// Promote to void*.
|
|
ImpCastExprToType(LHS, destType, CK_BitCast);
|
|
return destType;
|
|
}
|
|
|
|
if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
|
|
// Two identical pointer types are always compatible.
|
|
return LHSTy;
|
|
}
|
|
if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
|
|
rhptee.getUnqualifiedType())) {
|
|
Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
|
|
<< LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
|
|
// In this situation, we assume void* type. No especially good
|
|
// reason, but this is what gcc does, and we do have to pick
|
|
// to get a consistent AST.
|
|
QualType incompatTy = Context.getPointerType(Context.VoidTy);
|
|
ImpCastExprToType(LHS, incompatTy, CK_BitCast);
|
|
ImpCastExprToType(RHS, incompatTy, CK_BitCast);
|
|
return incompatTy;
|
|
}
|
|
// The pointer types are compatible.
|
|
// C99 6.5.15p6: If both operands are pointers to compatible types *or* to
|
|
// differently qualified versions of compatible types, the result type is
|
|
// a pointer to an appropriately qualified version of the *composite*
|
|
// type.
|
|
// FIXME: Need to calculate the composite type.
|
|
// FIXME: Need to add qualifiers
|
|
ImpCastExprToType(LHS, LHSTy, CK_BitCast);
|
|
ImpCastExprToType(RHS, LHSTy, CK_BitCast);
|
|
return LHSTy;
|
|
}
|
|
|
|
// GCC compatibility: soften pointer/integer mismatch. Note that
|
|
// null pointers have been filtered out by this point.
|
|
if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
|
|
Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
|
|
<< LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
|
|
ImpCastExprToType(LHS, RHSTy, CK_IntegralToPointer);
|
|
return RHSTy;
|
|
}
|
|
if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
|
|
Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
|
|
<< LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
|
|
ImpCastExprToType(RHS, LHSTy, CK_IntegralToPointer);
|
|
return LHSTy;
|
|
}
|
|
|
|
// Emit a better diagnostic if one of the expressions is a null pointer
|
|
// constant and the other is not a pointer type. In this case, the user most
|
|
// likely forgot to take the address of the other expression.
|
|
if (DiagnoseConditionalForNull(LHS, RHS, QuestionLoc))
|
|
return QualType();
|
|
|
|
// Otherwise, the operands are not compatible.
|
|
Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
|
|
<< LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
/// FindCompositeObjCPointerType - Helper method to find composite type of
|
|
/// two objective-c pointer types of the two input expressions.
|
|
QualType Sema::FindCompositeObjCPointerType(Expr *&LHS, Expr *&RHS,
|
|
SourceLocation QuestionLoc) {
|
|
QualType LHSTy = LHS->getType();
|
|
QualType RHSTy = RHS->getType();
|
|
|
|
// Handle things like Class and struct objc_class*. Here we case the result
|
|
// to the pseudo-builtin, because that will be implicitly cast back to the
|
|
// redefinition type if an attempt is made to access its fields.
|
|
if (LHSTy->isObjCClassType() &&
|
|
(Context.hasSameType(RHSTy, Context.ObjCClassRedefinitionType))) {
|
|
ImpCastExprToType(RHS, LHSTy, CK_BitCast);
|
|
return LHSTy;
|
|
}
|
|
if (RHSTy->isObjCClassType() &&
|
|
(Context.hasSameType(LHSTy, Context.ObjCClassRedefinitionType))) {
|
|
ImpCastExprToType(LHS, RHSTy, CK_BitCast);
|
|
return RHSTy;
|
|
}
|
|
// And the same for struct objc_object* / id
|
|
if (LHSTy->isObjCIdType() &&
|
|
(Context.hasSameType(RHSTy, Context.ObjCIdRedefinitionType))) {
|
|
ImpCastExprToType(RHS, LHSTy, CK_BitCast);
|
|
return LHSTy;
|
|
}
|
|
if (RHSTy->isObjCIdType() &&
|
|
(Context.hasSameType(LHSTy, Context.ObjCIdRedefinitionType))) {
|
|
ImpCastExprToType(LHS, RHSTy, CK_BitCast);
|
|
return RHSTy;
|
|
}
|
|
// And the same for struct objc_selector* / SEL
|
|
if (Context.isObjCSelType(LHSTy) &&
|
|
(Context.hasSameType(RHSTy, Context.ObjCSelRedefinitionType))) {
|
|
ImpCastExprToType(RHS, LHSTy, CK_BitCast);
|
|
return LHSTy;
|
|
}
|
|
if (Context.isObjCSelType(RHSTy) &&
|
|
(Context.hasSameType(LHSTy, Context.ObjCSelRedefinitionType))) {
|
|
ImpCastExprToType(LHS, RHSTy, CK_BitCast);
|
|
return RHSTy;
|
|
}
|
|
// Check constraints for Objective-C object pointers types.
|
|
if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
|
|
|
|
if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
|
|
// Two identical object pointer types are always compatible.
|
|
return LHSTy;
|
|
}
|
|
const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
|
|
const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
|
|
QualType compositeType = LHSTy;
|
|
|
|
// If both operands are interfaces and either operand can be
|
|
// assigned to the other, use that type as the composite
|
|
// type. This allows
|
|
// xxx ? (A*) a : (B*) b
|
|
// where B is a subclass of A.
|
|
//
|
|
// Additionally, as for assignment, if either type is 'id'
|
|
// allow silent coercion. Finally, if the types are
|
|
// incompatible then make sure to use 'id' as the composite
|
|
// type so the result is acceptable for sending messages to.
|
|
|
|
// FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
|
|
// It could return the composite type.
|
|
if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
|
|
compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
|
|
} else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
|
|
compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
|
|
} else if ((LHSTy->isObjCQualifiedIdType() ||
|
|
RHSTy->isObjCQualifiedIdType()) &&
|
|
Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
|
|
// Need to handle "id<xx>" explicitly.
|
|
// GCC allows qualified id and any Objective-C type to devolve to
|
|
// id. Currently localizing to here until clear this should be
|
|
// part of ObjCQualifiedIdTypesAreCompatible.
|
|
compositeType = Context.getObjCIdType();
|
|
} else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
|
|
compositeType = Context.getObjCIdType();
|
|
} else if (!(compositeType =
|
|
Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
|
|
;
|
|
else {
|
|
Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
|
|
<< LHSTy << RHSTy
|
|
<< LHS->getSourceRange() << RHS->getSourceRange();
|
|
QualType incompatTy = Context.getObjCIdType();
|
|
ImpCastExprToType(LHS, incompatTy, CK_BitCast);
|
|
ImpCastExprToType(RHS, incompatTy, CK_BitCast);
|
|
return incompatTy;
|
|
}
|
|
// The object pointer types are compatible.
|
|
ImpCastExprToType(LHS, compositeType, CK_BitCast);
|
|
ImpCastExprToType(RHS, compositeType, CK_BitCast);
|
|
return compositeType;
|
|
}
|
|
// Check Objective-C object pointer types and 'void *'
|
|
if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
|
|
QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
|
|
QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
|
|
QualType destPointee
|
|
= Context.getQualifiedType(lhptee, rhptee.getQualifiers());
|
|
QualType destType = Context.getPointerType(destPointee);
|
|
// Add qualifiers if necessary.
|
|
ImpCastExprToType(LHS, destType, CK_NoOp);
|
|
// Promote to void*.
|
|
ImpCastExprToType(RHS, destType, CK_BitCast);
|
|
return destType;
|
|
}
|
|
if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
|
|
QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
|
|
QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
|
|
QualType destPointee
|
|
= Context.getQualifiedType(rhptee, lhptee.getQualifiers());
|
|
QualType destType = Context.getPointerType(destPointee);
|
|
// Add qualifiers if necessary.
|
|
ImpCastExprToType(RHS, destType, CK_NoOp);
|
|
// Promote to void*.
|
|
ImpCastExprToType(LHS, destType, CK_BitCast);
|
|
return destType;
|
|
}
|
|
return QualType();
|
|
}
|
|
|
|
/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
|
|
/// in the case of a the GNU conditional expr extension.
|
|
ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
|
|
SourceLocation ColonLoc,
|
|
Expr *CondExpr, Expr *LHSExpr,
|
|
Expr *RHSExpr) {
|
|
// If this is the gnu "x ?: y" extension, analyze the types as though the LHS
|
|
// was the condition.
|
|
OpaqueValueExpr *opaqueValue = 0;
|
|
Expr *commonExpr = 0;
|
|
if (LHSExpr == 0) {
|
|
commonExpr = CondExpr;
|
|
|
|
// We usually want to apply unary conversions *before* saving, except
|
|
// in the special case of a C++ l-value conditional.
|
|
if (!(getLangOptions().CPlusPlus
|
|
&& !commonExpr->isTypeDependent()
|
|
&& commonExpr->getValueKind() == RHSExpr->getValueKind()
|
|
&& commonExpr->isGLValue()
|
|
&& commonExpr->isOrdinaryOrBitFieldObject()
|
|
&& RHSExpr->isOrdinaryOrBitFieldObject()
|
|
&& Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
|
|
UsualUnaryConversions(commonExpr);
|
|
}
|
|
|
|
opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
|
|
commonExpr->getType(),
|
|
commonExpr->getValueKind(),
|
|
commonExpr->getObjectKind());
|
|
LHSExpr = CondExpr = opaqueValue;
|
|
}
|
|
|
|
ExprValueKind VK = VK_RValue;
|
|
ExprObjectKind OK = OK_Ordinary;
|
|
QualType result = CheckConditionalOperands(CondExpr, LHSExpr, RHSExpr,
|
|
VK, OK, QuestionLoc);
|
|
if (result.isNull())
|
|
return ExprError();
|
|
|
|
if (!commonExpr)
|
|
return Owned(new (Context) ConditionalOperator(CondExpr, QuestionLoc,
|
|
LHSExpr, ColonLoc,
|
|
RHSExpr, result, VK, OK));
|
|
|
|
return Owned(new (Context)
|
|
BinaryConditionalOperator(commonExpr, opaqueValue, CondExpr, LHSExpr,
|
|
RHSExpr, QuestionLoc, ColonLoc, result, VK, OK));
|
|
}
|
|
|
|
// checkPointerTypesForAssignment - This is a very tricky routine (despite
|
|
// being closely modeled after the C99 spec:-). The odd characteristic of this
|
|
// routine is it effectively iqnores the qualifiers on the top level pointee.
|
|
// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
|
|
// FIXME: add a couple examples in this comment.
|
|
static Sema::AssignConvertType
|
|
checkPointerTypesForAssignment(Sema &S, QualType lhsType, QualType rhsType) {
|
|
assert(lhsType.isCanonical() && "LHS not canonicalized!");
|
|
assert(rhsType.isCanonical() && "RHS not canonicalized!");
|
|
|
|
// get the "pointed to" type (ignoring qualifiers at the top level)
|
|
const Type *lhptee, *rhptee;
|
|
Qualifiers lhq, rhq;
|
|
llvm::tie(lhptee, lhq) = cast<PointerType>(lhsType)->getPointeeType().split();
|
|
llvm::tie(rhptee, rhq) = cast<PointerType>(rhsType)->getPointeeType().split();
|
|
|
|
Sema::AssignConvertType ConvTy = Sema::Compatible;
|
|
|
|
// C99 6.5.16.1p1: This following citation is common to constraints
|
|
// 3 & 4 (below). ...and the type *pointed to* by the left has all the
|
|
// qualifiers of the type *pointed to* by the right;
|
|
Qualifiers lq;
|
|
|
|
if (!lhq.compatiblyIncludes(rhq)) {
|
|
// Treat address-space mismatches as fatal. TODO: address subspaces
|
|
if (lhq.getAddressSpace() != rhq.getAddressSpace())
|
|
ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
|
|
|
|
// It's okay to add or remove GC qualifiers when converting to
|
|
// and from void*.
|
|
else if (lhq.withoutObjCGCAttr().compatiblyIncludes(rhq.withoutObjCGCAttr())
|
|
&& (lhptee->isVoidType() || rhptee->isVoidType()))
|
|
; // keep old
|
|
|
|
// For GCC compatibility, other qualifier mismatches are treated
|
|
// as still compatible in C.
|
|
else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
|
|
}
|
|
|
|
// C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
|
|
// incomplete type and the other is a pointer to a qualified or unqualified
|
|
// version of void...
|
|
if (lhptee->isVoidType()) {
|
|
if (rhptee->isIncompleteOrObjectType())
|
|
return ConvTy;
|
|
|
|
// As an extension, we allow cast to/from void* to function pointer.
|
|
assert(rhptee->isFunctionType());
|
|
return Sema::FunctionVoidPointer;
|
|
}
|
|
|
|
if (rhptee->isVoidType()) {
|
|
if (lhptee->isIncompleteOrObjectType())
|
|
return ConvTy;
|
|
|
|
// As an extension, we allow cast to/from void* to function pointer.
|
|
assert(lhptee->isFunctionType());
|
|
return Sema::FunctionVoidPointer;
|
|
}
|
|
|
|
// C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
|
|
// unqualified versions of compatible types, ...
|
|
QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
|
|
if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
|
|
// Check if the pointee types are compatible ignoring the sign.
|
|
// We explicitly check for char so that we catch "char" vs
|
|
// "unsigned char" on systems where "char" is unsigned.
|
|
if (lhptee->isCharType())
|
|
ltrans = S.Context.UnsignedCharTy;
|
|
else if (lhptee->hasSignedIntegerRepresentation())
|
|
ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
|
|
|
|
if (rhptee->isCharType())
|
|
rtrans = S.Context.UnsignedCharTy;
|
|
else if (rhptee->hasSignedIntegerRepresentation())
|
|
rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
|
|
|
|
if (ltrans == rtrans) {
|
|
// Types are compatible ignoring the sign. Qualifier incompatibility
|
|
// takes priority over sign incompatibility because the sign
|
|
// warning can be disabled.
|
|
if (ConvTy != Sema::Compatible)
|
|
return ConvTy;
|
|
|
|
return Sema::IncompatiblePointerSign;
|
|
}
|
|
|
|
// If we are a multi-level pointer, it's possible that our issue is simply
|
|
// one of qualification - e.g. char ** -> const char ** is not allowed. If
|
|
// the eventual target type is the same and the pointers have the same
|
|
// level of indirection, this must be the issue.
|
|
if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
|
|
do {
|
|
lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
|
|
rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
|
|
} while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
|
|
|
|
if (lhptee == rhptee)
|
|
return Sema::IncompatibleNestedPointerQualifiers;
|
|
}
|
|
|
|
// General pointer incompatibility takes priority over qualifiers.
|
|
return Sema::IncompatiblePointer;
|
|
}
|
|
return ConvTy;
|
|
}
|
|
|
|
/// checkBlockPointerTypesForAssignment - This routine determines whether two
|
|
/// block pointer types are compatible or whether a block and normal pointer
|
|
/// are compatible. It is more restrict than comparing two function pointer
|
|
// types.
|
|
static Sema::AssignConvertType
|
|
checkBlockPointerTypesForAssignment(Sema &S, QualType lhsType,
|
|
QualType rhsType) {
|
|
assert(lhsType.isCanonical() && "LHS not canonicalized!");
|
|
assert(rhsType.isCanonical() && "RHS not canonicalized!");
|
|
|
|
QualType lhptee, rhptee;
|
|
|
|
// get the "pointed to" type (ignoring qualifiers at the top level)
|
|
lhptee = cast<BlockPointerType>(lhsType)->getPointeeType();
|
|
rhptee = cast<BlockPointerType>(rhsType)->getPointeeType();
|
|
|
|
// In C++, the types have to match exactly.
|
|
if (S.getLangOptions().CPlusPlus)
|
|
return Sema::IncompatibleBlockPointer;
|
|
|
|
Sema::AssignConvertType ConvTy = Sema::Compatible;
|
|
|
|
// For blocks we enforce that qualifiers are identical.
|
|
if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
|
|
ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
|
|
|
|
if (!S.Context.typesAreBlockPointerCompatible(lhsType, rhsType))
|
|
return Sema::IncompatibleBlockPointer;
|
|
|
|
return ConvTy;
|
|
}
|
|
|
|
/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
|
|
/// for assignment compatibility.
|
|
static Sema::AssignConvertType
|
|
checkObjCPointerTypesForAssignment(Sema &S, QualType lhsType, QualType rhsType) {
|
|
assert(lhsType.isCanonical() && "LHS was not canonicalized!");
|
|
assert(rhsType.isCanonical() && "RHS was not canonicalized!");
|
|
|
|
if (lhsType->isObjCBuiltinType()) {
|
|
// Class is not compatible with ObjC object pointers.
|
|
if (lhsType->isObjCClassType() && !rhsType->isObjCBuiltinType() &&
|
|
!rhsType->isObjCQualifiedClassType())
|
|
return Sema::IncompatiblePointer;
|
|
return Sema::Compatible;
|
|
}
|
|
if (rhsType->isObjCBuiltinType()) {
|
|
// Class is not compatible with ObjC object pointers.
|
|
if (rhsType->isObjCClassType() && !lhsType->isObjCBuiltinType() &&
|
|
!lhsType->isObjCQualifiedClassType())
|
|
return Sema::IncompatiblePointer;
|
|
return Sema::Compatible;
|
|
}
|
|
QualType lhptee =
|
|
lhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
|
|
QualType rhptee =
|
|
rhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
|
|
|
|
if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
|
|
return Sema::CompatiblePointerDiscardsQualifiers;
|
|
|
|
if (S.Context.typesAreCompatible(lhsType, rhsType))
|
|
return Sema::Compatible;
|
|
if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
|
|
return Sema::IncompatibleObjCQualifiedId;
|
|
return Sema::IncompatiblePointer;
|
|
}
|
|
|
|
Sema::AssignConvertType
|
|
Sema::CheckAssignmentConstraints(SourceLocation Loc,
|
|
QualType lhsType, QualType rhsType) {
|
|
// Fake up an opaque expression. We don't actually care about what
|
|
// cast operations are required, so if CheckAssignmentConstraints
|
|
// adds casts to this they'll be wasted, but fortunately that doesn't
|
|
// usually happen on valid code.
|
|
OpaqueValueExpr rhs(Loc, rhsType, VK_RValue);
|
|
Expr *rhsPtr = &rhs;
|
|
CastKind K = CK_Invalid;
|
|
|
|
return CheckAssignmentConstraints(lhsType, rhsPtr, K);
|
|
}
|
|
|
|
/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
|
|
/// has code to accommodate several GCC extensions when type checking
|
|
/// pointers. Here are some objectionable examples that GCC considers warnings:
|
|
///
|
|
/// int a, *pint;
|
|
/// short *pshort;
|
|
/// struct foo *pfoo;
|
|
///
|
|
/// pint = pshort; // warning: assignment from incompatible pointer type
|
|
/// a = pint; // warning: assignment makes integer from pointer without a cast
|
|
/// pint = a; // warning: assignment makes pointer from integer without a cast
|
|
/// pint = pfoo; // warning: assignment from incompatible pointer type
|
|
///
|
|
/// As a result, the code for dealing with pointers is more complex than the
|
|
/// C99 spec dictates.
|
|
///
|
|
/// Sets 'Kind' for any result kind except Incompatible.
|
|
Sema::AssignConvertType
|
|
Sema::CheckAssignmentConstraints(QualType lhsType, Expr *&rhs,
|
|
CastKind &Kind) {
|
|
QualType rhsType = rhs->getType();
|
|
|
|
// Get canonical types. We're not formatting these types, just comparing
|
|
// them.
|
|
lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
|
|
rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
|
|
|
|
// Common case: no conversion required.
|
|
if (lhsType == rhsType) {
|
|
Kind = CK_NoOp;
|
|
return Compatible;
|
|
}
|
|
|
|
// If the left-hand side is a reference type, then we are in a
|
|
// (rare!) case where we've allowed the use of references in C,
|
|
// e.g., as a parameter type in a built-in function. In this case,
|
|
// just make sure that the type referenced is compatible with the
|
|
// right-hand side type. The caller is responsible for adjusting
|
|
// lhsType so that the resulting expression does not have reference
|
|
// type.
|
|
if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
|
|
if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType)) {
|
|
Kind = CK_LValueBitCast;
|
|
return Compatible;
|
|
}
|
|
return Incompatible;
|
|
}
|
|
|
|
// Allow scalar to ExtVector assignments, and assignments of an ExtVector type
|
|
// to the same ExtVector type.
|
|
if (lhsType->isExtVectorType()) {
|
|
if (rhsType->isExtVectorType())
|
|
return Incompatible;
|
|
if (rhsType->isArithmeticType()) {
|
|
// CK_VectorSplat does T -> vector T, so first cast to the
|
|
// element type.
|
|
QualType elType = cast<ExtVectorType>(lhsType)->getElementType();
|
|
if (elType != rhsType) {
|
|
Kind = PrepareScalarCast(*this, rhs, elType);
|
|
ImpCastExprToType(rhs, elType, Kind);
|
|
}
|
|
Kind = CK_VectorSplat;
|
|
return Compatible;
|
|
}
|
|
}
|
|
|
|
// Conversions to or from vector type.
|
|
if (lhsType->isVectorType() || rhsType->isVectorType()) {
|
|
if (lhsType->isVectorType() && rhsType->isVectorType()) {
|
|
// Allow assignments of an AltiVec vector type to an equivalent GCC
|
|
// vector type and vice versa
|
|
if (Context.areCompatibleVectorTypes(lhsType, rhsType)) {
|
|
Kind = CK_BitCast;
|
|
return Compatible;
|
|
}
|
|
|
|
// If we are allowing lax vector conversions, and LHS and RHS are both
|
|
// vectors, the total size only needs to be the same. This is a bitcast;
|
|
// no bits are changed but the result type is different.
|
|
if (getLangOptions().LaxVectorConversions &&
|
|
(Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))) {
|
|
Kind = CK_BitCast;
|
|
return IncompatibleVectors;
|
|
}
|
|
}
|
|
return Incompatible;
|
|
}
|
|
|
|
// Arithmetic conversions.
|
|
if (lhsType->isArithmeticType() && rhsType->isArithmeticType() &&
|
|
!(getLangOptions().CPlusPlus && lhsType->isEnumeralType())) {
|
|
Kind = PrepareScalarCast(*this, rhs, lhsType);
|
|
return Compatible;
|
|
}
|
|
|
|
// Conversions to normal pointers.
|
|
if (const PointerType *lhsPointer = dyn_cast<PointerType>(lhsType)) {
|
|
// U* -> T*
|
|
if (isa<PointerType>(rhsType)) {
|
|
Kind = CK_BitCast;
|
|
return checkPointerTypesForAssignment(*this, lhsType, rhsType);
|
|
}
|
|
|
|
// int -> T*
|
|
if (rhsType->isIntegerType()) {
|
|
Kind = CK_IntegralToPointer; // FIXME: null?
|
|
return IntToPointer;
|
|
}
|
|
|
|
// C pointers are not compatible with ObjC object pointers,
|
|
// with two exceptions:
|
|
if (isa<ObjCObjectPointerType>(rhsType)) {
|
|
// - conversions to void*
|
|
if (lhsPointer->getPointeeType()->isVoidType()) {
|
|
Kind = CK_AnyPointerToObjCPointerCast;
|
|
return Compatible;
|
|
}
|
|
|
|
// - conversions from 'Class' to the redefinition type
|
|
if (rhsType->isObjCClassType() &&
|
|
Context.hasSameType(lhsType, Context.ObjCClassRedefinitionType)) {
|
|
Kind = CK_BitCast;
|
|
return Compatible;
|
|
}
|
|
|
|
Kind = CK_BitCast;
|
|
return IncompatiblePointer;
|
|
}
|
|
|
|
// U^ -> void*
|
|
if (rhsType->getAs<BlockPointerType>()) {
|
|
if (lhsPointer->getPointeeType()->isVoidType()) {
|
|
Kind = CK_BitCast;
|
|
return Compatible;
|
|
}
|
|
}
|
|
|
|
return Incompatible;
|
|
}
|
|
|
|
// Conversions to block pointers.
|
|
if (isa<BlockPointerType>(lhsType)) {
|
|
// U^ -> T^
|
|
if (rhsType->isBlockPointerType()) {
|
|
Kind = CK_AnyPointerToBlockPointerCast;
|
|
return checkBlockPointerTypesForAssignment(*this, lhsType, rhsType);
|
|
}
|
|
|
|
// int or null -> T^
|
|
if (rhsType->isIntegerType()) {
|
|
Kind = CK_IntegralToPointer; // FIXME: null
|
|
return IntToBlockPointer;
|
|
}
|
|
|
|
// id -> T^
|
|
if (getLangOptions().ObjC1 && rhsType->isObjCIdType()) {
|
|
Kind = CK_AnyPointerToBlockPointerCast;
|
|
return Compatible;
|
|
}
|
|
|
|
// void* -> T^
|
|
if (const PointerType *RHSPT = rhsType->getAs<PointerType>())
|
|
if (RHSPT->getPointeeType()->isVoidType()) {
|
|
Kind = CK_AnyPointerToBlockPointerCast;
|
|
return Compatible;
|
|
}
|
|
|
|
return Incompatible;
|
|
}
|
|
|
|
// Conversions to Objective-C pointers.
|
|
if (isa<ObjCObjectPointerType>(lhsType)) {
|
|
// A* -> B*
|
|
if (rhsType->isObjCObjectPointerType()) {
|
|
Kind = CK_BitCast;
|
|
return checkObjCPointerTypesForAssignment(*this, lhsType, rhsType);
|
|
}
|
|
|
|
// int or null -> A*
|
|
if (rhsType->isIntegerType()) {
|
|
Kind = CK_IntegralToPointer; // FIXME: null
|
|
return IntToPointer;
|
|
}
|
|
|
|
// In general, C pointers are not compatible with ObjC object pointers,
|
|
// with two exceptions:
|
|
if (isa<PointerType>(rhsType)) {
|
|
// - conversions from 'void*'
|
|
if (rhsType->isVoidPointerType()) {
|
|
Kind = CK_AnyPointerToObjCPointerCast;
|
|
return Compatible;
|
|
}
|
|
|
|
// - conversions to 'Class' from its redefinition type
|
|
if (lhsType->isObjCClassType() &&
|
|
Context.hasSameType(rhsType, Context.ObjCClassRedefinitionType)) {
|
|
Kind = CK_BitCast;
|
|
return Compatible;
|
|
}
|
|
|
|
Kind = CK_AnyPointerToObjCPointerCast;
|
|
return IncompatiblePointer;
|
|
}
|
|
|
|
// T^ -> A*
|
|
if (rhsType->isBlockPointerType()) {
|
|
Kind = CK_AnyPointerToObjCPointerCast;
|
|
return Compatible;
|
|
}
|
|
|
|
return Incompatible;
|
|
}
|
|
|
|
// Conversions from pointers that are not covered by the above.
|
|
if (isa<PointerType>(rhsType)) {
|
|
// T* -> _Bool
|
|
if (lhsType == Context.BoolTy) {
|
|
Kind = CK_PointerToBoolean;
|
|
return Compatible;
|
|
}
|
|
|
|
// T* -> int
|
|
if (lhsType->isIntegerType()) {
|
|
Kind = CK_PointerToIntegral;
|
|
return PointerToInt;
|
|
}
|
|
|
|
return Incompatible;
|
|
}
|
|
|
|
// Conversions from Objective-C pointers that are not covered by the above.
|
|
if (isa<ObjCObjectPointerType>(rhsType)) {
|
|
// T* -> _Bool
|
|
if (lhsType == Context.BoolTy) {
|
|
Kind = CK_PointerToBoolean;
|
|
return Compatible;
|
|
}
|
|
|
|
// T* -> int
|
|
if (lhsType->isIntegerType()) {
|
|
Kind = CK_PointerToIntegral;
|
|
return PointerToInt;
|
|
}
|
|
|
|
return Incompatible;
|
|
}
|
|
|
|
// struct A -> struct B
|
|
if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
|
|
if (Context.typesAreCompatible(lhsType, rhsType)) {
|
|
Kind = CK_NoOp;
|
|
return Compatible;
|
|
}
|
|
}
|
|
|
|
return Incompatible;
|
|
}
|
|
|
|
/// \brief Constructs a transparent union from an expression that is
|
|
/// used to initialize the transparent union.
|
|
static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
|
|
QualType UnionType, FieldDecl *Field) {
|
|
// Build an initializer list that designates the appropriate member
|
|
// of the transparent union.
|
|
InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
|
|
&E, 1,
|
|
SourceLocation());
|
|
Initializer->setType(UnionType);
|
|
Initializer->setInitializedFieldInUnion(Field);
|
|
|
|
// Build a compound literal constructing a value of the transparent
|
|
// union type from this initializer list.
|
|
TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
|
|
E = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
|
|
VK_RValue, Initializer, false);
|
|
}
|
|
|
|
Sema::AssignConvertType
|
|
Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
|
|
QualType FromType = rExpr->getType();
|
|
|
|
// If the ArgType is a Union type, we want to handle a potential
|
|
// transparent_union GCC extension.
|
|
const RecordType *UT = ArgType->getAsUnionType();
|
|
if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
|
|
return Incompatible;
|
|
|
|
// The field to initialize within the transparent union.
|
|
RecordDecl *UD = UT->getDecl();
|
|
FieldDecl *InitField = 0;
|
|
// It's compatible if the expression matches any of the fields.
|
|
for (RecordDecl::field_iterator it = UD->field_begin(),
|
|
itend = UD->field_end();
|
|
it != itend; ++it) {
|
|
if (it->getType()->isPointerType()) {
|
|
// If the transparent union contains a pointer type, we allow:
|
|
// 1) void pointer
|
|
// 2) null pointer constant
|
|
if (FromType->isPointerType())
|
|
if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
|
|
ImpCastExprToType(rExpr, it->getType(), CK_BitCast);
|
|
InitField = *it;
|
|
break;
|
|
}
|
|
|
|
if (rExpr->isNullPointerConstant(Context,
|
|
Expr::NPC_ValueDependentIsNull)) {
|
|
ImpCastExprToType(rExpr, it->getType(), CK_NullToPointer);
|
|
InitField = *it;
|
|
break;
|
|
}
|
|
}
|
|
|
|
Expr *rhs = rExpr;
|
|
CastKind Kind = CK_Invalid;
|
|
if (CheckAssignmentConstraints(it->getType(), rhs, Kind)
|
|
== Compatible) {
|
|
ImpCastExprToType(rhs, it->getType(), Kind);
|
|
rExpr = rhs;
|
|
InitField = *it;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!InitField)
|
|
return Incompatible;
|
|
|
|
ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
|
|
return Compatible;
|
|
}
|
|
|
|
Sema::AssignConvertType
|
|
Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
|
|
if (getLangOptions().CPlusPlus) {
|
|
if (!lhsType->isRecordType()) {
|
|
// C++ 5.17p3: If the left operand is not of class type, the
|
|
// expression is implicitly converted (C++ 4) to the
|
|
// cv-unqualified type of the left operand.
|
|
if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
|
|
AA_Assigning))
|
|
return Incompatible;
|
|
return Compatible;
|
|
}
|
|
|
|
// FIXME: Currently, we fall through and treat C++ classes like C
|
|
// structures.
|
|
}
|
|
|
|
// C99 6.5.16.1p1: the left operand is a pointer and the right is
|
|
// a null pointer constant.
|
|
if ((lhsType->isPointerType() ||
|
|
lhsType->isObjCObjectPointerType() ||
|
|
lhsType->isBlockPointerType())
|
|
&& rExpr->isNullPointerConstant(Context,
|
|
Expr::NPC_ValueDependentIsNull)) {
|
|
ImpCastExprToType(rExpr, lhsType, CK_NullToPointer);
|
|
return Compatible;
|
|
}
|
|
|
|
// This check seems unnatural, however it is necessary to ensure the proper
|
|
// conversion of functions/arrays. If the conversion were done for all
|
|
// DeclExpr's (created by ActOnIdExpression), it would mess up the unary
|
|
// expressions that suppress this implicit conversion (&, sizeof).
|
|
//
|
|
// Suppress this for references: C++ 8.5.3p5.
|
|
if (!lhsType->isReferenceType())
|
|
DefaultFunctionArrayLvalueConversion(rExpr);
|
|
|
|
CastKind Kind = CK_Invalid;
|
|
Sema::AssignConvertType result =
|
|
CheckAssignmentConstraints(lhsType, rExpr, Kind);
|
|
|
|
// C99 6.5.16.1p2: The value of the right operand is converted to the
|
|
// type of the assignment expression.
|
|
// CheckAssignmentConstraints allows the left-hand side to be a reference,
|
|
// so that we can use references in built-in functions even in C.
|
|
// The getNonReferenceType() call makes sure that the resulting expression
|
|
// does not have reference type.
|
|
if (result != Incompatible && rExpr->getType() != lhsType)
|
|
ImpCastExprToType(rExpr, lhsType.getNonLValueExprType(Context), Kind);
|
|
return result;
|
|
}
|
|
|
|
QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
|
|
Diag(Loc, diag::err_typecheck_invalid_operands)
|
|
<< lex->getType() << rex->getType()
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
|
|
// For conversion purposes, we ignore any qualifiers.
|
|
// For example, "const float" and "float" are equivalent.
|
|
QualType lhsType =
|
|
Context.getCanonicalType(lex->getType()).getUnqualifiedType();
|
|
QualType rhsType =
|
|
Context.getCanonicalType(rex->getType()).getUnqualifiedType();
|
|
|
|
// If the vector types are identical, return.
|
|
if (lhsType == rhsType)
|
|
return lhsType;
|
|
|
|
// Handle the case of a vector & extvector type of the same size and element
|
|
// type. It would be nice if we only had one vector type someday.
|
|
if (getLangOptions().LaxVectorConversions) {
|
|
if (const VectorType *LV = lhsType->getAs<VectorType>()) {
|
|
if (const VectorType *RV = rhsType->getAs<VectorType>()) {
|
|
if (LV->getElementType() == RV->getElementType() &&
|
|
LV->getNumElements() == RV->getNumElements()) {
|
|
if (lhsType->isExtVectorType()) {
|
|
ImpCastExprToType(rex, lhsType, CK_BitCast);
|
|
return lhsType;
|
|
}
|
|
|
|
ImpCastExprToType(lex, rhsType, CK_BitCast);
|
|
return rhsType;
|
|
} else if (Context.getTypeSize(lhsType) ==Context.getTypeSize(rhsType)){
|
|
// If we are allowing lax vector conversions, and LHS and RHS are both
|
|
// vectors, the total size only needs to be the same. This is a
|
|
// bitcast; no bits are changed but the result type is different.
|
|
ImpCastExprToType(rex, lhsType, CK_BitCast);
|
|
return lhsType;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Handle the case of equivalent AltiVec and GCC vector types
|
|
if (lhsType->isVectorType() && rhsType->isVectorType() &&
|
|
Context.areCompatibleVectorTypes(lhsType, rhsType)) {
|
|
ImpCastExprToType(lex, rhsType, CK_BitCast);
|
|
return rhsType;
|
|
}
|
|
|
|
// Canonicalize the ExtVector to the LHS, remember if we swapped so we can
|
|
// swap back (so that we don't reverse the inputs to a subtract, for instance.
|
|
bool swapped = false;
|
|
if (rhsType->isExtVectorType()) {
|
|
swapped = true;
|
|
std::swap(rex, lex);
|
|
std::swap(rhsType, lhsType);
|
|
}
|
|
|
|
// Handle the case of an ext vector and scalar.
|
|
if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
|
|
QualType EltTy = LV->getElementType();
|
|
if (EltTy->isIntegralType(Context) && rhsType->isIntegralType(Context)) {
|
|
int order = Context.getIntegerTypeOrder(EltTy, rhsType);
|
|
if (order > 0)
|
|
ImpCastExprToType(rex, EltTy, CK_IntegralCast);
|
|
if (order >= 0) {
|
|
ImpCastExprToType(rex, lhsType, CK_VectorSplat);
|
|
if (swapped) std::swap(rex, lex);
|
|
return lhsType;
|
|
}
|
|
}
|
|
if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
|
|
rhsType->isRealFloatingType()) {
|
|
int order = Context.getFloatingTypeOrder(EltTy, rhsType);
|
|
if (order > 0)
|
|
ImpCastExprToType(rex, EltTy, CK_FloatingCast);
|
|
if (order >= 0) {
|
|
ImpCastExprToType(rex, lhsType, CK_VectorSplat);
|
|
if (swapped) std::swap(rex, lex);
|
|
return lhsType;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Vectors of different size or scalar and non-ext-vector are errors.
|
|
Diag(Loc, diag::err_typecheck_vector_not_convertable)
|
|
<< lex->getType() << rex->getType()
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
QualType Sema::CheckMultiplyDivideOperands(
|
|
Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign, bool isDiv) {
|
|
if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
|
|
return CheckVectorOperands(Loc, lex, rex);
|
|
|
|
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
|
|
|
|
if (!lex->getType()->isArithmeticType() ||
|
|
!rex->getType()->isArithmeticType())
|
|
return InvalidOperands(Loc, lex, rex);
|
|
|
|
// Check for division by zero.
|
|
if (isDiv &&
|
|
rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
|
|
DiagRuntimeBehavior(Loc, rex, PDiag(diag::warn_division_by_zero)
|
|
<< rex->getSourceRange());
|
|
|
|
return compType;
|
|
}
|
|
|
|
QualType Sema::CheckRemainderOperands(
|
|
Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
|
|
if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
|
|
if (lex->getType()->hasIntegerRepresentation() &&
|
|
rex->getType()->hasIntegerRepresentation())
|
|
return CheckVectorOperands(Loc, lex, rex);
|
|
return InvalidOperands(Loc, lex, rex);
|
|
}
|
|
|
|
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
|
|
|
|
if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
|
|
return InvalidOperands(Loc, lex, rex);
|
|
|
|
// Check for remainder by zero.
|
|
if (rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
|
|
DiagRuntimeBehavior(Loc, rex, PDiag(diag::warn_remainder_by_zero)
|
|
<< rex->getSourceRange());
|
|
|
|
return compType;
|
|
}
|
|
|
|
QualType Sema::CheckAdditionOperands( // C99 6.5.6
|
|
Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy) {
|
|
if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
|
|
QualType compType = CheckVectorOperands(Loc, lex, rex);
|
|
if (CompLHSTy) *CompLHSTy = compType;
|
|
return compType;
|
|
}
|
|
|
|
QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
|
|
|
|
// handle the common case first (both operands are arithmetic).
|
|
if (lex->getType()->isArithmeticType() &&
|
|
rex->getType()->isArithmeticType()) {
|
|
if (CompLHSTy) *CompLHSTy = compType;
|
|
return compType;
|
|
}
|
|
|
|
// Put any potential pointer into PExp
|
|
Expr* PExp = lex, *IExp = rex;
|
|
if (IExp->getType()->isAnyPointerType())
|
|
std::swap(PExp, IExp);
|
|
|
|
if (PExp->getType()->isAnyPointerType()) {
|
|
|
|
if (IExp->getType()->isIntegerType()) {
|
|
QualType PointeeTy = PExp->getType()->getPointeeType();
|
|
|
|
// Check for arithmetic on pointers to incomplete types.
|
|
if (PointeeTy->isVoidType()) {
|
|
if (getLangOptions().CPlusPlus) {
|
|
Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
// GNU extension: arithmetic on pointer to void
|
|
Diag(Loc, diag::ext_gnu_void_ptr)
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
} else if (PointeeTy->isFunctionType()) {
|
|
if (getLangOptions().CPlusPlus) {
|
|
Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
|
|
<< lex->getType() << lex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
// GNU extension: arithmetic on pointer to function
|
|
Diag(Loc, diag::ext_gnu_ptr_func_arith)
|
|
<< lex->getType() << lex->getSourceRange();
|
|
} else {
|
|
// Check if we require a complete type.
|
|
if (((PExp->getType()->isPointerType() &&
|
|
!PExp->getType()->isDependentType()) ||
|
|
PExp->getType()->isObjCObjectPointerType()) &&
|
|
RequireCompleteType(Loc, PointeeTy,
|
|
PDiag(diag::err_typecheck_arithmetic_incomplete_type)
|
|
<< PExp->getSourceRange()
|
|
<< PExp->getType()))
|
|
return QualType();
|
|
}
|
|
// Diagnose bad cases where we step over interface counts.
|
|
if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
|
|
Diag(Loc, diag::err_arithmetic_nonfragile_interface)
|
|
<< PointeeTy << PExp->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
if (CompLHSTy) {
|
|
QualType LHSTy = Context.isPromotableBitField(lex);
|
|
if (LHSTy.isNull()) {
|
|
LHSTy = lex->getType();
|
|
if (LHSTy->isPromotableIntegerType())
|
|
LHSTy = Context.getPromotedIntegerType(LHSTy);
|
|
}
|
|
*CompLHSTy = LHSTy;
|
|
}
|
|
return PExp->getType();
|
|
}
|
|
}
|
|
|
|
return InvalidOperands(Loc, lex, rex);
|
|
}
|
|
|
|
// C99 6.5.6
|
|
QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
|
|
SourceLocation Loc, QualType* CompLHSTy) {
|
|
if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
|
|
QualType compType = CheckVectorOperands(Loc, lex, rex);
|
|
if (CompLHSTy) *CompLHSTy = compType;
|
|
return compType;
|
|
}
|
|
|
|
QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
|
|
|
|
// Enforce type constraints: C99 6.5.6p3.
|
|
|
|
// Handle the common case first (both operands are arithmetic).
|
|
if (lex->getType()->isArithmeticType()
|
|
&& rex->getType()->isArithmeticType()) {
|
|
if (CompLHSTy) *CompLHSTy = compType;
|
|
return compType;
|
|
}
|
|
|
|
// Either ptr - int or ptr - ptr.
|
|
if (lex->getType()->isAnyPointerType()) {
|
|
QualType lpointee = lex->getType()->getPointeeType();
|
|
|
|
// The LHS must be an completely-defined object type.
|
|
|
|
bool ComplainAboutVoid = false;
|
|
Expr *ComplainAboutFunc = 0;
|
|
if (lpointee->isVoidType()) {
|
|
if (getLangOptions().CPlusPlus) {
|
|
Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
// GNU C extension: arithmetic on pointer to void
|
|
ComplainAboutVoid = true;
|
|
} else if (lpointee->isFunctionType()) {
|
|
if (getLangOptions().CPlusPlus) {
|
|
Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
|
|
<< lex->getType() << lex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
// GNU C extension: arithmetic on pointer to function
|
|
ComplainAboutFunc = lex;
|
|
} else if (!lpointee->isDependentType() &&
|
|
RequireCompleteType(Loc, lpointee,
|
|
PDiag(diag::err_typecheck_sub_ptr_object)
|
|
<< lex->getSourceRange()
|
|
<< lex->getType()))
|
|
return QualType();
|
|
|
|
// Diagnose bad cases where we step over interface counts.
|
|
if (lpointee->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
|
|
Diag(Loc, diag::err_arithmetic_nonfragile_interface)
|
|
<< lpointee << lex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
// The result type of a pointer-int computation is the pointer type.
|
|
if (rex->getType()->isIntegerType()) {
|
|
if (ComplainAboutVoid)
|
|
Diag(Loc, diag::ext_gnu_void_ptr)
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
if (ComplainAboutFunc)
|
|
Diag(Loc, diag::ext_gnu_ptr_func_arith)
|
|
<< ComplainAboutFunc->getType()
|
|
<< ComplainAboutFunc->getSourceRange();
|
|
|
|
if (CompLHSTy) *CompLHSTy = lex->getType();
|
|
return lex->getType();
|
|
}
|
|
|
|
// Handle pointer-pointer subtractions.
|
|
if (const PointerType *RHSPTy = rex->getType()->getAs<PointerType>()) {
|
|
QualType rpointee = RHSPTy->getPointeeType();
|
|
|
|
// RHS must be a completely-type object type.
|
|
// Handle the GNU void* extension.
|
|
if (rpointee->isVoidType()) {
|
|
if (getLangOptions().CPlusPlus) {
|
|
Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
ComplainAboutVoid = true;
|
|
} else if (rpointee->isFunctionType()) {
|
|
if (getLangOptions().CPlusPlus) {
|
|
Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
|
|
<< rex->getType() << rex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
// GNU extension: arithmetic on pointer to function
|
|
if (!ComplainAboutFunc)
|
|
ComplainAboutFunc = rex;
|
|
} else if (!rpointee->isDependentType() &&
|
|
RequireCompleteType(Loc, rpointee,
|
|
PDiag(diag::err_typecheck_sub_ptr_object)
|
|
<< rex->getSourceRange()
|
|
<< rex->getType()))
|
|
return QualType();
|
|
|
|
if (getLangOptions().CPlusPlus) {
|
|
// Pointee types must be the same: C++ [expr.add]
|
|
if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
|
|
Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
|
|
<< lex->getType() << rex->getType()
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
} else {
|
|
// Pointee types must be compatible C99 6.5.6p3
|
|
if (!Context.typesAreCompatible(
|
|
Context.getCanonicalType(lpointee).getUnqualifiedType(),
|
|
Context.getCanonicalType(rpointee).getUnqualifiedType())) {
|
|
Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
|
|
<< lex->getType() << rex->getType()
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
}
|
|
|
|
if (ComplainAboutVoid)
|
|
Diag(Loc, diag::ext_gnu_void_ptr)
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
if (ComplainAboutFunc)
|
|
Diag(Loc, diag::ext_gnu_ptr_func_arith)
|
|
<< ComplainAboutFunc->getType()
|
|
<< ComplainAboutFunc->getSourceRange();
|
|
|
|
if (CompLHSTy) *CompLHSTy = lex->getType();
|
|
return Context.getPointerDiffType();
|
|
}
|
|
}
|
|
|
|
return InvalidOperands(Loc, lex, rex);
|
|
}
|
|
|
|
static bool isScopedEnumerationType(QualType T) {
|
|
if (const EnumType *ET = dyn_cast<EnumType>(T))
|
|
return ET->getDecl()->isScoped();
|
|
return false;
|
|
}
|
|
|
|
static void DiagnoseBadShiftValues(Sema& S, Expr *&lex, Expr *&rex,
|
|
SourceLocation Loc, unsigned Opc,
|
|
QualType LHSTy) {
|
|
llvm::APSInt Right;
|
|
// Check right/shifter operand
|
|
if (rex->isValueDependent() || !rex->isIntegerConstantExpr(Right, S.Context))
|
|
return;
|
|
|
|
if (Right.isNegative()) {
|
|
S.DiagRuntimeBehavior(Loc, rex,
|
|
S.PDiag(diag::warn_shift_negative)
|
|
<< rex->getSourceRange());
|
|
return;
|
|
}
|
|
llvm::APInt LeftBits(Right.getBitWidth(),
|
|
S.Context.getTypeSize(lex->getType()));
|
|
if (Right.uge(LeftBits)) {
|
|
S.DiagRuntimeBehavior(Loc, rex,
|
|
S.PDiag(diag::warn_shift_gt_typewidth)
|
|
<< rex->getSourceRange());
|
|
return;
|
|
}
|
|
if (Opc != BO_Shl)
|
|
return;
|
|
|
|
// When left shifting an ICE which is signed, we can check for overflow which
|
|
// according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
|
|
// integers have defined behavior modulo one more than the maximum value
|
|
// representable in the result type, so never warn for those.
|
|
llvm::APSInt Left;
|
|
if (lex->isValueDependent() || !lex->isIntegerConstantExpr(Left, S.Context) ||
|
|
LHSTy->hasUnsignedIntegerRepresentation())
|
|
return;
|
|
llvm::APInt ResultBits =
|
|
static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
|
|
if (LeftBits.uge(ResultBits))
|
|
return;
|
|
llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
|
|
Result = Result.shl(Right);
|
|
|
|
// If we are only missing a sign bit, this is less likely to result in actual
|
|
// bugs -- if the result is cast back to an unsigned type, it will have the
|
|
// expected value. Thus we place this behind a different warning that can be
|
|
// turned off separately if needed.
|
|
if (LeftBits == ResultBits - 1) {
|
|
S.Diag(Loc, diag::warn_shift_result_overrides_sign_bit)
|
|
<< Result.toString(10) << LHSTy
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
return;
|
|
}
|
|
|
|
S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
|
|
<< Result.toString(10) << Result.getMinSignedBits() << LHSTy
|
|
<< Left.getBitWidth() << lex->getSourceRange() << rex->getSourceRange();
|
|
}
|
|
|
|
// C99 6.5.7
|
|
QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
|
|
unsigned Opc, bool isCompAssign) {
|
|
// C99 6.5.7p2: Each of the operands shall have integer type.
|
|
if (!lex->getType()->hasIntegerRepresentation() ||
|
|
!rex->getType()->hasIntegerRepresentation())
|
|
return InvalidOperands(Loc, lex, rex);
|
|
|
|
// C++0x: Don't allow scoped enums. FIXME: Use something better than
|
|
// hasIntegerRepresentation() above instead of this.
|
|
if (isScopedEnumerationType(lex->getType()) ||
|
|
isScopedEnumerationType(rex->getType())) {
|
|
return InvalidOperands(Loc, lex, rex);
|
|
}
|
|
|
|
// Vector shifts promote their scalar inputs to vector type.
|
|
if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
|
|
return CheckVectorOperands(Loc, lex, rex);
|
|
|
|
// Shifts don't perform usual arithmetic conversions, they just do integer
|
|
// promotions on each operand. C99 6.5.7p3
|
|
|
|
// For the LHS, do usual unary conversions, but then reset them away
|
|
// if this is a compound assignment.
|
|
Expr *old_lex = lex;
|
|
UsualUnaryConversions(lex);
|
|
QualType LHSTy = lex->getType();
|
|
if (isCompAssign) lex = old_lex;
|
|
|
|
// The RHS is simpler.
|
|
UsualUnaryConversions(rex);
|
|
|
|
// Sanity-check shift operands
|
|
DiagnoseBadShiftValues(*this, lex, rex, Loc, Opc, LHSTy);
|
|
|
|
// "The type of the result is that of the promoted left operand."
|
|
return LHSTy;
|
|
}
|
|
|
|
static bool IsWithinTemplateSpecialization(Decl *D) {
|
|
if (DeclContext *DC = D->getDeclContext()) {
|
|
if (isa<ClassTemplateSpecializationDecl>(DC))
|
|
return true;
|
|
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
|
|
return FD->isFunctionTemplateSpecialization();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// C99 6.5.8, C++ [expr.rel]
|
|
QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
|
|
unsigned OpaqueOpc, bool isRelational) {
|
|
BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
|
|
|
|
// Handle vector comparisons separately.
|
|
if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
|
|
return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
|
|
|
|
QualType lType = lex->getType();
|
|
QualType rType = rex->getType();
|
|
|
|
Expr *LHSStripped = lex->IgnoreParenImpCasts();
|
|
Expr *RHSStripped = rex->IgnoreParenImpCasts();
|
|
QualType LHSStrippedType = LHSStripped->getType();
|
|
QualType RHSStrippedType = RHSStripped->getType();
|
|
|
|
|
|
|
|
// Two different enums will raise a warning when compared.
|
|
if (const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>()) {
|
|
if (const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>()) {
|
|
if (LHSEnumType->getDecl()->getIdentifier() &&
|
|
RHSEnumType->getDecl()->getIdentifier() &&
|
|
!Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
|
|
Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
|
|
<< LHSStrippedType << RHSStrippedType
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!lType->hasFloatingRepresentation() &&
|
|
!(lType->isBlockPointerType() && isRelational) &&
|
|
!lex->getLocStart().isMacroID() &&
|
|
!rex->getLocStart().isMacroID()) {
|
|
// For non-floating point types, check for self-comparisons of the form
|
|
// x == x, x != x, x < x, etc. These always evaluate to a constant, and
|
|
// often indicate logic errors in the program.
|
|
//
|
|
// NOTE: Don't warn about comparison expressions resulting from macro
|
|
// expansion. Also don't warn about comparisons which are only self
|
|
// comparisons within a template specialization. The warnings should catch
|
|
// obvious cases in the definition of the template anyways. The idea is to
|
|
// warn when the typed comparison operator will always evaluate to the same
|
|
// result.
|
|
if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
|
|
if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
|
|
if (DRL->getDecl() == DRR->getDecl() &&
|
|
!IsWithinTemplateSpecialization(DRL->getDecl())) {
|
|
DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
|
|
<< 0 // self-
|
|
<< (Opc == BO_EQ
|
|
|| Opc == BO_LE
|
|
|| Opc == BO_GE));
|
|
} else if (lType->isArrayType() && rType->isArrayType() &&
|
|
!DRL->getDecl()->getType()->isReferenceType() &&
|
|
!DRR->getDecl()->getType()->isReferenceType()) {
|
|
// what is it always going to eval to?
|
|
char always_evals_to;
|
|
switch(Opc) {
|
|
case BO_EQ: // e.g. array1 == array2
|
|
always_evals_to = 0; // false
|
|
break;
|
|
case BO_NE: // e.g. array1 != array2
|
|
always_evals_to = 1; // true
|
|
break;
|
|
default:
|
|
// best we can say is 'a constant'
|
|
always_evals_to = 2; // e.g. array1 <= array2
|
|
break;
|
|
}
|
|
DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
|
|
<< 1 // array
|
|
<< always_evals_to);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (isa<CastExpr>(LHSStripped))
|
|
LHSStripped = LHSStripped->IgnoreParenCasts();
|
|
if (isa<CastExpr>(RHSStripped))
|
|
RHSStripped = RHSStripped->IgnoreParenCasts();
|
|
|
|
// Warn about comparisons against a string constant (unless the other
|
|
// operand is null), the user probably wants strcmp.
|
|
Expr *literalString = 0;
|
|
Expr *literalStringStripped = 0;
|
|
if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
|
|
!RHSStripped->isNullPointerConstant(Context,
|
|
Expr::NPC_ValueDependentIsNull)) {
|
|
literalString = lex;
|
|
literalStringStripped = LHSStripped;
|
|
} else if ((isa<StringLiteral>(RHSStripped) ||
|
|
isa<ObjCEncodeExpr>(RHSStripped)) &&
|
|
!LHSStripped->isNullPointerConstant(Context,
|
|
Expr::NPC_ValueDependentIsNull)) {
|
|
literalString = rex;
|
|
literalStringStripped = RHSStripped;
|
|
}
|
|
|
|
if (literalString) {
|
|
std::string resultComparison;
|
|
switch (Opc) {
|
|
case BO_LT: resultComparison = ") < 0"; break;
|
|
case BO_GT: resultComparison = ") > 0"; break;
|
|
case BO_LE: resultComparison = ") <= 0"; break;
|
|
case BO_GE: resultComparison = ") >= 0"; break;
|
|
case BO_EQ: resultComparison = ") == 0"; break;
|
|
case BO_NE: resultComparison = ") != 0"; break;
|
|
default: assert(false && "Invalid comparison operator");
|
|
}
|
|
|
|
DiagRuntimeBehavior(Loc, 0,
|
|
PDiag(diag::warn_stringcompare)
|
|
<< isa<ObjCEncodeExpr>(literalStringStripped)
|
|
<< literalString->getSourceRange());
|
|
}
|
|
}
|
|
|
|
// C99 6.5.8p3 / C99 6.5.9p4
|
|
if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
|
|
UsualArithmeticConversions(lex, rex);
|
|
else {
|
|
UsualUnaryConversions(lex);
|
|
UsualUnaryConversions(rex);
|
|
}
|
|
|
|
lType = lex->getType();
|
|
rType = rex->getType();
|
|
|
|
// The result of comparisons is 'bool' in C++, 'int' in C.
|
|
QualType ResultTy = Context.getLogicalOperationType();
|
|
|
|
if (isRelational) {
|
|
if (lType->isRealType() && rType->isRealType())
|
|
return ResultTy;
|
|
} else {
|
|
// Check for comparisons of floating point operands using != and ==.
|
|
if (lType->hasFloatingRepresentation())
|
|
CheckFloatComparison(Loc,lex,rex);
|
|
|
|
if (lType->isArithmeticType() && rType->isArithmeticType())
|
|
return ResultTy;
|
|
}
|
|
|
|
bool LHSIsNull = lex->isNullPointerConstant(Context,
|
|
Expr::NPC_ValueDependentIsNull);
|
|
bool RHSIsNull = rex->isNullPointerConstant(Context,
|
|
Expr::NPC_ValueDependentIsNull);
|
|
|
|
// All of the following pointer-related warnings are GCC extensions, except
|
|
// when handling null pointer constants.
|
|
if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
|
|
QualType LCanPointeeTy =
|
|
Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
|
|
QualType RCanPointeeTy =
|
|
Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
|
|
|
|
if (getLangOptions().CPlusPlus) {
|
|
if (LCanPointeeTy == RCanPointeeTy)
|
|
return ResultTy;
|
|
if (!isRelational &&
|
|
(LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
|
|
// Valid unless comparison between non-null pointer and function pointer
|
|
// This is a gcc extension compatibility comparison.
|
|
// In a SFINAE context, we treat this as a hard error to maintain
|
|
// conformance with the C++ standard.
|
|
if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
|
|
&& !LHSIsNull && !RHSIsNull) {
|
|
Diag(Loc,
|
|
isSFINAEContext()?
|
|
diag::err_typecheck_comparison_of_fptr_to_void
|
|
: diag::ext_typecheck_comparison_of_fptr_to_void)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
|
|
if (isSFINAEContext())
|
|
return QualType();
|
|
|
|
ImpCastExprToType(rex, lType, CK_BitCast);
|
|
return ResultTy;
|
|
}
|
|
}
|
|
|
|
// C++ [expr.rel]p2:
|
|
// [...] Pointer conversions (4.10) and qualification
|
|
// conversions (4.4) are performed on pointer operands (or on
|
|
// a pointer operand and a null pointer constant) to bring
|
|
// them to their composite pointer type. [...]
|
|
//
|
|
// C++ [expr.eq]p1 uses the same notion for (in)equality
|
|
// comparisons of pointers.
|
|
bool NonStandardCompositeType = false;
|
|
QualType T = FindCompositePointerType(Loc, lex, rex,
|
|
isSFINAEContext()? 0 : &NonStandardCompositeType);
|
|
if (T.isNull()) {
|
|
Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
return QualType();
|
|
} else if (NonStandardCompositeType) {
|
|
Diag(Loc,
|
|
diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
|
|
<< lType << rType << T
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
}
|
|
|
|
ImpCastExprToType(lex, T, CK_BitCast);
|
|
ImpCastExprToType(rex, T, CK_BitCast);
|
|
return ResultTy;
|
|
}
|
|
// C99 6.5.9p2 and C99 6.5.8p2
|
|
if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
|
|
RCanPointeeTy.getUnqualifiedType())) {
|
|
// Valid unless a relational comparison of function pointers
|
|
if (isRelational && LCanPointeeTy->isFunctionType()) {
|
|
Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
}
|
|
} else if (!isRelational &&
|
|
(LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
|
|
// Valid unless comparison between non-null pointer and function pointer
|
|
if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
|
|
&& !LHSIsNull && !RHSIsNull) {
|
|
Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
}
|
|
} else {
|
|
// Invalid
|
|
Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
}
|
|
if (LCanPointeeTy != RCanPointeeTy) {
|
|
if (LHSIsNull && !RHSIsNull)
|
|
ImpCastExprToType(lex, rType, CK_BitCast);
|
|
else
|
|
ImpCastExprToType(rex, lType, CK_BitCast);
|
|
}
|
|
return ResultTy;
|
|
}
|
|
|
|
if (getLangOptions().CPlusPlus) {
|
|
// Comparison of nullptr_t with itself.
|
|
if (lType->isNullPtrType() && rType->isNullPtrType())
|
|
return ResultTy;
|
|
|
|
// Comparison of pointers with null pointer constants and equality
|
|
// comparisons of member pointers to null pointer constants.
|
|
if (RHSIsNull &&
|
|
((lType->isPointerType() || lType->isNullPtrType()) ||
|
|
(!isRelational && lType->isMemberPointerType()))) {
|
|
ImpCastExprToType(rex, lType,
|
|
lType->isMemberPointerType()
|
|
? CK_NullToMemberPointer
|
|
: CK_NullToPointer);
|
|
return ResultTy;
|
|
}
|
|
if (LHSIsNull &&
|
|
((rType->isPointerType() || rType->isNullPtrType()) ||
|
|
(!isRelational && rType->isMemberPointerType()))) {
|
|
ImpCastExprToType(lex, rType,
|
|
rType->isMemberPointerType()
|
|
? CK_NullToMemberPointer
|
|
: CK_NullToPointer);
|
|
return ResultTy;
|
|
}
|
|
|
|
// Comparison of member pointers.
|
|
if (!isRelational &&
|
|
lType->isMemberPointerType() && rType->isMemberPointerType()) {
|
|
// C++ [expr.eq]p2:
|
|
// In addition, pointers to members can be compared, or a pointer to
|
|
// member and a null pointer constant. Pointer to member conversions
|
|
// (4.11) and qualification conversions (4.4) are performed to bring
|
|
// them to a common type. If one operand is a null pointer constant,
|
|
// the common type is the type of the other operand. Otherwise, the
|
|
// common type is a pointer to member type similar (4.4) to the type
|
|
// of one of the operands, with a cv-qualification signature (4.4)
|
|
// that is the union of the cv-qualification signatures of the operand
|
|
// types.
|
|
bool NonStandardCompositeType = false;
|
|
QualType T = FindCompositePointerType(Loc, lex, rex,
|
|
isSFINAEContext()? 0 : &NonStandardCompositeType);
|
|
if (T.isNull()) {
|
|
Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
return QualType();
|
|
} else if (NonStandardCompositeType) {
|
|
Diag(Loc,
|
|
diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
|
|
<< lType << rType << T
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
}
|
|
|
|
ImpCastExprToType(lex, T, CK_BitCast);
|
|
ImpCastExprToType(rex, T, CK_BitCast);
|
|
return ResultTy;
|
|
}
|
|
|
|
// Handle scoped enumeration types specifically, since they don't promote
|
|
// to integers.
|
|
if (lex->getType()->isEnumeralType() &&
|
|
Context.hasSameUnqualifiedType(lex->getType(), rex->getType()))
|
|
return ResultTy;
|
|
}
|
|
|
|
// Handle block pointer types.
|
|
if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
|
|
QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
|
|
QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
|
|
|
|
if (!LHSIsNull && !RHSIsNull &&
|
|
!Context.typesAreCompatible(lpointee, rpointee)) {
|
|
Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
}
|
|
ImpCastExprToType(rex, lType, CK_BitCast);
|
|
return ResultTy;
|
|
}
|
|
// Allow block pointers to be compared with null pointer constants.
|
|
if (!isRelational
|
|
&& ((lType->isBlockPointerType() && rType->isPointerType())
|
|
|| (lType->isPointerType() && rType->isBlockPointerType()))) {
|
|
if (!LHSIsNull && !RHSIsNull) {
|
|
if (!((rType->isPointerType() && rType->castAs<PointerType>()
|
|
->getPointeeType()->isVoidType())
|
|
|| (lType->isPointerType() && lType->castAs<PointerType>()
|
|
->getPointeeType()->isVoidType())))
|
|
Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
}
|
|
if (LHSIsNull && !RHSIsNull)
|
|
ImpCastExprToType(lex, rType, CK_BitCast);
|
|
else
|
|
ImpCastExprToType(rex, lType, CK_BitCast);
|
|
return ResultTy;
|
|
}
|
|
|
|
if (lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType()) {
|
|
const PointerType *LPT = lType->getAs<PointerType>();
|
|
const PointerType *RPT = rType->getAs<PointerType>();
|
|
if (LPT || RPT) {
|
|
bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
|
|
bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
|
|
|
|
if (!LPtrToVoid && !RPtrToVoid &&
|
|
!Context.typesAreCompatible(lType, rType)) {
|
|
Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
}
|
|
if (LHSIsNull && !RHSIsNull)
|
|
ImpCastExprToType(lex, rType, CK_BitCast);
|
|
else
|
|
ImpCastExprToType(rex, lType, CK_BitCast);
|
|
return ResultTy;
|
|
}
|
|
if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
|
|
if (!Context.areComparableObjCPointerTypes(lType, rType))
|
|
Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
if (LHSIsNull && !RHSIsNull)
|
|
ImpCastExprToType(lex, rType, CK_BitCast);
|
|
else
|
|
ImpCastExprToType(rex, lType, CK_BitCast);
|
|
return ResultTy;
|
|
}
|
|
}
|
|
if ((lType->isAnyPointerType() && rType->isIntegerType()) ||
|
|
(lType->isIntegerType() && rType->isAnyPointerType())) {
|
|
unsigned DiagID = 0;
|
|
bool isError = false;
|
|
if ((LHSIsNull && lType->isIntegerType()) ||
|
|
(RHSIsNull && rType->isIntegerType())) {
|
|
if (isRelational && !getLangOptions().CPlusPlus)
|
|
DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
|
|
} else if (isRelational && !getLangOptions().CPlusPlus)
|
|
DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
|
|
else if (getLangOptions().CPlusPlus) {
|
|
DiagID = diag::err_typecheck_comparison_of_pointer_integer;
|
|
isError = true;
|
|
} else
|
|
DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
|
|
|
|
if (DiagID) {
|
|
Diag(Loc, DiagID)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
if (isError)
|
|
return QualType();
|
|
}
|
|
|
|
if (lType->isIntegerType())
|
|
ImpCastExprToType(lex, rType,
|
|
LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
|
|
else
|
|
ImpCastExprToType(rex, lType,
|
|
RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
|
|
return ResultTy;
|
|
}
|
|
|
|
// Handle block pointers.
|
|
if (!isRelational && RHSIsNull
|
|
&& lType->isBlockPointerType() && rType->isIntegerType()) {
|
|
ImpCastExprToType(rex, lType, CK_NullToPointer);
|
|
return ResultTy;
|
|
}
|
|
if (!isRelational && LHSIsNull
|
|
&& lType->isIntegerType() && rType->isBlockPointerType()) {
|
|
ImpCastExprToType(lex, rType, CK_NullToPointer);
|
|
return ResultTy;
|
|
}
|
|
|
|
return InvalidOperands(Loc, lex, rex);
|
|
}
|
|
|
|
/// CheckVectorCompareOperands - vector comparisons are a clang extension that
|
|
/// operates on extended vector types. Instead of producing an IntTy result,
|
|
/// like a scalar comparison, a vector comparison produces a vector of integer
|
|
/// types.
|
|
QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
|
|
SourceLocation Loc,
|
|
bool isRelational) {
|
|
// Check to make sure we're operating on vectors of the same type and width,
|
|
// Allowing one side to be a scalar of element type.
|
|
QualType vType = CheckVectorOperands(Loc, lex, rex);
|
|
if (vType.isNull())
|
|
return vType;
|
|
|
|
QualType lType = lex->getType();
|
|
QualType rType = rex->getType();
|
|
|
|
// If AltiVec, the comparison results in a numeric type, i.e.
|
|
// bool for C++, int for C
|
|
if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
|
|
return Context.getLogicalOperationType();
|
|
|
|
// For non-floating point types, check for self-comparisons of the form
|
|
// x == x, x != x, x < x, etc. These always evaluate to a constant, and
|
|
// often indicate logic errors in the program.
|
|
if (!lType->hasFloatingRepresentation()) {
|
|
if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
|
|
if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
|
|
if (DRL->getDecl() == DRR->getDecl())
|
|
DiagRuntimeBehavior(Loc, 0,
|
|
PDiag(diag::warn_comparison_always)
|
|
<< 0 // self-
|
|
<< 2 // "a constant"
|
|
);
|
|
}
|
|
|
|
// Check for comparisons of floating point operands using != and ==.
|
|
if (!isRelational && lType->hasFloatingRepresentation()) {
|
|
assert (rType->hasFloatingRepresentation());
|
|
CheckFloatComparison(Loc,lex,rex);
|
|
}
|
|
|
|
// Return the type for the comparison, which is the same as vector type for
|
|
// integer vectors, or an integer type of identical size and number of
|
|
// elements for floating point vectors.
|
|
if (lType->hasIntegerRepresentation())
|
|
return lType;
|
|
|
|
const VectorType *VTy = lType->getAs<VectorType>();
|
|
unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
|
|
if (TypeSize == Context.getTypeSize(Context.IntTy))
|
|
return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
|
|
if (TypeSize == Context.getTypeSize(Context.LongTy))
|
|
return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
|
|
|
|
assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
|
|
"Unhandled vector element size in vector compare");
|
|
return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
|
|
}
|
|
|
|
inline QualType Sema::CheckBitwiseOperands(
|
|
Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
|
|
if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
|
|
if (lex->getType()->hasIntegerRepresentation() &&
|
|
rex->getType()->hasIntegerRepresentation())
|
|
return CheckVectorOperands(Loc, lex, rex);
|
|
|
|
return InvalidOperands(Loc, lex, rex);
|
|
}
|
|
|
|
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
|
|
|
|
if (lex->getType()->isIntegralOrUnscopedEnumerationType() &&
|
|
rex->getType()->isIntegralOrUnscopedEnumerationType())
|
|
return compType;
|
|
return InvalidOperands(Loc, lex, rex);
|
|
}
|
|
|
|
inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
|
|
Expr *&lex, Expr *&rex, SourceLocation Loc, unsigned Opc) {
|
|
|
|
// Diagnose cases where the user write a logical and/or but probably meant a
|
|
// bitwise one. We do this when the LHS is a non-bool integer and the RHS
|
|
// is a constant.
|
|
if (lex->getType()->isIntegerType() && !lex->getType()->isBooleanType() &&
|
|
rex->getType()->isIntegerType() && !rex->isValueDependent() &&
|
|
// Don't warn in macros.
|
|
!Loc.isMacroID()) {
|
|
// If the RHS can be constant folded, and if it constant folds to something
|
|
// that isn't 0 or 1 (which indicate a potential logical operation that
|
|
// happened to fold to true/false) then warn.
|
|
Expr::EvalResult Result;
|
|
if (rex->Evaluate(Result, Context) && !Result.HasSideEffects &&
|
|
Result.Val.getInt() != 0 && Result.Val.getInt() != 1) {
|
|
Diag(Loc, diag::warn_logical_instead_of_bitwise)
|
|
<< rex->getSourceRange()
|
|
<< (Opc == BO_LAnd ? "&&" : "||")
|
|
<< (Opc == BO_LAnd ? "&" : "|");
|
|
}
|
|
}
|
|
|
|
if (!Context.getLangOptions().CPlusPlus) {
|
|
UsualUnaryConversions(lex);
|
|
UsualUnaryConversions(rex);
|
|
|
|
if (!lex->getType()->isScalarType() || !rex->getType()->isScalarType())
|
|
return InvalidOperands(Loc, lex, rex);
|
|
|
|
return Context.IntTy;
|
|
}
|
|
|
|
// The following is safe because we only use this method for
|
|
// non-overloadable operands.
|
|
|
|
// C++ [expr.log.and]p1
|
|
// C++ [expr.log.or]p1
|
|
// The operands are both contextually converted to type bool.
|
|
if (PerformContextuallyConvertToBool(lex) ||
|
|
PerformContextuallyConvertToBool(rex))
|
|
return InvalidOperands(Loc, lex, rex);
|
|
|
|
// C++ [expr.log.and]p2
|
|
// C++ [expr.log.or]p2
|
|
// The result is a bool.
|
|
return Context.BoolTy;
|
|
}
|
|
|
|
/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
|
|
/// is a read-only property; return true if so. A readonly property expression
|
|
/// depends on various declarations and thus must be treated specially.
|
|
///
|
|
static bool IsReadonlyProperty(Expr *E, Sema &S) {
|
|
if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
|
|
const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
|
|
if (PropExpr->isImplicitProperty()) return false;
|
|
|
|
ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
|
|
QualType BaseType = PropExpr->isSuperReceiver() ?
|
|
PropExpr->getSuperReceiverType() :
|
|
PropExpr->getBase()->getType();
|
|
|
|
if (const ObjCObjectPointerType *OPT =
|
|
BaseType->getAsObjCInterfacePointerType())
|
|
if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
|
|
if (S.isPropertyReadonly(PDecl, IFace))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool IsConstProperty(Expr *E, Sema &S) {
|
|
if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
|
|
const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
|
|
if (PropExpr->isImplicitProperty()) return false;
|
|
|
|
ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
|
|
QualType T = PDecl->getType();
|
|
if (T->isReferenceType())
|
|
T = T->getAs<ReferenceType>()->getPointeeType();
|
|
CanQualType CT = S.Context.getCanonicalType(T);
|
|
return CT.isConstQualified();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool IsReadonlyMessage(Expr *E, Sema &S) {
|
|
if (E->getStmtClass() != Expr::MemberExprClass)
|
|
return false;
|
|
const MemberExpr *ME = cast<MemberExpr>(E);
|
|
NamedDecl *Member = ME->getMemberDecl();
|
|
if (isa<FieldDecl>(Member)) {
|
|
Expr *Base = ME->getBase()->IgnoreParenImpCasts();
|
|
if (Base->getStmtClass() != Expr::ObjCMessageExprClass)
|
|
return false;
|
|
return cast<ObjCMessageExpr>(Base)->getMethodDecl() != 0;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
|
|
/// emit an error and return true. If so, return false.
|
|
static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
|
|
SourceLocation OrigLoc = Loc;
|
|
Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
|
|
&Loc);
|
|
if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
|
|
IsLV = Expr::MLV_ReadonlyProperty;
|
|
else if (Expr::MLV_ConstQualified && IsConstProperty(E, S))
|
|
IsLV = Expr::MLV_Valid;
|
|
else if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
|
|
IsLV = Expr::MLV_InvalidMessageExpression;
|
|
if (IsLV == Expr::MLV_Valid)
|
|
return false;
|
|
|
|
unsigned Diag = 0;
|
|
bool NeedType = false;
|
|
switch (IsLV) { // C99 6.5.16p2
|
|
case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
|
|
case Expr::MLV_ArrayType:
|
|
Diag = diag::err_typecheck_array_not_modifiable_lvalue;
|
|
NeedType = true;
|
|
break;
|
|
case Expr::MLV_NotObjectType:
|
|
Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
|
|
NeedType = true;
|
|
break;
|
|
case Expr::MLV_LValueCast:
|
|
Diag = diag::err_typecheck_lvalue_casts_not_supported;
|
|
break;
|
|
case Expr::MLV_Valid:
|
|
llvm_unreachable("did not take early return for MLV_Valid");
|
|
case Expr::MLV_InvalidExpression:
|
|
case Expr::MLV_MemberFunction:
|
|
case Expr::MLV_ClassTemporary:
|
|
Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
|
|
break;
|
|
case Expr::MLV_IncompleteType:
|
|
case Expr::MLV_IncompleteVoidType:
|
|
return S.RequireCompleteType(Loc, E->getType(),
|
|
S.PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
|
|
<< E->getSourceRange());
|
|
case Expr::MLV_DuplicateVectorComponents:
|
|
Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
|
|
break;
|
|
case Expr::MLV_NotBlockQualified:
|
|
Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
|
|
break;
|
|
case Expr::MLV_ReadonlyProperty:
|
|
Diag = diag::error_readonly_property_assignment;
|
|
break;
|
|
case Expr::MLV_NoSetterProperty:
|
|
Diag = diag::error_nosetter_property_assignment;
|
|
break;
|
|
case Expr::MLV_InvalidMessageExpression:
|
|
Diag = diag::error_readonly_message_assignment;
|
|
break;
|
|
case Expr::MLV_SubObjCPropertySetting:
|
|
Diag = diag::error_no_subobject_property_setting;
|
|
break;
|
|
}
|
|
|
|
SourceRange Assign;
|
|
if (Loc != OrigLoc)
|
|
Assign = SourceRange(OrigLoc, OrigLoc);
|
|
if (NeedType)
|
|
S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
|
|
else
|
|
S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
// C99 6.5.16.1
|
|
QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
|
|
SourceLocation Loc,
|
|
QualType CompoundType) {
|
|
// Verify that LHS is a modifiable lvalue, and emit error if not.
|
|
if (CheckForModifiableLvalue(LHS, Loc, *this))
|
|
return QualType();
|
|
|
|
QualType LHSType = LHS->getType();
|
|
QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
|
|
AssignConvertType ConvTy;
|
|
if (CompoundType.isNull()) {
|
|
QualType LHSTy(LHSType);
|
|
// Simple assignment "x = y".
|
|
if (LHS->getObjectKind() == OK_ObjCProperty)
|
|
ConvertPropertyForLValue(LHS, RHS, LHSTy);
|
|
ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
|
|
// Special case of NSObject attributes on c-style pointer types.
|
|
if (ConvTy == IncompatiblePointer &&
|
|
((Context.isObjCNSObjectType(LHSType) &&
|
|
RHSType->isObjCObjectPointerType()) ||
|
|
(Context.isObjCNSObjectType(RHSType) &&
|
|
LHSType->isObjCObjectPointerType())))
|
|
ConvTy = Compatible;
|
|
|
|
if (ConvTy == Compatible &&
|
|
getLangOptions().ObjCNonFragileABI &&
|
|
LHSType->isObjCObjectType())
|
|
Diag(Loc, diag::err_assignment_requires_nonfragile_object)
|
|
<< LHSType;
|
|
|
|
// If the RHS is a unary plus or minus, check to see if they = and + are
|
|
// right next to each other. If so, the user may have typo'd "x =+ 4"
|
|
// instead of "x += 4".
|
|
Expr *RHSCheck = RHS;
|
|
if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
|
|
RHSCheck = ICE->getSubExpr();
|
|
if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
|
|
if ((UO->getOpcode() == UO_Plus ||
|
|
UO->getOpcode() == UO_Minus) &&
|
|
Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
|
|
// Only if the two operators are exactly adjacent.
|
|
Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
|
|
// And there is a space or other character before the subexpr of the
|
|
// unary +/-. We don't want to warn on "x=-1".
|
|
Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
|
|
UO->getSubExpr()->getLocStart().isFileID()) {
|
|
Diag(Loc, diag::warn_not_compound_assign)
|
|
<< (UO->getOpcode() == UO_Plus ? "+" : "-")
|
|
<< SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
|
|
}
|
|
}
|
|
} else {
|
|
// Compound assignment "x += y"
|
|
ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
|
|
}
|
|
|
|
if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
|
|
RHS, AA_Assigning))
|
|
return QualType();
|
|
|
|
|
|
// Check to see if the destination operand is a dereferenced null pointer. If
|
|
// so, and if not volatile-qualified, this is undefined behavior that the
|
|
// optimizer will delete, so warn about it. People sometimes try to use this
|
|
// to get a deterministic trap and are surprised by clang's behavior. This
|
|
// only handles the pattern "*null = whatever", which is a very syntactic
|
|
// check.
|
|
if (UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS->IgnoreParenCasts()))
|
|
if (UO->getOpcode() == UO_Deref &&
|
|
UO->getSubExpr()->IgnoreParenCasts()->
|
|
isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) &&
|
|
!UO->getType().isVolatileQualified()) {
|
|
DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
|
|
PDiag(diag::warn_indirection_through_null)
|
|
<< UO->getSubExpr()->getSourceRange());
|
|
DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
|
|
PDiag(diag::note_indirection_through_null));
|
|
}
|
|
|
|
// Check for trivial buffer overflows.
|
|
CheckArrayAccess(LHS->IgnoreParenCasts());
|
|
|
|
// C99 6.5.16p3: The type of an assignment expression is the type of the
|
|
// left operand unless the left operand has qualified type, in which case
|
|
// it is the unqualified version of the type of the left operand.
|
|
// C99 6.5.16.1p2: In simple assignment, the value of the right operand
|
|
// is converted to the type of the assignment expression (above).
|
|
// C++ 5.17p1: the type of the assignment expression is that of its left
|
|
// operand.
|
|
return (getLangOptions().CPlusPlus
|
|
? LHSType : LHSType.getUnqualifiedType());
|
|
}
|
|
|
|
// C99 6.5.17
|
|
static QualType CheckCommaOperands(Sema &S, Expr *&LHS, Expr *&RHS,
|
|
SourceLocation Loc) {
|
|
S.DiagnoseUnusedExprResult(LHS);
|
|
|
|
ExprResult LHSResult = S.CheckPlaceholderExpr(LHS, Loc);
|
|
if (LHSResult.isInvalid())
|
|
return QualType();
|
|
|
|
ExprResult RHSResult = S.CheckPlaceholderExpr(RHS, Loc);
|
|
if (RHSResult.isInvalid())
|
|
return QualType();
|
|
RHS = RHSResult.take();
|
|
|
|
// C's comma performs lvalue conversion (C99 6.3.2.1) on both its
|
|
// operands, but not unary promotions.
|
|
// C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
|
|
|
|
// So we treat the LHS as a ignored value, and in C++ we allow the
|
|
// containing site to determine what should be done with the RHS.
|
|
S.IgnoredValueConversions(LHS);
|
|
|
|
if (!S.getLangOptions().CPlusPlus) {
|
|
S.DefaultFunctionArrayLvalueConversion(RHS);
|
|
if (!RHS->getType()->isVoidType())
|
|
S.RequireCompleteType(Loc, RHS->getType(), diag::err_incomplete_type);
|
|
}
|
|
|
|
return RHS->getType();
|
|
}
|
|
|
|
/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
|
|
/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
|
|
static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
|
|
ExprValueKind &VK,
|
|
SourceLocation OpLoc,
|
|
bool isInc, bool isPrefix) {
|
|
if (Op->isTypeDependent())
|
|
return S.Context.DependentTy;
|
|
|
|
QualType ResType = Op->getType();
|
|
assert(!ResType.isNull() && "no type for increment/decrement expression");
|
|
|
|
if (S.getLangOptions().CPlusPlus && ResType->isBooleanType()) {
|
|
// Decrement of bool is not allowed.
|
|
if (!isInc) {
|
|
S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
|
|
return QualType();
|
|
}
|
|
// Increment of bool sets it to true, but is deprecated.
|
|
S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
|
|
} else if (ResType->isRealType()) {
|
|
// OK!
|
|
} else if (ResType->isAnyPointerType()) {
|
|
QualType PointeeTy = ResType->getPointeeType();
|
|
|
|
// C99 6.5.2.4p2, 6.5.6p2
|
|
if (PointeeTy->isVoidType()) {
|
|
if (S.getLangOptions().CPlusPlus) {
|
|
S.Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
|
|
<< Op->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
// Pointer to void is a GNU extension in C.
|
|
S.Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
|
|
} else if (PointeeTy->isFunctionType()) {
|
|
if (S.getLangOptions().CPlusPlus) {
|
|
S.Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
|
|
<< Op->getType() << Op->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
S.Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
|
|
<< ResType << Op->getSourceRange();
|
|
} else if (S.RequireCompleteType(OpLoc, PointeeTy,
|
|
S.PDiag(diag::err_typecheck_arithmetic_incomplete_type)
|
|
<< Op->getSourceRange()
|
|
<< ResType))
|
|
return QualType();
|
|
// Diagnose bad cases where we step over interface counts.
|
|
else if (PointeeTy->isObjCObjectType() && S.LangOpts.ObjCNonFragileABI) {
|
|
S.Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
|
|
<< PointeeTy << Op->getSourceRange();
|
|
return QualType();
|
|
}
|
|
} else if (ResType->isAnyComplexType()) {
|
|
// C99 does not support ++/-- on complex types, we allow as an extension.
|
|
S.Diag(OpLoc, diag::ext_integer_increment_complex)
|
|
<< ResType << Op->getSourceRange();
|
|
} else if (ResType->isPlaceholderType()) {
|
|
ExprResult PR = S.CheckPlaceholderExpr(Op, OpLoc);
|
|
if (PR.isInvalid()) return QualType();
|
|
return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc,
|
|
isInc, isPrefix);
|
|
} else if (S.getLangOptions().AltiVec && ResType->isVectorType()) {
|
|
// OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
|
|
} else {
|
|
S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
|
|
<< ResType << int(isInc) << Op->getSourceRange();
|
|
return QualType();
|
|
}
|
|
// At this point, we know we have a real, complex or pointer type.
|
|
// Now make sure the operand is a modifiable lvalue.
|
|
if (CheckForModifiableLvalue(Op, OpLoc, S))
|
|
return QualType();
|
|
// In C++, a prefix increment is the same type as the operand. Otherwise
|
|
// (in C or with postfix), the increment is the unqualified type of the
|
|
// operand.
|
|
if (isPrefix && S.getLangOptions().CPlusPlus) {
|
|
VK = VK_LValue;
|
|
return ResType;
|
|
} else {
|
|
VK = VK_RValue;
|
|
return ResType.getUnqualifiedType();
|
|
}
|
|
}
|
|
|
|
void Sema::ConvertPropertyForRValue(Expr *&E) {
|
|
assert(E->getValueKind() == VK_LValue &&
|
|
E->getObjectKind() == OK_ObjCProperty);
|
|
const ObjCPropertyRefExpr *PRE = E->getObjCProperty();
|
|
|
|
ExprValueKind VK = VK_RValue;
|
|
if (PRE->isImplicitProperty()) {
|
|
if (const ObjCMethodDecl *GetterMethod =
|
|
PRE->getImplicitPropertyGetter()) {
|
|
QualType Result = GetterMethod->getResultType();
|
|
VK = Expr::getValueKindForType(Result);
|
|
}
|
|
else {
|
|
Diag(PRE->getLocation(), diag::err_getter_not_found)
|
|
<< PRE->getBase()->getType();
|
|
}
|
|
}
|
|
|
|
E = ImplicitCastExpr::Create(Context, E->getType(), CK_GetObjCProperty,
|
|
E, 0, VK);
|
|
|
|
ExprResult Result = MaybeBindToTemporary(E);
|
|
if (!Result.isInvalid())
|
|
E = Result.take();
|
|
}
|
|
|
|
void Sema::ConvertPropertyForLValue(Expr *&LHS, Expr *&RHS, QualType &LHSTy) {
|
|
assert(LHS->getValueKind() == VK_LValue &&
|
|
LHS->getObjectKind() == OK_ObjCProperty);
|
|
const ObjCPropertyRefExpr *PRE = LHS->getObjCProperty();
|
|
|
|
if (PRE->isImplicitProperty()) {
|
|
// If using property-dot syntax notation for assignment, and there is a
|
|
// setter, RHS expression is being passed to the setter argument. So,
|
|
// type conversion (and comparison) is RHS to setter's argument type.
|
|
if (const ObjCMethodDecl *SetterMD = PRE->getImplicitPropertySetter()) {
|
|
ObjCMethodDecl::param_iterator P = SetterMD->param_begin();
|
|
LHSTy = (*P)->getType();
|
|
|
|
// Otherwise, if the getter returns an l-value, just call that.
|
|
} else {
|
|
QualType Result = PRE->getImplicitPropertyGetter()->getResultType();
|
|
ExprValueKind VK = Expr::getValueKindForType(Result);
|
|
if (VK == VK_LValue) {
|
|
LHS = ImplicitCastExpr::Create(Context, LHS->getType(),
|
|
CK_GetObjCProperty, LHS, 0, VK);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (getLangOptions().CPlusPlus && LHSTy->isRecordType()) {
|
|
InitializedEntity Entity =
|
|
InitializedEntity::InitializeParameter(Context, LHSTy);
|
|
Expr *Arg = RHS;
|
|
ExprResult ArgE = PerformCopyInitialization(Entity, SourceLocation(),
|
|
Owned(Arg));
|
|
if (!ArgE.isInvalid())
|
|
RHS = ArgE.takeAs<Expr>();
|
|
}
|
|
}
|
|
|
|
|
|
/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
|
|
/// This routine allows us to typecheck complex/recursive expressions
|
|
/// where the declaration is needed for type checking. We only need to
|
|
/// handle cases when the expression references a function designator
|
|
/// or is an lvalue. Here are some examples:
|
|
/// - &(x) => x
|
|
/// - &*****f => f for f a function designator.
|
|
/// - &s.xx => s
|
|
/// - &s.zz[1].yy -> s, if zz is an array
|
|
/// - *(x + 1) -> x, if x is an array
|
|
/// - &"123"[2] -> 0
|
|
/// - & __real__ x -> x
|
|
static ValueDecl *getPrimaryDecl(Expr *E) {
|
|
switch (E->getStmtClass()) {
|
|
case Stmt::DeclRefExprClass:
|
|
return cast<DeclRefExpr>(E)->getDecl();
|
|
case Stmt::MemberExprClass:
|
|
// If this is an arrow operator, the address is an offset from
|
|
// the base's value, so the object the base refers to is
|
|
// irrelevant.
|
|
if (cast<MemberExpr>(E)->isArrow())
|
|
return 0;
|
|
// Otherwise, the expression refers to a part of the base
|
|
return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
|
|
case Stmt::ArraySubscriptExprClass: {
|
|
// FIXME: This code shouldn't be necessary! We should catch the implicit
|
|
// promotion of register arrays earlier.
|
|
Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
|
|
if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
|
|
if (ICE->getSubExpr()->getType()->isArrayType())
|
|
return getPrimaryDecl(ICE->getSubExpr());
|
|
}
|
|
return 0;
|
|
}
|
|
case Stmt::UnaryOperatorClass: {
|
|
UnaryOperator *UO = cast<UnaryOperator>(E);
|
|
|
|
switch(UO->getOpcode()) {
|
|
case UO_Real:
|
|
case UO_Imag:
|
|
case UO_Extension:
|
|
return getPrimaryDecl(UO->getSubExpr());
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
case Stmt::ParenExprClass:
|
|
return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
|
|
case Stmt::ImplicitCastExprClass:
|
|
// If the result of an implicit cast is an l-value, we care about
|
|
// the sub-expression; otherwise, the result here doesn't matter.
|
|
return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/// CheckAddressOfOperand - The operand of & must be either a function
|
|
/// designator or an lvalue designating an object. If it is an lvalue, the
|
|
/// object cannot be declared with storage class register or be a bit field.
|
|
/// Note: The usual conversions are *not* applied to the operand of the &
|
|
/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
|
|
/// In C++, the operand might be an overloaded function name, in which case
|
|
/// we allow the '&' but retain the overloaded-function type.
|
|
static QualType CheckAddressOfOperand(Sema &S, Expr *OrigOp,
|
|
SourceLocation OpLoc) {
|
|
if (OrigOp->isTypeDependent())
|
|
return S.Context.DependentTy;
|
|
if (OrigOp->getType() == S.Context.OverloadTy)
|
|
return S.Context.OverloadTy;
|
|
|
|
ExprResult PR = S.CheckPlaceholderExpr(OrigOp, OpLoc);
|
|
if (PR.isInvalid()) return QualType();
|
|
OrigOp = PR.take();
|
|
|
|
// Make sure to ignore parentheses in subsequent checks
|
|
Expr *op = OrigOp->IgnoreParens();
|
|
|
|
if (S.getLangOptions().C99) {
|
|
// Implement C99-only parts of addressof rules.
|
|
if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
|
|
if (uOp->getOpcode() == UO_Deref)
|
|
// Per C99 6.5.3.2, the address of a deref always returns a valid result
|
|
// (assuming the deref expression is valid).
|
|
return uOp->getSubExpr()->getType();
|
|
}
|
|
// Technically, there should be a check for array subscript
|
|
// expressions here, but the result of one is always an lvalue anyway.
|
|
}
|
|
ValueDecl *dcl = getPrimaryDecl(op);
|
|
Expr::LValueClassification lval = op->ClassifyLValue(S.Context);
|
|
|
|
if (lval == Expr::LV_ClassTemporary) {
|
|
bool sfinae = S.isSFINAEContext();
|
|
S.Diag(OpLoc, sfinae ? diag::err_typecheck_addrof_class_temporary
|
|
: diag::ext_typecheck_addrof_class_temporary)
|
|
<< op->getType() << op->getSourceRange();
|
|
if (sfinae)
|
|
return QualType();
|
|
} else if (isa<ObjCSelectorExpr>(op)) {
|
|
return S.Context.getPointerType(op->getType());
|
|
} else if (lval == Expr::LV_MemberFunction) {
|
|
// If it's an instance method, make a member pointer.
|
|
// The expression must have exactly the form &A::foo.
|
|
|
|
// If the underlying expression isn't a decl ref, give up.
|
|
if (!isa<DeclRefExpr>(op)) {
|
|
S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
|
|
<< OrigOp->getSourceRange();
|
|
return QualType();
|
|
}
|
|
DeclRefExpr *DRE = cast<DeclRefExpr>(op);
|
|
CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
|
|
|
|
// The id-expression was parenthesized.
|
|
if (OrigOp != DRE) {
|
|
S.Diag(OpLoc, diag::err_parens_pointer_member_function)
|
|
<< OrigOp->getSourceRange();
|
|
|
|
// The method was named without a qualifier.
|
|
} else if (!DRE->getQualifier()) {
|
|
S.Diag(OpLoc, diag::err_unqualified_pointer_member_function)
|
|
<< op->getSourceRange();
|
|
}
|
|
|
|
return S.Context.getMemberPointerType(op->getType(),
|
|
S.Context.getTypeDeclType(MD->getParent()).getTypePtr());
|
|
} else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
|
|
// C99 6.5.3.2p1
|
|
// The operand must be either an l-value or a function designator
|
|
if (!op->getType()->isFunctionType()) {
|
|
// FIXME: emit more specific diag...
|
|
S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
|
|
<< op->getSourceRange();
|
|
return QualType();
|
|
}
|
|
} else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
|
|
// The operand cannot be a bit-field
|
|
S.Diag(OpLoc, diag::err_typecheck_address_of)
|
|
<< "bit-field" << op->getSourceRange();
|
|
return QualType();
|
|
} else if (op->getObjectKind() == OK_VectorComponent) {
|
|
// The operand cannot be an element of a vector
|
|
S.Diag(OpLoc, diag::err_typecheck_address_of)
|
|
<< "vector element" << op->getSourceRange();
|
|
return QualType();
|
|
} else if (op->getObjectKind() == OK_ObjCProperty) {
|
|
// cannot take address of a property expression.
|
|
S.Diag(OpLoc, diag::err_typecheck_address_of)
|
|
<< "property expression" << op->getSourceRange();
|
|
return QualType();
|
|
} else if (dcl) { // C99 6.5.3.2p1
|
|
// We have an lvalue with a decl. Make sure the decl is not declared
|
|
// with the register storage-class specifier.
|
|
if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
|
|
// in C++ it is not error to take address of a register
|
|
// variable (c++03 7.1.1P3)
|
|
if (vd->getStorageClass() == SC_Register &&
|
|
!S.getLangOptions().CPlusPlus) {
|
|
S.Diag(OpLoc, diag::err_typecheck_address_of)
|
|
<< "register variable" << op->getSourceRange();
|
|
return QualType();
|
|
}
|
|
} else if (isa<FunctionTemplateDecl>(dcl)) {
|
|
return S.Context.OverloadTy;
|
|
} else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
|
|
// Okay: we can take the address of a field.
|
|
// Could be a pointer to member, though, if there is an explicit
|
|
// scope qualifier for the class.
|
|
if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
|
|
DeclContext *Ctx = dcl->getDeclContext();
|
|
if (Ctx && Ctx->isRecord()) {
|
|
if (dcl->getType()->isReferenceType()) {
|
|
S.Diag(OpLoc,
|
|
diag::err_cannot_form_pointer_to_member_of_reference_type)
|
|
<< dcl->getDeclName() << dcl->getType();
|
|
return QualType();
|
|
}
|
|
|
|
while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
|
|
Ctx = Ctx->getParent();
|
|
return S.Context.getMemberPointerType(op->getType(),
|
|
S.Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
|
|
}
|
|
}
|
|
} else if (!isa<FunctionDecl>(dcl))
|
|
assert(0 && "Unknown/unexpected decl type");
|
|
}
|
|
|
|
if (lval == Expr::LV_IncompleteVoidType) {
|
|
// Taking the address of a void variable is technically illegal, but we
|
|
// allow it in cases which are otherwise valid.
|
|
// Example: "extern void x; void* y = &x;".
|
|
S.Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
|
|
}
|
|
|
|
// If the operand has type "type", the result has type "pointer to type".
|
|
if (op->getType()->isObjCObjectType())
|
|
return S.Context.getObjCObjectPointerType(op->getType());
|
|
return S.Context.getPointerType(op->getType());
|
|
}
|
|
|
|
/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
|
|
static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
|
|
SourceLocation OpLoc) {
|
|
if (Op->isTypeDependent())
|
|
return S.Context.DependentTy;
|
|
|
|
S.UsualUnaryConversions(Op);
|
|
QualType OpTy = Op->getType();
|
|
QualType Result;
|
|
|
|
// Note that per both C89 and C99, indirection is always legal, even if OpTy
|
|
// is an incomplete type or void. It would be possible to warn about
|
|
// dereferencing a void pointer, but it's completely well-defined, and such a
|
|
// warning is unlikely to catch any mistakes.
|
|
if (const PointerType *PT = OpTy->getAs<PointerType>())
|
|
Result = PT->getPointeeType();
|
|
else if (const ObjCObjectPointerType *OPT =
|
|
OpTy->getAs<ObjCObjectPointerType>())
|
|
Result = OPT->getPointeeType();
|
|
else {
|
|
ExprResult PR = S.CheckPlaceholderExpr(Op, OpLoc);
|
|
if (PR.isInvalid()) return QualType();
|
|
if (PR.take() != Op)
|
|
return CheckIndirectionOperand(S, PR.take(), VK, OpLoc);
|
|
}
|
|
|
|
if (Result.isNull()) {
|
|
S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
|
|
<< OpTy << Op->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
// Dereferences are usually l-values...
|
|
VK = VK_LValue;
|
|
|
|
// ...except that certain expressions are never l-values in C.
|
|
if (!S.getLangOptions().CPlusPlus &&
|
|
IsCForbiddenLValueType(S.Context, Result))
|
|
VK = VK_RValue;
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
|
|
tok::TokenKind Kind) {
|
|
BinaryOperatorKind Opc;
|
|
switch (Kind) {
|
|
default: assert(0 && "Unknown binop!");
|
|
case tok::periodstar: Opc = BO_PtrMemD; break;
|
|
case tok::arrowstar: Opc = BO_PtrMemI; break;
|
|
case tok::star: Opc = BO_Mul; break;
|
|
case tok::slash: Opc = BO_Div; break;
|
|
case tok::percent: Opc = BO_Rem; break;
|
|
case tok::plus: Opc = BO_Add; break;
|
|
case tok::minus: Opc = BO_Sub; break;
|
|
case tok::lessless: Opc = BO_Shl; break;
|
|
case tok::greatergreater: Opc = BO_Shr; break;
|
|
case tok::lessequal: Opc = BO_LE; break;
|
|
case tok::less: Opc = BO_LT; break;
|
|
case tok::greaterequal: Opc = BO_GE; break;
|
|
case tok::greater: Opc = BO_GT; break;
|
|
case tok::exclaimequal: Opc = BO_NE; break;
|
|
case tok::equalequal: Opc = BO_EQ; break;
|
|
case tok::amp: Opc = BO_And; break;
|
|
case tok::caret: Opc = BO_Xor; break;
|
|
case tok::pipe: Opc = BO_Or; break;
|
|
case tok::ampamp: Opc = BO_LAnd; break;
|
|
case tok::pipepipe: Opc = BO_LOr; break;
|
|
case tok::equal: Opc = BO_Assign; break;
|
|
case tok::starequal: Opc = BO_MulAssign; break;
|
|
case tok::slashequal: Opc = BO_DivAssign; break;
|
|
case tok::percentequal: Opc = BO_RemAssign; break;
|
|
case tok::plusequal: Opc = BO_AddAssign; break;
|
|
case tok::minusequal: Opc = BO_SubAssign; break;
|
|
case tok::lesslessequal: Opc = BO_ShlAssign; break;
|
|
case tok::greatergreaterequal: Opc = BO_ShrAssign; break;
|
|
case tok::ampequal: Opc = BO_AndAssign; break;
|
|
case tok::caretequal: Opc = BO_XorAssign; break;
|
|
case tok::pipeequal: Opc = BO_OrAssign; break;
|
|
case tok::comma: Opc = BO_Comma; break;
|
|
}
|
|
return Opc;
|
|
}
|
|
|
|
static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
|
|
tok::TokenKind Kind) {
|
|
UnaryOperatorKind Opc;
|
|
switch (Kind) {
|
|
default: assert(0 && "Unknown unary op!");
|
|
case tok::plusplus: Opc = UO_PreInc; break;
|
|
case tok::minusminus: Opc = UO_PreDec; break;
|
|
case tok::amp: Opc = UO_AddrOf; break;
|
|
case tok::star: Opc = UO_Deref; break;
|
|
case tok::plus: Opc = UO_Plus; break;
|
|
case tok::minus: Opc = UO_Minus; break;
|
|
case tok::tilde: Opc = UO_Not; break;
|
|
case tok::exclaim: Opc = UO_LNot; break;
|
|
case tok::kw___real: Opc = UO_Real; break;
|
|
case tok::kw___imag: Opc = UO_Imag; break;
|
|
case tok::kw___extension__: Opc = UO_Extension; break;
|
|
}
|
|
return Opc;
|
|
}
|
|
|
|
/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
|
|
/// This warning is only emitted for builtin assignment operations. It is also
|
|
/// suppressed in the event of macro expansions.
|
|
static void DiagnoseSelfAssignment(Sema &S, Expr *lhs, Expr *rhs,
|
|
SourceLocation OpLoc) {
|
|
if (!S.ActiveTemplateInstantiations.empty())
|
|
return;
|
|
if (OpLoc.isInvalid() || OpLoc.isMacroID())
|
|
return;
|
|
lhs = lhs->IgnoreParenImpCasts();
|
|
rhs = rhs->IgnoreParenImpCasts();
|
|
const DeclRefExpr *LeftDeclRef = dyn_cast<DeclRefExpr>(lhs);
|
|
const DeclRefExpr *RightDeclRef = dyn_cast<DeclRefExpr>(rhs);
|
|
if (!LeftDeclRef || !RightDeclRef ||
|
|
LeftDeclRef->getLocation().isMacroID() ||
|
|
RightDeclRef->getLocation().isMacroID())
|
|
return;
|
|
const ValueDecl *LeftDecl =
|
|
cast<ValueDecl>(LeftDeclRef->getDecl()->getCanonicalDecl());
|
|
const ValueDecl *RightDecl =
|
|
cast<ValueDecl>(RightDeclRef->getDecl()->getCanonicalDecl());
|
|
if (LeftDecl != RightDecl)
|
|
return;
|
|
if (LeftDecl->getType().isVolatileQualified())
|
|
return;
|
|
if (const ReferenceType *RefTy = LeftDecl->getType()->getAs<ReferenceType>())
|
|
if (RefTy->getPointeeType().isVolatileQualified())
|
|
return;
|
|
|
|
S.Diag(OpLoc, diag::warn_self_assignment)
|
|
<< LeftDeclRef->getType()
|
|
<< lhs->getSourceRange() << rhs->getSourceRange();
|
|
}
|
|
|
|
/// CreateBuiltinBinOp - Creates a new built-in binary operation with
|
|
/// operator @p Opc at location @c TokLoc. This routine only supports
|
|
/// built-in operations; ActOnBinOp handles overloaded operators.
|
|
ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
|
|
BinaryOperatorKind Opc,
|
|
Expr *lhs, Expr *rhs) {
|
|
QualType ResultTy; // Result type of the binary operator.
|
|
// The following two variables are used for compound assignment operators
|
|
QualType CompLHSTy; // Type of LHS after promotions for computation
|
|
QualType CompResultTy; // Type of computation result
|
|
ExprValueKind VK = VK_RValue;
|
|
ExprObjectKind OK = OK_Ordinary;
|
|
|
|
// Check if a 'foo<int>' involved in a binary op, identifies a single
|
|
// function unambiguously (i.e. an lvalue ala 13.4)
|
|
// But since an assignment can trigger target based overload, exclude it in
|
|
// our blind search. i.e:
|
|
// template<class T> void f(); template<class T, class U> void f(U);
|
|
// f<int> == 0; // resolve f<int> blindly
|
|
// void (*p)(int); p = f<int>; // resolve f<int> using target
|
|
if (Opc != BO_Assign) {
|
|
if (lhs->getType() == Context.OverloadTy) {
|
|
ExprResult resolvedLHS =
|
|
ResolveAndFixSingleFunctionTemplateSpecialization(lhs);
|
|
if (resolvedLHS.isUsable()) lhs = resolvedLHS.release();
|
|
}
|
|
if (rhs->getType() == Context.OverloadTy) {
|
|
ExprResult resolvedRHS =
|
|
ResolveAndFixSingleFunctionTemplateSpecialization(rhs);
|
|
if (resolvedRHS.isUsable()) rhs = resolvedRHS.release();
|
|
}
|
|
}
|
|
|
|
switch (Opc) {
|
|
case BO_Assign:
|
|
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
|
|
if (getLangOptions().CPlusPlus &&
|
|
lhs->getObjectKind() != OK_ObjCProperty) {
|
|
VK = lhs->getValueKind();
|
|
OK = lhs->getObjectKind();
|
|
}
|
|
if (!ResultTy.isNull())
|
|
DiagnoseSelfAssignment(*this, lhs, rhs, OpLoc);
|
|
break;
|
|
case BO_PtrMemD:
|
|
case BO_PtrMemI:
|
|
ResultTy = CheckPointerToMemberOperands(lhs, rhs, VK, OpLoc,
|
|
Opc == BO_PtrMemI);
|
|
break;
|
|
case BO_Mul:
|
|
case BO_Div:
|
|
ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, false,
|
|
Opc == BO_Div);
|
|
break;
|
|
case BO_Rem:
|
|
ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
|
|
break;
|
|
case BO_Add:
|
|
ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
|
|
break;
|
|
case BO_Sub:
|
|
ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
|
|
break;
|
|
case BO_Shl:
|
|
case BO_Shr:
|
|
ResultTy = CheckShiftOperands(lhs, rhs, OpLoc, Opc);
|
|
break;
|
|
case BO_LE:
|
|
case BO_LT:
|
|
case BO_GE:
|
|
case BO_GT:
|
|
ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
|
|
break;
|
|
case BO_EQ:
|
|
case BO_NE:
|
|
ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
|
|
break;
|
|
case BO_And:
|
|
case BO_Xor:
|
|
case BO_Or:
|
|
ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
|
|
break;
|
|
case BO_LAnd:
|
|
case BO_LOr:
|
|
ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc, Opc);
|
|
break;
|
|
case BO_MulAssign:
|
|
case BO_DivAssign:
|
|
CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true,
|
|
Opc == BO_DivAssign);
|
|
CompLHSTy = CompResultTy;
|
|
if (!CompResultTy.isNull())
|
|
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
|
|
break;
|
|
case BO_RemAssign:
|
|
CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
|
|
CompLHSTy = CompResultTy;
|
|
if (!CompResultTy.isNull())
|
|
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
|
|
break;
|
|
case BO_AddAssign:
|
|
CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
|
|
if (!CompResultTy.isNull())
|
|
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
|
|
break;
|
|
case BO_SubAssign:
|
|
CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
|
|
if (!CompResultTy.isNull())
|
|
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
|
|
break;
|
|
case BO_ShlAssign:
|
|
case BO_ShrAssign:
|
|
CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, Opc, true);
|
|
CompLHSTy = CompResultTy;
|
|
if (!CompResultTy.isNull())
|
|
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
|
|
break;
|
|
case BO_AndAssign:
|
|
case BO_XorAssign:
|
|
case BO_OrAssign:
|
|
CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
|
|
CompLHSTy = CompResultTy;
|
|
if (!CompResultTy.isNull())
|
|
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
|
|
break;
|
|
case BO_Comma:
|
|
ResultTy = CheckCommaOperands(*this, lhs, rhs, OpLoc);
|
|
if (getLangOptions().CPlusPlus) {
|
|
VK = rhs->getValueKind();
|
|
OK = rhs->getObjectKind();
|
|
}
|
|
break;
|
|
}
|
|
if (ResultTy.isNull())
|
|
return ExprError();
|
|
if (CompResultTy.isNull())
|
|
return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy,
|
|
VK, OK, OpLoc));
|
|
|
|
if (getLangOptions().CPlusPlus && lhs->getObjectKind() != OK_ObjCProperty) {
|
|
VK = VK_LValue;
|
|
OK = lhs->getObjectKind();
|
|
}
|
|
return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
|
|
VK, OK, CompLHSTy,
|
|
CompResultTy, OpLoc));
|
|
}
|
|
|
|
/// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps
|
|
/// ParenRange in parentheses.
|
|
static void SuggestParentheses(Sema &Self, SourceLocation Loc,
|
|
const PartialDiagnostic &PD,
|
|
const PartialDiagnostic &FirstNote,
|
|
SourceRange FirstParenRange,
|
|
const PartialDiagnostic &SecondNote,
|
|
SourceRange SecondParenRange) {
|
|
Self.Diag(Loc, PD);
|
|
|
|
if (!FirstNote.getDiagID())
|
|
return;
|
|
|
|
SourceLocation EndLoc = Self.PP.getLocForEndOfToken(FirstParenRange.getEnd());
|
|
if (!FirstParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
|
|
// We can't display the parentheses, so just return.
|
|
return;
|
|
}
|
|
|
|
Self.Diag(Loc, FirstNote)
|
|
<< FixItHint::CreateInsertion(FirstParenRange.getBegin(), "(")
|
|
<< FixItHint::CreateInsertion(EndLoc, ")");
|
|
|
|
if (!SecondNote.getDiagID())
|
|
return;
|
|
|
|
EndLoc = Self.PP.getLocForEndOfToken(SecondParenRange.getEnd());
|
|
if (!SecondParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
|
|
// We can't display the parentheses, so just dig the
|
|
// warning/error and return.
|
|
Self.Diag(Loc, SecondNote);
|
|
return;
|
|
}
|
|
|
|
Self.Diag(Loc, SecondNote)
|
|
<< FixItHint::CreateInsertion(SecondParenRange.getBegin(), "(")
|
|
<< FixItHint::CreateInsertion(EndLoc, ")");
|
|
}
|
|
|
|
/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
|
|
/// operators are mixed in a way that suggests that the programmer forgot that
|
|
/// comparison operators have higher precedence. The most typical example of
|
|
/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
|
|
static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
|
|
SourceLocation OpLoc,Expr *lhs,Expr *rhs){
|
|
typedef BinaryOperator BinOp;
|
|
BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
|
|
rhsopc = static_cast<BinOp::Opcode>(-1);
|
|
if (BinOp *BO = dyn_cast<BinOp>(lhs))
|
|
lhsopc = BO->getOpcode();
|
|
if (BinOp *BO = dyn_cast<BinOp>(rhs))
|
|
rhsopc = BO->getOpcode();
|
|
|
|
// Subs are not binary operators.
|
|
if (lhsopc == -1 && rhsopc == -1)
|
|
return;
|
|
|
|
// Bitwise operations are sometimes used as eager logical ops.
|
|
// Don't diagnose this.
|
|
if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
|
|
(BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
|
|
return;
|
|
|
|
if (BinOp::isComparisonOp(lhsopc))
|
|
SuggestParentheses(Self, OpLoc,
|
|
Self.PDiag(diag::warn_precedence_bitwise_rel)
|
|
<< SourceRange(lhs->getLocStart(), OpLoc)
|
|
<< BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc),
|
|
Self.PDiag(diag::note_precedence_bitwise_first)
|
|
<< BinOp::getOpcodeStr(Opc),
|
|
SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd()),
|
|
Self.PDiag(diag::note_precedence_bitwise_silence)
|
|
<< BinOp::getOpcodeStr(lhsopc),
|
|
lhs->getSourceRange());
|
|
else if (BinOp::isComparisonOp(rhsopc))
|
|
SuggestParentheses(Self, OpLoc,
|
|
Self.PDiag(diag::warn_precedence_bitwise_rel)
|
|
<< SourceRange(OpLoc, rhs->getLocEnd())
|
|
<< BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc),
|
|
Self.PDiag(diag::note_precedence_bitwise_first)
|
|
<< BinOp::getOpcodeStr(Opc),
|
|
SourceRange(lhs->getLocEnd(), cast<BinOp>(rhs)->getLHS()->getLocStart()),
|
|
Self.PDiag(diag::note_precedence_bitwise_silence)
|
|
<< BinOp::getOpcodeStr(rhsopc),
|
|
rhs->getSourceRange());
|
|
}
|
|
|
|
/// \brief It accepts a '&&' expr that is inside a '||' one.
|
|
/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
|
|
/// in parentheses.
|
|
static void
|
|
EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
|
|
Expr *E) {
|
|
assert(isa<BinaryOperator>(E) &&
|
|
cast<BinaryOperator>(E)->getOpcode() == BO_LAnd);
|
|
SuggestParentheses(Self, OpLoc,
|
|
Self.PDiag(diag::warn_logical_and_in_logical_or)
|
|
<< E->getSourceRange(),
|
|
Self.PDiag(diag::note_logical_and_in_logical_or_silence),
|
|
E->getSourceRange(),
|
|
Self.PDiag(0), SourceRange());
|
|
}
|
|
|
|
/// \brief Returns true if the given expression can be evaluated as a constant
|
|
/// 'true'.
|
|
static bool EvaluatesAsTrue(Sema &S, Expr *E) {
|
|
bool Res;
|
|
return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
|
|
}
|
|
|
|
/// \brief Returns true if the given expression can be evaluated as a constant
|
|
/// 'false'.
|
|
static bool EvaluatesAsFalse(Sema &S, Expr *E) {
|
|
bool Res;
|
|
return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
|
|
}
|
|
|
|
/// \brief Look for '&&' in the left hand of a '||' expr.
|
|
static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
|
|
Expr *OrLHS, Expr *OrRHS) {
|
|
if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrLHS)) {
|
|
if (Bop->getOpcode() == BO_LAnd) {
|
|
// If it's "a && b || 0" don't warn since the precedence doesn't matter.
|
|
if (EvaluatesAsFalse(S, OrRHS))
|
|
return;
|
|
// If it's "1 && a || b" don't warn since the precedence doesn't matter.
|
|
if (!EvaluatesAsTrue(S, Bop->getLHS()))
|
|
return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
|
|
} else if (Bop->getOpcode() == BO_LOr) {
|
|
if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
|
|
// If it's "a || b && 1 || c" we didn't warn earlier for
|
|
// "a || b && 1", but warn now.
|
|
if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
|
|
return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Look for '&&' in the right hand of a '||' expr.
|
|
static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
|
|
Expr *OrLHS, Expr *OrRHS) {
|
|
if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrRHS)) {
|
|
if (Bop->getOpcode() == BO_LAnd) {
|
|
// If it's "0 || a && b" don't warn since the precedence doesn't matter.
|
|
if (EvaluatesAsFalse(S, OrLHS))
|
|
return;
|
|
// If it's "a || b && 1" don't warn since the precedence doesn't matter.
|
|
if (!EvaluatesAsTrue(S, Bop->getRHS()))
|
|
return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
|
|
/// precedence.
|
|
static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
|
|
SourceLocation OpLoc, Expr *lhs, Expr *rhs){
|
|
// Diagnose "arg1 'bitwise' arg2 'eq' arg3".
|
|
if (BinaryOperator::isBitwiseOp(Opc))
|
|
return DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
|
|
|
|
// Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
|
|
// We don't warn for 'assert(a || b && "bad")' since this is safe.
|
|
if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
|
|
DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, lhs, rhs);
|
|
DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, lhs, rhs);
|
|
}
|
|
}
|
|
|
|
// Binary Operators. 'Tok' is the token for the operator.
|
|
ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
|
|
tok::TokenKind Kind,
|
|
Expr *lhs, Expr *rhs) {
|
|
BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
|
|
assert((lhs != 0) && "ActOnBinOp(): missing left expression");
|
|
assert((rhs != 0) && "ActOnBinOp(): missing right expression");
|
|
|
|
// Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
|
|
DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);
|
|
|
|
return BuildBinOp(S, TokLoc, Opc, lhs, rhs);
|
|
}
|
|
|
|
ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
|
|
BinaryOperatorKind Opc,
|
|
Expr *lhs, Expr *rhs) {
|
|
if (getLangOptions().CPlusPlus) {
|
|
bool UseBuiltinOperator;
|
|
|
|
if (lhs->isTypeDependent() || rhs->isTypeDependent()) {
|
|
UseBuiltinOperator = false;
|
|
} else if (Opc == BO_Assign && lhs->getObjectKind() == OK_ObjCProperty) {
|
|
UseBuiltinOperator = true;
|
|
} else {
|
|
UseBuiltinOperator = !lhs->getType()->isOverloadableType() &&
|
|
!rhs->getType()->isOverloadableType();
|
|
}
|
|
|
|
if (!UseBuiltinOperator) {
|
|
// Find all of the overloaded operators visible from this
|
|
// point. We perform both an operator-name lookup from the local
|
|
// scope and an argument-dependent lookup based on the types of
|
|
// the arguments.
|
|
UnresolvedSet<16> Functions;
|
|
OverloadedOperatorKind OverOp
|
|
= BinaryOperator::getOverloadedOperator(Opc);
|
|
if (S && OverOp != OO_None)
|
|
LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
|
|
Functions);
|
|
|
|
// Build the (potentially-overloaded, potentially-dependent)
|
|
// binary operation.
|
|
return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs);
|
|
}
|
|
}
|
|
|
|
// Build a built-in binary operation.
|
|
return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs);
|
|
}
|
|
|
|
ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
|
|
UnaryOperatorKind Opc,
|
|
Expr *Input) {
|
|
ExprValueKind VK = VK_RValue;
|
|
ExprObjectKind OK = OK_Ordinary;
|
|
QualType resultType;
|
|
switch (Opc) {
|
|
case UO_PreInc:
|
|
case UO_PreDec:
|
|
case UO_PostInc:
|
|
case UO_PostDec:
|
|
resultType = CheckIncrementDecrementOperand(*this, Input, VK, OpLoc,
|
|
Opc == UO_PreInc ||
|
|
Opc == UO_PostInc,
|
|
Opc == UO_PreInc ||
|
|
Opc == UO_PreDec);
|
|
break;
|
|
case UO_AddrOf:
|
|
resultType = CheckAddressOfOperand(*this, Input, OpLoc);
|
|
break;
|
|
case UO_Deref:
|
|
if (Input->getType() == Context.OverloadTy ) {
|
|
ExprResult er = ResolveAndFixSingleFunctionTemplateSpecialization(Input);
|
|
if (er.isUsable())
|
|
Input = er.release();
|
|
}
|
|
DefaultFunctionArrayLvalueConversion(Input);
|
|
resultType = CheckIndirectionOperand(*this, Input, VK, OpLoc);
|
|
break;
|
|
case UO_Plus:
|
|
case UO_Minus:
|
|
UsualUnaryConversions(Input);
|
|
resultType = Input->getType();
|
|
if (resultType->isDependentType())
|
|
break;
|
|
if (resultType->isArithmeticType() || // C99 6.5.3.3p1
|
|
resultType->isVectorType())
|
|
break;
|
|
else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
|
|
resultType->isEnumeralType())
|
|
break;
|
|
else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
|
|
Opc == UO_Plus &&
|
|
resultType->isPointerType())
|
|
break;
|
|
else if (resultType->isPlaceholderType()) {
|
|
ExprResult PR = CheckPlaceholderExpr(Input, OpLoc);
|
|
if (PR.isInvalid()) return ExprError();
|
|
return CreateBuiltinUnaryOp(OpLoc, Opc, PR.take());
|
|
}
|
|
|
|
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
|
|
<< resultType << Input->getSourceRange());
|
|
case UO_Not: // bitwise complement
|
|
UsualUnaryConversions(Input);
|
|
resultType = Input->getType();
|
|
if (resultType->isDependentType())
|
|
break;
|
|
// C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
|
|
if (resultType->isComplexType() || resultType->isComplexIntegerType())
|
|
// C99 does not support '~' for complex conjugation.
|
|
Diag(OpLoc, diag::ext_integer_complement_complex)
|
|
<< resultType << Input->getSourceRange();
|
|
else if (resultType->hasIntegerRepresentation())
|
|
break;
|
|
else if (resultType->isPlaceholderType()) {
|
|
ExprResult PR = CheckPlaceholderExpr(Input, OpLoc);
|
|
if (PR.isInvalid()) return ExprError();
|
|
return CreateBuiltinUnaryOp(OpLoc, Opc, PR.take());
|
|
} else {
|
|
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
|
|
<< resultType << Input->getSourceRange());
|
|
}
|
|
break;
|
|
case UO_LNot: // logical negation
|
|
// Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
|
|
DefaultFunctionArrayLvalueConversion(Input);
|
|
resultType = Input->getType();
|
|
if (resultType->isDependentType())
|
|
break;
|
|
if (resultType->isScalarType()) { // C99 6.5.3.3p1
|
|
// ok, fallthrough
|
|
} else if (resultType->isPlaceholderType()) {
|
|
ExprResult PR = CheckPlaceholderExpr(Input, OpLoc);
|
|
if (PR.isInvalid()) return ExprError();
|
|
return CreateBuiltinUnaryOp(OpLoc, Opc, PR.take());
|
|
} else {
|
|
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
|
|
<< resultType << Input->getSourceRange());
|
|
}
|
|
|
|
// LNot always has type int. C99 6.5.3.3p5.
|
|
// In C++, it's bool. C++ 5.3.1p8
|
|
resultType = Context.getLogicalOperationType();
|
|
break;
|
|
case UO_Real:
|
|
case UO_Imag:
|
|
resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
|
|
// _Real and _Imag map ordinary l-values into ordinary l-values.
|
|
if (Input->getValueKind() != VK_RValue &&
|
|
Input->getObjectKind() == OK_Ordinary)
|
|
VK = Input->getValueKind();
|
|
break;
|
|
case UO_Extension:
|
|
resultType = Input->getType();
|
|
VK = Input->getValueKind();
|
|
OK = Input->getObjectKind();
|
|
break;
|
|
}
|
|
if (resultType.isNull())
|
|
return ExprError();
|
|
|
|
return Owned(new (Context) UnaryOperator(Input, Opc, resultType,
|
|
VK, OK, OpLoc));
|
|
}
|
|
|
|
ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
|
|
UnaryOperatorKind Opc,
|
|
Expr *Input) {
|
|
if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() &&
|
|
UnaryOperator::getOverloadedOperator(Opc) != OO_None) {
|
|
// Find all of the overloaded operators visible from this
|
|
// point. We perform both an operator-name lookup from the local
|
|
// scope and an argument-dependent lookup based on the types of
|
|
// the arguments.
|
|
UnresolvedSet<16> Functions;
|
|
OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
|
|
if (S && OverOp != OO_None)
|
|
LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
|
|
Functions);
|
|
|
|
return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
|
|
}
|
|
|
|
return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
|
|
}
|
|
|
|
// Unary Operators. 'Tok' is the token for the operator.
|
|
ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
|
|
tok::TokenKind Op, Expr *Input) {
|
|
return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
|
|
}
|
|
|
|
/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
|
|
ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
|
|
LabelDecl *TheDecl) {
|
|
TheDecl->setUsed();
|
|
// Create the AST node. The address of a label always has type 'void*'.
|
|
return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
|
|
Context.getPointerType(Context.VoidTy)));
|
|
}
|
|
|
|
ExprResult
|
|
Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
|
|
SourceLocation RPLoc) { // "({..})"
|
|
assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
|
|
CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
|
|
|
|
bool isFileScope
|
|
= (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
|
|
if (isFileScope)
|
|
return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
|
|
|
|
// FIXME: there are a variety of strange constraints to enforce here, for
|
|
// example, it is not possible to goto into a stmt expression apparently.
|
|
// More semantic analysis is needed.
|
|
|
|
// If there are sub stmts in the compound stmt, take the type of the last one
|
|
// as the type of the stmtexpr.
|
|
QualType Ty = Context.VoidTy;
|
|
bool StmtExprMayBindToTemp = false;
|
|
if (!Compound->body_empty()) {
|
|
Stmt *LastStmt = Compound->body_back();
|
|
LabelStmt *LastLabelStmt = 0;
|
|
// If LastStmt is a label, skip down through into the body.
|
|
while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
|
|
LastLabelStmt = Label;
|
|
LastStmt = Label->getSubStmt();
|
|
}
|
|
if (Expr *LastExpr = dyn_cast<Expr>(LastStmt)) {
|
|
// Do function/array conversion on the last expression, but not
|
|
// lvalue-to-rvalue. However, initialize an unqualified type.
|
|
DefaultFunctionArrayConversion(LastExpr);
|
|
Ty = LastExpr->getType().getUnqualifiedType();
|
|
|
|
if (!Ty->isDependentType() && !LastExpr->isTypeDependent()) {
|
|
ExprResult Res = PerformCopyInitialization(
|
|
InitializedEntity::InitializeResult(LPLoc,
|
|
Ty,
|
|
false),
|
|
SourceLocation(),
|
|
Owned(LastExpr));
|
|
if (Res.isInvalid())
|
|
return ExprError();
|
|
if ((LastExpr = Res.takeAs<Expr>())) {
|
|
if (!LastLabelStmt)
|
|
Compound->setLastStmt(LastExpr);
|
|
else
|
|
LastLabelStmt->setSubStmt(LastExpr);
|
|
StmtExprMayBindToTemp = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// FIXME: Check that expression type is complete/non-abstract; statement
|
|
// expressions are not lvalues.
|
|
Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
|
|
if (StmtExprMayBindToTemp)
|
|
return MaybeBindToTemporary(ResStmtExpr);
|
|
return Owned(ResStmtExpr);
|
|
}
|
|
|
|
ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
|
|
TypeSourceInfo *TInfo,
|
|
OffsetOfComponent *CompPtr,
|
|
unsigned NumComponents,
|
|
SourceLocation RParenLoc) {
|
|
QualType ArgTy = TInfo->getType();
|
|
bool Dependent = ArgTy->isDependentType();
|
|
SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
|
|
|
|
// We must have at least one component that refers to the type, and the first
|
|
// one is known to be a field designator. Verify that the ArgTy represents
|
|
// a struct/union/class.
|
|
if (!Dependent && !ArgTy->isRecordType())
|
|
return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
|
|
<< ArgTy << TypeRange);
|
|
|
|
// Type must be complete per C99 7.17p3 because a declaring a variable
|
|
// with an incomplete type would be ill-formed.
|
|
if (!Dependent
|
|
&& RequireCompleteType(BuiltinLoc, ArgTy,
|
|
PDiag(diag::err_offsetof_incomplete_type)
|
|
<< TypeRange))
|
|
return ExprError();
|
|
|
|
// offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
|
|
// GCC extension, diagnose them.
|
|
// FIXME: This diagnostic isn't actually visible because the location is in
|
|
// a system header!
|
|
if (NumComponents != 1)
|
|
Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
|
|
<< SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
|
|
|
|
bool DidWarnAboutNonPOD = false;
|
|
QualType CurrentType = ArgTy;
|
|
typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
|
|
llvm::SmallVector<OffsetOfNode, 4> Comps;
|
|
llvm::SmallVector<Expr*, 4> Exprs;
|
|
for (unsigned i = 0; i != NumComponents; ++i) {
|
|
const OffsetOfComponent &OC = CompPtr[i];
|
|
if (OC.isBrackets) {
|
|
// Offset of an array sub-field. TODO: Should we allow vector elements?
|
|
if (!CurrentType->isDependentType()) {
|
|
const ArrayType *AT = Context.getAsArrayType(CurrentType);
|
|
if(!AT)
|
|
return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
|
|
<< CurrentType);
|
|
CurrentType = AT->getElementType();
|
|
} else
|
|
CurrentType = Context.DependentTy;
|
|
|
|
// The expression must be an integral expression.
|
|
// FIXME: An integral constant expression?
|
|
Expr *Idx = static_cast<Expr*>(OC.U.E);
|
|
if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
|
|
!Idx->getType()->isIntegerType())
|
|
return ExprError(Diag(Idx->getLocStart(),
|
|
diag::err_typecheck_subscript_not_integer)
|
|
<< Idx->getSourceRange());
|
|
|
|
// Record this array index.
|
|
Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
|
|
Exprs.push_back(Idx);
|
|
continue;
|
|
}
|
|
|
|
// Offset of a field.
|
|
if (CurrentType->isDependentType()) {
|
|
// We have the offset of a field, but we can't look into the dependent
|
|
// type. Just record the identifier of the field.
|
|
Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
|
|
CurrentType = Context.DependentTy;
|
|
continue;
|
|
}
|
|
|
|
// We need to have a complete type to look into.
|
|
if (RequireCompleteType(OC.LocStart, CurrentType,
|
|
diag::err_offsetof_incomplete_type))
|
|
return ExprError();
|
|
|
|
// Look for the designated field.
|
|
const RecordType *RC = CurrentType->getAs<RecordType>();
|
|
if (!RC)
|
|
return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
|
|
<< CurrentType);
|
|
RecordDecl *RD = RC->getDecl();
|
|
|
|
// C++ [lib.support.types]p5:
|
|
// The macro offsetof accepts a restricted set of type arguments in this
|
|
// International Standard. type shall be a POD structure or a POD union
|
|
// (clause 9).
|
|
if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
|
|
if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
|
|
DiagRuntimeBehavior(BuiltinLoc, 0,
|
|
PDiag(diag::warn_offsetof_non_pod_type)
|
|
<< SourceRange(CompPtr[0].LocStart, OC.LocEnd)
|
|
<< CurrentType))
|
|
DidWarnAboutNonPOD = true;
|
|
}
|
|
|
|
// Look for the field.
|
|
LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
|
|
LookupQualifiedName(R, RD);
|
|
FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
|
|
IndirectFieldDecl *IndirectMemberDecl = 0;
|
|
if (!MemberDecl) {
|
|
if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
|
|
MemberDecl = IndirectMemberDecl->getAnonField();
|
|
}
|
|
|
|
if (!MemberDecl)
|
|
return ExprError(Diag(BuiltinLoc, diag::err_no_member)
|
|
<< OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
|
|
OC.LocEnd));
|
|
|
|
// C99 7.17p3:
|
|
// (If the specified member is a bit-field, the behavior is undefined.)
|
|
//
|
|
// We diagnose this as an error.
|
|
if (MemberDecl->getBitWidth()) {
|
|
Diag(OC.LocEnd, diag::err_offsetof_bitfield)
|
|
<< MemberDecl->getDeclName()
|
|
<< SourceRange(BuiltinLoc, RParenLoc);
|
|
Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
|
|
return ExprError();
|
|
}
|
|
|
|
RecordDecl *Parent = MemberDecl->getParent();
|
|
if (IndirectMemberDecl)
|
|
Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
|
|
|
|
// If the member was found in a base class, introduce OffsetOfNodes for
|
|
// the base class indirections.
|
|
CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
|
|
/*DetectVirtual=*/false);
|
|
if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
|
|
CXXBasePath &Path = Paths.front();
|
|
for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
|
|
B != BEnd; ++B)
|
|
Comps.push_back(OffsetOfNode(B->Base));
|
|
}
|
|
|
|
if (IndirectMemberDecl) {
|
|
for (IndirectFieldDecl::chain_iterator FI =
|
|
IndirectMemberDecl->chain_begin(),
|
|
FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) {
|
|
assert(isa<FieldDecl>(*FI));
|
|
Comps.push_back(OffsetOfNode(OC.LocStart,
|
|
cast<FieldDecl>(*FI), OC.LocEnd));
|
|
}
|
|
} else
|
|
Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
|
|
|
|
CurrentType = MemberDecl->getType().getNonReferenceType();
|
|
}
|
|
|
|
return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
|
|
TInfo, Comps.data(), Comps.size(),
|
|
Exprs.data(), Exprs.size(), RParenLoc));
|
|
}
|
|
|
|
ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
|
|
SourceLocation BuiltinLoc,
|
|
SourceLocation TypeLoc,
|
|
ParsedType argty,
|
|
OffsetOfComponent *CompPtr,
|
|
unsigned NumComponents,
|
|
SourceLocation RPLoc) {
|
|
|
|
TypeSourceInfo *ArgTInfo;
|
|
QualType ArgTy = GetTypeFromParser(argty, &ArgTInfo);
|
|
if (ArgTy.isNull())
|
|
return ExprError();
|
|
|
|
if (!ArgTInfo)
|
|
ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
|
|
|
|
return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
|
|
RPLoc);
|
|
}
|
|
|
|
|
|
ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
|
|
Expr *CondExpr,
|
|
Expr *LHSExpr, Expr *RHSExpr,
|
|
SourceLocation RPLoc) {
|
|
assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
|
|
|
|
ExprValueKind VK = VK_RValue;
|
|
ExprObjectKind OK = OK_Ordinary;
|
|
QualType resType;
|
|
bool ValueDependent = false;
|
|
if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
|
|
resType = Context.DependentTy;
|
|
ValueDependent = true;
|
|
} else {
|
|
// The conditional expression is required to be a constant expression.
|
|
llvm::APSInt condEval(32);
|
|
SourceLocation ExpLoc;
|
|
if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
|
|
return ExprError(Diag(ExpLoc,
|
|
diag::err_typecheck_choose_expr_requires_constant)
|
|
<< CondExpr->getSourceRange());
|
|
|
|
// If the condition is > zero, then the AST type is the same as the LSHExpr.
|
|
Expr *ActiveExpr = condEval.getZExtValue() ? LHSExpr : RHSExpr;
|
|
|
|
resType = ActiveExpr->getType();
|
|
ValueDependent = ActiveExpr->isValueDependent();
|
|
VK = ActiveExpr->getValueKind();
|
|
OK = ActiveExpr->getObjectKind();
|
|
}
|
|
|
|
return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
|
|
resType, VK, OK, RPLoc,
|
|
resType->isDependentType(),
|
|
ValueDependent));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Clang Extensions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// ActOnBlockStart - This callback is invoked when a block literal is started.
|
|
void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
|
|
BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
|
|
PushBlockScope(BlockScope, Block);
|
|
CurContext->addDecl(Block);
|
|
if (BlockScope)
|
|
PushDeclContext(BlockScope, Block);
|
|
else
|
|
CurContext = Block;
|
|
}
|
|
|
|
void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
|
|
assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
|
|
assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
|
|
BlockScopeInfo *CurBlock = getCurBlock();
|
|
|
|
TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
|
|
QualType T = Sig->getType();
|
|
|
|
// GetTypeForDeclarator always produces a function type for a block
|
|
// literal signature. Furthermore, it is always a FunctionProtoType
|
|
// unless the function was written with a typedef.
|
|
assert(T->isFunctionType() &&
|
|
"GetTypeForDeclarator made a non-function block signature");
|
|
|
|
// Look for an explicit signature in that function type.
|
|
FunctionProtoTypeLoc ExplicitSignature;
|
|
|
|
TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
|
|
if (isa<FunctionProtoTypeLoc>(tmp)) {
|
|
ExplicitSignature = cast<FunctionProtoTypeLoc>(tmp);
|
|
|
|
// Check whether that explicit signature was synthesized by
|
|
// GetTypeForDeclarator. If so, don't save that as part of the
|
|
// written signature.
|
|
if (ExplicitSignature.getLocalRangeBegin() ==
|
|
ExplicitSignature.getLocalRangeEnd()) {
|
|
// This would be much cheaper if we stored TypeLocs instead of
|
|
// TypeSourceInfos.
|
|
TypeLoc Result = ExplicitSignature.getResultLoc();
|
|
unsigned Size = Result.getFullDataSize();
|
|
Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
|
|
Sig->getTypeLoc().initializeFullCopy(Result, Size);
|
|
|
|
ExplicitSignature = FunctionProtoTypeLoc();
|
|
}
|
|
}
|
|
|
|
CurBlock->TheDecl->setSignatureAsWritten(Sig);
|
|
CurBlock->FunctionType = T;
|
|
|
|
const FunctionType *Fn = T->getAs<FunctionType>();
|
|
QualType RetTy = Fn->getResultType();
|
|
bool isVariadic =
|
|
(isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
|
|
|
|
CurBlock->TheDecl->setIsVariadic(isVariadic);
|
|
|
|
// Don't allow returning a objc interface by value.
|
|
if (RetTy->isObjCObjectType()) {
|
|
Diag(ParamInfo.getSourceRange().getBegin(),
|
|
diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
|
|
return;
|
|
}
|
|
|
|
// Context.DependentTy is used as a placeholder for a missing block
|
|
// return type. TODO: what should we do with declarators like:
|
|
// ^ * { ... }
|
|
// If the answer is "apply template argument deduction"....
|
|
if (RetTy != Context.DependentTy)
|
|
CurBlock->ReturnType = RetTy;
|
|
|
|
// Push block parameters from the declarator if we had them.
|
|
llvm::SmallVector<ParmVarDecl*, 8> Params;
|
|
if (ExplicitSignature) {
|
|
for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) {
|
|
ParmVarDecl *Param = ExplicitSignature.getArg(I);
|
|
if (Param->getIdentifier() == 0 &&
|
|
!Param->isImplicit() &&
|
|
!Param->isInvalidDecl() &&
|
|
!getLangOptions().CPlusPlus)
|
|
Diag(Param->getLocation(), diag::err_parameter_name_omitted);
|
|
Params.push_back(Param);
|
|
}
|
|
|
|
// Fake up parameter variables if we have a typedef, like
|
|
// ^ fntype { ... }
|
|
} else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
|
|
for (FunctionProtoType::arg_type_iterator
|
|
I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
|
|
ParmVarDecl *Param =
|
|
BuildParmVarDeclForTypedef(CurBlock->TheDecl,
|
|
ParamInfo.getSourceRange().getBegin(),
|
|
*I);
|
|
Params.push_back(Param);
|
|
}
|
|
}
|
|
|
|
// Set the parameters on the block decl.
|
|
if (!Params.empty()) {
|
|
CurBlock->TheDecl->setParams(Params.data(), Params.size());
|
|
CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
|
|
CurBlock->TheDecl->param_end(),
|
|
/*CheckParameterNames=*/false);
|
|
}
|
|
|
|
// Finally we can process decl attributes.
|
|
ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
|
|
|
|
if (!isVariadic && CurBlock->TheDecl->getAttr<SentinelAttr>()) {
|
|
Diag(ParamInfo.getAttributes()->getLoc(),
|
|
diag::warn_attribute_sentinel_not_variadic) << 1;
|
|
// FIXME: remove the attribute.
|
|
}
|
|
|
|
// Put the parameter variables in scope. We can bail out immediately
|
|
// if we don't have any.
|
|
if (Params.empty())
|
|
return;
|
|
|
|
for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
|
|
E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
|
|
(*AI)->setOwningFunction(CurBlock->TheDecl);
|
|
|
|
// If this has an identifier, add it to the scope stack.
|
|
if ((*AI)->getIdentifier()) {
|
|
CheckShadow(CurBlock->TheScope, *AI);
|
|
|
|
PushOnScopeChains(*AI, CurBlock->TheScope);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// ActOnBlockError - If there is an error parsing a block, this callback
|
|
/// is invoked to pop the information about the block from the action impl.
|
|
void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
|
|
// Pop off CurBlock, handle nested blocks.
|
|
PopDeclContext();
|
|
PopFunctionOrBlockScope();
|
|
}
|
|
|
|
/// ActOnBlockStmtExpr - This is called when the body of a block statement
|
|
/// literal was successfully completed. ^(int x){...}
|
|
ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
|
|
Stmt *Body, Scope *CurScope) {
|
|
// If blocks are disabled, emit an error.
|
|
if (!LangOpts.Blocks)
|
|
Diag(CaretLoc, diag::err_blocks_disable);
|
|
|
|
BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
|
|
|
|
PopDeclContext();
|
|
|
|
QualType RetTy = Context.VoidTy;
|
|
if (!BSI->ReturnType.isNull())
|
|
RetTy = BSI->ReturnType;
|
|
|
|
bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
|
|
QualType BlockTy;
|
|
|
|
// Set the captured variables on the block.
|
|
BSI->TheDecl->setCaptures(Context, BSI->Captures.begin(), BSI->Captures.end(),
|
|
BSI->CapturesCXXThis);
|
|
|
|
// If the user wrote a function type in some form, try to use that.
|
|
if (!BSI->FunctionType.isNull()) {
|
|
const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
|
|
|
|
FunctionType::ExtInfo Ext = FTy->getExtInfo();
|
|
if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
|
|
|
|
// Turn protoless block types into nullary block types.
|
|
if (isa<FunctionNoProtoType>(FTy)) {
|
|
FunctionProtoType::ExtProtoInfo EPI;
|
|
EPI.ExtInfo = Ext;
|
|
BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
|
|
|
|
// Otherwise, if we don't need to change anything about the function type,
|
|
// preserve its sugar structure.
|
|
} else if (FTy->getResultType() == RetTy &&
|
|
(!NoReturn || FTy->getNoReturnAttr())) {
|
|
BlockTy = BSI->FunctionType;
|
|
|
|
// Otherwise, make the minimal modifications to the function type.
|
|
} else {
|
|
const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
|
|
FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
|
|
EPI.TypeQuals = 0; // FIXME: silently?
|
|
EPI.ExtInfo = Ext;
|
|
BlockTy = Context.getFunctionType(RetTy,
|
|
FPT->arg_type_begin(),
|
|
FPT->getNumArgs(),
|
|
EPI);
|
|
}
|
|
|
|
// If we don't have a function type, just build one from nothing.
|
|
} else {
|
|
FunctionProtoType::ExtProtoInfo EPI;
|
|
EPI.ExtInfo = FunctionType::ExtInfo(NoReturn, 0, CC_Default);
|
|
BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
|
|
}
|
|
|
|
DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
|
|
BSI->TheDecl->param_end());
|
|
BlockTy = Context.getBlockPointerType(BlockTy);
|
|
|
|
// If needed, diagnose invalid gotos and switches in the block.
|
|
if (getCurFunction()->NeedsScopeChecking() && !hasAnyErrorsInThisFunction())
|
|
DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
|
|
|
|
BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
|
|
|
|
BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
|
|
|
|
const AnalysisBasedWarnings::Policy &WP = AnalysisWarnings.getDefaultPolicy();
|
|
PopFunctionOrBlockScope(&WP, Result->getBlockDecl(), Result);
|
|
return Owned(Result);
|
|
}
|
|
|
|
ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
|
|
Expr *expr, ParsedType type,
|
|
SourceLocation RPLoc) {
|
|
TypeSourceInfo *TInfo;
|
|
GetTypeFromParser(type, &TInfo);
|
|
return BuildVAArgExpr(BuiltinLoc, expr, TInfo, RPLoc);
|
|
}
|
|
|
|
ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
|
|
Expr *E, TypeSourceInfo *TInfo,
|
|
SourceLocation RPLoc) {
|
|
Expr *OrigExpr = E;
|
|
|
|
// Get the va_list type
|
|
QualType VaListType = Context.getBuiltinVaListType();
|
|
if (VaListType->isArrayType()) {
|
|
// Deal with implicit array decay; for example, on x86-64,
|
|
// va_list is an array, but it's supposed to decay to
|
|
// a pointer for va_arg.
|
|
VaListType = Context.getArrayDecayedType(VaListType);
|
|
// Make sure the input expression also decays appropriately.
|
|
UsualUnaryConversions(E);
|
|
} else {
|
|
// Otherwise, the va_list argument must be an l-value because
|
|
// it is modified by va_arg.
|
|
if (!E->isTypeDependent() &&
|
|
CheckForModifiableLvalue(E, BuiltinLoc, *this))
|
|
return ExprError();
|
|
}
|
|
|
|
if (!E->isTypeDependent() &&
|
|
!Context.hasSameType(VaListType, E->getType())) {
|
|
return ExprError(Diag(E->getLocStart(),
|
|
diag::err_first_argument_to_va_arg_not_of_type_va_list)
|
|
<< OrigExpr->getType() << E->getSourceRange());
|
|
}
|
|
|
|
// FIXME: Check that type is complete/non-abstract
|
|
// FIXME: Warn if a non-POD type is passed in.
|
|
|
|
QualType T = TInfo->getType().getNonLValueExprType(Context);
|
|
return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
|
|
}
|
|
|
|
ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
|
|
// The type of __null will be int or long, depending on the size of
|
|
// pointers on the target.
|
|
QualType Ty;
|
|
unsigned pw = Context.Target.getPointerWidth(0);
|
|
if (pw == Context.Target.getIntWidth())
|
|
Ty = Context.IntTy;
|
|
else if (pw == Context.Target.getLongWidth())
|
|
Ty = Context.LongTy;
|
|
else if (pw == Context.Target.getLongLongWidth())
|
|
Ty = Context.LongLongTy;
|
|
else {
|
|
assert(!"I don't know size of pointer!");
|
|
Ty = Context.IntTy;
|
|
}
|
|
|
|
return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
|
|
}
|
|
|
|
static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
|
|
Expr *SrcExpr, FixItHint &Hint) {
|
|
if (!SemaRef.getLangOptions().ObjC1)
|
|
return;
|
|
|
|
const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
|
|
if (!PT)
|
|
return;
|
|
|
|
// Check if the destination is of type 'id'.
|
|
if (!PT->isObjCIdType()) {
|
|
// Check if the destination is the 'NSString' interface.
|
|
const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
|
|
if (!ID || !ID->getIdentifier()->isStr("NSString"))
|
|
return;
|
|
}
|
|
|
|
// Strip off any parens and casts.
|
|
StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts());
|
|
if (!SL || SL->isWide())
|
|
return;
|
|
|
|
Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
|
|
}
|
|
|
|
bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
|
|
SourceLocation Loc,
|
|
QualType DstType, QualType SrcType,
|
|
Expr *SrcExpr, AssignmentAction Action,
|
|
bool *Complained) {
|
|
if (Complained)
|
|
*Complained = false;
|
|
|
|
// Decode the result (notice that AST's are still created for extensions).
|
|
bool isInvalid = false;
|
|
unsigned DiagKind;
|
|
FixItHint Hint;
|
|
|
|
switch (ConvTy) {
|
|
default: assert(0 && "Unknown conversion type");
|
|
case Compatible: return false;
|
|
case PointerToInt:
|
|
DiagKind = diag::ext_typecheck_convert_pointer_int;
|
|
break;
|
|
case IntToPointer:
|
|
DiagKind = diag::ext_typecheck_convert_int_pointer;
|
|
break;
|
|
case IncompatiblePointer:
|
|
MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
|
|
DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
|
|
break;
|
|
case IncompatiblePointerSign:
|
|
DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
|
|
break;
|
|
case FunctionVoidPointer:
|
|
DiagKind = diag::ext_typecheck_convert_pointer_void_func;
|
|
break;
|
|
case IncompatiblePointerDiscardsQualifiers: {
|
|
// Perform array-to-pointer decay if necessary.
|
|
if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
|
|
|
|
Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
|
|
Qualifiers rhq = DstType->getPointeeType().getQualifiers();
|
|
if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
|
|
DiagKind = diag::err_typecheck_incompatible_address_space;
|
|
break;
|
|
}
|
|
|
|
llvm_unreachable("unknown error case for discarding qualifiers!");
|
|
// fallthrough
|
|
}
|
|
case CompatiblePointerDiscardsQualifiers:
|
|
// If the qualifiers lost were because we were applying the
|
|
// (deprecated) C++ conversion from a string literal to a char*
|
|
// (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
|
|
// Ideally, this check would be performed in
|
|
// checkPointerTypesForAssignment. However, that would require a
|
|
// bit of refactoring (so that the second argument is an
|
|
// expression, rather than a type), which should be done as part
|
|
// of a larger effort to fix checkPointerTypesForAssignment for
|
|
// C++ semantics.
|
|
if (getLangOptions().CPlusPlus &&
|
|
IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
|
|
return false;
|
|
DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
|
|
break;
|
|
case IncompatibleNestedPointerQualifiers:
|
|
DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
|
|
break;
|
|
case IntToBlockPointer:
|
|
DiagKind = diag::err_int_to_block_pointer;
|
|
break;
|
|
case IncompatibleBlockPointer:
|
|
DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
|
|
break;
|
|
case IncompatibleObjCQualifiedId:
|
|
// FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
|
|
// it can give a more specific diagnostic.
|
|
DiagKind = diag::warn_incompatible_qualified_id;
|
|
break;
|
|
case IncompatibleVectors:
|
|
DiagKind = diag::warn_incompatible_vectors;
|
|
break;
|
|
case Incompatible:
|
|
DiagKind = diag::err_typecheck_convert_incompatible;
|
|
isInvalid = true;
|
|
break;
|
|
}
|
|
|
|
QualType FirstType, SecondType;
|
|
switch (Action) {
|
|
case AA_Assigning:
|
|
case AA_Initializing:
|
|
// The destination type comes first.
|
|
FirstType = DstType;
|
|
SecondType = SrcType;
|
|
break;
|
|
|
|
case AA_Returning:
|
|
case AA_Passing:
|
|
case AA_Converting:
|
|
case AA_Sending:
|
|
case AA_Casting:
|
|
// The source type comes first.
|
|
FirstType = SrcType;
|
|
SecondType = DstType;
|
|
break;
|
|
}
|
|
|
|
Diag(Loc, DiagKind) << FirstType << SecondType << Action
|
|
<< SrcExpr->getSourceRange() << Hint;
|
|
if (Complained)
|
|
*Complained = true;
|
|
return isInvalid;
|
|
}
|
|
|
|
bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
|
|
llvm::APSInt ICEResult;
|
|
if (E->isIntegerConstantExpr(ICEResult, Context)) {
|
|
if (Result)
|
|
*Result = ICEResult;
|
|
return false;
|
|
}
|
|
|
|
Expr::EvalResult EvalResult;
|
|
|
|
if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
|
|
EvalResult.HasSideEffects) {
|
|
Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
|
|
|
|
if (EvalResult.Diag) {
|
|
// We only show the note if it's not the usual "invalid subexpression"
|
|
// or if it's actually in a subexpression.
|
|
if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
|
|
E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
|
|
Diag(EvalResult.DiagLoc, EvalResult.Diag);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
|
|
E->getSourceRange();
|
|
|
|
if (EvalResult.Diag &&
|
|
Diags.getDiagnosticLevel(diag::ext_expr_not_ice, EvalResult.DiagLoc)
|
|
!= Diagnostic::Ignored)
|
|
Diag(EvalResult.DiagLoc, EvalResult.Diag);
|
|
|
|
if (Result)
|
|
*Result = EvalResult.Val.getInt();
|
|
return false;
|
|
}
|
|
|
|
void
|
|
Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
|
|
ExprEvalContexts.push_back(
|
|
ExpressionEvaluationContextRecord(NewContext, ExprTemporaries.size()));
|
|
}
|
|
|
|
void
|
|
Sema::PopExpressionEvaluationContext() {
|
|
// Pop the current expression evaluation context off the stack.
|
|
ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back();
|
|
ExprEvalContexts.pop_back();
|
|
|
|
if (Rec.Context == PotentiallyPotentiallyEvaluated) {
|
|
if (Rec.PotentiallyReferenced) {
|
|
// Mark any remaining declarations in the current position of the stack
|
|
// as "referenced". If they were not meant to be referenced, semantic
|
|
// analysis would have eliminated them (e.g., in ActOnCXXTypeId).
|
|
for (PotentiallyReferencedDecls::iterator
|
|
I = Rec.PotentiallyReferenced->begin(),
|
|
IEnd = Rec.PotentiallyReferenced->end();
|
|
I != IEnd; ++I)
|
|
MarkDeclarationReferenced(I->first, I->second);
|
|
}
|
|
|
|
if (Rec.PotentiallyDiagnosed) {
|
|
// Emit any pending diagnostics.
|
|
for (PotentiallyEmittedDiagnostics::iterator
|
|
I = Rec.PotentiallyDiagnosed->begin(),
|
|
IEnd = Rec.PotentiallyDiagnosed->end();
|
|
I != IEnd; ++I)
|
|
Diag(I->first, I->second);
|
|
}
|
|
}
|
|
|
|
// When are coming out of an unevaluated context, clear out any
|
|
// temporaries that we may have created as part of the evaluation of
|
|
// the expression in that context: they aren't relevant because they
|
|
// will never be constructed.
|
|
if (Rec.Context == Unevaluated &&
|
|
ExprTemporaries.size() > Rec.NumTemporaries)
|
|
ExprTemporaries.erase(ExprTemporaries.begin() + Rec.NumTemporaries,
|
|
ExprTemporaries.end());
|
|
|
|
// Destroy the popped expression evaluation record.
|
|
Rec.Destroy();
|
|
}
|
|
|
|
/// \brief Note that the given declaration was referenced in the source code.
|
|
///
|
|
/// This routine should be invoke whenever a given declaration is referenced
|
|
/// in the source code, and where that reference occurred. If this declaration
|
|
/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
|
|
/// C99 6.9p3), then the declaration will be marked as used.
|
|
///
|
|
/// \param Loc the location where the declaration was referenced.
|
|
///
|
|
/// \param D the declaration that has been referenced by the source code.
|
|
void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
|
|
assert(D && "No declaration?");
|
|
|
|
if (D->isUsed(false))
|
|
return;
|
|
|
|
// Mark a parameter or variable declaration "used", regardless of whether we're in a
|
|
// template or not. The reason for this is that unevaluated expressions
|
|
// (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and
|
|
// -Wunused-parameters)
|
|
if (isa<ParmVarDecl>(D) ||
|
|
(isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod())) {
|
|
D->setUsed();
|
|
return;
|
|
}
|
|
|
|
if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D))
|
|
return;
|
|
|
|
// Do not mark anything as "used" within a dependent context; wait for
|
|
// an instantiation.
|
|
if (CurContext->isDependentContext())
|
|
return;
|
|
|
|
switch (ExprEvalContexts.back().Context) {
|
|
case Unevaluated:
|
|
// We are in an expression that is not potentially evaluated; do nothing.
|
|
return;
|
|
|
|
case PotentiallyEvaluated:
|
|
// We are in a potentially-evaluated expression, so this declaration is
|
|
// "used"; handle this below.
|
|
break;
|
|
|
|
case PotentiallyPotentiallyEvaluated:
|
|
// We are in an expression that may be potentially evaluated; queue this
|
|
// declaration reference until we know whether the expression is
|
|
// potentially evaluated.
|
|
ExprEvalContexts.back().addReferencedDecl(Loc, D);
|
|
return;
|
|
|
|
case PotentiallyEvaluatedIfUsed:
|
|
// Referenced declarations will only be used if the construct in the
|
|
// containing expression is used.
|
|
return;
|
|
}
|
|
|
|
// Note that this declaration has been used.
|
|
if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
|
|
unsigned TypeQuals;
|
|
if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
|
|
if (Constructor->getParent()->hasTrivialConstructor())
|
|
return;
|
|
if (!Constructor->isUsed(false))
|
|
DefineImplicitDefaultConstructor(Loc, Constructor);
|
|
} else if (Constructor->isImplicit() &&
|
|
Constructor->isCopyConstructor(TypeQuals)) {
|
|
if (!Constructor->isUsed(false))
|
|
DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
|
|
}
|
|
|
|
MarkVTableUsed(Loc, Constructor->getParent());
|
|
} else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
|
|
if (Destructor->isImplicit() && !Destructor->isUsed(false))
|
|
DefineImplicitDestructor(Loc, Destructor);
|
|
if (Destructor->isVirtual())
|
|
MarkVTableUsed(Loc, Destructor->getParent());
|
|
} else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
|
|
if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
|
|
MethodDecl->getOverloadedOperator() == OO_Equal) {
|
|
if (!MethodDecl->isUsed(false))
|
|
DefineImplicitCopyAssignment(Loc, MethodDecl);
|
|
} else if (MethodDecl->isVirtual())
|
|
MarkVTableUsed(Loc, MethodDecl->getParent());
|
|
}
|
|
if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
|
|
// Recursive functions should be marked when used from another function.
|
|
if (CurContext == Function) return;
|
|
|
|
// Implicit instantiation of function templates and member functions of
|
|
// class templates.
|
|
if (Function->isImplicitlyInstantiable()) {
|
|
bool AlreadyInstantiated = false;
|
|
if (FunctionTemplateSpecializationInfo *SpecInfo
|
|
= Function->getTemplateSpecializationInfo()) {
|
|
if (SpecInfo->getPointOfInstantiation().isInvalid())
|
|
SpecInfo->setPointOfInstantiation(Loc);
|
|
else if (SpecInfo->getTemplateSpecializationKind()
|
|
== TSK_ImplicitInstantiation)
|
|
AlreadyInstantiated = true;
|
|
} else if (MemberSpecializationInfo *MSInfo
|
|
= Function->getMemberSpecializationInfo()) {
|
|
if (MSInfo->getPointOfInstantiation().isInvalid())
|
|
MSInfo->setPointOfInstantiation(Loc);
|
|
else if (MSInfo->getTemplateSpecializationKind()
|
|
== TSK_ImplicitInstantiation)
|
|
AlreadyInstantiated = true;
|
|
}
|
|
|
|
if (!AlreadyInstantiated) {
|
|
if (isa<CXXRecordDecl>(Function->getDeclContext()) &&
|
|
cast<CXXRecordDecl>(Function->getDeclContext())->isLocalClass())
|
|
PendingLocalImplicitInstantiations.push_back(std::make_pair(Function,
|
|
Loc));
|
|
else
|
|
PendingInstantiations.push_back(std::make_pair(Function, Loc));
|
|
}
|
|
} else {
|
|
// Walk redefinitions, as some of them may be instantiable.
|
|
for (FunctionDecl::redecl_iterator i(Function->redecls_begin()),
|
|
e(Function->redecls_end()); i != e; ++i) {
|
|
if (!i->isUsed(false) && i->isImplicitlyInstantiable())
|
|
MarkDeclarationReferenced(Loc, *i);
|
|
}
|
|
}
|
|
|
|
// Keep track of used but undefined functions.
|
|
if (!Function->isPure() && !Function->hasBody() &&
|
|
Function->getLinkage() != ExternalLinkage) {
|
|
SourceLocation &old = UndefinedInternals[Function->getCanonicalDecl()];
|
|
if (old.isInvalid()) old = Loc;
|
|
}
|
|
|
|
Function->setUsed(true);
|
|
return;
|
|
}
|
|
|
|
if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
|
|
// Implicit instantiation of static data members of class templates.
|
|
if (Var->isStaticDataMember() &&
|
|
Var->getInstantiatedFromStaticDataMember()) {
|
|
MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
|
|
assert(MSInfo && "Missing member specialization information?");
|
|
if (MSInfo->getPointOfInstantiation().isInvalid() &&
|
|
MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
|
|
MSInfo->setPointOfInstantiation(Loc);
|
|
PendingInstantiations.push_back(std::make_pair(Var, Loc));
|
|
}
|
|
}
|
|
|
|
// Keep track of used but undefined variables. We make a hole in
|
|
// the warning for static const data members with in-line
|
|
// initializers.
|
|
if (Var->hasDefinition() == VarDecl::DeclarationOnly
|
|
&& Var->getLinkage() != ExternalLinkage
|
|
&& !(Var->isStaticDataMember() && Var->hasInit())) {
|
|
SourceLocation &old = UndefinedInternals[Var->getCanonicalDecl()];
|
|
if (old.isInvalid()) old = Loc;
|
|
}
|
|
|
|
D->setUsed(true);
|
|
return;
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
// Mark all of the declarations referenced
|
|
// FIXME: Not fully implemented yet! We need to have a better understanding
|
|
// of when we're entering
|
|
class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
|
|
Sema &S;
|
|
SourceLocation Loc;
|
|
|
|
public:
|
|
typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
|
|
|
|
MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
|
|
|
|
bool TraverseTemplateArgument(const TemplateArgument &Arg);
|
|
bool TraverseRecordType(RecordType *T);
|
|
};
|
|
}
|
|
|
|
bool MarkReferencedDecls::TraverseTemplateArgument(
|
|
const TemplateArgument &Arg) {
|
|
if (Arg.getKind() == TemplateArgument::Declaration) {
|
|
S.MarkDeclarationReferenced(Loc, Arg.getAsDecl());
|
|
}
|
|
|
|
return Inherited::TraverseTemplateArgument(Arg);
|
|
}
|
|
|
|
bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
|
|
if (ClassTemplateSpecializationDecl *Spec
|
|
= dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
|
|
const TemplateArgumentList &Args = Spec->getTemplateArgs();
|
|
return TraverseTemplateArguments(Args.data(), Args.size());
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
|
|
MarkReferencedDecls Marker(*this, Loc);
|
|
Marker.TraverseType(Context.getCanonicalType(T));
|
|
}
|
|
|
|
namespace {
|
|
/// \brief Helper class that marks all of the declarations referenced by
|
|
/// potentially-evaluated subexpressions as "referenced".
|
|
class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
|
|
Sema &S;
|
|
|
|
public:
|
|
typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
|
|
|
|
explicit EvaluatedExprMarker(Sema &S) : Inherited(S.Context), S(S) { }
|
|
|
|
void VisitDeclRefExpr(DeclRefExpr *E) {
|
|
S.MarkDeclarationReferenced(E->getLocation(), E->getDecl());
|
|
}
|
|
|
|
void VisitMemberExpr(MemberExpr *E) {
|
|
S.MarkDeclarationReferenced(E->getMemberLoc(), E->getMemberDecl());
|
|
Inherited::VisitMemberExpr(E);
|
|
}
|
|
|
|
void VisitCXXNewExpr(CXXNewExpr *E) {
|
|
if (E->getConstructor())
|
|
S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor());
|
|
if (E->getOperatorNew())
|
|
S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorNew());
|
|
if (E->getOperatorDelete())
|
|
S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete());
|
|
Inherited::VisitCXXNewExpr(E);
|
|
}
|
|
|
|
void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
|
|
if (E->getOperatorDelete())
|
|
S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete());
|
|
QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
|
|
if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
|
|
CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
|
|
S.MarkDeclarationReferenced(E->getLocStart(),
|
|
S.LookupDestructor(Record));
|
|
}
|
|
|
|
Inherited::VisitCXXDeleteExpr(E);
|
|
}
|
|
|
|
void VisitCXXConstructExpr(CXXConstructExpr *E) {
|
|
S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor());
|
|
Inherited::VisitCXXConstructExpr(E);
|
|
}
|
|
|
|
void VisitBlockDeclRefExpr(BlockDeclRefExpr *E) {
|
|
S.MarkDeclarationReferenced(E->getLocation(), E->getDecl());
|
|
}
|
|
|
|
void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
|
|
Visit(E->getExpr());
|
|
}
|
|
};
|
|
}
|
|
|
|
/// \brief Mark any declarations that appear within this expression or any
|
|
/// potentially-evaluated subexpressions as "referenced".
|
|
void Sema::MarkDeclarationsReferencedInExpr(Expr *E) {
|
|
EvaluatedExprMarker(*this).Visit(E);
|
|
}
|
|
|
|
/// \brief Emit a diagnostic that describes an effect on the run-time behavior
|
|
/// of the program being compiled.
|
|
///
|
|
/// This routine emits the given diagnostic when the code currently being
|
|
/// type-checked is "potentially evaluated", meaning that there is a
|
|
/// possibility that the code will actually be executable. Code in sizeof()
|
|
/// expressions, code used only during overload resolution, etc., are not
|
|
/// potentially evaluated. This routine will suppress such diagnostics or,
|
|
/// in the absolutely nutty case of potentially potentially evaluated
|
|
/// expressions (C++ typeid), queue the diagnostic to potentially emit it
|
|
/// later.
|
|
///
|
|
/// This routine should be used for all diagnostics that describe the run-time
|
|
/// behavior of a program, such as passing a non-POD value through an ellipsis.
|
|
/// Failure to do so will likely result in spurious diagnostics or failures
|
|
/// during overload resolution or within sizeof/alignof/typeof/typeid.
|
|
bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *stmt,
|
|
const PartialDiagnostic &PD) {
|
|
switch (ExprEvalContexts.back().Context ) {
|
|
case Unevaluated:
|
|
// The argument will never be evaluated, so don't complain.
|
|
break;
|
|
|
|
case PotentiallyEvaluated:
|
|
case PotentiallyEvaluatedIfUsed:
|
|
if (stmt && getCurFunctionOrMethodDecl()) {
|
|
FunctionScopes.back()->PossiblyUnreachableDiags.
|
|
push_back(sema::PossiblyUnreachableDiag(PD, Loc, stmt));
|
|
}
|
|
else
|
|
Diag(Loc, PD);
|
|
|
|
return true;
|
|
|
|
case PotentiallyPotentiallyEvaluated:
|
|
ExprEvalContexts.back().addDiagnostic(Loc, PD);
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
|
|
CallExpr *CE, FunctionDecl *FD) {
|
|
if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
|
|
return false;
|
|
|
|
PartialDiagnostic Note =
|
|
FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
|
|
<< FD->getDeclName() : PDiag();
|
|
SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
|
|
|
|
if (RequireCompleteType(Loc, ReturnType,
|
|
FD ?
|
|
PDiag(diag::err_call_function_incomplete_return)
|
|
<< CE->getSourceRange() << FD->getDeclName() :
|
|
PDiag(diag::err_call_incomplete_return)
|
|
<< CE->getSourceRange(),
|
|
std::make_pair(NoteLoc, Note)))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
|
|
// will prevent this condition from triggering, which is what we want.
|
|
void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
|
|
SourceLocation Loc;
|
|
|
|
unsigned diagnostic = diag::warn_condition_is_assignment;
|
|
bool IsOrAssign = false;
|
|
|
|
if (isa<BinaryOperator>(E)) {
|
|
BinaryOperator *Op = cast<BinaryOperator>(E);
|
|
if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
|
|
return;
|
|
|
|
IsOrAssign = Op->getOpcode() == BO_OrAssign;
|
|
|
|
// Greylist some idioms by putting them into a warning subcategory.
|
|
if (ObjCMessageExpr *ME
|
|
= dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
|
|
Selector Sel = ME->getSelector();
|
|
|
|
// self = [<foo> init...]
|
|
if (isSelfExpr(Op->getLHS()) && Sel.getNameForSlot(0).startswith("init"))
|
|
diagnostic = diag::warn_condition_is_idiomatic_assignment;
|
|
|
|
// <foo> = [<bar> nextObject]
|
|
else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
|
|
diagnostic = diag::warn_condition_is_idiomatic_assignment;
|
|
}
|
|
|
|
Loc = Op->getOperatorLoc();
|
|
} else if (isa<CXXOperatorCallExpr>(E)) {
|
|
CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E);
|
|
if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
|
|
return;
|
|
|
|
IsOrAssign = Op->getOperator() == OO_PipeEqual;
|
|
Loc = Op->getOperatorLoc();
|
|
} else {
|
|
// Not an assignment.
|
|
return;
|
|
}
|
|
|
|
SourceLocation Open = E->getSourceRange().getBegin();
|
|
SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
|
|
|
|
Diag(Loc, diagnostic) << E->getSourceRange();
|
|
|
|
if (IsOrAssign)
|
|
Diag(Loc, diag::note_condition_or_assign_to_comparison)
|
|
<< FixItHint::CreateReplacement(Loc, "!=");
|
|
else
|
|
Diag(Loc, diag::note_condition_assign_to_comparison)
|
|
<< FixItHint::CreateReplacement(Loc, "==");
|
|
|
|
Diag(Loc, diag::note_condition_assign_silence)
|
|
<< FixItHint::CreateInsertion(Open, "(")
|
|
<< FixItHint::CreateInsertion(Close, ")");
|
|
}
|
|
|
|
/// \brief Redundant parentheses over an equality comparison can indicate
|
|
/// that the user intended an assignment used as condition.
|
|
void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *parenE) {
|
|
// Don't warn if the parens came from a macro.
|
|
SourceLocation parenLoc = parenE->getLocStart();
|
|
if (parenLoc.isInvalid() || parenLoc.isMacroID())
|
|
return;
|
|
// Don't warn for dependent expressions.
|
|
if (parenE->isTypeDependent())
|
|
return;
|
|
|
|
Expr *E = parenE->IgnoreParens();
|
|
|
|
if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
|
|
if (opE->getOpcode() == BO_EQ &&
|
|
opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
|
|
== Expr::MLV_Valid) {
|
|
SourceLocation Loc = opE->getOperatorLoc();
|
|
|
|
Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
|
|
Diag(Loc, diag::note_equality_comparison_to_assign)
|
|
<< FixItHint::CreateReplacement(Loc, "=");
|
|
Diag(Loc, diag::note_equality_comparison_silence)
|
|
<< FixItHint::CreateRemoval(parenE->getSourceRange().getBegin())
|
|
<< FixItHint::CreateRemoval(parenE->getSourceRange().getEnd());
|
|
}
|
|
}
|
|
|
|
bool Sema::CheckBooleanCondition(Expr *&E, SourceLocation Loc) {
|
|
DiagnoseAssignmentAsCondition(E);
|
|
if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
|
|
DiagnoseEqualityWithExtraParens(parenE);
|
|
|
|
if (!E->isTypeDependent()) {
|
|
if (E->isBoundMemberFunction(Context))
|
|
return Diag(E->getLocStart(), diag::err_invalid_use_of_bound_member_func)
|
|
<< E->getSourceRange();
|
|
|
|
if (getLangOptions().CPlusPlus)
|
|
return CheckCXXBooleanCondition(E); // C++ 6.4p4
|
|
|
|
DefaultFunctionArrayLvalueConversion(E);
|
|
|
|
QualType T = E->getType();
|
|
if (!T->isScalarType()) // C99 6.8.4.1p1
|
|
return Diag(Loc, diag::err_typecheck_statement_requires_scalar)
|
|
<< T << E->getSourceRange();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
|
|
Expr *Sub) {
|
|
if (!Sub)
|
|
return ExprError();
|
|
|
|
if (CheckBooleanCondition(Sub, Loc))
|
|
return ExprError();
|
|
|
|
return Owned(Sub);
|
|
}
|
|
|
|
/// Check for operands with placeholder types and complain if found.
|
|
/// Returns true if there was an error and no recovery was possible.
|
|
ExprResult Sema::CheckPlaceholderExpr(Expr *E, SourceLocation Loc) {
|
|
const BuiltinType *BT = E->getType()->getAs<BuiltinType>();
|
|
if (!BT || !BT->isPlaceholderType()) return Owned(E);
|
|
|
|
// If this is overload, check for a single overload.
|
|
assert(BT->getKind() == BuiltinType::Overload);
|
|
return ResolveAndFixSingleFunctionTemplateSpecialization(E, false, true,
|
|
E->getSourceRange(),
|
|
QualType(),
|
|
diag::err_ovl_unresolvable);
|
|
}
|