llvm-project/llvm/lib/Target/AMDGPU/SIISelLowering.cpp

10098 lines
362 KiB
C++

//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Custom DAG lowering for SI
//
//===----------------------------------------------------------------------===//
#if defined(_MSC_VER) || defined(__MINGW32__)
// Provide M_PI.
#define _USE_MATH_DEFINES
#endif
#include "SIISelLowering.h"
#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "AMDGPUTargetMachine.h"
#include "SIDefines.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/DAGCombine.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetCallingConv.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetOptions.h"
#include <cassert>
#include <cmath>
#include <cstdint>
#include <iterator>
#include <tuple>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "si-lower"
STATISTIC(NumTailCalls, "Number of tail calls");
static cl::opt<bool> EnableVGPRIndexMode(
"amdgpu-vgpr-index-mode",
cl::desc("Use GPR indexing mode instead of movrel for vector indexing"),
cl::init(false));
static cl::opt<unsigned> AssumeFrameIndexHighZeroBits(
"amdgpu-frame-index-zero-bits",
cl::desc("High bits of frame index assumed to be zero"),
cl::init(5),
cl::ReallyHidden);
static unsigned findFirstFreeSGPR(CCState &CCInfo) {
unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
return AMDGPU::SGPR0 + Reg;
}
}
llvm_unreachable("Cannot allocate sgpr");
}
SITargetLowering::SITargetLowering(const TargetMachine &TM,
const GCNSubtarget &STI)
: AMDGPUTargetLowering(TM, STI),
Subtarget(&STI) {
addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
addRegisterClass(MVT::i32, &AMDGPU::SReg_32_XM0RegClass);
addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass);
addRegisterClass(MVT::v3f32, &AMDGPU::VReg_96RegClass);
addRegisterClass(MVT::v2i64, &AMDGPU::SReg_128RegClass);
addRegisterClass(MVT::v2f64, &AMDGPU::SReg_128RegClass);
addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass);
addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass);
addRegisterClass(MVT::v5f32, &AMDGPU::VReg_160RegClass);
addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
if (Subtarget->has16BitInsts()) {
addRegisterClass(MVT::i16, &AMDGPU::SReg_32_XM0RegClass);
addRegisterClass(MVT::f16, &AMDGPU::SReg_32_XM0RegClass);
// Unless there are also VOP3P operations, not operations are really legal.
addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32_XM0RegClass);
addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32_XM0RegClass);
addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass);
addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass);
}
computeRegisterProperties(Subtarget->getRegisterInfo());
// We need to custom lower vector stores from local memory
setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
setOperationAction(ISD::LOAD, MVT::v3i32, Custom);
setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
setOperationAction(ISD::LOAD, MVT::v5i32, Custom);
setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
setOperationAction(ISD::LOAD, MVT::i1, Custom);
setOperationAction(ISD::LOAD, MVT::v32i32, Custom);
setOperationAction(ISD::STORE, MVT::v2i32, Custom);
setOperationAction(ISD::STORE, MVT::v3i32, Custom);
setOperationAction(ISD::STORE, MVT::v4i32, Custom);
setOperationAction(ISD::STORE, MVT::v5i32, Custom);
setOperationAction(ISD::STORE, MVT::v8i32, Custom);
setOperationAction(ISD::STORE, MVT::v16i32, Custom);
setOperationAction(ISD::STORE, MVT::i1, Custom);
setOperationAction(ISD::STORE, MVT::v32i32, Custom);
setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
setOperationAction(ISD::SELECT, MVT::i1, Promote);
setOperationAction(ISD::SELECT, MVT::i64, Custom);
setOperationAction(ISD::SELECT, MVT::f64, Promote);
AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
setOperationAction(ISD::SETCC, MVT::i1, Promote);
setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f16, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom);
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom);
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom);
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v8f16, Custom);
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom);
setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom);
setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom);
setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
setOperationAction(ISD::BRCOND, MVT::Other, Custom);
setOperationAction(ISD::BR_CC, MVT::i1, Expand);
setOperationAction(ISD::BR_CC, MVT::i32, Expand);
setOperationAction(ISD::BR_CC, MVT::i64, Expand);
setOperationAction(ISD::BR_CC, MVT::f32, Expand);
setOperationAction(ISD::BR_CC, MVT::f64, Expand);
setOperationAction(ISD::UADDO, MVT::i32, Legal);
setOperationAction(ISD::USUBO, MVT::i32, Legal);
setOperationAction(ISD::ADDCARRY, MVT::i32, Legal);
setOperationAction(ISD::SUBCARRY, MVT::i32, Legal);
setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
#if 0
setOperationAction(ISD::ADDCARRY, MVT::i64, Legal);
setOperationAction(ISD::SUBCARRY, MVT::i64, Legal);
#endif
// We only support LOAD/STORE and vector manipulation ops for vectors
// with > 4 elements.
for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32,
MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16, MVT::v32i32 }) {
for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
switch (Op) {
case ISD::LOAD:
case ISD::STORE:
case ISD::BUILD_VECTOR:
case ISD::BITCAST:
case ISD::EXTRACT_VECTOR_ELT:
case ISD::INSERT_VECTOR_ELT:
case ISD::INSERT_SUBVECTOR:
case ISD::EXTRACT_SUBVECTOR:
case ISD::SCALAR_TO_VECTOR:
break;
case ISD::CONCAT_VECTORS:
setOperationAction(Op, VT, Custom);
break;
default:
setOperationAction(Op, VT, Expand);
break;
}
}
}
setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand);
// TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
// is expanded to avoid having two separate loops in case the index is a VGPR.
// Most operations are naturally 32-bit vector operations. We only support
// load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
}
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
setOperationAction(ISD::BUILD_VECTOR, MVT::v4f16, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
// Avoid stack access for these.
// TODO: Generalize to more vector types.
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i8, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i8, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i8, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i8, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i16, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f16, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
// Deal with vec3 vector operations when widened to vec4.
setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3i32, Expand);
setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3f32, Expand);
setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i32, Expand);
setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4f32, Expand);
// Deal with vec5 vector operations when widened to vec8.
setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5i32, Expand);
setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5f32, Expand);
setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i32, Expand);
setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8f32, Expand);
// BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
// and output demarshalling
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
// We can't return success/failure, only the old value,
// let LLVM add the comparison
setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);
if (Subtarget->hasFlatAddressSpace()) {
setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
}
setOperationAction(ISD::BSWAP, MVT::i32, Legal);
setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
// On SI this is s_memtime and s_memrealtime on VI.
setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
setOperationAction(ISD::TRAP, MVT::Other, Custom);
setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom);
if (Subtarget->has16BitInsts()) {
setOperationAction(ISD::FLOG, MVT::f16, Custom);
setOperationAction(ISD::FEXP, MVT::f16, Custom);
setOperationAction(ISD::FLOG10, MVT::f16, Custom);
}
// v_mad_f32 does not support denormals according to some sources.
if (!Subtarget->hasFP32Denormals())
setOperationAction(ISD::FMAD, MVT::f32, Legal);
if (!Subtarget->hasBFI()) {
// fcopysign can be done in a single instruction with BFI.
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
}
if (!Subtarget->hasBCNT(32))
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
if (!Subtarget->hasBCNT(64))
setOperationAction(ISD::CTPOP, MVT::i64, Expand);
if (Subtarget->hasFFBH())
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
if (Subtarget->hasFFBL())
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
// We only really have 32-bit BFE instructions (and 16-bit on VI).
//
// On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
// effort to match them now. We want this to be false for i64 cases when the
// extraction isn't restricted to the upper or lower half. Ideally we would
// have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
// span the midpoint are probably relatively rare, so don't worry about them
// for now.
if (Subtarget->hasBFE())
setHasExtractBitsInsn(true);
setOperationAction(ISD::FMINNUM, MVT::f32, Custom);
setOperationAction(ISD::FMAXNUM, MVT::f32, Custom);
setOperationAction(ISD::FMINNUM, MVT::f64, Custom);
setOperationAction(ISD::FMAXNUM, MVT::f64, Custom);
// These are really only legal for ieee_mode functions. We should be avoiding
// them for functions that don't have ieee_mode enabled, so just say they are
// legal.
setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
if (Subtarget->getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) {
setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
setOperationAction(ISD::FCEIL, MVT::f64, Legal);
setOperationAction(ISD::FRINT, MVT::f64, Legal);
} else {
setOperationAction(ISD::FCEIL, MVT::f64, Custom);
setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
setOperationAction(ISD::FRINT, MVT::f64, Custom);
setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
}
setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
setOperationAction(ISD::FSIN, MVT::f32, Custom);
setOperationAction(ISD::FCOS, MVT::f32, Custom);
setOperationAction(ISD::FDIV, MVT::f32, Custom);
setOperationAction(ISD::FDIV, MVT::f64, Custom);
if (Subtarget->has16BitInsts()) {
setOperationAction(ISD::Constant, MVT::i16, Legal);
setOperationAction(ISD::SMIN, MVT::i16, Legal);
setOperationAction(ISD::SMAX, MVT::i16, Legal);
setOperationAction(ISD::UMIN, MVT::i16, Legal);
setOperationAction(ISD::UMAX, MVT::i16, Legal);
setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote);
AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
setOperationAction(ISD::ROTR, MVT::i16, Promote);
setOperationAction(ISD::ROTL, MVT::i16, Promote);
setOperationAction(ISD::SDIV, MVT::i16, Promote);
setOperationAction(ISD::UDIV, MVT::i16, Promote);
setOperationAction(ISD::SREM, MVT::i16, Promote);
setOperationAction(ISD::UREM, MVT::i16, Promote);
setOperationAction(ISD::BSWAP, MVT::i16, Promote);
setOperationAction(ISD::BITREVERSE, MVT::i16, Promote);
setOperationAction(ISD::CTTZ, MVT::i16, Promote);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote);
setOperationAction(ISD::CTLZ, MVT::i16, Promote);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote);
setOperationAction(ISD::CTPOP, MVT::i16, Promote);
setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
setOperationAction(ISD::BR_CC, MVT::i16, Expand);
setOperationAction(ISD::LOAD, MVT::i16, Custom);
setTruncStoreAction(MVT::i64, MVT::i16, Expand);
setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
// F16 - Constant Actions.
setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
// F16 - Load/Store Actions.
setOperationAction(ISD::LOAD, MVT::f16, Promote);
AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
setOperationAction(ISD::STORE, MVT::f16, Promote);
AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
// F16 - VOP1 Actions.
setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
setOperationAction(ISD::FCOS, MVT::f16, Promote);
setOperationAction(ISD::FSIN, MVT::f16, Promote);
setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote);
setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote);
setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote);
setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote);
setOperationAction(ISD::FROUND, MVT::f16, Custom);
// F16 - VOP2 Actions.
setOperationAction(ISD::BR_CC, MVT::f16, Expand);
setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
setOperationAction(ISD::FDIV, MVT::f16, Custom);
// F16 - VOP3 Actions.
setOperationAction(ISD::FMA, MVT::f16, Legal);
if (!Subtarget->hasFP16Denormals())
setOperationAction(ISD::FMAD, MVT::f16, Legal);
for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16}) {
for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
switch (Op) {
case ISD::LOAD:
case ISD::STORE:
case ISD::BUILD_VECTOR:
case ISD::BITCAST:
case ISD::EXTRACT_VECTOR_ELT:
case ISD::INSERT_VECTOR_ELT:
case ISD::INSERT_SUBVECTOR:
case ISD::EXTRACT_SUBVECTOR:
case ISD::SCALAR_TO_VECTOR:
break;
case ISD::CONCAT_VECTORS:
setOperationAction(Op, VT, Custom);
break;
default:
setOperationAction(Op, VT, Expand);
break;
}
}
}
// XXX - Do these do anything? Vector constants turn into build_vector.
setOperationAction(ISD::Constant, MVT::v2i16, Legal);
setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal);
setOperationAction(ISD::UNDEF, MVT::v2i16, Legal);
setOperationAction(ISD::UNDEF, MVT::v2f16, Legal);
setOperationAction(ISD::STORE, MVT::v2i16, Promote);
AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
setOperationAction(ISD::STORE, MVT::v2f16, Promote);
AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
setOperationAction(ISD::AND, MVT::v2i16, Promote);
AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
setOperationAction(ISD::OR, MVT::v2i16, Promote);
AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
setOperationAction(ISD::XOR, MVT::v2i16, Promote);
AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32);
setOperationAction(ISD::LOAD, MVT::v4f16, Promote);
AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32);
setOperationAction(ISD::STORE, MVT::v4i16, Promote);
AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
setOperationAction(ISD::STORE, MVT::v4f16, Promote);
AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand);
setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand);
setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand);
setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Expand);
setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Expand);
setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Expand);
if (!Subtarget->hasVOP3PInsts()) {
setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
}
setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
// This isn't really legal, but this avoids the legalizer unrolling it (and
// allows matching fneg (fabs x) patterns)
setOperationAction(ISD::FABS, MVT::v2f16, Legal);
setOperationAction(ISD::FMAXNUM, MVT::f16, Custom);
setOperationAction(ISD::FMINNUM, MVT::f16, Custom);
setOperationAction(ISD::FMAXNUM_IEEE, MVT::f16, Legal);
setOperationAction(ISD::FMINNUM_IEEE, MVT::f16, Legal);
setOperationAction(ISD::FMINNUM_IEEE, MVT::v4f16, Custom);
setOperationAction(ISD::FMAXNUM_IEEE, MVT::v4f16, Custom);
setOperationAction(ISD::FMINNUM, MVT::v4f16, Expand);
setOperationAction(ISD::FMAXNUM, MVT::v4f16, Expand);
}
if (Subtarget->hasVOP3PInsts()) {
setOperationAction(ISD::ADD, MVT::v2i16, Legal);
setOperationAction(ISD::SUB, MVT::v2i16, Legal);
setOperationAction(ISD::MUL, MVT::v2i16, Legal);
setOperationAction(ISD::SHL, MVT::v2i16, Legal);
setOperationAction(ISD::SRL, MVT::v2i16, Legal);
setOperationAction(ISD::SRA, MVT::v2i16, Legal);
setOperationAction(ISD::SMIN, MVT::v2i16, Legal);
setOperationAction(ISD::UMIN, MVT::v2i16, Legal);
setOperationAction(ISD::SMAX, MVT::v2i16, Legal);
setOperationAction(ISD::UMAX, MVT::v2i16, Legal);
setOperationAction(ISD::FADD, MVT::v2f16, Legal);
setOperationAction(ISD::FMUL, MVT::v2f16, Legal);
setOperationAction(ISD::FMA, MVT::v2f16, Legal);
setOperationAction(ISD::FMINNUM_IEEE, MVT::v2f16, Legal);
setOperationAction(ISD::FMAXNUM_IEEE, MVT::v2f16, Legal);
setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
setOperationAction(ISD::SHL, MVT::v4i16, Custom);
setOperationAction(ISD::SRA, MVT::v4i16, Custom);
setOperationAction(ISD::SRL, MVT::v4i16, Custom);
setOperationAction(ISD::ADD, MVT::v4i16, Custom);
setOperationAction(ISD::SUB, MVT::v4i16, Custom);
setOperationAction(ISD::MUL, MVT::v4i16, Custom);
setOperationAction(ISD::SMIN, MVT::v4i16, Custom);
setOperationAction(ISD::SMAX, MVT::v4i16, Custom);
setOperationAction(ISD::UMIN, MVT::v4i16, Custom);
setOperationAction(ISD::UMAX, MVT::v4i16, Custom);
setOperationAction(ISD::FADD, MVT::v4f16, Custom);
setOperationAction(ISD::FMUL, MVT::v4f16, Custom);
setOperationAction(ISD::FMAXNUM, MVT::v2f16, Custom);
setOperationAction(ISD::FMINNUM, MVT::v2f16, Custom);
setOperationAction(ISD::FMINNUM, MVT::v4f16, Custom);
setOperationAction(ISD::FMAXNUM, MVT::v4f16, Custom);
setOperationAction(ISD::FCANONICALIZE, MVT::v4f16, Custom);
setOperationAction(ISD::FEXP, MVT::v2f16, Custom);
setOperationAction(ISD::SELECT, MVT::v4i16, Custom);
setOperationAction(ISD::SELECT, MVT::v4f16, Custom);
}
setOperationAction(ISD::FNEG, MVT::v4f16, Custom);
setOperationAction(ISD::FABS, MVT::v4f16, Custom);
if (Subtarget->has16BitInsts()) {
setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
} else {
// Legalization hack.
setOperationAction(ISD::SELECT, MVT::v2i16, Custom);
setOperationAction(ISD::SELECT, MVT::v2f16, Custom);
setOperationAction(ISD::FNEG, MVT::v2f16, Custom);
setOperationAction(ISD::FABS, MVT::v2f16, Custom);
}
for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) {
setOperationAction(ISD::SELECT, VT, Custom);
}
setTargetDAGCombine(ISD::ADD);
setTargetDAGCombine(ISD::ADDCARRY);
setTargetDAGCombine(ISD::SUB);
setTargetDAGCombine(ISD::SUBCARRY);
setTargetDAGCombine(ISD::FADD);
setTargetDAGCombine(ISD::FSUB);
setTargetDAGCombine(ISD::FMINNUM);
setTargetDAGCombine(ISD::FMAXNUM);
setTargetDAGCombine(ISD::FMINNUM_IEEE);
setTargetDAGCombine(ISD::FMAXNUM_IEEE);
setTargetDAGCombine(ISD::FMA);
setTargetDAGCombine(ISD::SMIN);
setTargetDAGCombine(ISD::SMAX);
setTargetDAGCombine(ISD::UMIN);
setTargetDAGCombine(ISD::UMAX);
setTargetDAGCombine(ISD::SETCC);
setTargetDAGCombine(ISD::AND);
setTargetDAGCombine(ISD::OR);
setTargetDAGCombine(ISD::XOR);
setTargetDAGCombine(ISD::SINT_TO_FP);
setTargetDAGCombine(ISD::UINT_TO_FP);
setTargetDAGCombine(ISD::FCANONICALIZE);
setTargetDAGCombine(ISD::SCALAR_TO_VECTOR);
setTargetDAGCombine(ISD::ZERO_EXTEND);
setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
// All memory operations. Some folding on the pointer operand is done to help
// matching the constant offsets in the addressing modes.
setTargetDAGCombine(ISD::LOAD);
setTargetDAGCombine(ISD::STORE);
setTargetDAGCombine(ISD::ATOMIC_LOAD);
setTargetDAGCombine(ISD::ATOMIC_STORE);
setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
setTargetDAGCombine(ISD::ATOMIC_SWAP);
setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
setTargetDAGCombine(ISD::ATOMIC_LOAD_FADD);
setSchedulingPreference(Sched::RegPressure);
}
const GCNSubtarget *SITargetLowering::getSubtarget() const {
return Subtarget;
}
//===----------------------------------------------------------------------===//
// TargetLowering queries
//===----------------------------------------------------------------------===//
// v_mad_mix* support a conversion from f16 to f32.
//
// There is only one special case when denormals are enabled we don't currently,
// where this is OK to use.
bool SITargetLowering::isFPExtFoldable(unsigned Opcode,
EVT DestVT, EVT SrcVT) const {
return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) ||
(Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) &&
DestVT.getScalarType() == MVT::f32 && !Subtarget->hasFP32Denormals() &&
SrcVT.getScalarType() == MVT::f16;
}
bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
// SI has some legal vector types, but no legal vector operations. Say no
// shuffles are legal in order to prefer scalarizing some vector operations.
return false;
}
MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
CallingConv::ID CC,
EVT VT) const {
// TODO: Consider splitting all arguments into 32-bit pieces.
if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
EVT ScalarVT = VT.getScalarType();
unsigned Size = ScalarVT.getSizeInBits();
if (Size == 32)
return ScalarVT.getSimpleVT();
if (Size == 64)
return MVT::i32;
if (Size == 16 && Subtarget->has16BitInsts())
return VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
}
return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
}
unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
CallingConv::ID CC,
EVT VT) const {
if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
unsigned NumElts = VT.getVectorNumElements();
EVT ScalarVT = VT.getScalarType();
unsigned Size = ScalarVT.getSizeInBits();
if (Size == 32)
return NumElts;
if (Size == 64)
return 2 * NumElts;
if (Size == 16 && Subtarget->has16BitInsts())
return (VT.getVectorNumElements() + 1) / 2;
}
return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
}
unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv(
LLVMContext &Context, CallingConv::ID CC,
EVT VT, EVT &IntermediateVT,
unsigned &NumIntermediates, MVT &RegisterVT) const {
if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
unsigned NumElts = VT.getVectorNumElements();
EVT ScalarVT = VT.getScalarType();
unsigned Size = ScalarVT.getSizeInBits();
if (Size == 32) {
RegisterVT = ScalarVT.getSimpleVT();
IntermediateVT = RegisterVT;
NumIntermediates = NumElts;
return NumIntermediates;
}
if (Size == 64) {
RegisterVT = MVT::i32;
IntermediateVT = RegisterVT;
NumIntermediates = 2 * NumElts;
return NumIntermediates;
}
// FIXME: We should fix the ABI to be the same on targets without 16-bit
// support, but unless we can properly handle 3-vectors, it will be still be
// inconsistent.
if (Size == 16 && Subtarget->has16BitInsts()) {
RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
IntermediateVT = RegisterVT;
NumIntermediates = (NumElts + 1) / 2;
return NumIntermediates;
}
}
return TargetLowering::getVectorTypeBreakdownForCallingConv(
Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
}
static MVT memVTFromAggregate(Type *Ty) {
// Only limited forms of aggregate type currently expected.
assert(Ty->isStructTy() && "Expected struct type");
Type *ElementType = nullptr;
unsigned NumElts;
if (Ty->getContainedType(0)->isVectorTy()) {
VectorType *VecComponent = cast<VectorType>(Ty->getContainedType(0));
ElementType = VecComponent->getElementType();
NumElts = VecComponent->getNumElements();
} else {
ElementType = Ty->getContainedType(0);
NumElts = 1;
}
assert((Ty->getContainedType(1) && Ty->getContainedType(1)->isIntegerTy(32)) && "Expected int32 type");
// Calculate the size of the memVT type from the aggregate
unsigned Pow2Elts = 0;
unsigned ElementSize;
switch (ElementType->getTypeID()) {
default:
llvm_unreachable("Unknown type!");
case Type::IntegerTyID:
ElementSize = cast<IntegerType>(ElementType)->getBitWidth();
break;
case Type::HalfTyID:
ElementSize = 16;
break;
case Type::FloatTyID:
ElementSize = 32;
break;
}
unsigned AdditionalElts = ElementSize == 16 ? 2 : 1;
Pow2Elts = 1 << Log2_32_Ceil(NumElts + AdditionalElts);
return MVT::getVectorVT(MVT::getVT(ElementType, false),
Pow2Elts);
}
bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
const CallInst &CI,
MachineFunction &MF,
unsigned IntrID) const {
if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
AMDGPU::lookupRsrcIntrinsic(IntrID)) {
AttributeList Attr = Intrinsic::getAttributes(CI.getContext(),
(Intrinsic::ID)IntrID);
if (Attr.hasFnAttribute(Attribute::ReadNone))
return false;
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
if (RsrcIntr->IsImage) {
Info.ptrVal = MFI->getImagePSV(
*MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
CI.getArgOperand(RsrcIntr->RsrcArg));
Info.align = 0;
} else {
Info.ptrVal = MFI->getBufferPSV(
*MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
CI.getArgOperand(RsrcIntr->RsrcArg));
}
Info.flags = MachineMemOperand::MODereferenceable;
if (Attr.hasFnAttribute(Attribute::ReadOnly)) {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::getVT(CI.getType(), true);
if (Info.memVT == MVT::Other) {
// Some intrinsics return an aggregate type - special case to work out
// the correct memVT
Info.memVT = memVTFromAggregate(CI.getType());
}
Info.flags |= MachineMemOperand::MOLoad;
} else if (Attr.hasFnAttribute(Attribute::WriteOnly)) {
Info.opc = ISD::INTRINSIC_VOID;
Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
Info.flags |= MachineMemOperand::MOStore;
} else {
// Atomic
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::getVT(CI.getType());
Info.flags = MachineMemOperand::MOLoad |
MachineMemOperand::MOStore |
MachineMemOperand::MODereferenceable;
// XXX - Should this be volatile without known ordering?
Info.flags |= MachineMemOperand::MOVolatile;
}
return true;
}
switch (IntrID) {
case Intrinsic::amdgcn_atomic_inc:
case Intrinsic::amdgcn_atomic_dec:
case Intrinsic::amdgcn_ds_ordered_add:
case Intrinsic::amdgcn_ds_ordered_swap:
case Intrinsic::amdgcn_ds_fadd:
case Intrinsic::amdgcn_ds_fmin:
case Intrinsic::amdgcn_ds_fmax: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::getVT(CI.getType());
Info.ptrVal = CI.getOperand(0);
Info.align = 0;
Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4));
if (!Vol->isZero())
Info.flags |= MachineMemOperand::MOVolatile;
return true;
}
case Intrinsic::amdgcn_ds_append:
case Intrinsic::amdgcn_ds_consume: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::getVT(CI.getType());
Info.ptrVal = CI.getOperand(0);
Info.align = 0;
Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1));
if (!Vol->isZero())
Info.flags |= MachineMemOperand::MOVolatile;
return true;
}
default:
return false;
}
}
bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
SmallVectorImpl<Value*> &Ops,
Type *&AccessTy) const {
switch (II->getIntrinsicID()) {
case Intrinsic::amdgcn_atomic_inc:
case Intrinsic::amdgcn_atomic_dec:
case Intrinsic::amdgcn_ds_ordered_add:
case Intrinsic::amdgcn_ds_ordered_swap:
case Intrinsic::amdgcn_ds_fadd:
case Intrinsic::amdgcn_ds_fmin:
case Intrinsic::amdgcn_ds_fmax: {
Value *Ptr = II->getArgOperand(0);
AccessTy = II->getType();
Ops.push_back(Ptr);
return true;
}
default:
return false;
}
}
bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
if (!Subtarget->hasFlatInstOffsets()) {
// Flat instructions do not have offsets, and only have the register
// address.
return AM.BaseOffs == 0 && AM.Scale == 0;
}
// GFX9 added a 13-bit signed offset. When using regular flat instructions,
// the sign bit is ignored and is treated as a 12-bit unsigned offset.
// GFX10 shrinked signed offset to 12 bits. When using regular flat
// instructions, the sign bit is also ignored and is treated as 11-bit
// unsigned offset.
if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
return isUInt<11>(AM.BaseOffs) && AM.Scale == 0;
// Just r + i
return isUInt<12>(AM.BaseOffs) && AM.Scale == 0;
}
bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
if (Subtarget->hasFlatGlobalInsts())
return isInt<13>(AM.BaseOffs) && AM.Scale == 0;
if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
// Assume the we will use FLAT for all global memory accesses
// on VI.
// FIXME: This assumption is currently wrong. On VI we still use
// MUBUF instructions for the r + i addressing mode. As currently
// implemented, the MUBUF instructions only work on buffer < 4GB.
// It may be possible to support > 4GB buffers with MUBUF instructions,
// by setting the stride value in the resource descriptor which would
// increase the size limit to (stride * 4GB). However, this is risky,
// because it has never been validated.
return isLegalFlatAddressingMode(AM);
}
return isLegalMUBUFAddressingMode(AM);
}
bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
// MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
// additionally can do r + r + i with addr64. 32-bit has more addressing
// mode options. Depending on the resource constant, it can also do
// (i64 r0) + (i32 r1) * (i14 i).
//
// Private arrays end up using a scratch buffer most of the time, so also
// assume those use MUBUF instructions. Scratch loads / stores are currently
// implemented as mubuf instructions with offen bit set, so slightly
// different than the normal addr64.
if (!isUInt<12>(AM.BaseOffs))
return false;
// FIXME: Since we can split immediate into soffset and immediate offset,
// would it make sense to allow any immediate?
switch (AM.Scale) {
case 0: // r + i or just i, depending on HasBaseReg.
return true;
case 1:
return true; // We have r + r or r + i.
case 2:
if (AM.HasBaseReg) {
// Reject 2 * r + r.
return false;
}
// Allow 2 * r as r + r
// Or 2 * r + i is allowed as r + r + i.
return true;
default: // Don't allow n * r
return false;
}
}
bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
const AddrMode &AM, Type *Ty,
unsigned AS, Instruction *I) const {
// No global is ever allowed as a base.
if (AM.BaseGV)
return false;
if (AS == AMDGPUAS::GLOBAL_ADDRESS)
return isLegalGlobalAddressingMode(AM);
if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
AS == AMDGPUAS::BUFFER_FAT_POINTER) {
// If the offset isn't a multiple of 4, it probably isn't going to be
// correctly aligned.
// FIXME: Can we get the real alignment here?
if (AM.BaseOffs % 4 != 0)
return isLegalMUBUFAddressingMode(AM);
// There are no SMRD extloads, so if we have to do a small type access we
// will use a MUBUF load.
// FIXME?: We also need to do this if unaligned, but we don't know the
// alignment here.
if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4)
return isLegalGlobalAddressingMode(AM);
if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
// SMRD instructions have an 8-bit, dword offset on SI.
if (!isUInt<8>(AM.BaseOffs / 4))
return false;
} else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
// On CI+, this can also be a 32-bit literal constant offset. If it fits
// in 8-bits, it can use a smaller encoding.
if (!isUInt<32>(AM.BaseOffs / 4))
return false;
} else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
// On VI, these use the SMEM format and the offset is 20-bit in bytes.
if (!isUInt<20>(AM.BaseOffs))
return false;
} else
llvm_unreachable("unhandled generation");
if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
return true;
if (AM.Scale == 1 && AM.HasBaseReg)
return true;
return false;
} else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
return isLegalMUBUFAddressingMode(AM);
} else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
AS == AMDGPUAS::REGION_ADDRESS) {
// Basic, single offset DS instructions allow a 16-bit unsigned immediate
// field.
// XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
// an 8-bit dword offset but we don't know the alignment here.
if (!isUInt<16>(AM.BaseOffs))
return false;
if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
return true;
if (AM.Scale == 1 && AM.HasBaseReg)
return true;
return false;
} else if (AS == AMDGPUAS::FLAT_ADDRESS ||
AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) {
// For an unknown address space, this usually means that this is for some
// reason being used for pure arithmetic, and not based on some addressing
// computation. We don't have instructions that compute pointers with any
// addressing modes, so treat them as having no offset like flat
// instructions.
return isLegalFlatAddressingMode(AM);
} else {
llvm_unreachable("unhandled address space");
}
}
bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
const SelectionDAG &DAG) const {
if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) {
return (MemVT.getSizeInBits() <= 4 * 32);
} else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
return (MemVT.getSizeInBits() <= MaxPrivateBits);
} else if (AS == AMDGPUAS::LOCAL_ADDRESS) {
return (MemVT.getSizeInBits() <= 2 * 32);
}
return true;
}
bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
unsigned AddrSpace,
unsigned Align,
bool *IsFast) const {
if (IsFast)
*IsFast = false;
// TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
// which isn't a simple VT.
// Until MVT is extended to handle this, simply check for the size and
// rely on the condition below: allow accesses if the size is a multiple of 4.
if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 &&
VT.getStoreSize() > 16)) {
return false;
}
if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
AddrSpace == AMDGPUAS::REGION_ADDRESS) {
// ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
// aligned, 8 byte access in a single operation using ds_read2/write2_b32
// with adjacent offsets.
bool AlignedBy4 = (Align % 4 == 0);
if (IsFast)
*IsFast = AlignedBy4;
return AlignedBy4;
}
// FIXME: We have to be conservative here and assume that flat operations
// will access scratch. If we had access to the IR function, then we
// could determine if any private memory was used in the function.
if (!Subtarget->hasUnalignedScratchAccess() &&
(AddrSpace == AMDGPUAS::PRIVATE_ADDRESS ||
AddrSpace == AMDGPUAS::FLAT_ADDRESS)) {
bool AlignedBy4 = Align >= 4;
if (IsFast)
*IsFast = AlignedBy4;
return AlignedBy4;
}
if (Subtarget->hasUnalignedBufferAccess()) {
// If we have an uniform constant load, it still requires using a slow
// buffer instruction if unaligned.
if (IsFast) {
*IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ?
(Align % 4 == 0) : true;
}
return true;
}
// Smaller than dword value must be aligned.
if (VT.bitsLT(MVT::i32))
return false;
// 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
// byte-address are ignored, thus forcing Dword alignment.
// This applies to private, global, and constant memory.
if (IsFast)
*IsFast = true;
return VT.bitsGT(MVT::i32) && Align % 4 == 0;
}
EVT SITargetLowering::getOptimalMemOpType(
uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
bool ZeroMemset, bool MemcpyStrSrc,
const AttributeList &FuncAttributes) const {
// FIXME: Should account for address space here.
// The default fallback uses the private pointer size as a guess for a type to
// use. Make sure we switch these to 64-bit accesses.
if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
return MVT::v4i32;
if (Size >= 8 && DstAlign >= 4)
return MVT::v2i32;
// Use the default.
return MVT::Other;
}
static bool isFlatGlobalAddrSpace(unsigned AS) {
return AS == AMDGPUAS::GLOBAL_ADDRESS ||
AS == AMDGPUAS::FLAT_ADDRESS ||
AS == AMDGPUAS::CONSTANT_ADDRESS ||
AS > AMDGPUAS::MAX_AMDGPU_ADDRESS;
}
bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
unsigned DestAS) const {
return isFlatGlobalAddrSpace(SrcAS) && isFlatGlobalAddrSpace(DestAS);
}
bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
const MemSDNode *MemNode = cast<MemSDNode>(N);
const Value *Ptr = MemNode->getMemOperand()->getValue();
const Instruction *I = dyn_cast_or_null<Instruction>(Ptr);
return I && I->getMetadata("amdgpu.noclobber");
}
bool SITargetLowering::isCheapAddrSpaceCast(unsigned SrcAS,
unsigned DestAS) const {
// Flat -> private/local is a simple truncate.
// Flat -> global is no-op
if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
return true;
return isNoopAddrSpaceCast(SrcAS, DestAS);
}
bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
const MemSDNode *MemNode = cast<MemSDNode>(N);
return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand());
}
TargetLoweringBase::LegalizeTypeAction
SITargetLowering::getPreferredVectorAction(MVT VT) const {
if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16))
return TypeSplitVector;
return TargetLoweringBase::getPreferredVectorAction(VT);
}
bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
Type *Ty) const {
// FIXME: Could be smarter if called for vector constants.
return true;
}
bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
if (Subtarget->has16BitInsts() && VT == MVT::i16) {
switch (Op) {
case ISD::LOAD:
case ISD::STORE:
// These operations are done with 32-bit instructions anyway.
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::SELECT:
// TODO: Extensions?
return true;
default:
return false;
}
}
// SimplifySetCC uses this function to determine whether or not it should
// create setcc with i1 operands. We don't have instructions for i1 setcc.
if (VT == MVT::i1 && Op == ISD::SETCC)
return false;
return TargetLowering::isTypeDesirableForOp(Op, VT);
}
SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
const SDLoc &SL,
SDValue Chain,
uint64_t Offset) const {
const DataLayout &DL = DAG.getDataLayout();
MachineFunction &MF = DAG.getMachineFunction();
const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
const ArgDescriptor *InputPtrReg;
const TargetRegisterClass *RC;
std::tie(InputPtrReg, RC)
= Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
return DAG.getObjectPtrOffset(SL, BasePtr, Offset);
}
SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
const SDLoc &SL) const {
uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(),
FIRST_IMPLICIT);
return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
}
SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
const SDLoc &SL, SDValue Val,
bool Signed,
const ISD::InputArg *Arg) const {
// First, if it is a widened vector, narrow it.
if (VT.isVector() &&
VT.getVectorNumElements() != MemVT.getVectorNumElements()) {
EVT NarrowedVT =
EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(),
VT.getVectorNumElements());
Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val,
DAG.getConstant(0, SL, MVT::i32));
}
// Then convert the vector elements or scalar value.
if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
VT.bitsLT(MemVT)) {
unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
}
if (MemVT.isFloatingPoint())
Val = getFPExtOrFPTrunc(DAG, Val, SL, VT);
else if (Signed)
Val = DAG.getSExtOrTrunc(Val, SL, VT);
else
Val = DAG.getZExtOrTrunc(Val, SL, VT);
return Val;
}
SDValue SITargetLowering::lowerKernargMemParameter(
SelectionDAG &DAG, EVT VT, EVT MemVT,
const SDLoc &SL, SDValue Chain,
uint64_t Offset, unsigned Align, bool Signed,
const ISD::InputArg *Arg) const {
Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
// Try to avoid using an extload by loading earlier than the argument address,
// and extracting the relevant bits. The load should hopefully be merged with
// the previous argument.
if (MemVT.getStoreSize() < 4 && Align < 4) {
// TODO: Handle align < 4 and size >= 4 (can happen with packed structs).
int64_t AlignDownOffset = alignDown(Offset, 4);
int64_t OffsetDiff = Offset - AlignDownOffset;
EVT IntVT = MemVT.changeTypeToInteger();
// TODO: If we passed in the base kernel offset we could have a better
// alignment than 4, but we don't really need it.
SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, 4,
MachineMemOperand::MODereferenceable |
MachineMemOperand::MOInvariant);
SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32);
SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt);
SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract);
ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal);
ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg);
return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL);
}
SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Align,
MachineMemOperand::MODereferenceable |
MachineMemOperand::MOInvariant);
SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
}
SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA,
const SDLoc &SL, SDValue Chain,
const ISD::InputArg &Arg) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
if (Arg.Flags.isByVal()) {
unsigned Size = Arg.Flags.getByValSize();
int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
return DAG.getFrameIndex(FrameIdx, MVT::i32);
}
unsigned ArgOffset = VA.getLocMemOffset();
unsigned ArgSize = VA.getValVT().getStoreSize();
int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
// Create load nodes to retrieve arguments from the stack.
SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
SDValue ArgValue;
// For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
MVT MemVT = VA.getValVT();
switch (VA.getLocInfo()) {
default:
break;
case CCValAssign::BCvt:
MemVT = VA.getLocVT();
break;
case CCValAssign::SExt:
ExtType = ISD::SEXTLOAD;
break;
case CCValAssign::ZExt:
ExtType = ISD::ZEXTLOAD;
break;
case CCValAssign::AExt:
ExtType = ISD::EXTLOAD;
break;
}
ArgValue = DAG.getExtLoad(
ExtType, SL, VA.getLocVT(), Chain, FIN,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
MemVT);
return ArgValue;
}
SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG,
const SIMachineFunctionInfo &MFI,
EVT VT,
AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
const ArgDescriptor *Reg;
const TargetRegisterClass *RC;
std::tie(Reg, RC) = MFI.getPreloadedValue(PVID);
return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT);
}
static void processShaderInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
CallingConv::ID CallConv,
ArrayRef<ISD::InputArg> Ins,
BitVector &Skipped,
FunctionType *FType,
SIMachineFunctionInfo *Info) {
for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
const ISD::InputArg *Arg = &Ins[I];
assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&
"vector type argument should have been split");
// First check if it's a PS input addr.
if (CallConv == CallingConv::AMDGPU_PS &&
!Arg->Flags.isInReg() && !Arg->Flags.isByVal() && PSInputNum <= 15) {
bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum);
// Inconveniently only the first part of the split is marked as isSplit,
// so skip to the end. We only want to increment PSInputNum once for the
// entire split argument.
if (Arg->Flags.isSplit()) {
while (!Arg->Flags.isSplitEnd()) {
assert(!Arg->VT.isVector() &&
"unexpected vector split in ps argument type");
if (!SkipArg)
Splits.push_back(*Arg);
Arg = &Ins[++I];
}
}
if (SkipArg) {
// We can safely skip PS inputs.
Skipped.set(Arg->getOrigArgIndex());
++PSInputNum;
continue;
}
Info->markPSInputAllocated(PSInputNum);
if (Arg->Used)
Info->markPSInputEnabled(PSInputNum);
++PSInputNum;
}
Splits.push_back(*Arg);
}
}
// Allocate special inputs passed in VGPRs.
static void allocateSpecialEntryInputVGPRs(CCState &CCInfo,
MachineFunction &MF,
const SIRegisterInfo &TRI,
SIMachineFunctionInfo &Info) {
if (Info.hasWorkItemIDX()) {
unsigned Reg = AMDGPU::VGPR0;
MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
CCInfo.AllocateReg(Reg);
Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg));
}
if (Info.hasWorkItemIDY()) {
unsigned Reg = AMDGPU::VGPR1;
MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
CCInfo.AllocateReg(Reg);
Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
}
if (Info.hasWorkItemIDZ()) {
unsigned Reg = AMDGPU::VGPR2;
MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
CCInfo.AllocateReg(Reg);
Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
}
}
// Try to allocate a VGPR at the end of the argument list, or if no argument
// VGPRs are left allocating a stack slot.
static ArgDescriptor allocateVGPR32Input(CCState &CCInfo) {
ArrayRef<MCPhysReg> ArgVGPRs
= makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
if (RegIdx == ArgVGPRs.size()) {
// Spill to stack required.
int64_t Offset = CCInfo.AllocateStack(4, 4);
return ArgDescriptor::createStack(Offset);
}
unsigned Reg = ArgVGPRs[RegIdx];
Reg = CCInfo.AllocateReg(Reg);
assert(Reg != AMDGPU::NoRegister);
MachineFunction &MF = CCInfo.getMachineFunction();
MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
return ArgDescriptor::createRegister(Reg);
}
static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
const TargetRegisterClass *RC,
unsigned NumArgRegs) {
ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32);
unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
if (RegIdx == ArgSGPRs.size())
report_fatal_error("ran out of SGPRs for arguments");
unsigned Reg = ArgSGPRs[RegIdx];
Reg = CCInfo.AllocateReg(Reg);
assert(Reg != AMDGPU::NoRegister);
MachineFunction &MF = CCInfo.getMachineFunction();
MF.addLiveIn(Reg, RC);
return ArgDescriptor::createRegister(Reg);
}
static ArgDescriptor allocateSGPR32Input(CCState &CCInfo) {
return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
}
static ArgDescriptor allocateSGPR64Input(CCState &CCInfo) {
return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
}
static void allocateSpecialInputVGPRs(CCState &CCInfo,
MachineFunction &MF,
const SIRegisterInfo &TRI,
SIMachineFunctionInfo &Info) {
if (Info.hasWorkItemIDX())
Info.setWorkItemIDX(allocateVGPR32Input(CCInfo));
if (Info.hasWorkItemIDY())
Info.setWorkItemIDY(allocateVGPR32Input(CCInfo));
if (Info.hasWorkItemIDZ())
Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo));
}
static void allocateSpecialInputSGPRs(CCState &CCInfo,
MachineFunction &MF,
const SIRegisterInfo &TRI,
SIMachineFunctionInfo &Info) {
auto &ArgInfo = Info.getArgInfo();
// TODO: Unify handling with private memory pointers.
if (Info.hasDispatchPtr())
ArgInfo.DispatchPtr = allocateSGPR64Input(CCInfo);
if (Info.hasQueuePtr())
ArgInfo.QueuePtr = allocateSGPR64Input(CCInfo);
if (Info.hasKernargSegmentPtr())
ArgInfo.KernargSegmentPtr = allocateSGPR64Input(CCInfo);
if (Info.hasDispatchID())
ArgInfo.DispatchID = allocateSGPR64Input(CCInfo);
// flat_scratch_init is not applicable for non-kernel functions.
if (Info.hasWorkGroupIDX())
ArgInfo.WorkGroupIDX = allocateSGPR32Input(CCInfo);
if (Info.hasWorkGroupIDY())
ArgInfo.WorkGroupIDY = allocateSGPR32Input(CCInfo);
if (Info.hasWorkGroupIDZ())
ArgInfo.WorkGroupIDZ = allocateSGPR32Input(CCInfo);
if (Info.hasImplicitArgPtr())
ArgInfo.ImplicitArgPtr = allocateSGPR64Input(CCInfo);
}
// Allocate special inputs passed in user SGPRs.
static void allocateHSAUserSGPRs(CCState &CCInfo,
MachineFunction &MF,
const SIRegisterInfo &TRI,
SIMachineFunctionInfo &Info) {
if (Info.hasImplicitBufferPtr()) {
unsigned ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
CCInfo.AllocateReg(ImplicitBufferPtrReg);
}
// FIXME: How should these inputs interact with inreg / custom SGPR inputs?
if (Info.hasPrivateSegmentBuffer()) {
unsigned PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
CCInfo.AllocateReg(PrivateSegmentBufferReg);
}
if (Info.hasDispatchPtr()) {
unsigned DispatchPtrReg = Info.addDispatchPtr(TRI);
MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
CCInfo.AllocateReg(DispatchPtrReg);
}
if (Info.hasQueuePtr()) {
unsigned QueuePtrReg = Info.addQueuePtr(TRI);
MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
CCInfo.AllocateReg(QueuePtrReg);
}
if (Info.hasKernargSegmentPtr()) {
unsigned InputPtrReg = Info.addKernargSegmentPtr(TRI);
MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
CCInfo.AllocateReg(InputPtrReg);
}
if (Info.hasDispatchID()) {
unsigned DispatchIDReg = Info.addDispatchID(TRI);
MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
CCInfo.AllocateReg(DispatchIDReg);
}
if (Info.hasFlatScratchInit()) {
unsigned FlatScratchInitReg = Info.addFlatScratchInit(TRI);
MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
CCInfo.AllocateReg(FlatScratchInitReg);
}
// TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
// these from the dispatch pointer.
}
// Allocate special input registers that are initialized per-wave.
static void allocateSystemSGPRs(CCState &CCInfo,
MachineFunction &MF,
SIMachineFunctionInfo &Info,
CallingConv::ID CallConv,
bool IsShader) {
if (Info.hasWorkGroupIDX()) {
unsigned Reg = Info.addWorkGroupIDX();
MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
CCInfo.AllocateReg(Reg);
}
if (Info.hasWorkGroupIDY()) {
unsigned Reg = Info.addWorkGroupIDY();
MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
CCInfo.AllocateReg(Reg);
}
if (Info.hasWorkGroupIDZ()) {
unsigned Reg = Info.addWorkGroupIDZ();
MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
CCInfo.AllocateReg(Reg);
}
if (Info.hasWorkGroupInfo()) {
unsigned Reg = Info.addWorkGroupInfo();
MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
CCInfo.AllocateReg(Reg);
}
if (Info.hasPrivateSegmentWaveByteOffset()) {
// Scratch wave offset passed in system SGPR.
unsigned PrivateSegmentWaveByteOffsetReg;
if (IsShader) {
PrivateSegmentWaveByteOffsetReg =
Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
// This is true if the scratch wave byte offset doesn't have a fixed
// location.
if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
}
} else
PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
}
}
static void reservePrivateMemoryRegs(const TargetMachine &TM,
MachineFunction &MF,
const SIRegisterInfo &TRI,
SIMachineFunctionInfo &Info) {
// Now that we've figured out where the scratch register inputs are, see if
// should reserve the arguments and use them directly.
MachineFrameInfo &MFI = MF.getFrameInfo();
bool HasStackObjects = MFI.hasStackObjects();
// Record that we know we have non-spill stack objects so we don't need to
// check all stack objects later.
if (HasStackObjects)
Info.setHasNonSpillStackObjects(true);
// Everything live out of a block is spilled with fast regalloc, so it's
// almost certain that spilling will be required.
if (TM.getOptLevel() == CodeGenOpt::None)
HasStackObjects = true;
// For now assume stack access is needed in any callee functions, so we need
// the scratch registers to pass in.
bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
if (ST.isAmdHsaOrMesa(MF.getFunction())) {
if (RequiresStackAccess) {
// If we have stack objects, we unquestionably need the private buffer
// resource. For the Code Object V2 ABI, this will be the first 4 user
// SGPR inputs. We can reserve those and use them directly.
unsigned PrivateSegmentBufferReg = Info.getPreloadedReg(
AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
Info.setScratchRSrcReg(PrivateSegmentBufferReg);
if (MFI.hasCalls()) {
// If we have calls, we need to keep the frame register in a register
// that won't be clobbered by a call, so ensure it is copied somewhere.
// This is not a problem for the scratch wave offset, because the same
// registers are reserved in all functions.
// FIXME: Nothing is really ensuring this is a call preserved register,
// it's just selected from the end so it happens to be.
unsigned ReservedOffsetReg
= TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
Info.setScratchWaveOffsetReg(ReservedOffsetReg);
} else {
unsigned PrivateSegmentWaveByteOffsetReg = Info.getPreloadedReg(
AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
Info.setScratchWaveOffsetReg(PrivateSegmentWaveByteOffsetReg);
}
} else {
unsigned ReservedBufferReg
= TRI.reservedPrivateSegmentBufferReg(MF);
unsigned ReservedOffsetReg
= TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
// We tentatively reserve the last registers (skipping the last two
// which may contain VCC). After register allocation, we'll replace
// these with the ones immediately after those which were really
// allocated. In the prologue copies will be inserted from the argument
// to these reserved registers.
Info.setScratchRSrcReg(ReservedBufferReg);
Info.setScratchWaveOffsetReg(ReservedOffsetReg);
}
} else {
unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
// Without HSA, relocations are used for the scratch pointer and the
// buffer resource setup is always inserted in the prologue. Scratch wave
// offset is still in an input SGPR.
Info.setScratchRSrcReg(ReservedBufferReg);
if (HasStackObjects && !MFI.hasCalls()) {
unsigned ScratchWaveOffsetReg = Info.getPreloadedReg(
AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
Info.setScratchWaveOffsetReg(ScratchWaveOffsetReg);
} else {
unsigned ReservedOffsetReg
= TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
Info.setScratchWaveOffsetReg(ReservedOffsetReg);
}
}
}
bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
return !Info->isEntryFunction();
}
void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
}
void SITargetLowering::insertCopiesSplitCSR(
MachineBasicBlock *Entry,
const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
if (!IStart)
return;
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
MachineBasicBlock::iterator MBBI = Entry->begin();
for (const MCPhysReg *I = IStart; *I; ++I) {
const TargetRegisterClass *RC = nullptr;
if (AMDGPU::SReg_64RegClass.contains(*I))
RC = &AMDGPU::SGPR_64RegClass;
else if (AMDGPU::SReg_32RegClass.contains(*I))
RC = &AMDGPU::SGPR_32RegClass;
else
llvm_unreachable("Unexpected register class in CSRsViaCopy!");
unsigned NewVR = MRI->createVirtualRegister(RC);
// Create copy from CSR to a virtual register.
Entry->addLiveIn(*I);
BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
.addReg(*I);
// Insert the copy-back instructions right before the terminator.
for (auto *Exit : Exits)
BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
TII->get(TargetOpcode::COPY), *I)
.addReg(NewVR);
}
}
SDValue SITargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
MachineFunction &MF = DAG.getMachineFunction();
const Function &Fn = MF.getFunction();
FunctionType *FType = MF.getFunction().getFunctionType();
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
if (Subtarget->isAmdHsaOS() && AMDGPU::isShader(CallConv)) {
DiagnosticInfoUnsupported NoGraphicsHSA(
Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
DAG.getContext()->diagnose(NoGraphicsHSA);
return DAG.getEntryNode();
}
SmallVector<ISD::InputArg, 16> Splits;
SmallVector<CCValAssign, 16> ArgLocs;
BitVector Skipped(Ins.size());
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
bool IsShader = AMDGPU::isShader(CallConv);
bool IsKernel = AMDGPU::isKernel(CallConv);
bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
if (!IsEntryFunc) {
// 4 bytes are reserved at offset 0 for the emergency stack slot. Skip over
// this when allocating argument fixed offsets.
CCInfo.AllocateStack(4, 4);
}
if (IsShader) {
processShaderInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
// At least one interpolation mode must be enabled or else the GPU will
// hang.
//
// Check PSInputAddr instead of PSInputEnable. The idea is that if the user
// set PSInputAddr, the user wants to enable some bits after the compilation
// based on run-time states. Since we can't know what the final PSInputEna
// will look like, so we shouldn't do anything here and the user should take
// responsibility for the correct programming.
//
// Otherwise, the following restrictions apply:
// - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
// - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
// enabled too.
if (CallConv == CallingConv::AMDGPU_PS) {
if ((Info->getPSInputAddr() & 0x7F) == 0 ||
((Info->getPSInputAddr() & 0xF) == 0 &&
Info->isPSInputAllocated(11))) {
CCInfo.AllocateReg(AMDGPU::VGPR0);
CCInfo.AllocateReg(AMDGPU::VGPR1);
Info->markPSInputAllocated(0);
Info->markPSInputEnabled(0);
}
if (Subtarget->isAmdPalOS()) {
// For isAmdPalOS, the user does not enable some bits after compilation
// based on run-time states; the register values being generated here are
// the final ones set in hardware. Therefore we need to apply the
// workaround to PSInputAddr and PSInputEnable together. (The case where
// a bit is set in PSInputAddr but not PSInputEnable is where the
// frontend set up an input arg for a particular interpolation mode, but
// nothing uses that input arg. Really we should have an earlier pass
// that removes such an arg.)
unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
if ((PsInputBits & 0x7F) == 0 ||
((PsInputBits & 0xF) == 0 &&
(PsInputBits >> 11 & 1)))
Info->markPSInputEnabled(
countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
}
}
assert(!Info->hasDispatchPtr() &&
!Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() &&
!Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
!Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
!Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
!Info->hasWorkItemIDZ());
} else if (IsKernel) {
assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
} else {
Splits.append(Ins.begin(), Ins.end());
}
if (IsEntryFunc) {
allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
}
if (IsKernel) {
analyzeFormalArgumentsCompute(CCInfo, Ins);
} else {
CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
}
SmallVector<SDValue, 16> Chains;
// FIXME: This is the minimum kernel argument alignment. We should improve
// this to the maximum alignment of the arguments.
//
// FIXME: Alignment of explicit arguments totally broken with non-0 explicit
// kern arg offset.
const unsigned KernelArgBaseAlign = 16;
for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
const ISD::InputArg &Arg = Ins[i];
if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) {
InVals.push_back(DAG.getUNDEF(Arg.VT));
continue;
}
CCValAssign &VA = ArgLocs[ArgIdx++];
MVT VT = VA.getLocVT();
if (IsEntryFunc && VA.isMemLoc()) {
VT = Ins[i].VT;
EVT MemVT = VA.getLocVT();
const uint64_t Offset = VA.getLocMemOffset();
unsigned Align = MinAlign(KernelArgBaseAlign, Offset);
SDValue Arg = lowerKernargMemParameter(
DAG, VT, MemVT, DL, Chain, Offset, Align, Ins[i].Flags.isSExt(), &Ins[i]);
Chains.push_back(Arg.getValue(1));
auto *ParamTy =
dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) {
// On SI local pointers are just offsets into LDS, so they are always
// less than 16-bits. On CI and newer they could potentially be
// real pointers, so we can't guarantee their size.
Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
DAG.getValueType(MVT::i16));
}
InVals.push_back(Arg);
continue;
} else if (!IsEntryFunc && VA.isMemLoc()) {
SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
InVals.push_back(Val);
if (!Arg.Flags.isByVal())
Chains.push_back(Val.getValue(1));
continue;
}
assert(VA.isRegLoc() && "Parameter must be in a register!");
unsigned Reg = VA.getLocReg();
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
EVT ValVT = VA.getValVT();
Reg = MF.addLiveIn(Reg, RC);
SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
if (Arg.Flags.isSRet() && !getSubtarget()->enableHugePrivateBuffer()) {
// The return object should be reasonably addressable.
// FIXME: This helps when the return is a real sret. If it is a
// automatically inserted sret (i.e. CanLowerReturn returns false), an
// extra copy is inserted in SelectionDAGBuilder which obscures this.
unsigned NumBits = 32 - AssumeFrameIndexHighZeroBits;
Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
}
// If this is an 8 or 16-bit value, it is really passed promoted
// to 32 bits. Insert an assert[sz]ext to capture this, then
// truncate to the right size.
switch (VA.getLocInfo()) {
case CCValAssign::Full:
break;
case CCValAssign::BCvt:
Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
break;
case CCValAssign::SExt:
Val = DAG.getNode(ISD::AssertSext, DL, VT, Val,
DAG.getValueType(ValVT));
Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
break;
case CCValAssign::ZExt:
Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
DAG.getValueType(ValVT));
Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
break;
case CCValAssign::AExt:
Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
break;
default:
llvm_unreachable("Unknown loc info!");
}
InVals.push_back(Val);
}
if (!IsEntryFunc) {
// Special inputs come after user arguments.
allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
}
// Start adding system SGPRs.
if (IsEntryFunc) {
allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsShader);
} else {
CCInfo.AllocateReg(Info->getScratchRSrcReg());
CCInfo.AllocateReg(Info->getScratchWaveOffsetReg());
CCInfo.AllocateReg(Info->getFrameOffsetReg());
allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
}
auto &ArgUsageInfo =
DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo());
unsigned StackArgSize = CCInfo.getNextStackOffset();
Info->setBytesInStackArgArea(StackArgSize);
return Chains.empty() ? Chain :
DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
}
// TODO: If return values can't fit in registers, we should return as many as
// possible in registers before passing on stack.
bool SITargetLowering::CanLowerReturn(
CallingConv::ID CallConv,
MachineFunction &MF, bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const {
// Replacing returns with sret/stack usage doesn't make sense for shaders.
// FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
// for shaders. Vector types should be explicitly handled by CC.
if (AMDGPU::isEntryFunctionCC(CallConv))
return true;
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg));
}
SDValue
SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &DL, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
if (AMDGPU::isKernel(CallConv)) {
return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
OutVals, DL, DAG);
}
bool IsShader = AMDGPU::isShader(CallConv);
Info->setIfReturnsVoid(Outs.empty());
bool IsWaveEnd = Info->returnsVoid() && IsShader;
// CCValAssign - represent the assignment of the return value to a location.
SmallVector<CCValAssign, 48> RVLocs;
SmallVector<ISD::OutputArg, 48> Splits;
// CCState - Info about the registers and stack slots.
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
// Analyze outgoing return values.
CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
SDValue Flag;
SmallVector<SDValue, 48> RetOps;
RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
// Add return address for callable functions.
if (!Info->isEntryFunction()) {
const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
SDValue ReturnAddrReg = CreateLiveInRegister(
DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
// FIXME: Should be able to use a vreg here, but need a way to prevent it
// from being allcoated to a CSR.
SDValue PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF),
MVT::i64);
Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, Flag);
Flag = Chain.getValue(1);
RetOps.push_back(PhysReturnAddrReg);
}
// Copy the result values into the output registers.
for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E;
++I, ++RealRVLocIdx) {
CCValAssign &VA = RVLocs[I];
assert(VA.isRegLoc() && "Can only return in registers!");
// TODO: Partially return in registers if return values don't fit.
SDValue Arg = OutVals[RealRVLocIdx];
// Copied from other backends.
switch (VA.getLocInfo()) {
case CCValAssign::Full:
break;
case CCValAssign::BCvt:
Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
break;
default:
llvm_unreachable("Unknown loc info!");
}
Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
}
// FIXME: Does sret work properly?
if (!Info->isEntryFunction()) {
const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
const MCPhysReg *I =
TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
if (I) {
for (; *I; ++I) {
if (AMDGPU::SReg_64RegClass.contains(*I))
RetOps.push_back(DAG.getRegister(*I, MVT::i64));
else if (AMDGPU::SReg_32RegClass.contains(*I))
RetOps.push_back(DAG.getRegister(*I, MVT::i32));
else
llvm_unreachable("Unexpected register class in CSRsViaCopy!");
}
}
}
// Update chain and glue.
RetOps[0] = Chain;
if (Flag.getNode())
RetOps.push_back(Flag);
unsigned Opc = AMDGPUISD::ENDPGM;
if (!IsWaveEnd)
Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG;
return DAG.getNode(Opc, DL, MVT::Other, RetOps);
}
SDValue SITargetLowering::LowerCallResult(
SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
SDValue ThisVal) const {
CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
CCInfo.AnalyzeCallResult(Ins, RetCC);
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign VA = RVLocs[i];
SDValue Val;
if (VA.isRegLoc()) {
Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
Chain = Val.getValue(1);
InFlag = Val.getValue(2);
} else if (VA.isMemLoc()) {
report_fatal_error("TODO: return values in memory");
} else
llvm_unreachable("unknown argument location type");
switch (VA.getLocInfo()) {
case CCValAssign::Full:
break;
case CCValAssign::BCvt:
Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
break;
case CCValAssign::ZExt:
Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
DAG.getValueType(VA.getValVT()));
Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
break;
case CCValAssign::SExt:
Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
DAG.getValueType(VA.getValVT()));
Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
break;
case CCValAssign::AExt:
Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
break;
default:
llvm_unreachable("Unknown loc info!");
}
InVals.push_back(Val);
}
return Chain;
}
// Add code to pass special inputs required depending on used features separate
// from the explicit user arguments present in the IR.
void SITargetLowering::passSpecialInputs(
CallLoweringInfo &CLI,
CCState &CCInfo,
const SIMachineFunctionInfo &Info,
SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
SmallVectorImpl<SDValue> &MemOpChains,
SDValue Chain) const {
// If we don't have a call site, this was a call inserted by
// legalization. These can never use special inputs.
if (!CLI.CS)
return;
const Function *CalleeFunc = CLI.CS.getCalledFunction();
assert(CalleeFunc);
SelectionDAG &DAG = CLI.DAG;
const SDLoc &DL = CLI.DL;
const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
auto &ArgUsageInfo =
DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
const AMDGPUFunctionArgInfo &CalleeArgInfo
= ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
// TODO: Unify with private memory register handling. This is complicated by
// the fact that at least in kernels, the input argument is not necessarily
// in the same location as the input.
AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
AMDGPUFunctionArgInfo::DISPATCH_PTR,
AMDGPUFunctionArgInfo::QUEUE_PTR,
AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR,
AMDGPUFunctionArgInfo::DISPATCH_ID,
AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,
AMDGPUFunctionArgInfo::WORKITEM_ID_X,
AMDGPUFunctionArgInfo::WORKITEM_ID_Y,
AMDGPUFunctionArgInfo::WORKITEM_ID_Z,
AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR
};
for (auto InputID : InputRegs) {
const ArgDescriptor *OutgoingArg;
const TargetRegisterClass *ArgRC;
std::tie(OutgoingArg, ArgRC) = CalleeArgInfo.getPreloadedValue(InputID);
if (!OutgoingArg)
continue;
const ArgDescriptor *IncomingArg;
const TargetRegisterClass *IncomingArgRC;
std::tie(IncomingArg, IncomingArgRC)
= CallerArgInfo.getPreloadedValue(InputID);
assert(IncomingArgRC == ArgRC);
// All special arguments are ints for now.
EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
SDValue InputReg;
if (IncomingArg) {
InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
} else {
// The implicit arg ptr is special because it doesn't have a corresponding
// input for kernels, and is computed from the kernarg segment pointer.
assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
InputReg = getImplicitArgPtr(DAG, DL);
}
if (OutgoingArg->isRegister()) {
RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
} else {
unsigned SpecialArgOffset = CCInfo.AllocateStack(ArgVT.getStoreSize(), 4);
SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
SpecialArgOffset);
MemOpChains.push_back(ArgStore);
}
}
}
static bool canGuaranteeTCO(CallingConv::ID CC) {
return CC == CallingConv::Fast;
}
/// Return true if we might ever do TCO for calls with this calling convention.
static bool mayTailCallThisCC(CallingConv::ID CC) {
switch (CC) {
case CallingConv::C:
return true;
default:
return canGuaranteeTCO(CC);
}
}
bool SITargetLowering::isEligibleForTailCallOptimization(
SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
if (!mayTailCallThisCC(CalleeCC))
return false;
MachineFunction &MF = DAG.getMachineFunction();
const Function &CallerF = MF.getFunction();
CallingConv::ID CallerCC = CallerF.getCallingConv();
const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
// Kernels aren't callable, and don't have a live in return address so it
// doesn't make sense to do a tail call with entry functions.
if (!CallerPreserved)
return false;
bool CCMatch = CallerCC == CalleeCC;
if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
if (canGuaranteeTCO(CalleeCC) && CCMatch)
return true;
return false;
}
// TODO: Can we handle var args?
if (IsVarArg)
return false;
for (const Argument &Arg : CallerF.args()) {
if (Arg.hasByValAttr())
return false;
}
LLVMContext &Ctx = *DAG.getContext();
// Check that the call results are passed in the same way.
if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
CCAssignFnForCall(CalleeCC, IsVarArg),
CCAssignFnForCall(CallerCC, IsVarArg)))
return false;
// The callee has to preserve all registers the caller needs to preserve.
if (!CCMatch) {
const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
return false;
}
// Nothing more to check if the callee is taking no arguments.
if (Outs.empty())
return true;
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
// If the stack arguments for this call do not fit into our own save area then
// the call cannot be made tail.
// TODO: Is this really necessary?
if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
return false;
const MachineRegisterInfo &MRI = MF.getRegInfo();
return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
}
bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
if (!CI->isTailCall())
return false;
const Function *ParentFn = CI->getParent()->getParent();
if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
return false;
auto Attr = ParentFn->getFnAttribute("disable-tail-calls");
return (Attr.getValueAsString() != "true");
}
// The wave scratch offset register is used as the global base pointer.
SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
const SDLoc &DL = CLI.DL;
SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
bool &IsTailCall = CLI.IsTailCall;
CallingConv::ID CallConv = CLI.CallConv;
bool IsVarArg = CLI.IsVarArg;
bool IsSibCall = false;
bool IsThisReturn = false;
MachineFunction &MF = DAG.getMachineFunction();
if (IsVarArg) {
return lowerUnhandledCall(CLI, InVals,
"unsupported call to variadic function ");
}
if (!CLI.CS.getInstruction())
report_fatal_error("unsupported libcall legalization");
if (!CLI.CS.getCalledFunction()) {
return lowerUnhandledCall(CLI, InVals,
"unsupported indirect call to function ");
}
if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
return lowerUnhandledCall(CLI, InVals,
"unsupported required tail call to function ");
}
if (AMDGPU::isShader(MF.getFunction().getCallingConv())) {
// Note the issue is with the CC of the calling function, not of the call
// itself.
return lowerUnhandledCall(CLI, InVals,
"unsupported call from graphics shader of function ");
}
// The first 4 bytes are reserved for the callee's emergency stack slot.
if (IsTailCall) {
IsTailCall = isEligibleForTailCallOptimization(
Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall()) {
report_fatal_error("failed to perform tail call elimination on a call "
"site marked musttail");
}
bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
// A sibling call is one where we're under the usual C ABI and not planning
// to change that but can still do a tail call:
if (!TailCallOpt && IsTailCall)
IsSibCall = true;
if (IsTailCall)
++NumTailCalls;
}
const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
// The first 4 bytes are reserved for the callee's emergency stack slot.
CCInfo.AllocateStack(4, 4);
CCInfo.AnalyzeCallOperands(Outs, AssignFn);
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = CCInfo.getNextStackOffset();
if (IsSibCall) {
// Since we're not changing the ABI to make this a tail call, the memory
// operands are already available in the caller's incoming argument space.
NumBytes = 0;
}
// FPDiff is the byte offset of the call's argument area from the callee's.
// Stores to callee stack arguments will be placed in FixedStackSlots offset
// by this amount for a tail call. In a sibling call it must be 0 because the
// caller will deallocate the entire stack and the callee still expects its
// arguments to begin at SP+0. Completely unused for non-tail calls.
int32_t FPDiff = 0;
MachineFrameInfo &MFI = MF.getFrameInfo();
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
SDValue CallerSavedFP;
// Adjust the stack pointer for the new arguments...
// These operations are automatically eliminated by the prolog/epilog pass
if (!IsSibCall) {
Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
unsigned OffsetReg = Info->getScratchWaveOffsetReg();
// In the HSA case, this should be an identity copy.
SDValue ScratchRSrcReg
= DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
// TODO: Don't hardcode these registers and get from the callee function.
SDValue ScratchWaveOffsetReg
= DAG.getCopyFromReg(Chain, DL, OffsetReg, MVT::i32);
RegsToPass.emplace_back(AMDGPU::SGPR4, ScratchWaveOffsetReg);
if (!Info->isEntryFunction()) {
// Avoid clobbering this function's FP value. In the current convention
// callee will overwrite this, so do save/restore around the call site.
CallerSavedFP = DAG.getCopyFromReg(Chain, DL,
Info->getFrameOffsetReg(), MVT::i32);
}
}
SmallVector<SDValue, 8> MemOpChains;
MVT PtrVT = MVT::i32;
// Walk the register/memloc assignments, inserting copies/loads.
for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
++i, ++realArgIdx) {
CCValAssign &VA = ArgLocs[i];
SDValue Arg = OutVals[realArgIdx];
// Promote the value if needed.
switch (VA.getLocInfo()) {
case CCValAssign::Full:
break;
case CCValAssign::BCvt:
Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::FPExt:
Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
break;
default:
llvm_unreachable("Unknown loc info!");
}
if (VA.isRegLoc()) {
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
} else {
assert(VA.isMemLoc());
SDValue DstAddr;
MachinePointerInfo DstInfo;
unsigned LocMemOffset = VA.getLocMemOffset();
int32_t Offset = LocMemOffset;
SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT);
unsigned Align = 0;
if (IsTailCall) {
ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
unsigned OpSize = Flags.isByVal() ?
Flags.getByValSize() : VA.getValVT().getStoreSize();
// FIXME: We can have better than the minimum byval required alignment.
Align = Flags.isByVal() ? Flags.getByValAlign() :
MinAlign(Subtarget->getStackAlignment(), Offset);
Offset = Offset + FPDiff;
int FI = MFI.CreateFixedObject(OpSize, Offset, true);
DstAddr = DAG.getFrameIndex(FI, PtrVT);
DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
// Make sure any stack arguments overlapping with where we're storing
// are loaded before this eventual operation. Otherwise they'll be
// clobbered.
// FIXME: Why is this really necessary? This seems to just result in a
// lot of code to copy the stack and write them back to the same
// locations, which are supposed to be immutable?
Chain = addTokenForArgument(Chain, DAG, MFI, FI);
} else {
DstAddr = PtrOff;
DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
Align = MinAlign(Subtarget->getStackAlignment(), LocMemOffset);
}
if (Outs[i].Flags.isByVal()) {
SDValue SizeNode =
DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
SDValue Cpy = DAG.getMemcpy(
Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
/*isVol = */ false, /*AlwaysInline = */ true,
/*isTailCall = */ false, DstInfo,
MachinePointerInfo(UndefValue::get(Type::getInt8PtrTy(
*DAG.getContext(), AMDGPUAS::PRIVATE_ADDRESS))));
MemOpChains.push_back(Cpy);
} else {
SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Align);
MemOpChains.push_back(Store);
}
}
}
// Copy special input registers after user input arguments.
passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
// Build a sequence of copy-to-reg nodes chained together with token chain
// and flag operands which copy the outgoing args into the appropriate regs.
SDValue InFlag;
for (auto &RegToPass : RegsToPass) {
Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
RegToPass.second, InFlag);
InFlag = Chain.getValue(1);
}
SDValue PhysReturnAddrReg;
if (IsTailCall) {
// Since the return is being combined with the call, we need to pass on the
// return address.
const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
SDValue ReturnAddrReg = CreateLiveInRegister(
DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF),
MVT::i64);
Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag);
InFlag = Chain.getValue(1);
}
// We don't usually want to end the call-sequence here because we would tidy
// the frame up *after* the call, however in the ABI-changing tail-call case
// we've carefully laid out the parameters so that when sp is reset they'll be
// in the correct location.
if (IsTailCall && !IsSibCall) {
Chain = DAG.getCALLSEQ_END(Chain,
DAG.getTargetConstant(NumBytes, DL, MVT::i32),
DAG.getTargetConstant(0, DL, MVT::i32),
InFlag, DL);
InFlag = Chain.getValue(1);
}
std::vector<SDValue> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Add a redundant copy of the callee global which will not be legalized, as
// we need direct access to the callee later.
GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Callee);
const GlobalValue *GV = GSD->getGlobal();
Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64));
if (IsTailCall) {
// Each tail call may have to adjust the stack by a different amount, so
// this information must travel along with the operation for eventual
// consumption by emitEpilogue.
Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
Ops.push_back(PhysReturnAddrReg);
}
// Add argument registers to the end of the list so that they are known live
// into the call.
for (auto &RegToPass : RegsToPass) {
Ops.push_back(DAG.getRegister(RegToPass.first,
RegToPass.second.getValueType()));
}
// Add a register mask operand representing the call-preserved registers.
auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
if (InFlag.getNode())
Ops.push_back(InFlag);
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
// If we're doing a tall call, use a TC_RETURN here rather than an
// actual call instruction.
if (IsTailCall) {
MFI.setHasTailCall();
return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops);
}
// Returns a chain and a flag for retval copy to use.
SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops);
Chain = Call.getValue(0);
InFlag = Call.getValue(1);
if (CallerSavedFP) {
SDValue FPReg = DAG.getRegister(Info->getFrameOffsetReg(), MVT::i32);
Chain = DAG.getCopyToReg(Chain, DL, FPReg, CallerSavedFP, InFlag);
InFlag = Chain.getValue(1);
}
uint64_t CalleePopBytes = NumBytes;
Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32),
DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32),
InFlag, DL);
if (!Ins.empty())
InFlag = Chain.getValue(1);
// Handle result values, copying them out of physregs into vregs that we
// return.
return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
InVals, IsThisReturn,
IsThisReturn ? OutVals[0] : SDValue());
}
unsigned SITargetLowering::getRegisterByName(const char* RegName, EVT VT,
SelectionDAG &DAG) const {
unsigned Reg = StringSwitch<unsigned>(RegName)
.Case("m0", AMDGPU::M0)
.Case("exec", AMDGPU::EXEC)
.Case("exec_lo", AMDGPU::EXEC_LO)
.Case("exec_hi", AMDGPU::EXEC_HI)
.Case("flat_scratch", AMDGPU::FLAT_SCR)
.Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
.Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
.Default(AMDGPU::NoRegister);
if (Reg == AMDGPU::NoRegister) {
report_fatal_error(Twine("invalid register name \""
+ StringRef(RegName) + "\"."));
}
if ((Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS ||
Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) &&
Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
report_fatal_error(Twine("invalid register \""
+ StringRef(RegName) + "\" for subtarget."));
}
switch (Reg) {
case AMDGPU::M0:
case AMDGPU::EXEC_LO:
case AMDGPU::EXEC_HI:
case AMDGPU::FLAT_SCR_LO:
case AMDGPU::FLAT_SCR_HI:
if (VT.getSizeInBits() == 32)
return Reg;
break;
case AMDGPU::EXEC:
case AMDGPU::FLAT_SCR:
if (VT.getSizeInBits() == 64)
return Reg;
break;
default:
llvm_unreachable("missing register type checking");
}
report_fatal_error(Twine("invalid type for register \""
+ StringRef(RegName) + "\"."));
}
// If kill is not the last instruction, split the block so kill is always a
// proper terminator.
MachineBasicBlock *SITargetLowering::splitKillBlock(MachineInstr &MI,
MachineBasicBlock *BB) const {
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
MachineBasicBlock::iterator SplitPoint(&MI);
++SplitPoint;
if (SplitPoint == BB->end()) {
// Don't bother with a new block.
MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
return BB;
}
MachineFunction *MF = BB->getParent();
MachineBasicBlock *SplitBB
= MF->CreateMachineBasicBlock(BB->getBasicBlock());
MF->insert(++MachineFunction::iterator(BB), SplitBB);
SplitBB->splice(SplitBB->begin(), BB, SplitPoint, BB->end());
SplitBB->transferSuccessorsAndUpdatePHIs(BB);
BB->addSuccessor(SplitBB);
MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
return SplitBB;
}
// Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
// wavefront. If the value is uniform and just happens to be in a VGPR, this
// will only do one iteration. In the worst case, this will loop 64 times.
//
// TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
static MachineBasicBlock::iterator emitLoadM0FromVGPRLoop(
const SIInstrInfo *TII,
MachineRegisterInfo &MRI,
MachineBasicBlock &OrigBB,
MachineBasicBlock &LoopBB,
const DebugLoc &DL,
const MachineOperand &IdxReg,
unsigned InitReg,
unsigned ResultReg,
unsigned PhiReg,
unsigned InitSaveExecReg,
int Offset,
bool UseGPRIdxMode,
bool IsIndirectSrc) {
MachineBasicBlock::iterator I = LoopBB.begin();
unsigned PhiExec = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
unsigned NewExec = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
unsigned CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
unsigned CondReg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
.addReg(InitReg)
.addMBB(&OrigBB)
.addReg(ResultReg)
.addMBB(&LoopBB);
BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
.addReg(InitSaveExecReg)
.addMBB(&OrigBB)
.addReg(NewExec)
.addMBB(&LoopBB);
// Read the next variant <- also loop target.
BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
.addReg(IdxReg.getReg(), getUndefRegState(IdxReg.isUndef()));
// Compare the just read M0 value to all possible Idx values.
BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
.addReg(CurrentIdxReg)
.addReg(IdxReg.getReg(), 0, IdxReg.getSubReg());
// Update EXEC, save the original EXEC value to VCC.
BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_AND_SAVEEXEC_B64), NewExec)
.addReg(CondReg, RegState::Kill);
MRI.setSimpleHint(NewExec, CondReg);
if (UseGPRIdxMode) {
unsigned IdxReg;
if (Offset == 0) {
IdxReg = CurrentIdxReg;
} else {
IdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), IdxReg)
.addReg(CurrentIdxReg, RegState::Kill)
.addImm(Offset);
}
unsigned IdxMode = IsIndirectSrc ?
AMDGPU::VGPRIndexMode::SRC0_ENABLE : AMDGPU::VGPRIndexMode::DST_ENABLE;
MachineInstr *SetOn =
BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
.addReg(IdxReg, RegState::Kill)
.addImm(IdxMode);
SetOn->getOperand(3).setIsUndef();
} else {
// Move index from VCC into M0
if (Offset == 0) {
BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
.addReg(CurrentIdxReg, RegState::Kill);
} else {
BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
.addReg(CurrentIdxReg, RegState::Kill)
.addImm(Offset);
}
}
// Update EXEC, switch all done bits to 0 and all todo bits to 1.
MachineInstr *InsertPt =
BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_XOR_B64_term), AMDGPU::EXEC)
.addReg(AMDGPU::EXEC)
.addReg(NewExec);
// XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
// s_cbranch_scc0?
// Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
.addMBB(&LoopBB);
return InsertPt->getIterator();
}
// This has slightly sub-optimal regalloc when the source vector is killed by
// the read. The register allocator does not understand that the kill is
// per-workitem, so is kept alive for the whole loop so we end up not re-using a
// subregister from it, using 1 more VGPR than necessary. This was saved when
// this was expanded after register allocation.
static MachineBasicBlock::iterator loadM0FromVGPR(const SIInstrInfo *TII,
MachineBasicBlock &MBB,
MachineInstr &MI,
unsigned InitResultReg,
unsigned PhiReg,
int Offset,
bool UseGPRIdxMode,
bool IsIndirectSrc) {
MachineFunction *MF = MBB.getParent();
MachineRegisterInfo &MRI = MF->getRegInfo();
const DebugLoc &DL = MI.getDebugLoc();
MachineBasicBlock::iterator I(&MI);
unsigned DstReg = MI.getOperand(0).getReg();
unsigned SaveExec = MRI.createVirtualRegister(&AMDGPU::SReg_64_XEXECRegClass);
unsigned TmpExec = MRI.createVirtualRegister(&AMDGPU::SReg_64_XEXECRegClass);
BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
// Save the EXEC mask
BuildMI(MBB, I, DL, TII->get(AMDGPU::S_MOV_B64), SaveExec)
.addReg(AMDGPU::EXEC);
// To insert the loop we need to split the block. Move everything after this
// point to a new block, and insert a new empty block between the two.
MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
MachineFunction::iterator MBBI(MBB);
++MBBI;
MF->insert(MBBI, LoopBB);
MF->insert(MBBI, RemainderBB);
LoopBB->addSuccessor(LoopBB);
LoopBB->addSuccessor(RemainderBB);
// Move the rest of the block into a new block.
RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
MBB.addSuccessor(LoopBB);
const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
InitResultReg, DstReg, PhiReg, TmpExec,
Offset, UseGPRIdxMode, IsIndirectSrc);
MachineBasicBlock::iterator First = RemainderBB->begin();
BuildMI(*RemainderBB, First, DL, TII->get(AMDGPU::S_MOV_B64), AMDGPU::EXEC)
.addReg(SaveExec);
return InsPt;
}
// Returns subreg index, offset
static std::pair<unsigned, int>
computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
const TargetRegisterClass *SuperRC,
unsigned VecReg,
int Offset) {
int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
// Skip out of bounds offsets, or else we would end up using an undefined
// register.
if (Offset >= NumElts || Offset < 0)
return std::make_pair(AMDGPU::sub0, Offset);
return std::make_pair(AMDGPU::sub0 + Offset, 0);
}
// Return true if the index is an SGPR and was set.
static bool setM0ToIndexFromSGPR(const SIInstrInfo *TII,
MachineRegisterInfo &MRI,
MachineInstr &MI,
int Offset,
bool UseGPRIdxMode,
bool IsIndirectSrc) {
MachineBasicBlock *MBB = MI.getParent();
const DebugLoc &DL = MI.getDebugLoc();
MachineBasicBlock::iterator I(&MI);
const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
assert(Idx->getReg() != AMDGPU::NoRegister);
if (!TII->getRegisterInfo().isSGPRClass(IdxRC))
return false;
if (UseGPRIdxMode) {
unsigned IdxMode = IsIndirectSrc ?
AMDGPU::VGPRIndexMode::SRC0_ENABLE : AMDGPU::VGPRIndexMode::DST_ENABLE;
if (Offset == 0) {
MachineInstr *SetOn =
BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
.add(*Idx)
.addImm(IdxMode);
SetOn->getOperand(3).setIsUndef();
} else {
unsigned Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
.add(*Idx)
.addImm(Offset);
MachineInstr *SetOn =
BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
.addReg(Tmp, RegState::Kill)
.addImm(IdxMode);
SetOn->getOperand(3).setIsUndef();
}
return true;
}
if (Offset == 0) {
BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
.add(*Idx);
} else {
BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
.add(*Idx)
.addImm(Offset);
}
return true;
}
// Control flow needs to be inserted if indexing with a VGPR.
static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
MachineBasicBlock &MBB,
const GCNSubtarget &ST) {
const SIInstrInfo *TII = ST.getInstrInfo();
const SIRegisterInfo &TRI = TII->getRegisterInfo();
MachineFunction *MF = MBB.getParent();
MachineRegisterInfo &MRI = MF->getRegInfo();
unsigned Dst = MI.getOperand(0).getReg();
unsigned SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
unsigned SubReg;
std::tie(SubReg, Offset)
= computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode);
if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, true)) {
MachineBasicBlock::iterator I(&MI);
const DebugLoc &DL = MI.getDebugLoc();
if (UseGPRIdxMode) {
// TODO: Look at the uses to avoid the copy. This may require rescheduling
// to avoid interfering with other uses, so probably requires a new
// optimization pass.
BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
.addReg(SrcReg, RegState::Undef, SubReg)
.addReg(SrcReg, RegState::Implicit)
.addReg(AMDGPU::M0, RegState::Implicit);
BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
} else {
BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
.addReg(SrcReg, RegState::Undef, SubReg)
.addReg(SrcReg, RegState::Implicit);
}
MI.eraseFromParent();
return &MBB;
}
const DebugLoc &DL = MI.getDebugLoc();
MachineBasicBlock::iterator I(&MI);
unsigned PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
unsigned InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg,
Offset, UseGPRIdxMode, true);
MachineBasicBlock *LoopBB = InsPt->getParent();
if (UseGPRIdxMode) {
BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
.addReg(SrcReg, RegState::Undef, SubReg)
.addReg(SrcReg, RegState::Implicit)
.addReg(AMDGPU::M0, RegState::Implicit);
BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
} else {
BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
.addReg(SrcReg, RegState::Undef, SubReg)
.addReg(SrcReg, RegState::Implicit);
}
MI.eraseFromParent();
return LoopBB;
}
static unsigned getMOVRELDPseudo(const SIRegisterInfo &TRI,
const TargetRegisterClass *VecRC) {
switch (TRI.getRegSizeInBits(*VecRC)) {
case 32: // 4 bytes
return AMDGPU::V_MOVRELD_B32_V1;
case 64: // 8 bytes
return AMDGPU::V_MOVRELD_B32_V2;
case 128: // 16 bytes
return AMDGPU::V_MOVRELD_B32_V4;
case 256: // 32 bytes
return AMDGPU::V_MOVRELD_B32_V8;
case 512: // 64 bytes
return AMDGPU::V_MOVRELD_B32_V16;
default:
llvm_unreachable("unsupported size for MOVRELD pseudos");
}
}
static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
MachineBasicBlock &MBB,
const GCNSubtarget &ST) {
const SIInstrInfo *TII = ST.getInstrInfo();
const SIRegisterInfo &TRI = TII->getRegisterInfo();
MachineFunction *MF = MBB.getParent();
MachineRegisterInfo &MRI = MF->getRegInfo();
unsigned Dst = MI.getOperand(0).getReg();
const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
// This can be an immediate, but will be folded later.
assert(Val->getReg());
unsigned SubReg;
std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
SrcVec->getReg(),
Offset);
bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode);
if (Idx->getReg() == AMDGPU::NoRegister) {
MachineBasicBlock::iterator I(&MI);
const DebugLoc &DL = MI.getDebugLoc();
assert(Offset == 0);
BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
.add(*SrcVec)
.add(*Val)
.addImm(SubReg);
MI.eraseFromParent();
return &MBB;
}
if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, false)) {
MachineBasicBlock::iterator I(&MI);
const DebugLoc &DL = MI.getDebugLoc();
if (UseGPRIdxMode) {
BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
.addReg(SrcVec->getReg(), RegState::Undef, SubReg) // vdst
.add(*Val)
.addReg(Dst, RegState::ImplicitDefine)
.addReg(SrcVec->getReg(), RegState::Implicit)
.addReg(AMDGPU::M0, RegState::Implicit);
BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
} else {
const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC));
BuildMI(MBB, I, DL, MovRelDesc)
.addReg(Dst, RegState::Define)
.addReg(SrcVec->getReg())
.add(*Val)
.addImm(SubReg - AMDGPU::sub0);
}
MI.eraseFromParent();
return &MBB;
}
if (Val->isReg())
MRI.clearKillFlags(Val->getReg());
const DebugLoc &DL = MI.getDebugLoc();
unsigned PhiReg = MRI.createVirtualRegister(VecRC);
auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg,
Offset, UseGPRIdxMode, false);
MachineBasicBlock *LoopBB = InsPt->getParent();
if (UseGPRIdxMode) {
BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
.addReg(PhiReg, RegState::Undef, SubReg) // vdst
.add(*Val) // src0
.addReg(Dst, RegState::ImplicitDefine)
.addReg(PhiReg, RegState::Implicit)
.addReg(AMDGPU::M0, RegState::Implicit);
BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
} else {
const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC));
BuildMI(*LoopBB, InsPt, DL, MovRelDesc)
.addReg(Dst, RegState::Define)
.addReg(PhiReg)
.add(*Val)
.addImm(SubReg - AMDGPU::sub0);
}
MI.eraseFromParent();
return LoopBB;
}
MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
MachineInstr &MI, MachineBasicBlock *BB) const {
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
MachineFunction *MF = BB->getParent();
SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
if (TII->isMIMG(MI)) {
if (MI.memoperands_empty() && MI.mayLoadOrStore()) {
report_fatal_error("missing mem operand from MIMG instruction");
}
// Add a memoperand for mimg instructions so that they aren't assumed to
// be ordered memory instuctions.
return BB;
}
switch (MI.getOpcode()) {
case AMDGPU::S_ADD_U64_PSEUDO:
case AMDGPU::S_SUB_U64_PSEUDO: {
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
const DebugLoc &DL = MI.getDebugLoc();
MachineOperand &Dest = MI.getOperand(0);
MachineOperand &Src0 = MI.getOperand(1);
MachineOperand &Src1 = MI.getOperand(2);
unsigned DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
unsigned DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(MI, MRI,
Src0, &AMDGPU::SReg_64RegClass, AMDGPU::sub0,
&AMDGPU::SReg_32_XM0RegClass);
MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(MI, MRI,
Src0, &AMDGPU::SReg_64RegClass, AMDGPU::sub1,
&AMDGPU::SReg_32_XM0RegClass);
MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(MI, MRI,
Src1, &AMDGPU::SReg_64RegClass, AMDGPU::sub0,
&AMDGPU::SReg_32_XM0RegClass);
MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(MI, MRI,
Src1, &AMDGPU::SReg_64RegClass, AMDGPU::sub1,
&AMDGPU::SReg_32_XM0RegClass);
bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
.add(Src0Sub0)
.add(Src1Sub0);
BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
.add(Src0Sub1)
.add(Src1Sub1);
BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
.addReg(DestSub0)
.addImm(AMDGPU::sub0)
.addReg(DestSub1)
.addImm(AMDGPU::sub1);
MI.eraseFromParent();
return BB;
}
case AMDGPU::SI_INIT_M0: {
BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
.add(MI.getOperand(0));
MI.eraseFromParent();
return BB;
}
case AMDGPU::SI_INIT_EXEC:
// This should be before all vector instructions.
BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64),
AMDGPU::EXEC)
.addImm(MI.getOperand(0).getImm());
MI.eraseFromParent();
return BB;
case AMDGPU::SI_INIT_EXEC_FROM_INPUT: {
// Extract the thread count from an SGPR input and set EXEC accordingly.
// Since BFM can't shift by 64, handle that case with CMP + CMOV.
//
// S_BFE_U32 count, input, {shift, 7}
// S_BFM_B64 exec, count, 0
// S_CMP_EQ_U32 count, 64
// S_CMOV_B64 exec, -1
MachineInstr *FirstMI = &*BB->begin();
MachineRegisterInfo &MRI = MF->getRegInfo();
unsigned InputReg = MI.getOperand(0).getReg();
unsigned CountReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
bool Found = false;
// Move the COPY of the input reg to the beginning, so that we can use it.
for (auto I = BB->begin(); I != &MI; I++) {
if (I->getOpcode() != TargetOpcode::COPY ||
I->getOperand(0).getReg() != InputReg)
continue;
if (I == FirstMI) {
FirstMI = &*++BB->begin();
} else {
I->removeFromParent();
BB->insert(FirstMI, &*I);
}
Found = true;
break;
}
assert(Found);
(void)Found;
// This should be before all vector instructions.
BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFE_U32), CountReg)
.addReg(InputReg)
.addImm((MI.getOperand(1).getImm() & 0x7f) | 0x70000);
BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFM_B64),
AMDGPU::EXEC)
.addReg(CountReg)
.addImm(0);
BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMP_EQ_U32))
.addReg(CountReg, RegState::Kill)
.addImm(64);
BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMOV_B64),
AMDGPU::EXEC)
.addImm(-1);
MI.eraseFromParent();
return BB;
}
case AMDGPU::GET_GROUPSTATICSIZE: {
DebugLoc DL = MI.getDebugLoc();
BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
.add(MI.getOperand(0))
.addImm(MFI->getLDSSize());
MI.eraseFromParent();
return BB;
}
case AMDGPU::SI_INDIRECT_SRC_V1:
case AMDGPU::SI_INDIRECT_SRC_V2:
case AMDGPU::SI_INDIRECT_SRC_V4:
case AMDGPU::SI_INDIRECT_SRC_V8:
case AMDGPU::SI_INDIRECT_SRC_V16:
return emitIndirectSrc(MI, *BB, *getSubtarget());
case AMDGPU::SI_INDIRECT_DST_V1:
case AMDGPU::SI_INDIRECT_DST_V2:
case AMDGPU::SI_INDIRECT_DST_V4:
case AMDGPU::SI_INDIRECT_DST_V8:
case AMDGPU::SI_INDIRECT_DST_V16:
return emitIndirectDst(MI, *BB, *getSubtarget());
case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
case AMDGPU::SI_KILL_I1_PSEUDO:
return splitKillBlock(MI, BB);
case AMDGPU::V_CNDMASK_B64_PSEUDO: {
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
unsigned Dst = MI.getOperand(0).getReg();
unsigned Src0 = MI.getOperand(1).getReg();
unsigned Src1 = MI.getOperand(2).getReg();
const DebugLoc &DL = MI.getDebugLoc();
unsigned SrcCond = MI.getOperand(3).getReg();
unsigned DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
unsigned DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
unsigned SrcCondCopy = MRI.createVirtualRegister(&AMDGPU::SReg_64_XEXECRegClass);
BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy)
.addReg(SrcCond);
BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
.addImm(0)
.addReg(Src0, 0, AMDGPU::sub0)
.addImm(0)
.addReg(Src1, 0, AMDGPU::sub0)
.addReg(SrcCondCopy);
BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
.addImm(0)
.addReg(Src0, 0, AMDGPU::sub1)
.addImm(0)
.addReg(Src1, 0, AMDGPU::sub1)
.addReg(SrcCondCopy);
BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
.addReg(DstLo)
.addImm(AMDGPU::sub0)
.addReg(DstHi)
.addImm(AMDGPU::sub1);
MI.eraseFromParent();
return BB;
}
case AMDGPU::SI_BR_UNDEF: {
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
const DebugLoc &DL = MI.getDebugLoc();
MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
.add(MI.getOperand(0));
Br->getOperand(1).setIsUndef(true); // read undef SCC
MI.eraseFromParent();
return BB;
}
case AMDGPU::ADJCALLSTACKUP:
case AMDGPU::ADJCALLSTACKDOWN: {
const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
MachineInstrBuilder MIB(*MF, &MI);
// Add an implicit use of the frame offset reg to prevent the restore copy
// inserted after the call from being reorderd after stack operations in the
// the caller's frame.
MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
.addReg(Info->getStackPtrOffsetReg(), RegState::Implicit)
.addReg(Info->getFrameOffsetReg(), RegState::Implicit);
return BB;
}
case AMDGPU::SI_CALL_ISEL: {
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
const DebugLoc &DL = MI.getDebugLoc();
unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
MachineInstrBuilder MIB;
MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg);
for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I)
MIB.add(MI.getOperand(I));
MIB.cloneMemRefs(MI);
MI.eraseFromParent();
return BB;
}
case AMDGPU::V_ADD_I32_e32:
case AMDGPU::V_SUB_I32_e32:
case AMDGPU::V_SUBREV_I32_e32: {
// TODO: Define distinct V_*_I32_Pseudo instructions instead.
const DebugLoc &DL = MI.getDebugLoc();
unsigned Opc = MI.getOpcode();
bool NeedClampOperand = false;
if (TII->pseudoToMCOpcode(Opc) == -1) {
Opc = AMDGPU::getVOPe64(Opc);
NeedClampOperand = true;
}
auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg());
if (TII->isVOP3(*I)) {
I.addReg(AMDGPU::VCC, RegState::Define);
}
I.add(MI.getOperand(1))
.add(MI.getOperand(2));
if (NeedClampOperand)
I.addImm(0); // clamp bit for e64 encoding
TII->legalizeOperands(*I);
MI.eraseFromParent();
return BB;
}
default:
return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
}
}
bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const {
return isTypeLegal(VT.getScalarType());
}
bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
// This currently forces unfolding various combinations of fsub into fma with
// free fneg'd operands. As long as we have fast FMA (controlled by
// isFMAFasterThanFMulAndFAdd), we should perform these.
// When fma is quarter rate, for f64 where add / sub are at best half rate,
// most of these combines appear to be cycle neutral but save on instruction
// count / code size.
return true;
}
EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
EVT VT) const {
if (!VT.isVector()) {
return MVT::i1;
}
return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
}
MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
// TODO: Should i16 be used always if legal? For now it would force VALU
// shifts.
return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
}
// Answering this is somewhat tricky and depends on the specific device which
// have different rates for fma or all f64 operations.
//
// v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
// regardless of which device (although the number of cycles differs between
// devices), so it is always profitable for f64.
//
// v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
// only on full rate devices. Normally, we should prefer selecting v_mad_f32
// which we can always do even without fused FP ops since it returns the same
// result as the separate operations and since it is always full
// rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
// however does not support denormals, so we do report fma as faster if we have
// a fast fma device and require denormals.
//
bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
VT = VT.getScalarType();
switch (VT.getSimpleVT().SimpleTy) {
case MVT::f32: {
// This is as fast on some subtargets. However, we always have full rate f32
// mad available which returns the same result as the separate operations
// which we should prefer over fma. We can't use this if we want to support
// denormals, so only report this in these cases.
if (Subtarget->hasFP32Denormals())
return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
// If the subtarget has v_fmac_f32, that's just as good as v_mac_f32.
return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
}
case MVT::f64:
return true;
case MVT::f16:
return Subtarget->has16BitInsts() && Subtarget->hasFP16Denormals();
default:
break;
}
return false;
}
//===----------------------------------------------------------------------===//
// Custom DAG Lowering Operations
//===----------------------------------------------------------------------===//
// Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
// wider vector type is legal.
SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op,
SelectionDAG &DAG) const {
unsigned Opc = Op.getOpcode();
EVT VT = Op.getValueType();
assert(VT == MVT::v4f16);
SDValue Lo, Hi;
std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
SDLoc SL(Op);
SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo,
Op->getFlags());
SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi,
Op->getFlags());
return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
}
// Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
// wider vector type is legal.
SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op,
SelectionDAG &DAG) const {
unsigned Opc = Op.getOpcode();
EVT VT = Op.getValueType();
assert(VT == MVT::v4i16 || VT == MVT::v4f16);
SDValue Lo0, Hi0;
std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
SDValue Lo1, Hi1;
std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
SDLoc SL(Op);
SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1,
Op->getFlags());
SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1,
Op->getFlags());
return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
}
SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
case ISD::LOAD: {
SDValue Result = LowerLOAD(Op, DAG);
assert((!Result.getNode() ||
Result.getNode()->getNumValues() == 2) &&
"Load should return a value and a chain");
return Result;
}
case ISD::FSIN:
case ISD::FCOS:
return LowerTrig(Op, DAG);
case ISD::SELECT: return LowerSELECT(Op, DAG);
case ISD::FDIV: return LowerFDIV(Op, DAG);
case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
case ISD::STORE: return LowerSTORE(Op, DAG);
case ISD::GlobalAddress: {
MachineFunction &MF = DAG.getMachineFunction();
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
return LowerGlobalAddress(MFI, Op, DAG);
}
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
case ISD::INSERT_VECTOR_ELT:
return lowerINSERT_VECTOR_ELT(Op, DAG);
case ISD::EXTRACT_VECTOR_ELT:
return lowerEXTRACT_VECTOR_ELT(Op, DAG);
case ISD::BUILD_VECTOR:
return lowerBUILD_VECTOR(Op, DAG);
case ISD::FP_ROUND:
return lowerFP_ROUND(Op, DAG);
case ISD::TRAP:
return lowerTRAP(Op, DAG);
case ISD::DEBUGTRAP:
return lowerDEBUGTRAP(Op, DAG);
case ISD::FABS:
case ISD::FNEG:
case ISD::FCANONICALIZE:
return splitUnaryVectorOp(Op, DAG);
case ISD::FMINNUM:
case ISD::FMAXNUM:
return lowerFMINNUM_FMAXNUM(Op, DAG);
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
case ISD::ADD:
case ISD::SUB:
case ISD::MUL:
case ISD::SMIN:
case ISD::SMAX:
case ISD::UMIN:
case ISD::UMAX:
case ISD::FADD:
case ISD::FMUL:
case ISD::FMINNUM_IEEE:
case ISD::FMAXNUM_IEEE:
return splitBinaryVectorOp(Op, DAG);
}
return SDValue();
}
static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT,
const SDLoc &DL,
SelectionDAG &DAG, bool Unpacked) {
if (!LoadVT.isVector())
return Result;
if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
// Truncate to v2i16/v4i16.
EVT IntLoadVT = LoadVT.changeTypeToInteger();
// Workaround legalizer not scalarizing truncate after vector op
// legalization byt not creating intermediate vector trunc.
SmallVector<SDValue, 4> Elts;
DAG.ExtractVectorElements(Result, Elts);
for (SDValue &Elt : Elts)
Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt);
Result = DAG.getBuildVector(IntLoadVT, DL, Elts);
// Bitcast to original type (v2f16/v4f16).
return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result);
}
// Cast back to the original packed type.
return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result);
}
SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode,
MemSDNode *M,
SelectionDAG &DAG,
ArrayRef<SDValue> Ops,
bool IsIntrinsic) const {
SDLoc DL(M);
bool Unpacked = Subtarget->hasUnpackedD16VMem();
EVT LoadVT = M->getValueType(0);
EVT EquivLoadVT = LoadVT;
if (Unpacked && LoadVT.isVector()) {
EquivLoadVT = LoadVT.isVector() ?
EVT::getVectorVT(*DAG.getContext(), MVT::i32,
LoadVT.getVectorNumElements()) : LoadVT;
}
// Change from v4f16/v2f16 to EquivLoadVT.
SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
SDValue Load
= DAG.getMemIntrinsicNode(
IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL,
VTList, Ops, M->getMemoryVT(),
M->getMemOperand());
if (!Unpacked) // Just adjusted the opcode.
return Load;
SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked);
return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL);
}
static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI,
SDNode *N, SelectionDAG &DAG) {
EVT VT = N->getValueType(0);
const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
int CondCode = CD->getSExtValue();
if (CondCode < ICmpInst::Predicate::FIRST_ICMP_PREDICATE ||
CondCode > ICmpInst::Predicate::LAST_ICMP_PREDICATE)
return DAG.getUNDEF(VT);
ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
SDValue LHS = N->getOperand(1);
SDValue RHS = N->getOperand(2);
SDLoc DL(N);
EVT CmpVT = LHS.getValueType();
if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) {
unsigned PromoteOp = ICmpInst::isSigned(IcInput) ?
ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS);
RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS);
}
ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
return DAG.getNode(AMDGPUISD::SETCC, DL, VT, LHS, RHS,
DAG.getCondCode(CCOpcode));
}
static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI,
SDNode *N, SelectionDAG &DAG) {
EVT VT = N->getValueType(0);
const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
int CondCode = CD->getSExtValue();
if (CondCode < FCmpInst::Predicate::FIRST_FCMP_PREDICATE ||
CondCode > FCmpInst::Predicate::LAST_FCMP_PREDICATE) {
return DAG.getUNDEF(VT);
}
SDValue Src0 = N->getOperand(1);
SDValue Src1 = N->getOperand(2);
EVT CmpVT = Src0.getValueType();
SDLoc SL(N);
if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) {
Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
}
FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src0,
Src1, DAG.getCondCode(CCOpcode));
}
void SITargetLowering::ReplaceNodeResults(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const {
switch (N->getOpcode()) {
case ISD::INSERT_VECTOR_ELT: {
if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
Results.push_back(Res);
return;
}
case ISD::EXTRACT_VECTOR_ELT: {
if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
Results.push_back(Res);
return;
}
case ISD::INTRINSIC_WO_CHAIN: {
unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
switch (IID) {
case Intrinsic::amdgcn_cvt_pkrtz: {
SDValue Src0 = N->getOperand(1);
SDValue Src1 = N->getOperand(2);
SDLoc SL(N);
SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
Src0, Src1);
Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
return;
}
case Intrinsic::amdgcn_cvt_pknorm_i16:
case Intrinsic::amdgcn_cvt_pknorm_u16:
case Intrinsic::amdgcn_cvt_pk_i16:
case Intrinsic::amdgcn_cvt_pk_u16: {
SDValue Src0 = N->getOperand(1);
SDValue Src1 = N->getOperand(2);
SDLoc SL(N);
unsigned Opcode;
if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
Opcode = AMDGPUISD::CVT_PK_I16_I32;
else
Opcode = AMDGPUISD::CVT_PK_U16_U32;
EVT VT = N->getValueType(0);
if (isTypeLegal(VT))
Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1));
else {
SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
}
return;
}
}
break;
}
case ISD::INTRINSIC_W_CHAIN: {
if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) {
Results.push_back(Res);
Results.push_back(Res.getValue(1));
return;
}
break;
}
case ISD::SELECT: {
SDLoc SL(N);
EVT VT = N->getValueType(0);
EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
EVT SelectVT = NewVT;
if (NewVT.bitsLT(MVT::i32)) {
LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
SelectVT = MVT::i32;
}
SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
N->getOperand(0), LHS, RHS);
if (NewVT != SelectVT)
NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
return;
}
case ISD::FNEG: {
if (N->getValueType(0) != MVT::v2f16)
break;
SDLoc SL(N);
SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32,
BC,
DAG.getConstant(0x80008000, SL, MVT::i32));
Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
return;
}
case ISD::FABS: {
if (N->getValueType(0) != MVT::v2f16)
break;
SDLoc SL(N);
SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32,
BC,
DAG.getConstant(0x7fff7fff, SL, MVT::i32));
Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
return;
}
default:
break;
}
}
/// Helper function for LowerBRCOND
static SDNode *findUser(SDValue Value, unsigned Opcode) {
SDNode *Parent = Value.getNode();
for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
I != E; ++I) {
if (I.getUse().get() != Value)
continue;
if (I->getOpcode() == Opcode)
return *I;
}
return nullptr;
}
unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
case Intrinsic::amdgcn_if:
return AMDGPUISD::IF;
case Intrinsic::amdgcn_else:
return AMDGPUISD::ELSE;
case Intrinsic::amdgcn_loop:
return AMDGPUISD::LOOP;
case Intrinsic::amdgcn_end_cf:
llvm_unreachable("should not occur");
default:
return 0;
}
}
// break, if_break, else_break are all only used as inputs to loop, not
// directly as branch conditions.
return 0;
}
bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
const Triple &TT = getTargetMachine().getTargetTriple();
return (GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
AMDGPU::shouldEmitConstantsToTextSection(TT);
}
bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
// FIXME: Either avoid relying on address space here or change the default
// address space for functions to avoid the explicit check.
return (GV->getValueType()->isFunctionTy() ||
GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
!shouldEmitFixup(GV) &&
!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
}
bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
}
/// This transforms the control flow intrinsics to get the branch destination as
/// last parameter, also switches branch target with BR if the need arise
SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
SelectionDAG &DAG) const {
SDLoc DL(BRCOND);
SDNode *Intr = BRCOND.getOperand(1).getNode();
SDValue Target = BRCOND.getOperand(2);
SDNode *BR = nullptr;
SDNode *SetCC = nullptr;
if (Intr->getOpcode() == ISD::SETCC) {
// As long as we negate the condition everything is fine
SetCC = Intr;
Intr = SetCC->getOperand(0).getNode();
} else {
// Get the target from BR if we don't negate the condition
BR = findUser(BRCOND, ISD::BR);
Target = BR->getOperand(1);
}
// FIXME: This changes the types of the intrinsics instead of introducing new
// nodes with the correct types.
// e.g. llvm.amdgcn.loop
// eg: i1,ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3
// => t9: ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3, BasicBlock:ch<bb1 0x7fee5286d088>
unsigned CFNode = isCFIntrinsic(Intr);
if (CFNode == 0) {
// This is a uniform branch so we don't need to legalize.
return BRCOND;
}
bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
assert(!SetCC ||
(SetCC->getConstantOperandVal(1) == 1 &&
cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
ISD::SETNE));
// operands of the new intrinsic call
SmallVector<SDValue, 4> Ops;
if (HaveChain)
Ops.push_back(BRCOND.getOperand(0));
Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end());
Ops.push_back(Target);
ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
// build the new intrinsic call
SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
if (!HaveChain) {
SDValue Ops[] = {
SDValue(Result, 0),
BRCOND.getOperand(0)
};
Result = DAG.getMergeValues(Ops, DL).getNode();
}
if (BR) {
// Give the branch instruction our target
SDValue Ops[] = {
BR->getOperand(0),
BRCOND.getOperand(2)
};
SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
BR = NewBR.getNode();
}
SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
// Copy the intrinsic results to registers
for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
if (!CopyToReg)
continue;
Chain = DAG.getCopyToReg(
Chain, DL,
CopyToReg->getOperand(1),
SDValue(Result, i - 1),
SDValue());
DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
}
// Remove the old intrinsic from the chain
DAG.ReplaceAllUsesOfValueWith(
SDValue(Intr, Intr->getNumValues() - 1),
Intr->getOperand(0));
return Chain;
}
SDValue SITargetLowering::getFPExtOrFPTrunc(SelectionDAG &DAG,
SDValue Op,
const SDLoc &DL,
EVT VT) const {
return Op.getValueType().bitsLE(VT) ?
DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
DAG.getNode(ISD::FTRUNC, DL, VT, Op);
}
SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
assert(Op.getValueType() == MVT::f16 &&
"Do not know how to custom lower FP_ROUND for non-f16 type");
SDValue Src = Op.getOperand(0);
EVT SrcVT = Src.getValueType();
if (SrcVT != MVT::f64)
return Op;
SDLoc DL(Op);
SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
}
SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
const MachineFunction &MF = DAG.getMachineFunction();
const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
bool IsIEEEMode = Info->getMode().IEEE;
// FIXME: Assert during eslection that this is only selected for
// ieee_mode. Currently a combine can produce the ieee version for non-ieee
// mode functions, but this happens to be OK since it's only done in cases
// where there is known no sNaN.
if (IsIEEEMode)
return expandFMINNUM_FMAXNUM(Op.getNode(), DAG);
if (VT == MVT::v4f16)
return splitBinaryVectorOp(Op, DAG);
return Op;
}
SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue Chain = Op.getOperand(0);
if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
!Subtarget->isTrapHandlerEnabled())
return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain);
MachineFunction &MF = DAG.getMachineFunction();
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
unsigned UserSGPR = Info->getQueuePtrUserSGPR();
assert(UserSGPR != AMDGPU::NoRegister);
SDValue QueuePtr = CreateLiveInRegister(
DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
QueuePtr, SDValue());
SDValue Ops[] = {
ToReg,
DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMTrap, SL, MVT::i16),
SGPR01,
ToReg.getValue(1)
};
return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
}
SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue Chain = Op.getOperand(0);
MachineFunction &MF = DAG.getMachineFunction();
if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
!Subtarget->isTrapHandlerEnabled()) {
DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
"debugtrap handler not supported",
Op.getDebugLoc(),
DS_Warning);
LLVMContext &Ctx = MF.getFunction().getContext();
Ctx.diagnose(NoTrap);
return Chain;
}
SDValue Ops[] = {
Chain,
DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMDebugTrap, SL, MVT::i16)
};
return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
}
SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
SelectionDAG &DAG) const {
// FIXME: Use inline constants (src_{shared, private}_base) instead.
if (Subtarget->hasApertureRegs()) {
unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
unsigned Encoding =
AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16);
SDValue ApertureReg = SDValue(
DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0);
SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32);
return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount);
}
MachineFunction &MF = DAG.getMachineFunction();
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
unsigned UserSGPR = Info->getQueuePtrUserSGPR();
assert(UserSGPR != AMDGPU::NoRegister);
SDValue QueuePtr = CreateLiveInRegister(
DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
// Offset into amd_queue_t for group_segment_aperture_base_hi /
// private_segment_aperture_base_hi.
uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
SDValue Ptr = DAG.getObjectPtrOffset(DL, QueuePtr, StructOffset);
// TODO: Use custom target PseudoSourceValue.
// TODO: We should use the value from the IR intrinsic call, but it might not
// be available and how do we get it?
Value *V = UndefValue::get(PointerType::get(Type::getInt8Ty(*DAG.getContext()),
AMDGPUAS::CONSTANT_ADDRESS));
MachinePointerInfo PtrInfo(V, StructOffset);
return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
MinAlign(64, StructOffset),
MachineMemOperand::MODereferenceable |
MachineMemOperand::MOInvariant);
}
SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
SelectionDAG &DAG) const {
SDLoc SL(Op);
const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
SDValue Src = ASC->getOperand(0);
SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
const AMDGPUTargetMachine &TM =
static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
// flat -> local/private
if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
unsigned DestAS = ASC->getDestAddressSpace();
if (DestAS == AMDGPUAS::LOCAL_ADDRESS ||
DestAS == AMDGPUAS::PRIVATE_ADDRESS) {
unsigned NullVal = TM.getNullPointerValue(DestAS);
SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
return DAG.getNode(ISD::SELECT, SL, MVT::i32,
NonNull, Ptr, SegmentNullPtr);
}
}
// local/private -> flat
if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
unsigned SrcAS = ASC->getSrcAddressSpace();
if (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
SrcAS == AMDGPUAS::PRIVATE_ADDRESS) {
unsigned NullVal = TM.getNullPointerValue(SrcAS);
SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
SDValue NonNull
= DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG);
SDValue CvtPtr
= DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull,
DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr),
FlatNullPtr);
}
}
// global <-> flat are no-ops and never emitted.
const MachineFunction &MF = DAG.getMachineFunction();
DiagnosticInfoUnsupported InvalidAddrSpaceCast(
MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
DAG.getContext()->diagnose(InvalidAddrSpaceCast);
return DAG.getUNDEF(ASC->getValueType(0));
}
SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
SDValue Vec = Op.getOperand(0);
SDValue InsVal = Op.getOperand(1);
SDValue Idx = Op.getOperand(2);
EVT VecVT = Vec.getValueType();
EVT EltVT = VecVT.getVectorElementType();
unsigned VecSize = VecVT.getSizeInBits();
unsigned EltSize = EltVT.getSizeInBits();
assert(VecSize <= 64);
unsigned NumElts = VecVT.getVectorNumElements();
SDLoc SL(Op);
auto KIdx = dyn_cast<ConstantSDNode>(Idx);
if (NumElts == 4 && EltSize == 16 && KIdx) {
SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec);
SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
DAG.getConstant(0, SL, MVT::i32));
SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
DAG.getConstant(1, SL, MVT::i32));
SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf);
SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf);
unsigned Idx = KIdx->getZExtValue();
bool InsertLo = Idx < 2;
SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16,
InsertLo ? LoVec : HiVec,
DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal),
DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32));
InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf);
SDValue Concat = InsertLo ?
DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) :
DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf });
return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat);
}
if (isa<ConstantSDNode>(Idx))
return SDValue();
MVT IntVT = MVT::getIntegerVT(VecSize);
// Avoid stack access for dynamic indexing.
// v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
// Create a congruent vector with the target value in each element so that
// the required element can be masked and ORed into the target vector.
SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT,
DAG.getSplatBuildVector(VecVT, SL, InsVal));
assert(isPowerOf2_32(EltSize));
SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
// Convert vector index to bit-index.
SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT,
DAG.getConstant(0xffff, SL, IntVT),
ScaledIdx);
SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal);
SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT,
DAG.getNOT(SL, BFM, IntVT), BCVec);
SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS);
return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI);
}
SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
SDLoc SL(Op);
EVT ResultVT = Op.getValueType();
SDValue Vec = Op.getOperand(0);
SDValue Idx = Op.getOperand(1);
EVT VecVT = Vec.getValueType();
unsigned VecSize = VecVT.getSizeInBits();
EVT EltVT = VecVT.getVectorElementType();
assert(VecSize <= 64);
DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
// Make sure we do any optimizations that will make it easier to fold
// source modifiers before obscuring it with bit operations.
// XXX - Why doesn't this get called when vector_shuffle is expanded?
if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
return Combined;
unsigned EltSize = EltVT.getSizeInBits();
assert(isPowerOf2_32(EltSize));
MVT IntVT = MVT::getIntegerVT(VecSize);
SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
// Convert vector index to bit-index (* EltSize)
SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx);
if (ResultVT == MVT::f16) {
SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt);
return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
}
return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT);
}
SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op,
SelectionDAG &DAG) const {
SDLoc SL(Op);
EVT VT = Op.getValueType();
if (VT == MVT::v4i16 || VT == MVT::v4f16) {
EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 2);
// Turn into pair of packed build_vectors.
// TODO: Special case for constants that can be materialized with s_mov_b64.
SDValue Lo = DAG.getBuildVector(HalfVT, SL,
{ Op.getOperand(0), Op.getOperand(1) });
SDValue Hi = DAG.getBuildVector(HalfVT, SL,
{ Op.getOperand(2), Op.getOperand(3) });
SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Lo);
SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Hi);
SDValue Blend = DAG.getBuildVector(MVT::v2i32, SL, { CastLo, CastHi });
return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
}
assert(VT == MVT::v2f16 || VT == MVT::v2i16);
assert(!Subtarget->hasVOP3PInsts() && "this should be legal");
SDValue Lo = Op.getOperand(0);
SDValue Hi = Op.getOperand(1);
// Avoid adding defined bits with the zero_extend.
if (Hi.isUndef()) {
Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo);
return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo);
}
Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi);
Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi);
SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi,
DAG.getConstant(16, SL, MVT::i32));
if (Lo.isUndef())
return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi);
Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo);
SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi);
return DAG.getNode(ISD::BITCAST, SL, VT, Or);
}
bool
SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
// We can fold offsets for anything that doesn't require a GOT relocation.
return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
!shouldEmitGOTReloc(GA->getGlobal());
}
static SDValue
buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
const SDLoc &DL, unsigned Offset, EVT PtrVT,
unsigned GAFlags = SIInstrInfo::MO_NONE) {
// In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
// lowered to the following code sequence:
//
// For constant address space:
// s_getpc_b64 s[0:1]
// s_add_u32 s0, s0, $symbol
// s_addc_u32 s1, s1, 0
//
// s_getpc_b64 returns the address of the s_add_u32 instruction and then
// a fixup or relocation is emitted to replace $symbol with a literal
// constant, which is a pc-relative offset from the encoding of the $symbol
// operand to the global variable.
//
// For global address space:
// s_getpc_b64 s[0:1]
// s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
// s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
//
// s_getpc_b64 returns the address of the s_add_u32 instruction and then
// fixups or relocations are emitted to replace $symbol@*@lo and
// $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
// which is a 64-bit pc-relative offset from the encoding of the $symbol
// operand to the global variable.
//
// What we want here is an offset from the value returned by s_getpc
// (which is the address of the s_add_u32 instruction) to the global
// variable, but since the encoding of $symbol starts 4 bytes after the start
// of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
// small. This requires us to add 4 to the global variable offset in order to
// compute the correct address.
SDValue PtrLo = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4,
GAFlags);
SDValue PtrHi = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4,
GAFlags == SIInstrInfo::MO_NONE ?
GAFlags : GAFlags + 1);
return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
}
SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
SDValue Op,
SelectionDAG &DAG) const {
GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
const GlobalValue *GV = GSD->getGlobal();
if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS ||
GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS)
return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
SDLoc DL(GSD);
EVT PtrVT = Op.getValueType();
// FIXME: Should not make address space based decisions here.
if (shouldEmitFixup(GV))
return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
else if (shouldEmitPCReloc(GV))
return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
SIInstrInfo::MO_REL32);
SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
SIInstrInfo::MO_GOTPCREL32);
Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
const DataLayout &DataLayout = DAG.getDataLayout();
unsigned Align = DataLayout.getABITypeAlignment(PtrTy);
MachinePointerInfo PtrInfo
= MachinePointerInfo::getGOT(DAG.getMachineFunction());
return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Align,
MachineMemOperand::MODereferenceable |
MachineMemOperand::MOInvariant);
}
SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
const SDLoc &DL, SDValue V) const {
// We can't use S_MOV_B32 directly, because there is no way to specify m0 as
// the destination register.
//
// We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
// so we will end up with redundant moves to m0.
//
// We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
// A Null SDValue creates a glue result.
SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
V, Chain);
return SDValue(M0, 0);
}
SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
SDValue Op,
MVT VT,
unsigned Offset) const {
SDLoc SL(Op);
SDValue Param = lowerKernargMemParameter(DAG, MVT::i32, MVT::i32, SL,
DAG.getEntryNode(), Offset, 4, false);
// The local size values will have the hi 16-bits as zero.
return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
DAG.getValueType(VT));
}
static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
EVT VT) {
DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
"non-hsa intrinsic with hsa target",
DL.getDebugLoc());
DAG.getContext()->diagnose(BadIntrin);
return DAG.getUNDEF(VT);
}
static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
EVT VT) {
DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
"intrinsic not supported on subtarget",
DL.getDebugLoc());
DAG.getContext()->diagnose(BadIntrin);
return DAG.getUNDEF(VT);
}
static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL,
ArrayRef<SDValue> Elts) {
assert(!Elts.empty());
MVT Type;
unsigned NumElts;
if (Elts.size() == 1) {
Type = MVT::f32;
NumElts = 1;
} else if (Elts.size() == 2) {
Type = MVT::v2f32;
NumElts = 2;
} else if (Elts.size() <= 4) {
Type = MVT::v4f32;
NumElts = 4;
} else if (Elts.size() <= 8) {
Type = MVT::v8f32;
NumElts = 8;
} else {
assert(Elts.size() <= 16);
Type = MVT::v16f32;
NumElts = 16;
}
SmallVector<SDValue, 16> VecElts(NumElts);
for (unsigned i = 0; i < Elts.size(); ++i) {
SDValue Elt = Elts[i];
if (Elt.getValueType() != MVT::f32)
Elt = DAG.getBitcast(MVT::f32, Elt);
VecElts[i] = Elt;
}
for (unsigned i = Elts.size(); i < NumElts; ++i)
VecElts[i] = DAG.getUNDEF(MVT::f32);
if (NumElts == 1)
return VecElts[0];
return DAG.getBuildVector(Type, DL, VecElts);
}
static bool parseCachePolicy(SDValue CachePolicy, SelectionDAG &DAG,
SDValue *GLC, SDValue *SLC, SDValue *DLC) {
auto CachePolicyConst = cast<ConstantSDNode>(CachePolicy.getNode());
uint64_t Value = CachePolicyConst->getZExtValue();
SDLoc DL(CachePolicy);
if (GLC) {
*GLC = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
Value &= ~(uint64_t)0x1;
}
if (SLC) {
*SLC = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
Value &= ~(uint64_t)0x2;
}
if (DLC) {
*DLC = DAG.getTargetConstant((Value & 0x4) ? 1 : 0, DL, MVT::i32);
Value &= ~(uint64_t)0x4;
}
return Value == 0;
}
// Re-construct the required return value for a image load intrinsic.
// This is more complicated due to the optional use TexFailCtrl which means the required
// return type is an aggregate
static SDValue constructRetValue(SelectionDAG &DAG,
MachineSDNode *Result,
ArrayRef<EVT> ResultTypes,
bool IsTexFail, bool Unpacked, bool IsD16,
int DMaskPop, int NumVDataDwords,
const SDLoc &DL, LLVMContext &Context) {
// Determine the required return type. This is the same regardless of IsTexFail flag
EVT ReqRetVT = ResultTypes[0];
EVT ReqRetEltVT = ReqRetVT.isVector() ? ReqRetVT.getVectorElementType() : ReqRetVT;
int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1;
EVT AdjEltVT = Unpacked && IsD16 ? MVT::i32 : ReqRetEltVT;
EVT AdjVT = Unpacked ? ReqRetNumElts > 1 ? EVT::getVectorVT(Context, AdjEltVT, ReqRetNumElts)
: AdjEltVT
: ReqRetVT;
// Extract data part of the result
// Bitcast the result to the same type as the required return type
int NumElts;
if (IsD16 && !Unpacked)
NumElts = NumVDataDwords << 1;
else
NumElts = NumVDataDwords;
EVT CastVT = NumElts > 1 ? EVT::getVectorVT(Context, AdjEltVT, NumElts)
: AdjEltVT;
// Special case for v6f16. Rather than add support for this, use v3i32 to
// extract the data elements
bool V6F16Special = false;
if (NumElts == 6) {
CastVT = EVT::getVectorVT(Context, MVT::i32, NumElts / 2);
DMaskPop >>= 1;
ReqRetNumElts >>= 1;
V6F16Special = true;
AdjVT = MVT::v2i32;
}
SDValue N = SDValue(Result, 0);
SDValue CastRes = DAG.getNode(ISD::BITCAST, DL, CastVT, N);
// Iterate over the result
SmallVector<SDValue, 4> BVElts;
if (CastVT.isVector()) {
DAG.ExtractVectorElements(CastRes, BVElts, 0, DMaskPop);
} else {
BVElts.push_back(CastRes);
}
int ExtraElts = ReqRetNumElts - DMaskPop;
while(ExtraElts--)
BVElts.push_back(DAG.getUNDEF(AdjEltVT));
SDValue PreTFCRes;
if (ReqRetNumElts > 1) {
SDValue NewVec = DAG.getBuildVector(AdjVT, DL, BVElts);
if (IsD16 && Unpacked)
PreTFCRes = adjustLoadValueTypeImpl(NewVec, ReqRetVT, DL, DAG, Unpacked);
else
PreTFCRes = NewVec;
} else {
PreTFCRes = BVElts[0];
}
if (V6F16Special)
PreTFCRes = DAG.getNode(ISD::BITCAST, DL, MVT::v4f16, PreTFCRes);
if (!IsTexFail) {
if (Result->getNumValues() > 1)
return DAG.getMergeValues({PreTFCRes, SDValue(Result, 1)}, DL);
else
return PreTFCRes;
}
// Extract the TexFail result and insert into aggregate return
SmallVector<SDValue, 1> TFCElt;
DAG.ExtractVectorElements(N, TFCElt, DMaskPop, 1);
SDValue TFCRes = DAG.getNode(ISD::BITCAST, DL, ResultTypes[1], TFCElt[0]);
return DAG.getMergeValues({PreTFCRes, TFCRes, SDValue(Result, 1)}, DL);
}
static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE,
SDValue *LWE, bool &IsTexFail) {
auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode());
uint64_t Value = TexFailCtrlConst->getZExtValue();
if (Value) {
IsTexFail = true;
}
SDLoc DL(TexFailCtrlConst);
*TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
Value &= ~(uint64_t)0x1;
*LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
Value &= ~(uint64_t)0x2;
return Value == 0;
}
SDValue SITargetLowering::lowerImage(SDValue Op,
const AMDGPU::ImageDimIntrinsicInfo *Intr,
SelectionDAG &DAG) const {
SDLoc DL(Op);
MachineFunction &MF = DAG.getMachineFunction();
const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>();
const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim);
const AMDGPU::MIMGLZMappingInfo *LZMappingInfo =
AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode);
unsigned IntrOpcode = Intr->BaseOpcode;
bool IsGFX10 = Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10;
SmallVector<EVT, 3> ResultTypes(Op->value_begin(), Op->value_end());
SmallVector<EVT, 3> OrigResultTypes(Op->value_begin(), Op->value_end());
bool IsD16 = false;
bool IsA16 = false;
SDValue VData;
int NumVDataDwords;
bool AdjustRetType = false;
unsigned AddrIdx; // Index of first address argument
unsigned DMask;
unsigned DMaskLanes = 0;
if (BaseOpcode->Atomic) {
VData = Op.getOperand(2);
bool Is64Bit = VData.getValueType() == MVT::i64;
if (BaseOpcode->AtomicX2) {
SDValue VData2 = Op.getOperand(3);
VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL,
{VData, VData2});
if (Is64Bit)
VData = DAG.getBitcast(MVT::v4i32, VData);
ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
DMask = Is64Bit ? 0xf : 0x3;
NumVDataDwords = Is64Bit ? 4 : 2;
AddrIdx = 4;
} else {
DMask = Is64Bit ? 0x3 : 0x1;
NumVDataDwords = Is64Bit ? 2 : 1;
AddrIdx = 3;
}
} else {
unsigned DMaskIdx = BaseOpcode->Store ? 3 : isa<MemSDNode>(Op) ? 2 : 1;
auto DMaskConst = cast<ConstantSDNode>(Op.getOperand(DMaskIdx));
DMask = DMaskConst->getZExtValue();
DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask);
if (BaseOpcode->Store) {
VData = Op.getOperand(2);
MVT StoreVT = VData.getSimpleValueType();
if (StoreVT.getScalarType() == MVT::f16) {
if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS ||
!BaseOpcode->HasD16)
return Op; // D16 is unsupported for this instruction
IsD16 = true;
VData = handleD16VData(VData, DAG);
}
NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32;
} else {
// Work out the num dwords based on the dmask popcount and underlying type
// and whether packing is supported.
MVT LoadVT = ResultTypes[0].getSimpleVT();
if (LoadVT.getScalarType() == MVT::f16) {
if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS ||
!BaseOpcode->HasD16)
return Op; // D16 is unsupported for this instruction
IsD16 = true;
}
// Confirm that the return type is large enough for the dmask specified
if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) ||
(!LoadVT.isVector() && DMaskLanes > 1))
return Op;
if (IsD16 && !Subtarget->hasUnpackedD16VMem())
NumVDataDwords = (DMaskLanes + 1) / 2;
else
NumVDataDwords = DMaskLanes;
AdjustRetType = true;
}
AddrIdx = DMaskIdx + 1;
}
unsigned NumGradients = BaseOpcode->Gradients ? DimInfo->NumGradients : 0;
unsigned NumCoords = BaseOpcode->Coordinates ? DimInfo->NumCoords : 0;
unsigned NumLCM = BaseOpcode->LodOrClampOrMip ? 1 : 0;
unsigned NumVAddrs = BaseOpcode->NumExtraArgs + NumGradients +
NumCoords + NumLCM;
unsigned NumMIVAddrs = NumVAddrs;
SmallVector<SDValue, 4> VAddrs;
// Optimize _L to _LZ when _L is zero
if (LZMappingInfo) {
if (auto ConstantLod =
dyn_cast<ConstantFPSDNode>(Op.getOperand(AddrIdx+NumVAddrs-1))) {
if (ConstantLod->isZero() || ConstantLod->isNegative()) {
IntrOpcode = LZMappingInfo->LZ; // set new opcode to _lz variant of _l
NumMIVAddrs--; // remove 'lod'
}
}
}
// Check for 16 bit addresses and pack if true.
unsigned DimIdx = AddrIdx + BaseOpcode->NumExtraArgs;
MVT VAddrVT = Op.getOperand(DimIdx).getSimpleValueType();
const MVT VAddrScalarVT = VAddrVT.getScalarType();
if (((VAddrScalarVT == MVT::f16) || (VAddrScalarVT == MVT::i16)) &&
ST->hasFeature(AMDGPU::FeatureR128A16)) {
IsA16 = true;
const MVT VectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
for (unsigned i = AddrIdx; i < (AddrIdx + NumMIVAddrs); ++i) {
SDValue AddrLo, AddrHi;
// Push back extra arguments.
if (i < DimIdx) {
AddrLo = Op.getOperand(i);
} else {
AddrLo = Op.getOperand(i);
// Dz/dh, dz/dv and the last odd coord are packed with undef. Also,
// in 1D, derivatives dx/dh and dx/dv are packed with undef.
if (((i + 1) >= (AddrIdx + NumMIVAddrs)) ||
((NumGradients / 2) % 2 == 1 &&
(i == DimIdx + (NumGradients / 2) - 1 ||
i == DimIdx + NumGradients - 1))) {
AddrHi = DAG.getUNDEF(MVT::f16);
} else {
AddrHi = Op.getOperand(i + 1);
i++;
}
AddrLo = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VectorVT,
{AddrLo, AddrHi});
AddrLo = DAG.getBitcast(MVT::i32, AddrLo);
}
VAddrs.push_back(AddrLo);
}
} else {
for (unsigned i = 0; i < NumMIVAddrs; ++i)
VAddrs.push_back(Op.getOperand(AddrIdx + i));
}
// If the register allocator cannot place the address registers contiguously
// without introducing moves, then using the non-sequential address encoding
// is always preferable, since it saves VALU instructions and is usually a
// wash in terms of code size or even better.
//
// However, we currently have no way of hinting to the register allocator that
// MIMG addresses should be placed contiguously when it is possible to do so,
// so force non-NSA for the common 2-address case as a heuristic.
//
// SIShrinkInstructions will convert NSA encodings to non-NSA after register
// allocation when possible.
bool UseNSA =
ST->hasFeature(AMDGPU::FeatureNSAEncoding) && VAddrs.size() >= 3;
SDValue VAddr;
if (!UseNSA)
VAddr = getBuildDwordsVector(DAG, DL, VAddrs);
SDValue True = DAG.getTargetConstant(1, DL, MVT::i1);
SDValue False = DAG.getTargetConstant(0, DL, MVT::i1);
unsigned CtrlIdx; // Index of texfailctrl argument
SDValue Unorm;
if (!BaseOpcode->Sampler) {
Unorm = True;
CtrlIdx = AddrIdx + NumVAddrs + 1;
} else {
auto UnormConst =
cast<ConstantSDNode>(Op.getOperand(AddrIdx + NumVAddrs + 2));
Unorm = UnormConst->getZExtValue() ? True : False;
CtrlIdx = AddrIdx + NumVAddrs + 3;
}
SDValue TFE;
SDValue LWE;
SDValue TexFail = Op.getOperand(CtrlIdx);
bool IsTexFail = false;
if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail))
return Op;
if (IsTexFail) {
if (!DMaskLanes) {
// Expecting to get an error flag since TFC is on - and dmask is 0
// Force dmask to be at least 1 otherwise the instruction will fail
DMask = 0x1;
DMaskLanes = 1;
NumVDataDwords = 1;
}
NumVDataDwords += 1;
AdjustRetType = true;
}
// Has something earlier tagged that the return type needs adjusting
// This happens if the instruction is a load or has set TexFailCtrl flags
if (AdjustRetType) {
// NumVDataDwords reflects the true number of dwords required in the return type
if (DMaskLanes == 0 && !BaseOpcode->Store) {
// This is a no-op load. This can be eliminated
SDValue Undef = DAG.getUNDEF(Op.getValueType());
if (isa<MemSDNode>(Op))
return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL);
return Undef;
}
EVT NewVT = NumVDataDwords > 1 ?
EVT::getVectorVT(*DAG.getContext(), MVT::f32, NumVDataDwords)
: MVT::f32;
ResultTypes[0] = NewVT;
if (ResultTypes.size() == 3) {
// Original result was aggregate type used for TexFailCtrl results
// The actual instruction returns as a vector type which has now been
// created. Remove the aggregate result.
ResultTypes.erase(&ResultTypes[1]);
}
}
SDValue GLC;
SDValue SLC;
SDValue DLC;
if (BaseOpcode->Atomic) {
GLC = True; // TODO no-return optimization
if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, nullptr, &SLC,
IsGFX10 ? &DLC : nullptr))
return Op;
} else {
if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, &GLC, &SLC,
IsGFX10 ? &DLC : nullptr))
return Op;
}
SmallVector<SDValue, 26> Ops;
if (BaseOpcode->Store || BaseOpcode->Atomic)
Ops.push_back(VData); // vdata
if (UseNSA) {
for (const SDValue &Addr : VAddrs)
Ops.push_back(Addr);
} else {
Ops.push_back(VAddr);
}
Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs)); // rsrc
if (BaseOpcode->Sampler)
Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs + 1)); // sampler
Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32));
if (IsGFX10)
Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32));
Ops.push_back(Unorm);
if (IsGFX10)
Ops.push_back(DLC);
Ops.push_back(GLC);
Ops.push_back(SLC);
Ops.push_back(IsA16 && // a16 or r128
ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False);
Ops.push_back(TFE); // tfe
Ops.push_back(LWE); // lwe
if (!IsGFX10)
Ops.push_back(DimInfo->DA ? True : False);
if (BaseOpcode->HasD16)
Ops.push_back(IsD16 ? True : False);
if (isa<MemSDNode>(Op))
Ops.push_back(Op.getOperand(0)); // chain
int NumVAddrDwords =
UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32;
int Opcode = -1;
if (IsGFX10) {
Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
UseNSA ? AMDGPU::MIMGEncGfx10NSA
: AMDGPU::MIMGEncGfx10Default,
NumVDataDwords, NumVAddrDwords);
} else {
if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8,
NumVDataDwords, NumVAddrDwords);
if (Opcode == -1)
Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6,
NumVDataDwords, NumVAddrDwords);
}
assert(Opcode != -1);
MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops);
if (auto MemOp = dyn_cast<MemSDNode>(Op)) {
MachineMemOperand *MemRef = MemOp->getMemOperand();
DAG.setNodeMemRefs(NewNode, {MemRef});
}
if (BaseOpcode->AtomicX2) {
SmallVector<SDValue, 1> Elt;
DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1);
return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL);
} else if (!BaseOpcode->Store) {
return constructRetValue(DAG, NewNode,
OrigResultTypes, IsTexFail,
Subtarget->hasUnpackedD16VMem(), IsD16,
DMaskLanes, NumVDataDwords, DL,
*DAG.getContext());
}
return SDValue(NewNode, 0);
}
SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc,
SDValue Offset, SDValue GLC,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineMemOperand *MMO = MF.getMachineMemOperand(
MachinePointerInfo(),
MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
MachineMemOperand::MOInvariant,
VT.getStoreSize(), VT.getStoreSize());
if (!Offset->isDivergent()) {
SDValue Ops[] = {
Rsrc,
Offset, // Offset
GLC // glc
};
return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL,
DAG.getVTList(VT), Ops, VT, MMO);
}
// We have a divergent offset. Emit a MUBUF buffer load instead. We can
// assume that the buffer is unswizzled.
SmallVector<SDValue, 4> Loads;
unsigned NumLoads = 1;
MVT LoadVT = VT.getSimpleVT();
unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1;
assert((LoadVT.getScalarType() == MVT::i32 ||
LoadVT.getScalarType() == MVT::f32) &&
isPowerOf2_32(NumElts));
if (NumElts == 8 || NumElts == 16) {
NumLoads = NumElts == 16 ? 4 : 2;
LoadVT = MVT::v4i32;
}
SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue});
unsigned CachePolicy = cast<ConstantSDNode>(GLC)->getZExtValue();
SDValue Ops[] = {
DAG.getEntryNode(), // Chain
Rsrc, // rsrc
DAG.getConstant(0, DL, MVT::i32), // vindex
{}, // voffset
{}, // soffset
{}, // offset
DAG.getConstant(CachePolicy, DL, MVT::i32), // cachepolicy
DAG.getConstant(0, DL, MVT::i1), // idxen
};
// Use the alignment to ensure that the required offsets will fit into the
// immediate offsets.
setBufferOffsets(Offset, DAG, &Ops[3], NumLoads > 1 ? 16 * NumLoads : 4);
uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue();
for (unsigned i = 0; i < NumLoads; ++i) {
Ops[5] = DAG.getConstant(InstOffset + 16 * i, DL, MVT::i32);
Loads.push_back(DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList,
Ops, LoadVT, MMO));
}
if (VT == MVT::v8i32 || VT == MVT::v16i32)
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads);
return Loads[0];
}
SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
auto MFI = MF.getInfo<SIMachineFunctionInfo>();
EVT VT = Op.getValueType();
SDLoc DL(Op);
unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
// TODO: Should this propagate fast-math-flags?
switch (IntrinsicID) {
case Intrinsic::amdgcn_implicit_buffer_ptr: {
if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction()))
return emitNonHSAIntrinsicError(DAG, DL, VT);
return getPreloadedValue(DAG, *MFI, VT,
AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
}
case Intrinsic::amdgcn_dispatch_ptr:
case Intrinsic::amdgcn_queue_ptr: {
if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) {
DiagnosticInfoUnsupported BadIntrin(
MF.getFunction(), "unsupported hsa intrinsic without hsa target",
DL.getDebugLoc());
DAG.getContext()->diagnose(BadIntrin);
return DAG.getUNDEF(VT);
}
auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR;
return getPreloadedValue(DAG, *MFI, VT, RegID);
}
case Intrinsic::amdgcn_implicitarg_ptr: {
if (MFI->isEntryFunction())
return getImplicitArgPtr(DAG, DL);
return getPreloadedValue(DAG, *MFI, VT,
AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
}
case Intrinsic::amdgcn_kernarg_segment_ptr: {
return getPreloadedValue(DAG, *MFI, VT,
AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
}
case Intrinsic::amdgcn_dispatch_id: {
return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
}
case Intrinsic::amdgcn_rcp:
return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
case Intrinsic::amdgcn_rsq:
return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
case Intrinsic::amdgcn_rsq_legacy:
if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
return emitRemovedIntrinsicError(DAG, DL, VT);
return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1));
case Intrinsic::amdgcn_rcp_legacy:
if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
return emitRemovedIntrinsicError(DAG, DL, VT);
return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
case Intrinsic::amdgcn_rsq_clamp: {
if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
Type *Type = VT.getTypeForEVT(*DAG.getContext());
APFloat Max = APFloat::getLargest(Type->getFltSemantics());
APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
DAG.getConstantFP(Max, DL, VT));
return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
DAG.getConstantFP(Min, DL, VT));
}
case Intrinsic::r600_read_ngroups_x:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, DL, VT);
return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::NGROUPS_X, 4, false);
case Intrinsic::r600_read_ngroups_y:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, DL, VT);
return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::NGROUPS_Y, 4, false);
case Intrinsic::r600_read_ngroups_z:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, DL, VT);
return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::NGROUPS_Z, 4, false);
case Intrinsic::r600_read_global_size_x:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, DL, VT);
return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::GLOBAL_SIZE_X, 4, false);
case Intrinsic::r600_read_global_size_y:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, DL, VT);
return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::GLOBAL_SIZE_Y, 4, false);
case Intrinsic::r600_read_global_size_z:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, DL, VT);
return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::GLOBAL_SIZE_Z, 4, false);
case Intrinsic::r600_read_local_size_x:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, DL, VT);
return lowerImplicitZextParam(DAG, Op, MVT::i16,
SI::KernelInputOffsets::LOCAL_SIZE_X);
case Intrinsic::r600_read_local_size_y:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, DL, VT);
return lowerImplicitZextParam(DAG, Op, MVT::i16,
SI::KernelInputOffsets::LOCAL_SIZE_Y);
case Intrinsic::r600_read_local_size_z:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, DL, VT);
return lowerImplicitZextParam(DAG, Op, MVT::i16,
SI::KernelInputOffsets::LOCAL_SIZE_Z);
case Intrinsic::amdgcn_workgroup_id_x:
case Intrinsic::r600_read_tgid_x:
return getPreloadedValue(DAG, *MFI, VT,
AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
case Intrinsic::amdgcn_workgroup_id_y:
case Intrinsic::r600_read_tgid_y:
return getPreloadedValue(DAG, *MFI, VT,
AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
case Intrinsic::amdgcn_workgroup_id_z:
case Intrinsic::r600_read_tgid_z:
return getPreloadedValue(DAG, *MFI, VT,
AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
case Intrinsic::amdgcn_workitem_id_x:
case Intrinsic::r600_read_tidig_x:
return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
SDLoc(DAG.getEntryNode()),
MFI->getArgInfo().WorkItemIDX);
case Intrinsic::amdgcn_workitem_id_y:
case Intrinsic::r600_read_tidig_y:
return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
SDLoc(DAG.getEntryNode()),
MFI->getArgInfo().WorkItemIDY);
case Intrinsic::amdgcn_workitem_id_z:
case Intrinsic::r600_read_tidig_z:
return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
SDLoc(DAG.getEntryNode()),
MFI->getArgInfo().WorkItemIDZ);
case Intrinsic::amdgcn_s_buffer_load: {
unsigned Cache = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2),
DAG.getTargetConstant(Cache & 1, DL, MVT::i1), DAG);
}
case Intrinsic::amdgcn_fdiv_fast:
return lowerFDIV_FAST(Op, DAG);
case Intrinsic::amdgcn_interp_mov: {
SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
SDValue Glue = M0.getValue(1);
return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32, Op.getOperand(1),
Op.getOperand(2), Op.getOperand(3), Glue);
}
case Intrinsic::amdgcn_interp_p1: {
SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
SDValue Glue = M0.getValue(1);
return DAG.getNode(AMDGPUISD::INTERP_P1, DL, MVT::f32, Op.getOperand(1),
Op.getOperand(2), Op.getOperand(3), Glue);
}
case Intrinsic::amdgcn_interp_p2: {
SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5));
SDValue Glue = SDValue(M0.getNode(), 1);
return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, Op.getOperand(1),
Op.getOperand(2), Op.getOperand(3), Op.getOperand(4),
Glue);
}
case Intrinsic::amdgcn_interp_p1_f16: {
SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5));
SDValue Glue = M0.getValue(1);
if (getSubtarget()->getLDSBankCount() == 16) {
// 16 bank LDS
SDValue S = DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32,
DAG.getConstant(2, DL, MVT::i32), // P0
Op.getOperand(2), // Attrchan
Op.getOperand(3), // Attr
Glue);
SDValue Ops[] = {
Op.getOperand(1), // Src0
Op.getOperand(2), // Attrchan
Op.getOperand(3), // Attr
DAG.getConstant(0, DL, MVT::i32), // $src0_modifiers
S, // Src2 - holds two f16 values selected by high
DAG.getConstant(0, DL, MVT::i32), // $src2_modifiers
Op.getOperand(4), // high
DAG.getConstant(0, DL, MVT::i1), // $clamp
DAG.getConstant(0, DL, MVT::i32) // $omod
};
return DAG.getNode(AMDGPUISD::INTERP_P1LV_F16, DL, MVT::f32, Ops);
} else {
// 32 bank LDS
SDValue Ops[] = {
Op.getOperand(1), // Src0
Op.getOperand(2), // Attrchan
Op.getOperand(3), // Attr
DAG.getConstant(0, DL, MVT::i32), // $src0_modifiers
Op.getOperand(4), // high
DAG.getConstant(0, DL, MVT::i1), // $clamp
DAG.getConstant(0, DL, MVT::i32), // $omod
Glue
};
return DAG.getNode(AMDGPUISD::INTERP_P1LL_F16, DL, MVT::f32, Ops);
}
}
case Intrinsic::amdgcn_interp_p2_f16: {
SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(6));
SDValue Glue = SDValue(M0.getNode(), 1);
SDValue Ops[] = {
Op.getOperand(2), // Src0
Op.getOperand(3), // Attrchan
Op.getOperand(4), // Attr
DAG.getConstant(0, DL, MVT::i32), // $src0_modifiers
Op.getOperand(1), // Src2
DAG.getConstant(0, DL, MVT::i32), // $src2_modifiers
Op.getOperand(5), // high
DAG.getConstant(0, DL, MVT::i1), // $clamp
Glue
};
return DAG.getNode(AMDGPUISD::INTERP_P2_F16, DL, MVT::f16, Ops);
}
case Intrinsic::amdgcn_sin:
return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
case Intrinsic::amdgcn_cos:
return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
case Intrinsic::amdgcn_log_clamp: {
if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
return SDValue();
DiagnosticInfoUnsupported BadIntrin(
MF.getFunction(), "intrinsic not supported on subtarget",
DL.getDebugLoc());
DAG.getContext()->diagnose(BadIntrin);
return DAG.getUNDEF(VT);
}
case Intrinsic::amdgcn_ldexp:
return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::amdgcn_fract:
return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
case Intrinsic::amdgcn_class:
return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::amdgcn_div_fmas:
return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
Op.getOperand(4));
case Intrinsic::amdgcn_div_fixup:
return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
case Intrinsic::amdgcn_trig_preop:
return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT,
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::amdgcn_div_scale: {
const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3));
// Translate to the operands expected by the machine instruction. The
// first parameter must be the same as the first instruction.
SDValue Numerator = Op.getOperand(1);
SDValue Denominator = Op.getOperand(2);
// Note this order is opposite of the machine instruction's operations,
// which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
// intrinsic has the numerator as the first operand to match a normal
// division operation.
SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
Denominator, Numerator);
}
case Intrinsic::amdgcn_icmp: {
// There is a Pat that handles this variant, so return it as-is.
if (Op.getOperand(1).getValueType() == MVT::i1 &&
Op.getConstantOperandVal(2) == 0 &&
Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE)
return Op;
return lowerICMPIntrinsic(*this, Op.getNode(), DAG);
}
case Intrinsic::amdgcn_fcmp: {
return lowerFCMPIntrinsic(*this, Op.getNode(), DAG);
}
case Intrinsic::amdgcn_fmed3:
return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
case Intrinsic::amdgcn_fdot2:
return DAG.getNode(AMDGPUISD::FDOT2, DL, VT,
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
Op.getOperand(4));
case Intrinsic::amdgcn_fmul_legacy:
return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::amdgcn_sffbh:
return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
case Intrinsic::amdgcn_sbfe:
return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
case Intrinsic::amdgcn_ubfe:
return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
case Intrinsic::amdgcn_cvt_pkrtz:
case Intrinsic::amdgcn_cvt_pknorm_i16:
case Intrinsic::amdgcn_cvt_pknorm_u16:
case Intrinsic::amdgcn_cvt_pk_i16:
case Intrinsic::amdgcn_cvt_pk_u16: {
// FIXME: Stop adding cast if v2f16/v2i16 are legal.
EVT VT = Op.getValueType();
unsigned Opcode;
if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
Opcode = AMDGPUISD::CVT_PK_I16_I32;
else
Opcode = AMDGPUISD::CVT_PK_U16_U32;
if (isTypeLegal(VT))
return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2));
SDValue Node = DAG.getNode(Opcode, DL, MVT::i32,
Op.getOperand(1), Op.getOperand(2));
return DAG.getNode(ISD::BITCAST, DL, VT, Node);
}
case Intrinsic::amdgcn_wqm: {
SDValue Src = Op.getOperand(1);
return SDValue(DAG.getMachineNode(AMDGPU::WQM, DL, Src.getValueType(), Src),
0);
}
case Intrinsic::amdgcn_wwm: {
SDValue Src = Op.getOperand(1);
return SDValue(DAG.getMachineNode(AMDGPU::WWM, DL, Src.getValueType(), Src),
0);
}
case Intrinsic::amdgcn_fmad_ftz:
return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1),
Op.getOperand(2), Op.getOperand(3));
default:
if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
return lowerImage(Op, ImageDimIntr, DAG);
return Op;
}
}
SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
SelectionDAG &DAG) const {
unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
SDLoc DL(Op);
switch (IntrID) {
case Intrinsic::amdgcn_ds_ordered_add:
case Intrinsic::amdgcn_ds_ordered_swap: {
MemSDNode *M = cast<MemSDNode>(Op);
SDValue Chain = M->getOperand(0);
SDValue M0 = M->getOperand(2);
SDValue Value = M->getOperand(3);
unsigned OrderedCountIndex = M->getConstantOperandVal(7);
unsigned WaveRelease = M->getConstantOperandVal(8);
unsigned WaveDone = M->getConstantOperandVal(9);
unsigned ShaderType;
unsigned Instruction;
switch (IntrID) {
case Intrinsic::amdgcn_ds_ordered_add:
Instruction = 0;
break;
case Intrinsic::amdgcn_ds_ordered_swap:
Instruction = 1;
break;
}
if (WaveDone && !WaveRelease)
report_fatal_error("ds_ordered_count: wave_done requires wave_release");
switch (DAG.getMachineFunction().getFunction().getCallingConv()) {
case CallingConv::AMDGPU_CS:
case CallingConv::AMDGPU_KERNEL:
ShaderType = 0;
break;
case CallingConv::AMDGPU_PS:
ShaderType = 1;
break;
case CallingConv::AMDGPU_VS:
ShaderType = 2;
break;
case CallingConv::AMDGPU_GS:
ShaderType = 3;
break;
default:
report_fatal_error("ds_ordered_count unsupported for this calling conv");
}
unsigned Offset0 = OrderedCountIndex << 2;
unsigned Offset1 = WaveRelease | (WaveDone << 1) | (ShaderType << 2) |
(Instruction << 4);
unsigned Offset = Offset0 | (Offset1 << 8);
SDValue Ops[] = {
Chain,
Value,
DAG.getTargetConstant(Offset, DL, MVT::i16),
copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue
};
return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL,
M->getVTList(), Ops, M->getMemoryVT(),
M->getMemOperand());
}
case Intrinsic::amdgcn_ds_fadd: {
MemSDNode *M = cast<MemSDNode>(Op);
unsigned Opc;
switch (IntrID) {
case Intrinsic::amdgcn_ds_fadd:
Opc = ISD::ATOMIC_LOAD_FADD;
break;
}
return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(),
M->getOperand(0), M->getOperand(2), M->getOperand(3),
M->getMemOperand());
}
case Intrinsic::amdgcn_atomic_inc:
case Intrinsic::amdgcn_atomic_dec:
case Intrinsic::amdgcn_ds_fmin:
case Intrinsic::amdgcn_ds_fmax: {
MemSDNode *M = cast<MemSDNode>(Op);
unsigned Opc;
switch (IntrID) {
case Intrinsic::amdgcn_atomic_inc:
Opc = AMDGPUISD::ATOMIC_INC;
break;
case Intrinsic::amdgcn_atomic_dec:
Opc = AMDGPUISD::ATOMIC_DEC;
break;
case Intrinsic::amdgcn_ds_fmin:
Opc = AMDGPUISD::ATOMIC_LOAD_FMIN;
break;
case Intrinsic::amdgcn_ds_fmax:
Opc = AMDGPUISD::ATOMIC_LOAD_FMAX;
break;
default:
llvm_unreachable("Unknown intrinsic!");
}
SDValue Ops[] = {
M->getOperand(0), // Chain
M->getOperand(2), // Ptr
M->getOperand(3) // Value
};
return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
M->getMemoryVT(), M->getMemOperand());
}
case Intrinsic::amdgcn_buffer_load:
case Intrinsic::amdgcn_buffer_load_format: {
unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
unsigned IdxEn = 1;
if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3)))
IdxEn = Idx->getZExtValue() != 0;
SDValue Ops[] = {
Op.getOperand(0), // Chain
Op.getOperand(2), // rsrc
Op.getOperand(3), // vindex
SDValue(), // voffset -- will be set by setBufferOffsets
SDValue(), // soffset -- will be set by setBufferOffsets
SDValue(), // offset -- will be set by setBufferOffsets
DAG.getConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
DAG.getConstant(IdxEn, DL, MVT::i1), // idxen
};
setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]);
unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
EVT VT = Op.getValueType();
EVT IntVT = VT.changeTypeToInteger();
auto *M = cast<MemSDNode>(Op);
EVT LoadVT = Op.getValueType();
if (LoadVT.getScalarType() == MVT::f16)
return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
M, DAG, Ops);
// Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
if (LoadVT.getScalarType() == MVT::i8 ||
LoadVT.getScalarType() == MVT::i16)
return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
M->getMemOperand(), DAG);
}
case Intrinsic::amdgcn_raw_buffer_load:
case Intrinsic::amdgcn_raw_buffer_load_format: {
auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
SDValue Ops[] = {
Op.getOperand(0), // Chain
Op.getOperand(2), // rsrc
DAG.getConstant(0, DL, MVT::i32), // vindex
Offsets.first, // voffset
Op.getOperand(4), // soffset
Offsets.second, // offset
Op.getOperand(5), // cachepolicy
DAG.getConstant(0, DL, MVT::i1), // idxen
};
unsigned Opc = (IntrID == Intrinsic::amdgcn_raw_buffer_load) ?
AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
EVT VT = Op.getValueType();
EVT IntVT = VT.changeTypeToInteger();
auto *M = cast<MemSDNode>(Op);
EVT LoadVT = Op.getValueType();
if (LoadVT.getScalarType() == MVT::f16)
return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
M, DAG, Ops);
// Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
if (LoadVT.getScalarType() == MVT::i8 ||
LoadVT.getScalarType() == MVT::i16)
return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
M->getMemOperand(), DAG);
}
case Intrinsic::amdgcn_struct_buffer_load:
case Intrinsic::amdgcn_struct_buffer_load_format: {
auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
SDValue Ops[] = {
Op.getOperand(0), // Chain
Op.getOperand(2), // rsrc
Op.getOperand(3), // vindex
Offsets.first, // voffset
Op.getOperand(5), // soffset
Offsets.second, // offset
Op.getOperand(6), // cachepolicy
DAG.getConstant(1, DL, MVT::i1), // idxen
};
unsigned Opc = (IntrID == Intrinsic::amdgcn_struct_buffer_load) ?
AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
EVT VT = Op.getValueType();
EVT IntVT = VT.changeTypeToInteger();
auto *M = cast<MemSDNode>(Op);
EVT LoadVT = Op.getValueType();
if (LoadVT.getScalarType() == MVT::f16)
return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
M, DAG, Ops);
// Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
if (LoadVT.getScalarType() == MVT::i8 ||
LoadVT.getScalarType() == MVT::i16)
return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
M->getMemOperand(), DAG);
}
case Intrinsic::amdgcn_tbuffer_load: {
MemSDNode *M = cast<MemSDNode>(Op);
EVT LoadVT = Op.getValueType();
unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
unsigned IdxEn = 1;
if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3)))
IdxEn = Idx->getZExtValue() != 0;
SDValue Ops[] = {
Op.getOperand(0), // Chain
Op.getOperand(2), // rsrc
Op.getOperand(3), // vindex
Op.getOperand(4), // voffset
Op.getOperand(5), // soffset
Op.getOperand(6), // offset
DAG.getConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
DAG.getConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
DAG.getConstant(IdxEn, DL, MVT::i1), // idxen
};
if (LoadVT.getScalarType() == MVT::f16)
return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
M, DAG, Ops);
return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
DAG);
}
case Intrinsic::amdgcn_raw_tbuffer_load: {
MemSDNode *M = cast<MemSDNode>(Op);
EVT LoadVT = Op.getValueType();
auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
SDValue Ops[] = {
Op.getOperand(0), // Chain
Op.getOperand(2), // rsrc
DAG.getConstant(0, DL, MVT::i32), // vindex
Offsets.first, // voffset
Op.getOperand(4), // soffset
Offsets.second, // offset
Op.getOperand(5), // format
Op.getOperand(6), // cachepolicy
DAG.getConstant(0, DL, MVT::i1), // idxen
};
if (LoadVT.getScalarType() == MVT::f16)
return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
M, DAG, Ops);
return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
DAG);
}
case Intrinsic::amdgcn_struct_tbuffer_load: {
MemSDNode *M = cast<MemSDNode>(Op);
EVT LoadVT = Op.getValueType();
auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
SDValue Ops[] = {
Op.getOperand(0), // Chain
Op.getOperand(2), // rsrc
Op.getOperand(3), // vindex
Offsets.first, // voffset
Op.getOperand(5), // soffset
Offsets.second, // offset
Op.getOperand(6), // format
Op.getOperand(7), // cachepolicy
DAG.getConstant(1, DL, MVT::i1), // idxen
};
if (LoadVT.getScalarType() == MVT::f16)
return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
M, DAG, Ops);
return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
DAG);
}
case Intrinsic::amdgcn_buffer_atomic_swap:
case Intrinsic::amdgcn_buffer_atomic_add:
case Intrinsic::amdgcn_buffer_atomic_sub:
case Intrinsic::amdgcn_buffer_atomic_smin:
case Intrinsic::amdgcn_buffer_atomic_umin:
case Intrinsic::amdgcn_buffer_atomic_smax:
case Intrinsic::amdgcn_buffer_atomic_umax:
case Intrinsic::amdgcn_buffer_atomic_and:
case Intrinsic::amdgcn_buffer_atomic_or:
case Intrinsic::amdgcn_buffer_atomic_xor: {
unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
unsigned IdxEn = 1;
if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
IdxEn = Idx->getZExtValue() != 0;
SDValue Ops[] = {
Op.getOperand(0), // Chain
Op.getOperand(2), // vdata
Op.getOperand(3), // rsrc
Op.getOperand(4), // vindex
SDValue(), // voffset -- will be set by setBufferOffsets
SDValue(), // soffset -- will be set by setBufferOffsets
SDValue(), // offset -- will be set by setBufferOffsets
DAG.getConstant(Slc << 1, DL, MVT::i32), // cachepolicy
DAG.getConstant(IdxEn, DL, MVT::i1), // idxen
};
setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
EVT VT = Op.getValueType();
auto *M = cast<MemSDNode>(Op);
unsigned Opcode = 0;
switch (IntrID) {
case Intrinsic::amdgcn_buffer_atomic_swap:
Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
break;
case Intrinsic::amdgcn_buffer_atomic_add:
Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
break;
case Intrinsic::amdgcn_buffer_atomic_sub:
Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
break;
case Intrinsic::amdgcn_buffer_atomic_smin:
Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
break;
case Intrinsic::amdgcn_buffer_atomic_umin:
Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
break;
case Intrinsic::amdgcn_buffer_atomic_smax:
Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
break;
case Intrinsic::amdgcn_buffer_atomic_umax:
Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
break;
case Intrinsic::amdgcn_buffer_atomic_and:
Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
break;
case Intrinsic::amdgcn_buffer_atomic_or:
Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
break;
case Intrinsic::amdgcn_buffer_atomic_xor:
Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
break;
default:
llvm_unreachable("unhandled atomic opcode");
}
return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
M->getMemOperand());
}
case Intrinsic::amdgcn_raw_buffer_atomic_swap:
case Intrinsic::amdgcn_raw_buffer_atomic_add:
case Intrinsic::amdgcn_raw_buffer_atomic_sub:
case Intrinsic::amdgcn_raw_buffer_atomic_smin:
case Intrinsic::amdgcn_raw_buffer_atomic_umin:
case Intrinsic::amdgcn_raw_buffer_atomic_smax:
case Intrinsic::amdgcn_raw_buffer_atomic_umax:
case Intrinsic::amdgcn_raw_buffer_atomic_and:
case Intrinsic::amdgcn_raw_buffer_atomic_or:
case Intrinsic::amdgcn_raw_buffer_atomic_xor: {
auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
SDValue Ops[] = {
Op.getOperand(0), // Chain
Op.getOperand(2), // vdata
Op.getOperand(3), // rsrc
DAG.getConstant(0, DL, MVT::i32), // vindex
Offsets.first, // voffset
Op.getOperand(5), // soffset
Offsets.second, // offset
Op.getOperand(6), // cachepolicy
DAG.getConstant(0, DL, MVT::i1), // idxen
};
EVT VT = Op.getValueType();
auto *M = cast<MemSDNode>(Op);
unsigned Opcode = 0;
switch (IntrID) {
case Intrinsic::amdgcn_raw_buffer_atomic_swap:
Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
break;
case Intrinsic::amdgcn_raw_buffer_atomic_add:
Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
break;
case Intrinsic::amdgcn_raw_buffer_atomic_sub:
Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
break;
case Intrinsic::amdgcn_raw_buffer_atomic_smin:
Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
break;
case Intrinsic::amdgcn_raw_buffer_atomic_umin:
Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
break;
case Intrinsic::amdgcn_raw_buffer_atomic_smax:
Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
break;
case Intrinsic::amdgcn_raw_buffer_atomic_umax:
Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
break;
case Intrinsic::amdgcn_raw_buffer_atomic_and:
Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
break;
case Intrinsic::amdgcn_raw_buffer_atomic_or:
Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
break;
case Intrinsic::amdgcn_raw_buffer_atomic_xor:
Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
break;
default:
llvm_unreachable("unhandled atomic opcode");
}
return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
M->getMemOperand());
}
case Intrinsic::amdgcn_struct_buffer_atomic_swap:
case Intrinsic::amdgcn_struct_buffer_atomic_add:
case Intrinsic::amdgcn_struct_buffer_atomic_sub:
case Intrinsic::amdgcn_struct_buffer_atomic_smin:
case Intrinsic::amdgcn_struct_buffer_atomic_umin:
case Intrinsic::amdgcn_struct_buffer_atomic_smax:
case Intrinsic::amdgcn_struct_buffer_atomic_umax:
case Intrinsic::amdgcn_struct_buffer_atomic_and:
case Intrinsic::amdgcn_struct_buffer_atomic_or:
case Intrinsic::amdgcn_struct_buffer_atomic_xor: {
auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
SDValue Ops[] = {
Op.getOperand(0), // Chain
Op.getOperand(2), // vdata
Op.getOperand(3), // rsrc
Op.getOperand(4), // vindex
Offsets.first, // voffset
Op.getOperand(6), // soffset
Offsets.second, // offset
Op.getOperand(7), // cachepolicy
DAG.getConstant(1, DL, MVT::i1), // idxen
};
EVT VT = Op.getValueType();
auto *M = cast<MemSDNode>(Op);
unsigned Opcode = 0;
switch (IntrID) {
case Intrinsic::amdgcn_struct_buffer_atomic_swap:
Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
break;
case Intrinsic::amdgcn_struct_buffer_atomic_add:
Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
break;
case Intrinsic::amdgcn_struct_buffer_atomic_sub:
Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
break;
case Intrinsic::amdgcn_struct_buffer_atomic_smin:
Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
break;
case Intrinsic::amdgcn_struct_buffer_atomic_umin:
Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
break;
case Intrinsic::amdgcn_struct_buffer_atomic_smax:
Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
break;
case Intrinsic::amdgcn_struct_buffer_atomic_umax:
Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
break;
case Intrinsic::amdgcn_struct_buffer_atomic_and:
Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
break;
case Intrinsic::amdgcn_struct_buffer_atomic_or:
Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
break;
case Intrinsic::amdgcn_struct_buffer_atomic_xor:
Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
break;
default:
llvm_unreachable("unhandled atomic opcode");
}
return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
M->getMemOperand());
}
case Intrinsic::amdgcn_buffer_atomic_cmpswap: {
unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
unsigned IdxEn = 1;
if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(5)))
IdxEn = Idx->getZExtValue() != 0;
SDValue Ops[] = {
Op.getOperand(0), // Chain
Op.getOperand(2), // src
Op.getOperand(3), // cmp
Op.getOperand(4), // rsrc
Op.getOperand(5), // vindex
SDValue(), // voffset -- will be set by setBufferOffsets
SDValue(), // soffset -- will be set by setBufferOffsets
SDValue(), // offset -- will be set by setBufferOffsets
DAG.getConstant(Slc << 1, DL, MVT::i32), // cachepolicy
DAG.getConstant(IdxEn, DL, MVT::i1), // idxen
};
setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]);
EVT VT = Op.getValueType();
auto *M = cast<MemSDNode>(Op);
return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
Op->getVTList(), Ops, VT, M->getMemOperand());
}
case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: {
auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
SDValue Ops[] = {
Op.getOperand(0), // Chain
Op.getOperand(2), // src
Op.getOperand(3), // cmp
Op.getOperand(4), // rsrc
DAG.getConstant(0, DL, MVT::i32), // vindex
Offsets.first, // voffset
Op.getOperand(6), // soffset
Offsets.second, // offset
Op.getOperand(7), // cachepolicy
DAG.getConstant(0, DL, MVT::i1), // idxen
};
EVT VT = Op.getValueType();
auto *M = cast<MemSDNode>(Op);
return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
Op->getVTList(), Ops, VT, M->getMemOperand());
}
case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: {
auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG);
SDValue Ops[] = {
Op.getOperand(0), // Chain
Op.getOperand(2), // src
Op.getOperand(3), // cmp
Op.getOperand(4), // rsrc
Op.getOperand(5), // vindex
Offsets.first, // voffset
Op.getOperand(7), // soffset
Offsets.second, // offset
Op.getOperand(8), // cachepolicy
DAG.getConstant(1, DL, MVT::i1), // idxen
};
EVT VT = Op.getValueType();
auto *M = cast<MemSDNode>(Op);
return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
Op->getVTList(), Ops, VT, M->getMemOperand());
}
default:
if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
AMDGPU::getImageDimIntrinsicInfo(IntrID))
return lowerImage(Op, ImageDimIntr, DAG);
return SDValue();
}
}
// Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to
// dwordx4 if on SI.
SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL,
SDVTList VTList,
ArrayRef<SDValue> Ops, EVT MemVT,
MachineMemOperand *MMO,
SelectionDAG &DAG) const {
EVT VT = VTList.VTs[0];
EVT WidenedVT = VT;
EVT WidenedMemVT = MemVT;
if (!Subtarget->hasDwordx3LoadStores() &&
(WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) {
WidenedVT = EVT::getVectorVT(*DAG.getContext(),
WidenedVT.getVectorElementType(), 4);
WidenedMemVT = EVT::getVectorVT(*DAG.getContext(),
WidenedMemVT.getVectorElementType(), 4);
MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16);
}
assert(VTList.NumVTs == 2);
SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]);
auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops,
WidenedMemVT, MMO);
if (WidenedVT != VT) {
auto Extract = DAG.getNode(
ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp,
DAG.getConstant(0, DL, getVectorIdxTy(DAG.getDataLayout())));
NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL);
}
return NewOp;
}
SDValue SITargetLowering::handleD16VData(SDValue VData,
SelectionDAG &DAG) const {
EVT StoreVT = VData.getValueType();
// No change for f16 and legal vector D16 types.
if (!StoreVT.isVector())
return VData;
SDLoc DL(VData);
assert((StoreVT.getVectorNumElements() != 3) && "Handle v3f16");
if (Subtarget->hasUnpackedD16VMem()) {
// We need to unpack the packed data to store.
EVT IntStoreVT = StoreVT.changeTypeToInteger();
SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
EVT EquivStoreVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
StoreVT.getVectorNumElements());
SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData);
return DAG.UnrollVectorOp(ZExt.getNode());
}
assert(isTypeLegal(StoreVT));
return VData;
}
SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
SDValue Chain = Op.getOperand(0);
unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
MachineFunction &MF = DAG.getMachineFunction();
switch (IntrinsicID) {
case Intrinsic::amdgcn_exp: {
const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2));
const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3));
const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(8));
const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(9));
const SDValue Ops[] = {
Chain,
DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt
DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8), // en
Op.getOperand(4), // src0
Op.getOperand(5), // src1
Op.getOperand(6), // src2
Op.getOperand(7), // src3
DAG.getTargetConstant(0, DL, MVT::i1), // compr
DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1)
};
unsigned Opc = Done->isNullValue() ?
AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE;
return DAG.getNode(Opc, DL, Op->getVTList(), Ops);
}
case Intrinsic::amdgcn_exp_compr: {
const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2));
const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3));
SDValue Src0 = Op.getOperand(4);
SDValue Src1 = Op.getOperand(5);
const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(7));
SDValue Undef = DAG.getUNDEF(MVT::f32);
const SDValue Ops[] = {
Chain,
DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt
DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8), // en
DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0),
DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1),
Undef, // src2
Undef, // src3
DAG.getTargetConstant(1, DL, MVT::i1), // compr
DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1)
};
unsigned Opc = Done->isNullValue() ?
AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE;
return DAG.getNode(Opc, DL, Op->getVTList(), Ops);
}
case Intrinsic::amdgcn_s_sendmsg:
case Intrinsic::amdgcn_s_sendmsghalt: {
unsigned NodeOp = (IntrinsicID == Intrinsic::amdgcn_s_sendmsg) ?
AMDGPUISD::SENDMSG : AMDGPUISD::SENDMSGHALT;
Chain = copyToM0(DAG, Chain, DL, Op.getOperand(3));
SDValue Glue = Chain.getValue(1);
return DAG.getNode(NodeOp, DL, MVT::Other, Chain,
Op.getOperand(2), Glue);
}
case Intrinsic::amdgcn_init_exec: {
return DAG.getNode(AMDGPUISD::INIT_EXEC, DL, MVT::Other, Chain,
Op.getOperand(2));
}
case Intrinsic::amdgcn_init_exec_from_input: {
return DAG.getNode(AMDGPUISD::INIT_EXEC_FROM_INPUT, DL, MVT::Other, Chain,
Op.getOperand(2), Op.getOperand(3));
}
case Intrinsic::amdgcn_s_barrier: {
if (getTargetMachine().getOptLevel() > CodeGenOpt::None) {
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second;
if (WGSize <= ST.getWavefrontSize())
return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
Op.getOperand(0)), 0);
}
return SDValue();
};
case Intrinsic::amdgcn_tbuffer_store: {
SDValue VData = Op.getOperand(2);
bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
if (IsD16)
VData = handleD16VData(VData, DAG);
unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue();
unsigned IdxEn = 1;
if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
IdxEn = Idx->getZExtValue() != 0;
SDValue Ops[] = {
Chain,
VData, // vdata
Op.getOperand(3), // rsrc
Op.getOperand(4), // vindex
Op.getOperand(5), // voffset
Op.getOperand(6), // soffset
Op.getOperand(7), // offset
DAG.getConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
DAG.getConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
DAG.getConstant(IdxEn, DL, MVT::i1), // idexen
};
unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
AMDGPUISD::TBUFFER_STORE_FORMAT;
MemSDNode *M = cast<MemSDNode>(Op);
return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
M->getMemoryVT(), M->getMemOperand());
}
case Intrinsic::amdgcn_struct_tbuffer_store: {
SDValue VData = Op.getOperand(2);
bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
if (IsD16)
VData = handleD16VData(VData, DAG);
auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
SDValue Ops[] = {
Chain,
VData, // vdata
Op.getOperand(3), // rsrc
Op.getOperand(4), // vindex
Offsets.first, // voffset
Op.getOperand(6), // soffset
Offsets.second, // offset
Op.getOperand(7), // format
Op.getOperand(8), // cachepolicy
DAG.getConstant(1, DL, MVT::i1), // idexen
};
unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
AMDGPUISD::TBUFFER_STORE_FORMAT;
MemSDNode *M = cast<MemSDNode>(Op);
return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
M->getMemoryVT(), M->getMemOperand());
}
case Intrinsic::amdgcn_raw_tbuffer_store: {
SDValue VData = Op.getOperand(2);
bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
if (IsD16)
VData = handleD16VData(VData, DAG);
auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
SDValue Ops[] = {
Chain,
VData, // vdata
Op.getOperand(3), // rsrc
DAG.getConstant(0, DL, MVT::i32), // vindex
Offsets.first, // voffset
Op.getOperand(5), // soffset
Offsets.second, // offset
Op.getOperand(6), // format
Op.getOperand(7), // cachepolicy
DAG.getConstant(0, DL, MVT::i1), // idexen
};
unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
AMDGPUISD::TBUFFER_STORE_FORMAT;
MemSDNode *M = cast<MemSDNode>(Op);
return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
M->getMemoryVT(), M->getMemOperand());
}
case Intrinsic::amdgcn_buffer_store:
case Intrinsic::amdgcn_buffer_store_format: {
SDValue VData = Op.getOperand(2);
bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
if (IsD16)
VData = handleD16VData(VData, DAG);
unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
unsigned IdxEn = 1;
if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
IdxEn = Idx->getZExtValue() != 0;
SDValue Ops[] = {
Chain,
VData,
Op.getOperand(3), // rsrc
Op.getOperand(4), // vindex
SDValue(), // voffset -- will be set by setBufferOffsets
SDValue(), // soffset -- will be set by setBufferOffsets
SDValue(), // offset -- will be set by setBufferOffsets
DAG.getConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
DAG.getConstant(IdxEn, DL, MVT::i1), // idxen
};
setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ?
AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
MemSDNode *M = cast<MemSDNode>(Op);
// Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
EVT VDataType = VData.getValueType().getScalarType();
if (VDataType == MVT::i8 || VDataType == MVT::i16)
return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
M->getMemoryVT(), M->getMemOperand());
}
case Intrinsic::amdgcn_raw_buffer_store:
case Intrinsic::amdgcn_raw_buffer_store_format: {
SDValue VData = Op.getOperand(2);
bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
if (IsD16)
VData = handleD16VData(VData, DAG);
auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
SDValue Ops[] = {
Chain,
VData,
Op.getOperand(3), // rsrc
DAG.getConstant(0, DL, MVT::i32), // vindex
Offsets.first, // voffset
Op.getOperand(5), // soffset
Offsets.second, // offset
Op.getOperand(6), // cachepolicy
DAG.getConstant(0, DL, MVT::i1), // idxen
};
unsigned Opc = IntrinsicID == Intrinsic::amdgcn_raw_buffer_store ?
AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
MemSDNode *M = cast<MemSDNode>(Op);
// Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
EVT VDataType = VData.getValueType().getScalarType();
if (VDataType == MVT::i8 || VDataType == MVT::i16)
return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
M->getMemoryVT(), M->getMemOperand());
}
case Intrinsic::amdgcn_struct_buffer_store:
case Intrinsic::amdgcn_struct_buffer_store_format: {
SDValue VData = Op.getOperand(2);
bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
if (IsD16)
VData = handleD16VData(VData, DAG);
auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
SDValue Ops[] = {
Chain,
VData,
Op.getOperand(3), // rsrc
Op.getOperand(4), // vindex
Offsets.first, // voffset
Op.getOperand(6), // soffset
Offsets.second, // offset
Op.getOperand(7), // cachepolicy
DAG.getConstant(1, DL, MVT::i1), // idxen
};
unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ?
AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
MemSDNode *M = cast<MemSDNode>(Op);
// Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
EVT VDataType = VData.getValueType().getScalarType();
if (VDataType == MVT::i8 || VDataType == MVT::i16)
return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
M->getMemoryVT(), M->getMemOperand());
}
default: {
if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
return lowerImage(Op, ImageDimIntr, DAG);
return Op;
}
}
}
// The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
// offset (the offset that is included in bounds checking and swizzling, to be
// split between the instruction's voffset and immoffset fields) and soffset
// (the offset that is excluded from bounds checking and swizzling, to go in
// the instruction's soffset field). This function takes the first kind of
// offset and figures out how to split it between voffset and immoffset.
std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets(
SDValue Offset, SelectionDAG &DAG) const {
SDLoc DL(Offset);
const unsigned MaxImm = 4095;
SDValue N0 = Offset;
ConstantSDNode *C1 = nullptr;
if ((C1 = dyn_cast<ConstantSDNode>(N0)))
N0 = SDValue();
else if (DAG.isBaseWithConstantOffset(N0)) {
C1 = cast<ConstantSDNode>(N0.getOperand(1));
N0 = N0.getOperand(0);
}
if (C1) {
unsigned ImmOffset = C1->getZExtValue();
// If the immediate value is too big for the immoffset field, put the value
// and -4096 into the immoffset field so that the value that is copied/added
// for the voffset field is a multiple of 4096, and it stands more chance
// of being CSEd with the copy/add for another similar load/store.
// However, do not do that rounding down to a multiple of 4096 if that is a
// negative number, as it appears to be illegal to have a negative offset
// in the vgpr, even if adding the immediate offset makes it positive.
unsigned Overflow = ImmOffset & ~MaxImm;
ImmOffset -= Overflow;
if ((int32_t)Overflow < 0) {
Overflow += ImmOffset;
ImmOffset = 0;
}
C1 = cast<ConstantSDNode>(DAG.getConstant(ImmOffset, DL, MVT::i32));
if (Overflow) {
auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32);
if (!N0)
N0 = OverflowVal;
else {
SDValue Ops[] = { N0, OverflowVal };
N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops);
}
}
}
if (!N0)
N0 = DAG.getConstant(0, DL, MVT::i32);
if (!C1)
C1 = cast<ConstantSDNode>(DAG.getConstant(0, DL, MVT::i32));
return {N0, SDValue(C1, 0)};
}
// Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the
// three offsets (voffset, soffset and instoffset) into the SDValue[3] array
// pointed to by Offsets.
void SITargetLowering::setBufferOffsets(SDValue CombinedOffset,
SelectionDAG &DAG, SDValue *Offsets,
unsigned Align) const {
SDLoc DL(CombinedOffset);
if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) {
uint32_t Imm = C->getZExtValue();
uint32_t SOffset, ImmOffset;
if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget, Align)) {
Offsets[0] = DAG.getConstant(0, DL, MVT::i32);
Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
Offsets[2] = DAG.getConstant(ImmOffset, DL, MVT::i32);
return;
}
}
if (DAG.isBaseWithConstantOffset(CombinedOffset)) {
SDValue N0 = CombinedOffset.getOperand(0);
SDValue N1 = CombinedOffset.getOperand(1);
uint32_t SOffset, ImmOffset;
int Offset = cast<ConstantSDNode>(N1)->getSExtValue();
if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset,
Subtarget, Align)) {
Offsets[0] = N0;
Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
Offsets[2] = DAG.getConstant(ImmOffset, DL, MVT::i32);
return;
}
}
Offsets[0] = CombinedOffset;
Offsets[1] = DAG.getConstant(0, DL, MVT::i32);
Offsets[2] = DAG.getConstant(0, DL, MVT::i32);
}
// Handle 8 bit and 16 bit buffer loads
SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG,
EVT LoadVT, SDLoc DL,
ArrayRef<SDValue> Ops,
MemSDNode *M) const {
EVT IntVT = LoadVT.changeTypeToInteger();
unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ?
AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT;
SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other);
SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList,
Ops, IntVT,
M->getMemOperand());
SDValue BufferLoadTrunc = DAG.getNode(ISD::TRUNCATE, DL,
LoadVT.getScalarType(), BufferLoad);
return DAG.getMergeValues({BufferLoadTrunc, BufferLoad.getValue(1)}, DL);
}
// Handle 8 bit and 16 bit buffer stores
SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG,
EVT VDataType, SDLoc DL,
SDValue Ops[],
MemSDNode *M) const {
SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]);
Ops[1] = BufferStoreExt;
unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE :
AMDGPUISD::BUFFER_STORE_SHORT;
ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9);
return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType,
M->getMemOperand());
}
static SDValue getLoadExtOrTrunc(SelectionDAG &DAG,
ISD::LoadExtType ExtType, SDValue Op,
const SDLoc &SL, EVT VT) {
if (VT.bitsLT(Op.getValueType()))
return DAG.getNode(ISD::TRUNCATE, SL, VT, Op);
switch (ExtType) {
case ISD::SEXTLOAD:
return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op);
case ISD::ZEXTLOAD:
return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op);
case ISD::EXTLOAD:
return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op);
case ISD::NON_EXTLOAD:
return Op;
}
llvm_unreachable("invalid ext type");
}
SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
if (Ld->getAlignment() < 4 || Ld->isDivergent())
return SDValue();
// FIXME: Constant loads should all be marked invariant.
unsigned AS = Ld->getAddressSpace();
if (AS != AMDGPUAS::CONSTANT_ADDRESS &&
AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
(AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant()))
return SDValue();
// Don't do this early, since it may interfere with adjacent load merging for
// illegal types. We can avoid losing alignment information for exotic types
// pre-legalize.
EVT MemVT = Ld->getMemoryVT();
if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) ||
MemVT.getSizeInBits() >= 32)
return SDValue();
SDLoc SL(Ld);
assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) &&
"unexpected vector extload");
// TODO: Drop only high part of range.
SDValue Ptr = Ld->getBasePtr();
SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD,
MVT::i32, SL, Ld->getChain(), Ptr,
Ld->getOffset(),
Ld->getPointerInfo(), MVT::i32,
Ld->getAlignment(),
Ld->getMemOperand()->getFlags(),
Ld->getAAInfo(),
nullptr); // Drop ranges
EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
if (MemVT.isFloatingPoint()) {
assert(Ld->getExtensionType() == ISD::NON_EXTLOAD &&
"unexpected fp extload");
TruncVT = MemVT.changeTypeToInteger();
}
SDValue Cvt = NewLoad;
if (Ld->getExtensionType() == ISD::SEXTLOAD) {
Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad,
DAG.getValueType(TruncVT));
} else if (Ld->getExtensionType() == ISD::ZEXTLOAD ||
Ld->getExtensionType() == ISD::NON_EXTLOAD) {
Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT);
} else {
assert(Ld->getExtensionType() == ISD::EXTLOAD);
}
EVT VT = Ld->getValueType(0);
EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
DCI.AddToWorklist(Cvt.getNode());
// We may need to handle exotic cases, such as i16->i64 extloads, so insert
// the appropriate extension from the 32-bit load.
Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT);
DCI.AddToWorklist(Cvt.getNode());
// Handle conversion back to floating point if necessary.
Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt);
return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL);
}
SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
LoadSDNode *Load = cast<LoadSDNode>(Op);
ISD::LoadExtType ExtType = Load->getExtensionType();
EVT MemVT = Load->getMemoryVT();
if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
return SDValue();
// FIXME: Copied from PPC
// First, load into 32 bits, then truncate to 1 bit.
SDValue Chain = Load->getChain();
SDValue BasePtr = Load->getBasePtr();
MachineMemOperand *MMO = Load->getMemOperand();
EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
BasePtr, RealMemVT, MMO);
if (!MemVT.isVector()) {
SDValue Ops[] = {
DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
NewLD.getValue(1)
};
return DAG.getMergeValues(Ops, DL);
}
SmallVector<SDValue, 3> Elts;
for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) {
SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD,
DAG.getConstant(I, DL, MVT::i32));
Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt));
}
SDValue Ops[] = {
DAG.getBuildVector(MemVT, DL, Elts),
NewLD.getValue(1)
};
return DAG.getMergeValues(Ops, DL);
}
if (!MemVT.isVector())
return SDValue();
assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
"Custom lowering for non-i32 vectors hasn't been implemented.");
unsigned Alignment = Load->getAlignment();
unsigned AS = Load->getAddressSpace();
if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
AS, Alignment)) {
SDValue Ops[2];
std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
return DAG.getMergeValues(Ops, DL);
}
if (Subtarget->hasLDSMisalignedBug() &&
AS == AMDGPUAS::FLAT_ADDRESS &&
Alignment < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) {
return SplitVectorLoad(Op, DAG);
}
MachineFunction &MF = DAG.getMachineFunction();
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
// If there is a possibilty that flat instruction access scratch memory
// then we need to use the same legalization rules we use for private.
if (AS == AMDGPUAS::FLAT_ADDRESS)
AS = MFI->hasFlatScratchInit() ?
AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
unsigned NumElements = MemVT.getVectorNumElements();
if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
if (!Op->isDivergent() && Alignment >= 4 && NumElements < 32) {
if (MemVT.isPow2VectorType())
return SDValue();
if (NumElements == 3)
return WidenVectorLoad(Op, DAG);
return SplitVectorLoad(Op, DAG);
}
// Non-uniform loads will be selected to MUBUF instructions, so they
// have the same legalization requirements as global and private
// loads.
//
}
if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
AS == AMDGPUAS::GLOBAL_ADDRESS) {
if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() &&
!Load->isVolatile() && isMemOpHasNoClobberedMemOperand(Load) &&
Alignment >= 4 && NumElements < 32) {
if (MemVT.isPow2VectorType())
return SDValue();
if (NumElements == 3)
return WidenVectorLoad(Op, DAG);
return SplitVectorLoad(Op, DAG);
}
// Non-uniform loads will be selected to MUBUF instructions, so they
// have the same legalization requirements as global and private
// loads.
//
}
if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
AS == AMDGPUAS::GLOBAL_ADDRESS ||
AS == AMDGPUAS::FLAT_ADDRESS) {
if (NumElements > 4)
return SplitVectorLoad(Op, DAG);
// v3 loads not supported on SI.
if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
return WidenVectorLoad(Op, DAG);
// v3 and v4 loads are supported for private and global memory.
return SDValue();
}
if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
// Depending on the setting of the private_element_size field in the
// resource descriptor, we can only make private accesses up to a certain
// size.
switch (Subtarget->getMaxPrivateElementSize()) {
case 4:
return scalarizeVectorLoad(Load, DAG);
case 8:
if (NumElements > 2)
return SplitVectorLoad(Op, DAG);
return SDValue();
case 16:
// Same as global/flat
if (NumElements > 4)
return SplitVectorLoad(Op, DAG);
// v3 loads not supported on SI.
if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
return WidenVectorLoad(Op, DAG);
return SDValue();
default:
llvm_unreachable("unsupported private_element_size");
}
} else if (AS == AMDGPUAS::LOCAL_ADDRESS) {
// Use ds_read_b128 if possible.
if (Subtarget->useDS128() && Load->getAlignment() >= 16 &&
MemVT.getStoreSize() == 16)
return SDValue();
if (NumElements > 2)
return SplitVectorLoad(Op, DAG);
// SI has a hardware bug in the LDS / GDS boounds checking: if the base
// address is negative, then the instruction is incorrectly treated as
// out-of-bounds even if base + offsets is in bounds. Split vectorized
// loads here to avoid emitting ds_read2_b32. We may re-combine the
// load later in the SILoadStoreOptimizer.
if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
NumElements == 2 && MemVT.getStoreSize() == 8 &&
Load->getAlignment() < 8) {
return SplitVectorLoad(Op, DAG);
}
}
return SDValue();
}
SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
assert(VT.getSizeInBits() == 64);
SDLoc DL(Op);
SDValue Cond = Op.getOperand(0);
SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
SDValue One = DAG.getConstant(1, DL, MVT::i32);
SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
return DAG.getNode(ISD::BITCAST, DL, VT, Res);
}
// Catch division cases where we can use shortcuts with rcp and rsq
// instructions.
SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
EVT VT = Op.getValueType();
const SDNodeFlags Flags = Op->getFlags();
bool Unsafe = DAG.getTarget().Options.UnsafeFPMath || Flags.hasAllowReciprocal();
if (!Unsafe && VT == MVT::f32 && Subtarget->hasFP32Denormals())
return SDValue();
if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
if (Unsafe || VT == MVT::f32 || VT == MVT::f16) {
if (CLHS->isExactlyValue(1.0)) {
// v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
// the CI documentation has a worst case error of 1 ulp.
// OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
// use it as long as we aren't trying to use denormals.
//
// v_rcp_f16 and v_rsq_f16 DO support denormals.
// 1.0 / sqrt(x) -> rsq(x)
// XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
// error seems really high at 2^29 ULP.
if (RHS.getOpcode() == ISD::FSQRT)
return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
// 1.0 / x -> rcp(x)
return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
}
// Same as for 1.0, but expand the sign out of the constant.
if (CLHS->isExactlyValue(-1.0)) {
// -1.0 / x -> rcp (fneg x)
SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
}
}
}
if (Unsafe) {
// Turn into multiply by the reciprocal.
// x / y -> x * (1.0 / y)
SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
}
return SDValue();
}
static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
EVT VT, SDValue A, SDValue B, SDValue GlueChain) {
if (GlueChain->getNumValues() <= 1) {
return DAG.getNode(Opcode, SL, VT, A, B);
}
assert(GlueChain->getNumValues() == 3);
SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
switch (Opcode) {
default: llvm_unreachable("no chain equivalent for opcode");
case ISD::FMUL:
Opcode = AMDGPUISD::FMUL_W_CHAIN;
break;
}
return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B,
GlueChain.getValue(2));
}
static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
EVT VT, SDValue A, SDValue B, SDValue C,
SDValue GlueChain) {
if (GlueChain->getNumValues() <= 1) {
return DAG.getNode(Opcode, SL, VT, A, B, C);
}
assert(GlueChain->getNumValues() == 3);
SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
switch (Opcode) {
default: llvm_unreachable("no chain equivalent for opcode");
case ISD::FMA:
Opcode = AMDGPUISD::FMA_W_CHAIN;
break;
}
return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B, C,
GlueChain.getValue(2));
}
SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
return FastLowered;
SDLoc SL(Op);
SDValue Src0 = Op.getOperand(0);
SDValue Src1 = Op.getOperand(1);
SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
}
// Faster 2.5 ULP division that does not support denormals.
SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue LHS = Op.getOperand(1);
SDValue RHS = Op.getOperand(2);
SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
const APFloat K0Val(BitsToFloat(0x6f800000));
const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
const APFloat K1Val(BitsToFloat(0x2f800000));
const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
EVT SetCCVT =
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
// TODO: Should this propagate fast-math-flags?
r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
// rcp does not support denormals.
SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
}
SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
return FastLowered;
SDLoc SL(Op);
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
RHS, RHS, LHS);
SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
LHS, RHS, LHS);
// Denominator is scaled to not be denormal, so using rcp is ok.
SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
DenominatorScaled);
SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
DenominatorScaled);
const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
(4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
(1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i16);
if (!Subtarget->hasFP32Denormals()) {
SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE,
SL, MVT::i32);
SDValue EnableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, BindParamVTs,
DAG.getEntryNode(),
EnableDenormValue, BitField);
SDValue Ops[3] = {
NegDivScale0,
EnableDenorm.getValue(0),
EnableDenorm.getValue(1)
};
NegDivScale0 = DAG.getMergeValues(Ops, SL);
}
SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
ApproxRcp, One, NegDivScale0);
SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
ApproxRcp, Fma0);
SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
Fma1, Fma1);
SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
NumeratorScaled, Mul);
SDValue Fma3 = getFPTernOp(DAG, ISD::FMA,SL, MVT::f32, Fma2, Fma1, Mul, Fma2);
SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
NumeratorScaled, Fma3);
if (!Subtarget->hasFP32Denormals()) {
const SDValue DisableDenormValue =
DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32);
SDValue DisableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, MVT::Other,
Fma4.getValue(1),
DisableDenormValue,
BitField,
Fma4.getValue(2));
SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
DisableDenorm, DAG.getRoot());
DAG.setRoot(OutputChain);
}
SDValue Scale = NumeratorScaled.getValue(1);
SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
Fma4, Fma1, Fma3, Scale);
return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS);
}
SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
if (DAG.getTarget().Options.UnsafeFPMath)
return lowerFastUnsafeFDIV(Op, DAG);
SDLoc SL(Op);
SDValue X = Op.getOperand(0);
SDValue Y = Op.getOperand(1);
const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
NegDivScale0, Mul, DivScale1);
SDValue Scale;
if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
// Workaround a hardware bug on SI where the condition output from div_scale
// is not usable.
const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
// Figure out if the scale to use for div_fmas.
SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
SDValue Scale0Hi
= DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
SDValue Scale1Hi
= DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
} else {
Scale = DivScale1.getValue(1);
}
SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
Fma4, Fma3, Mul, Scale);
return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
}
SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
if (VT == MVT::f32)
return LowerFDIV32(Op, DAG);
if (VT == MVT::f64)
return LowerFDIV64(Op, DAG);
if (VT == MVT::f16)
return LowerFDIV16(Op, DAG);
llvm_unreachable("Unexpected type for fdiv");
}
SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
StoreSDNode *Store = cast<StoreSDNode>(Op);
EVT VT = Store->getMemoryVT();
if (VT == MVT::i1) {
return DAG.getTruncStore(Store->getChain(), DL,
DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
Store->getBasePtr(), MVT::i1, Store->getMemOperand());
}
assert(VT.isVector() &&
Store->getValue().getValueType().getScalarType() == MVT::i32);
unsigned AS = Store->getAddressSpace();
if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
AS, Store->getAlignment())) {
return expandUnalignedStore(Store, DAG);
}
if (Subtarget->hasLDSMisalignedBug() &&
AS == AMDGPUAS::FLAT_ADDRESS &&
Store->getAlignment() < VT.getStoreSize() && VT.getSizeInBits() > 32) {
return SplitVectorStore(Op, DAG);
}
MachineFunction &MF = DAG.getMachineFunction();
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
// If there is a possibilty that flat instruction access scratch memory
// then we need to use the same legalization rules we use for private.
if (AS == AMDGPUAS::FLAT_ADDRESS)
AS = MFI->hasFlatScratchInit() ?
AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
unsigned NumElements = VT.getVectorNumElements();
if (AS == AMDGPUAS::GLOBAL_ADDRESS ||
AS == AMDGPUAS::FLAT_ADDRESS) {
if (NumElements > 4)
return SplitVectorStore(Op, DAG);
// v3 stores not supported on SI.
if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
return SplitVectorStore(Op, DAG);
return SDValue();
} else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
switch (Subtarget->getMaxPrivateElementSize()) {
case 4:
return scalarizeVectorStore(Store, DAG);
case 8:
if (NumElements > 2)
return SplitVectorStore(Op, DAG);
return SDValue();
case 16:
if (NumElements > 4 || NumElements == 3)
return SplitVectorStore(Op, DAG);
return SDValue();
default:
llvm_unreachable("unsupported private_element_size");
}
} else if (AS == AMDGPUAS::LOCAL_ADDRESS) {
// Use ds_write_b128 if possible.
if (Subtarget->useDS128() && Store->getAlignment() >= 16 &&
VT.getStoreSize() == 16 && NumElements != 3)
return SDValue();
if (NumElements > 2)
return SplitVectorStore(Op, DAG);
// SI has a hardware bug in the LDS / GDS boounds checking: if the base
// address is negative, then the instruction is incorrectly treated as
// out-of-bounds even if base + offsets is in bounds. Split vectorized
// stores here to avoid emitting ds_write2_b32. We may re-combine the
// store later in the SILoadStoreOptimizer.
if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
NumElements == 2 && VT.getStoreSize() == 8 &&
Store->getAlignment() < 8) {
return SplitVectorStore(Op, DAG);
}
return SDValue();
} else {
llvm_unreachable("unhandled address space");
}
}
SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT VT = Op.getValueType();
SDValue Arg = Op.getOperand(0);
SDValue TrigVal;
// TODO: Should this propagate fast-math-flags?
SDValue OneOver2Pi = DAG.getConstantFP(0.5 / M_PI, DL, VT);
if (Subtarget->hasTrigReducedRange()) {
SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi);
TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal);
} else {
TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi);
}
switch (Op.getOpcode()) {
case ISD::FCOS:
return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal);
case ISD::FSIN:
return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal);
default:
llvm_unreachable("Wrong trig opcode");
}
}
SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
assert(AtomicNode->isCompareAndSwap());
unsigned AS = AtomicNode->getAddressSpace();
// No custom lowering required for local address space
if (!isFlatGlobalAddrSpace(AS))
return Op;
// Non-local address space requires custom lowering for atomic compare
// and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
SDLoc DL(Op);
SDValue ChainIn = Op.getOperand(0);
SDValue Addr = Op.getOperand(1);
SDValue Old = Op.getOperand(2);
SDValue New = Op.getOperand(3);
EVT VT = Op.getValueType();
MVT SimpleVT = VT.getSimpleVT();
MVT VecType = MVT::getVectorVT(SimpleVT, 2);
SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
SDValue Ops[] = { ChainIn, Addr, NewOld };
return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
Ops, VT, AtomicNode->getMemOperand());
}
//===----------------------------------------------------------------------===//
// Custom DAG optimizations
//===----------------------------------------------------------------------===//
SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
EVT VT = N->getValueType(0);
EVT ScalarVT = VT.getScalarType();
if (ScalarVT != MVT::f32)
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
SDValue Src = N->getOperand(0);
EVT SrcVT = Src.getValueType();
// TODO: We could try to match extracting the higher bytes, which would be
// easier if i8 vectors weren't promoted to i32 vectors, particularly after
// types are legalized. v4i8 -> v4f32 is probably the only case to worry
// about in practice.
if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
DCI.AddToWorklist(Cvt.getNode());
return Cvt;
}
}
return SDValue();
}
// (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
// This is a variant of
// (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
//
// The normal DAG combiner will do this, but only if the add has one use since
// that would increase the number of instructions.
//
// This prevents us from seeing a constant offset that can be folded into a
// memory instruction's addressing mode. If we know the resulting add offset of
// a pointer can be folded into an addressing offset, we can replace the pointer
// operand with the add of new constant offset. This eliminates one of the uses,
// and may allow the remaining use to also be simplified.
//
SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
unsigned AddrSpace,
EVT MemVT,
DAGCombinerInfo &DCI) const {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
// We only do this to handle cases where it's profitable when there are
// multiple uses of the add, so defer to the standard combine.
if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) ||
N0->hasOneUse())
return SDValue();
const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
if (!CN1)
return SDValue();
const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (!CAdd)
return SDValue();
// If the resulting offset is too large, we can't fold it into the addressing
// mode offset.
APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());
AddrMode AM;
AM.HasBaseReg = true;
AM.BaseOffs = Offset.getSExtValue();
if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc SL(N);
EVT VT = N->getValueType(0);
SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32);
SDNodeFlags Flags;
Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
(N0.getOpcode() == ISD::OR ||
N0->getFlags().hasNoUnsignedWrap()));
return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
}
SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
DAGCombinerInfo &DCI) const {
SDValue Ptr = N->getBasePtr();
SelectionDAG &DAG = DCI.DAG;
SDLoc SL(N);
// TODO: We could also do this for multiplies.
if (Ptr.getOpcode() == ISD::SHL) {
SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), N->getAddressSpace(),
N->getMemoryVT(), DCI);
if (NewPtr) {
SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
}
}
return SDValue();
}
static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
(Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
(Opc == ISD::XOR && Val == 0);
}
// Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
// will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
// integer combine opportunities since most 64-bit operations are decomposed
// this way. TODO: We won't want this for SALU especially if it is an inline
// immediate.
SDValue SITargetLowering::splitBinaryBitConstantOp(
DAGCombinerInfo &DCI,
const SDLoc &SL,
unsigned Opc, SDValue LHS,
const ConstantSDNode *CRHS) const {
uint64_t Val = CRHS->getZExtValue();
uint32_t ValLo = Lo_32(Val);
uint32_t ValHi = Hi_32(Val);
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
bitOpWithConstantIsReducible(Opc, ValHi)) ||
(CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
// If we need to materialize a 64-bit immediate, it will be split up later
// anyway. Avoid creating the harder to understand 64-bit immediate
// materialization.
return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
}
return SDValue();
}
// Returns true if argument is a boolean value which is not serialized into
// memory or argument and does not require v_cmdmask_b32 to be deserialized.
static bool isBoolSGPR(SDValue V) {
if (V.getValueType() != MVT::i1)
return false;
switch (V.getOpcode()) {
default: break;
case ISD::SETCC:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case AMDGPUISD::FP_CLASS:
return true;
}
return false;
}
// If a constant has all zeroes or all ones within each byte return it.
// Otherwise return 0.
static uint32_t getConstantPermuteMask(uint32_t C) {
// 0xff for any zero byte in the mask
uint32_t ZeroByteMask = 0;
if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff;
if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00;
if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000;
if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000;
uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte
if ((NonZeroByteMask & C) != NonZeroByteMask)
return 0; // Partial bytes selected.
return C;
}
// Check if a node selects whole bytes from its operand 0 starting at a byte
// boundary while masking the rest. Returns select mask as in the v_perm_b32
// or -1 if not succeeded.
// Note byte select encoding:
// value 0-3 selects corresponding source byte;
// value 0xc selects zero;
// value 0xff selects 0xff.
static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) {
assert(V.getValueSizeInBits() == 32);
if (V.getNumOperands() != 2)
return ~0;
ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1));
if (!N1)
return ~0;
uint32_t C = N1->getZExtValue();
switch (V.getOpcode()) {
default:
break;
case ISD::AND:
if (uint32_t ConstMask = getConstantPermuteMask(C)) {
return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask);
}
break;
case ISD::OR:
if (uint32_t ConstMask = getConstantPermuteMask(C)) {
return (0x03020100 & ~ConstMask) | ConstMask;
}
break;
case ISD::SHL:
if (C % 8)
return ~0;
return uint32_t((0x030201000c0c0c0cull << C) >> 32);
case ISD::SRL:
if (C % 8)
return ~0;
return uint32_t(0x0c0c0c0c03020100ull >> C);
}
return ~0;
}
SDValue SITargetLowering::performAndCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
if (DCI.isBeforeLegalize())
return SDValue();
SelectionDAG &DAG = DCI.DAG;
EVT VT = N->getValueType(0);
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
if (VT == MVT::i64 && CRHS) {
if (SDValue Split
= splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
return Split;
}
if (CRHS && VT == MVT::i32) {
// and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
// nb = number of trailing zeroes in mask
// It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
// given that we are selecting 8 or 16 bit fields starting at byte boundary.
uint64_t Mask = CRHS->getZExtValue();
unsigned Bits = countPopulation(Mask);
if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
(Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
unsigned Shift = CShift->getZExtValue();
unsigned NB = CRHS->getAPIntValue().countTrailingZeros();
unsigned Offset = NB + Shift;
if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
SDLoc SL(N);
SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
LHS->getOperand(0),
DAG.getConstant(Offset, SL, MVT::i32),
DAG.getConstant(Bits, SL, MVT::i32));
EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
DAG.getValueType(NarrowVT));
SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
return Shl;
}
}
}
// and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM &&
isa<ConstantSDNode>(LHS.getOperand(2))) {
uint32_t Sel = getConstantPermuteMask(Mask);
if (!Sel)
return SDValue();
// Select 0xc for all zero bytes
Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c);
SDLoc DL(N);
return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
}
}
// (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
// fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
SDValue X = LHS.getOperand(0);
SDValue Y = RHS.getOperand(0);
if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
return SDValue();
if (LCC == ISD::SETO) {
if (X != LHS.getOperand(1))
return SDValue();
if (RCC == ISD::SETUNE) {
const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
if (!C1 || !C1->isInfinity() || C1->isNegative())
return SDValue();
const uint32_t Mask = SIInstrFlags::N_NORMAL |
SIInstrFlags::N_SUBNORMAL |
SIInstrFlags::N_ZERO |
SIInstrFlags::P_ZERO |
SIInstrFlags::P_SUBNORMAL |
SIInstrFlags::P_NORMAL;
static_assert(((~(SIInstrFlags::S_NAN |
SIInstrFlags::Q_NAN |
SIInstrFlags::N_INFINITY |
SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
"mask not equal");
SDLoc DL(N);
return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
X, DAG.getConstant(Mask, DL, MVT::i32));
}
}
}
if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS)
std::swap(LHS, RHS);
if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS &&
RHS.hasOneUse()) {
ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
// and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan)
// and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan)
const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask &&
(RHS.getOperand(0) == LHS.getOperand(0) &&
LHS.getOperand(0) == LHS.getOperand(1))) {
const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN;
unsigned NewMask = LCC == ISD::SETO ?
Mask->getZExtValue() & ~OrdMask :
Mask->getZExtValue() & OrdMask;
SDLoc DL(N);
return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0),
DAG.getConstant(NewMask, DL, MVT::i32));
}
}
if (VT == MVT::i32 &&
(RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) {
// and x, (sext cc from i1) => select cc, x, 0
if (RHS.getOpcode() != ISD::SIGN_EXTEND)
std::swap(LHS, RHS);
if (isBoolSGPR(RHS.getOperand(0)))
return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0),
LHS, DAG.getConstant(0, SDLoc(N), MVT::i32));
}
// and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) {
uint32_t LHSMask = getPermuteMask(DAG, LHS);
uint32_t RHSMask = getPermuteMask(DAG, RHS);
if (LHSMask != ~0u && RHSMask != ~0u) {
// Canonicalize the expression in an attempt to have fewer unique masks
// and therefore fewer registers used to hold the masks.
if (LHSMask > RHSMask) {
std::swap(LHSMask, RHSMask);
std::swap(LHS, RHS);
}
// Select 0xc for each lane used from source operand. Zero has 0xc mask
// set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
// Check of we need to combine values from two sources within a byte.
if (!(LHSUsedLanes & RHSUsedLanes) &&
// If we select high and lower word keep it for SDWA.
// TODO: teach SDWA to work with v_perm_b32 and remove the check.
!(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
// Each byte in each mask is either selector mask 0-3, or has higher
// bits set in either of masks, which can be 0xff for 0xff or 0x0c for
// zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise
// mask which is not 0xff wins. By anding both masks we have a correct
// result except that 0x0c shall be corrected to give 0x0c only.
uint32_t Mask = LHSMask & RHSMask;
for (unsigned I = 0; I < 32; I += 8) {
uint32_t ByteSel = 0xff << I;
if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c)
Mask &= (0x0c << I) & 0xffffffff;
}
// Add 4 to each active LHS lane. It will not affect any existing 0xff
// or 0x0c.
uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404);
SDLoc DL(N);
return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
LHS.getOperand(0), RHS.getOperand(0),
DAG.getConstant(Sel, DL, MVT::i32));
}
}
}
return SDValue();
}
SDValue SITargetLowering::performOrCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
EVT VT = N->getValueType(0);
if (VT == MVT::i1) {
// or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
SDValue Src = LHS.getOperand(0);
if (Src != RHS.getOperand(0))
return SDValue();
const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
if (!CLHS || !CRHS)
return SDValue();
// Only 10 bits are used.
static const uint32_t MaxMask = 0x3ff;
uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
SDLoc DL(N);
return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
Src, DAG.getConstant(NewMask, DL, MVT::i32));
}
return SDValue();
}
// or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() &&
LHS.getOpcode() == AMDGPUISD::PERM &&
isa<ConstantSDNode>(LHS.getOperand(2))) {
uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1));
if (!Sel)
return SDValue();
Sel |= LHS.getConstantOperandVal(2);
SDLoc DL(N);
return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
}
// or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) {
uint32_t LHSMask = getPermuteMask(DAG, LHS);
uint32_t RHSMask = getPermuteMask(DAG, RHS);
if (LHSMask != ~0u && RHSMask != ~0u) {
// Canonicalize the expression in an attempt to have fewer unique masks
// and therefore fewer registers used to hold the masks.
if (LHSMask > RHSMask) {
std::swap(LHSMask, RHSMask);
std::swap(LHS, RHS);
}
// Select 0xc for each lane used from source operand. Zero has 0xc mask
// set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
// Check of we need to combine values from two sources within a byte.
if (!(LHSUsedLanes & RHSUsedLanes) &&
// If we select high and lower word keep it for SDWA.
// TODO: teach SDWA to work with v_perm_b32 and remove the check.
!(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
// Kill zero bytes selected by other mask. Zero value is 0xc.
LHSMask &= ~RHSUsedLanes;
RHSMask &= ~LHSUsedLanes;
// Add 4 to each active LHS lane
LHSMask |= LHSUsedLanes & 0x04040404;
// Combine masks
uint32_t Sel = LHSMask | RHSMask;
SDLoc DL(N);
return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
LHS.getOperand(0), RHS.getOperand(0),
DAG.getConstant(Sel, DL, MVT::i32));
}
}
}
if (VT != MVT::i64)
return SDValue();
// TODO: This could be a generic combine with a predicate for extracting the
// high half of an integer being free.
// (or i64:x, (zero_extend i32:y)) ->
// i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
RHS.getOpcode() != ISD::ZERO_EXTEND)
std::swap(LHS, RHS);
if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
SDValue ExtSrc = RHS.getOperand(0);
EVT SrcVT = ExtSrc.getValueType();
if (SrcVT == MVT::i32) {
SDLoc SL(N);
SDValue LowLHS, HiBits;
std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
DCI.AddToWorklist(LowOr.getNode());
DCI.AddToWorklist(HiBits.getNode());
SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
LowOr, HiBits);
return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
}
}
const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (CRHS) {
if (SDValue Split
= splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS))
return Split;
}
return SDValue();
}
SDValue SITargetLowering::performXorCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
EVT VT = N->getValueType(0);
if (VT != MVT::i64)
return SDValue();
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
if (CRHS) {
if (SDValue Split
= splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
return Split;
}
return SDValue();
}
// Instructions that will be lowered with a final instruction that zeros the
// high result bits.
// XXX - probably only need to list legal operations.
static bool fp16SrcZerosHighBits(unsigned Opc) {
switch (Opc) {
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::FDIV:
case ISD::FREM:
case ISD::FMA:
case ISD::FMAD:
case ISD::FCANONICALIZE:
case ISD::FP_ROUND:
case ISD::UINT_TO_FP:
case ISD::SINT_TO_FP:
case ISD::FABS:
// Fabs is lowered to a bit operation, but it's an and which will clear the
// high bits anyway.
case ISD::FSQRT:
case ISD::FSIN:
case ISD::FCOS:
case ISD::FPOWI:
case ISD::FPOW:
case ISD::FLOG:
case ISD::FLOG2:
case ISD::FLOG10:
case ISD::FEXP:
case ISD::FEXP2:
case ISD::FCEIL:
case ISD::FTRUNC:
case ISD::FRINT:
case ISD::FNEARBYINT:
case ISD::FROUND:
case ISD::FFLOOR:
case ISD::FMINNUM:
case ISD::FMAXNUM:
case AMDGPUISD::FRACT:
case AMDGPUISD::CLAMP:
case AMDGPUISD::COS_HW:
case AMDGPUISD::SIN_HW:
case AMDGPUISD::FMIN3:
case AMDGPUISD::FMAX3:
case AMDGPUISD::FMED3:
case AMDGPUISD::FMAD_FTZ:
case AMDGPUISD::RCP:
case AMDGPUISD::RSQ:
case AMDGPUISD::RCP_IFLAG:
case AMDGPUISD::LDEXP:
return true;
default:
// fcopysign, select and others may be lowered to 32-bit bit operations
// which don't zero the high bits.
return false;
}
}
SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
if (!Subtarget->has16BitInsts() ||
DCI.getDAGCombineLevel() < AfterLegalizeDAG)
return SDValue();
EVT VT = N->getValueType(0);
if (VT != MVT::i32)
return SDValue();
SDValue Src = N->getOperand(0);
if (Src.getValueType() != MVT::i16)
return SDValue();
// (i32 zext (i16 (bitcast f16:$src))) -> fp16_zext $src
// FIXME: It is not universally true that the high bits are zeroed on gfx9.
if (Src.getOpcode() == ISD::BITCAST) {
SDValue BCSrc = Src.getOperand(0);
if (BCSrc.getValueType() == MVT::f16 &&
fp16SrcZerosHighBits(BCSrc.getOpcode()))
return DCI.DAG.getNode(AMDGPUISD::FP16_ZEXT, SDLoc(N), VT, BCSrc);
}
return SDValue();
}
SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N,
DAGCombinerInfo &DCI)
const {
SDValue Src = N->getOperand(0);
auto *VTSign = cast<VTSDNode>(N->getOperand(1));
if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE &&
VTSign->getVT() == MVT::i8) ||
(Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT &&
VTSign->getVT() == MVT::i16)) &&
Src.hasOneUse()) {
auto *M = cast<MemSDNode>(Src);
SDValue Ops[] = {
Src.getOperand(0), // Chain
Src.getOperand(1), // rsrc
Src.getOperand(2), // vindex
Src.getOperand(3), // voffset
Src.getOperand(4), // soffset
Src.getOperand(5), // offset
Src.getOperand(6),
Src.getOperand(7)
};
// replace with BUFFER_LOAD_BYTE/SHORT
SDVTList ResList = DCI.DAG.getVTList(MVT::i32,
Src.getOperand(0).getValueType());
unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ?
AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT;
SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N),
ResList,
Ops, M->getMemoryVT(),
M->getMemOperand());
return DCI.DAG.getMergeValues({BufferLoadSignExt,
BufferLoadSignExt.getValue(1)}, SDLoc(N));
}
return SDValue();
}
SDValue SITargetLowering::performClassCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDValue Mask = N->getOperand(1);
// fp_class x, 0 -> false
if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
if (CMask->isNullValue())
return DAG.getConstant(0, SDLoc(N), MVT::i1);
}
if (N->getOperand(0).isUndef())
return DAG.getUNDEF(MVT::i1);
return SDValue();
}
SDValue SITargetLowering::performRcpCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
EVT VT = N->getValueType(0);
SDValue N0 = N->getOperand(0);
if (N0.isUndef())
return N0;
if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP ||
N0.getOpcode() == ISD::SINT_TO_FP)) {
return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0,
N->getFlags());
}
return AMDGPUTargetLowering::performRcpCombine(N, DCI);
}
bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op,
unsigned MaxDepth) const {
unsigned Opcode = Op.getOpcode();
if (Opcode == ISD::FCANONICALIZE)
return true;
if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
auto F = CFP->getValueAPF();
if (F.isNaN() && F.isSignaling())
return false;
return !F.isDenormal() || denormalsEnabledForType(Op.getValueType());
}
// If source is a result of another standard FP operation it is already in
// canonical form.
if (MaxDepth == 0)
return false;
switch (Opcode) {
// These will flush denorms if required.
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::FCEIL:
case ISD::FFLOOR:
case ISD::FMA:
case ISD::FMAD:
case ISD::FSQRT:
case ISD::FDIV:
case ISD::FREM:
case ISD::FP_ROUND:
case ISD::FP_EXTEND:
case AMDGPUISD::FMUL_LEGACY:
case AMDGPUISD::FMAD_FTZ:
case AMDGPUISD::RCP:
case AMDGPUISD::RSQ:
case AMDGPUISD::RSQ_CLAMP:
case AMDGPUISD::RCP_LEGACY:
case AMDGPUISD::RSQ_LEGACY:
case AMDGPUISD::RCP_IFLAG:
case AMDGPUISD::TRIG_PREOP:
case AMDGPUISD::DIV_SCALE:
case AMDGPUISD::DIV_FMAS:
case AMDGPUISD::DIV_FIXUP:
case AMDGPUISD::FRACT:
case AMDGPUISD::LDEXP:
case AMDGPUISD::CVT_PKRTZ_F16_F32:
case AMDGPUISD::CVT_F32_UBYTE0:
case AMDGPUISD::CVT_F32_UBYTE1:
case AMDGPUISD::CVT_F32_UBYTE2:
case AMDGPUISD::CVT_F32_UBYTE3:
return true;
// It can/will be lowered or combined as a bit operation.
// Need to check their input recursively to handle.
case ISD::FNEG:
case ISD::FABS:
case ISD::FCOPYSIGN:
return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
case ISD::FSIN:
case ISD::FCOS:
case ISD::FSINCOS:
return Op.getValueType().getScalarType() != MVT::f16;
case ISD::FMINNUM:
case ISD::FMAXNUM:
case ISD::FMINNUM_IEEE:
case ISD::FMAXNUM_IEEE:
case AMDGPUISD::CLAMP:
case AMDGPUISD::FMED3:
case AMDGPUISD::FMAX3:
case AMDGPUISD::FMIN3: {
// FIXME: Shouldn't treat the generic operations different based these.
// However, we aren't really required to flush the result from
// minnum/maxnum..
// snans will be quieted, so we only need to worry about denormals.
if (Subtarget->supportsMinMaxDenormModes() ||
denormalsEnabledForType(Op.getValueType()))
return true;
// Flushing may be required.
// In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such
// targets need to check their input recursively.
// FIXME: Does this apply with clamp? It's implemented with max.
for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) {
if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1))
return false;
}
return true;
}
case ISD::SELECT: {
return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) &&
isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1);
}
case ISD::BUILD_VECTOR: {
for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
SDValue SrcOp = Op.getOperand(i);
if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1))
return false;
}
return true;
}
case ISD::EXTRACT_VECTOR_ELT:
case ISD::EXTRACT_SUBVECTOR: {
return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
}
case ISD::INSERT_VECTOR_ELT: {
return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) &&
isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1);
}
case ISD::UNDEF:
// Could be anything.
return false;
case ISD::BITCAST: {
// Hack round the mess we make when legalizing extract_vector_elt
SDValue Src = Op.getOperand(0);
if (Src.getValueType() == MVT::i16 &&
Src.getOpcode() == ISD::TRUNCATE) {
SDValue TruncSrc = Src.getOperand(0);
if (TruncSrc.getValueType() == MVT::i32 &&
TruncSrc.getOpcode() == ISD::BITCAST &&
TruncSrc.getOperand(0).getValueType() == MVT::v2f16) {
return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1);
}
}
return false;
}
case ISD::INTRINSIC_WO_CHAIN: {
unsigned IntrinsicID
= cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
// TODO: Handle more intrinsics
switch (IntrinsicID) {
case Intrinsic::amdgcn_cvt_pkrtz:
case Intrinsic::amdgcn_cubeid:
case Intrinsic::amdgcn_frexp_mant:
case Intrinsic::amdgcn_fdot2:
return true;
default:
break;
}
LLVM_FALLTHROUGH;
}
default:
return denormalsEnabledForType(Op.getValueType()) &&
DAG.isKnownNeverSNaN(Op);
}
llvm_unreachable("invalid operation");
}
// Constant fold canonicalize.
SDValue SITargetLowering::getCanonicalConstantFP(
SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const {
// Flush denormals to 0 if not enabled.
if (C.isDenormal() && !denormalsEnabledForType(VT))
return DAG.getConstantFP(0.0, SL, VT);
if (C.isNaN()) {
APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
if (C.isSignaling()) {
// Quiet a signaling NaN.
// FIXME: Is this supposed to preserve payload bits?
return DAG.getConstantFP(CanonicalQNaN, SL, VT);
}
// Make sure it is the canonical NaN bitpattern.
//
// TODO: Can we use -1 as the canonical NaN value since it's an inline
// immediate?
if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
return DAG.getConstantFP(CanonicalQNaN, SL, VT);
}
// Already canonical.
return DAG.getConstantFP(C, SL, VT);
}
static bool vectorEltWillFoldAway(SDValue Op) {
return Op.isUndef() || isa<ConstantFPSDNode>(Op);
}
SDValue SITargetLowering::performFCanonicalizeCombine(
SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fcanonicalize undef -> qnan
if (N0.isUndef()) {
APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT));
return DAG.getConstantFP(QNaN, SDLoc(N), VT);
}
if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) {
EVT VT = N->getValueType(0);
return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF());
}
// fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x),
// (fcanonicalize k)
//
// fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0
// TODO: This could be better with wider vectors that will be split to v2f16,
// and to consider uses since there aren't that many packed operations.
if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 &&
isTypeLegal(MVT::v2f16)) {
SDLoc SL(N);
SDValue NewElts[2];
SDValue Lo = N0.getOperand(0);
SDValue Hi = N0.getOperand(1);
EVT EltVT = Lo.getValueType();
if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) {
for (unsigned I = 0; I != 2; ++I) {
SDValue Op = N0.getOperand(I);
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT,
CFP->getValueAPF());
} else if (Op.isUndef()) {
// Handled below based on what the other operand is.
NewElts[I] = Op;
} else {
NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op);
}
}
// If one half is undef, and one is constant, perfer a splat vector rather
// than the normal qNaN. If it's a register, prefer 0.0 since that's
// cheaper to use and may be free with a packed operation.
if (NewElts[0].isUndef()) {
if (isa<ConstantFPSDNode>(NewElts[1]))
NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ?
NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT);
}
if (NewElts[1].isUndef()) {
NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ?
NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT);
}
return DAG.getBuildVector(VT, SL, NewElts);
}
}
unsigned SrcOpc = N0.getOpcode();
// If it's free to do so, push canonicalizes further up the source, which may
// find a canonical source.
//
// TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for
// sNaNs.
if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) {
auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
if (CRHS && N0.hasOneUse()) {
SDLoc SL(N);
SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT,
N0.getOperand(0));
SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF());
DCI.AddToWorklist(Canon0.getNode());
return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1);
}
}
return isCanonicalized(DAG, N0) ? N0 : SDValue();
}
static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
switch (Opc) {
case ISD::FMAXNUM:
case ISD::FMAXNUM_IEEE:
return AMDGPUISD::FMAX3;
case ISD::SMAX:
return AMDGPUISD::SMAX3;
case ISD::UMAX:
return AMDGPUISD::UMAX3;
case ISD::FMINNUM:
case ISD::FMINNUM_IEEE:
return AMDGPUISD::FMIN3;
case ISD::SMIN:
return AMDGPUISD::SMIN3;
case ISD::UMIN:
return AMDGPUISD::UMIN3;
default:
llvm_unreachable("Not a min/max opcode");
}
}
SDValue SITargetLowering::performIntMed3ImmCombine(
SelectionDAG &DAG, const SDLoc &SL,
SDValue Op0, SDValue Op1, bool Signed) const {
ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
if (!K1)
return SDValue();
ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
if (!K0)
return SDValue();
if (Signed) {
if (K0->getAPIntValue().sge(K1->getAPIntValue()))
return SDValue();
} else {
if (K0->getAPIntValue().uge(K1->getAPIntValue()))
return SDValue();
}
EVT VT = K0->getValueType(0);
unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) {
return DAG.getNode(Med3Opc, SL, VT,
Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
}
// If there isn't a 16-bit med3 operation, convert to 32-bit.
MVT NVT = MVT::i32;
unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0));
SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1));
SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1);
SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3);
return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3);
}
static ConstantFPSDNode *getSplatConstantFP(SDValue Op) {
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
return C;
if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) {
if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
return C;
}
return nullptr;
}
SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
const SDLoc &SL,
SDValue Op0,
SDValue Op1) const {
ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
if (!K1)
return SDValue();
ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
if (!K0)
return SDValue();
// Ordered >= (although NaN inputs should have folded away by now).
APFloat::cmpResult Cmp = K0->getValueAPF().compare(K1->getValueAPF());
if (Cmp == APFloat::cmpGreaterThan)
return SDValue();
const MachineFunction &MF = DAG.getMachineFunction();
const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
// TODO: Check IEEE bit enabled?
EVT VT = Op0.getValueType();
if (Info->getMode().DX10Clamp) {
// If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
// hardware fmed3 behavior converting to a min.
// FIXME: Should this be allowing -0.0?
if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
}
// med3 for f16 is only available on gfx9+, and not available for v2f16.
if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
// This isn't safe with signaling NaNs because in IEEE mode, min/max on a
// signaling NaN gives a quiet NaN. The quiet NaN input to the min would
// then give the other result, which is different from med3 with a NaN
// input.
SDValue Var = Op0.getOperand(0);
if (!DAG.isKnownNeverSNaN(Var))
return SDValue();
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
if ((!K0->hasOneUse() ||
TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) &&
(!K1->hasOneUse() ||
TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) {
return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
Var, SDValue(K0, 0), SDValue(K1, 0));
}
}
return SDValue();
}
SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
EVT VT = N->getValueType(0);
unsigned Opc = N->getOpcode();
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
// Only do this if the inner op has one use since this will just increases
// register pressure for no benefit.
if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY &&
!VT.isVector() &&
(VT == MVT::i32 || VT == MVT::f32 ||
((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) {
// max(max(a, b), c) -> max3(a, b, c)
// min(min(a, b), c) -> min3(a, b, c)
if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
SDLoc DL(N);
return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
DL,
N->getValueType(0),
Op0.getOperand(0),
Op0.getOperand(1),
Op1);
}
// Try commuted.
// max(a, max(b, c)) -> max3(a, b, c)
// min(a, min(b, c)) -> min3(a, b, c)
if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
SDLoc DL(N);
return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
DL,
N->getValueType(0),
Op0,
Op1.getOperand(0),
Op1.getOperand(1));
}
}
// min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
return Med3;
}
if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
return Med3;
}
// fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
(Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) ||
(Opc == AMDGPUISD::FMIN_LEGACY &&
Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
(VT == MVT::f32 || VT == MVT::f64 ||
(VT == MVT::f16 && Subtarget->has16BitInsts()) ||
(VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
Op0.hasOneUse()) {
if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
return Res;
}
return SDValue();
}
static bool isClampZeroToOne(SDValue A, SDValue B) {
if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
// FIXME: Should this be allowing -0.0?
return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
(CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
}
}
return false;
}
// FIXME: Should only worry about snans for version with chain.
SDValue SITargetLowering::performFMed3Combine(SDNode *N,
DAGCombinerInfo &DCI) const {
EVT VT = N->getValueType(0);
// v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
// NaNs. With a NaN input, the order of the operands may change the result.
SelectionDAG &DAG = DCI.DAG;
SDLoc SL(N);
SDValue Src0 = N->getOperand(0);
SDValue Src1 = N->getOperand(1);
SDValue Src2 = N->getOperand(2);
if (isClampZeroToOne(Src0, Src1)) {
// const_a, const_b, x -> clamp is safe in all cases including signaling
// nans.
// FIXME: Should this be allowing -0.0?
return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
}
const MachineFunction &MF = DAG.getMachineFunction();
const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
// FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
// handling no dx10-clamp?
if (Info->getMode().DX10Clamp) {
// If NaNs is clamped to 0, we are free to reorder the inputs.
if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
std::swap(Src0, Src1);
if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
std::swap(Src1, Src2);
if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
std::swap(Src0, Src1);
if (isClampZeroToOne(Src1, Src2))
return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
}
return SDValue();
}
SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SDValue Src0 = N->getOperand(0);
SDValue Src1 = N->getOperand(1);
if (Src0.isUndef() && Src1.isUndef())
return DCI.DAG.getUNDEF(N->getValueType(0));
return SDValue();
}
SDValue SITargetLowering::performExtractVectorEltCombine(
SDNode *N, DAGCombinerInfo &DCI) const {
SDValue Vec = N->getOperand(0);
SelectionDAG &DAG = DCI.DAG;
EVT VecVT = Vec.getValueType();
EVT EltVT = VecVT.getVectorElementType();
if ((Vec.getOpcode() == ISD::FNEG ||
Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) {
SDLoc SL(N);
EVT EltVT = N->getValueType(0);
SDValue Idx = N->getOperand(1);
SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
Vec.getOperand(0), Idx);
return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt);
}
// ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx)
// =>
// Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx)
// Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx)
// ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt
if (Vec.hasOneUse() && DCI.isBeforeLegalize()) {
SDLoc SL(N);
EVT EltVT = N->getValueType(0);
SDValue Idx = N->getOperand(1);
unsigned Opc = Vec.getOpcode();
switch(Opc) {
default:
break;
// TODO: Support other binary operations.
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::ADD:
case ISD::UMIN:
case ISD::UMAX:
case ISD::SMIN:
case ISD::SMAX:
case ISD::FMAXNUM:
case ISD::FMINNUM:
case ISD::FMAXNUM_IEEE:
case ISD::FMINNUM_IEEE: {
SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
Vec.getOperand(0), Idx);
SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
Vec.getOperand(1), Idx);
DCI.AddToWorklist(Elt0.getNode());
DCI.AddToWorklist(Elt1.getNode());
return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags());
}
}
}
unsigned VecSize = VecVT.getSizeInBits();
unsigned EltSize = EltVT.getSizeInBits();
// EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx)
// This elminates non-constant index and subsequent movrel or scratch access.
// Sub-dword vectors of size 2 dword or less have better implementation.
// Vectors of size bigger than 8 dwords would yield too many v_cndmask_b32
// instructions.
if (VecSize <= 256 && (VecSize > 64 || EltSize >= 32) &&
!isa<ConstantSDNode>(N->getOperand(1))) {
SDLoc SL(N);
SDValue Idx = N->getOperand(1);
EVT IdxVT = Idx.getValueType();
SDValue V;
for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
SDValue IC = DAG.getConstant(I, SL, IdxVT);
SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
if (I == 0)
V = Elt;
else
V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ);
}
return V;
}
if (!DCI.isBeforeLegalize())
return SDValue();
// Try to turn sub-dword accesses of vectors into accesses of the same 32-bit
// elements. This exposes more load reduction opportunities by replacing
// multiple small extract_vector_elements with a single 32-bit extract.
auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (isa<MemSDNode>(Vec) &&
EltSize <= 16 &&
EltVT.isByteSized() &&
VecSize > 32 &&
VecSize % 32 == 0 &&
Idx) {
EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT);
unsigned BitIndex = Idx->getZExtValue() * EltSize;
unsigned EltIdx = BitIndex / 32;
unsigned LeftoverBitIdx = BitIndex % 32;
SDLoc SL(N);
SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec);
DCI.AddToWorklist(Cast.getNode());
SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast,
DAG.getConstant(EltIdx, SL, MVT::i32));
DCI.AddToWorklist(Elt.getNode());
SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt,
DAG.getConstant(LeftoverBitIdx, SL, MVT::i32));
DCI.AddToWorklist(Srl.getNode());
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl);
DCI.AddToWorklist(Trunc.getNode());
return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc);
}
return SDValue();
}
SDValue
SITargetLowering::performInsertVectorEltCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SDValue Vec = N->getOperand(0);
SDValue Idx = N->getOperand(2);
EVT VecVT = Vec.getValueType();
EVT EltVT = VecVT.getVectorElementType();
unsigned VecSize = VecVT.getSizeInBits();
unsigned EltSize = EltVT.getSizeInBits();
// INSERT_VECTOR_ELT (<n x e>, var-idx)
// => BUILD_VECTOR n x select (e, const-idx)
// This elminates non-constant index and subsequent movrel or scratch access.
// Sub-dword vectors of size 2 dword or less have better implementation.
// Vectors of size bigger than 8 dwords would yield too many v_cndmask_b32
// instructions.
if (isa<ConstantSDNode>(Idx) ||
VecSize > 256 || (VecSize <= 64 && EltSize < 32))
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc SL(N);
SDValue Ins = N->getOperand(1);
EVT IdxVT = Idx.getValueType();
SmallVector<SDValue, 16> Ops;
for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
SDValue IC = DAG.getConstant(I, SL, IdxVT);
SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ);
Ops.push_back(V);
}
return DAG.getBuildVector(VecVT, SL, Ops);
}
unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
const SDNode *N0,
const SDNode *N1) const {
EVT VT = N0->getValueType(0);
// Only do this if we are not trying to support denormals. v_mad_f32 does not
// support denormals ever.
if ((VT == MVT::f32 && !Subtarget->hasFP32Denormals()) ||
(VT == MVT::f16 && !Subtarget->hasFP16Denormals()))
return ISD::FMAD;
const TargetOptions &Options = DAG.getTarget().Options;
if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
(N0->getFlags().hasAllowContract() &&
N1->getFlags().hasAllowContract())) &&
isFMAFasterThanFMulAndFAdd(VT)) {
return ISD::FMA;
}
return 0;
}
// For a reassociatable opcode perform:
// op x, (op y, z) -> op (op x, z), y, if x and z are uniform
SDValue SITargetLowering::reassociateScalarOps(SDNode *N,
SelectionDAG &DAG) const {
EVT VT = N->getValueType(0);
if (VT != MVT::i32 && VT != MVT::i64)
return SDValue();
unsigned Opc = N->getOpcode();
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
if (!(Op0->isDivergent() ^ Op1->isDivergent()))
return SDValue();
if (Op0->isDivergent())
std::swap(Op0, Op1);
if (Op1.getOpcode() != Opc || !Op1.hasOneUse())
return SDValue();
SDValue Op2 = Op1.getOperand(1);
Op1 = Op1.getOperand(0);
if (!(Op1->isDivergent() ^ Op2->isDivergent()))
return SDValue();
if (Op1->isDivergent())
std::swap(Op1, Op2);
// If either operand is constant this will conflict with
// DAGCombiner::ReassociateOps().
if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
DAG.isConstantIntBuildVectorOrConstantInt(Op1))
return SDValue();
SDLoc SL(N);
SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1);
return DAG.getNode(Opc, SL, VT, Add1, Op2);
}
static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL,
EVT VT,
SDValue N0, SDValue N1, SDValue N2,
bool Signed) {
unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32;
SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
}
SDValue SITargetLowering::performAddCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
EVT VT = N->getValueType(0);
SDLoc SL(N);
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL)
&& Subtarget->hasMad64_32() &&
!VT.isVector() && VT.getScalarSizeInBits() > 32 &&
VT.getScalarSizeInBits() <= 64) {
if (LHS.getOpcode() != ISD::MUL)
std::swap(LHS, RHS);
SDValue MulLHS = LHS.getOperand(0);
SDValue MulRHS = LHS.getOperand(1);
SDValue AddRHS = RHS;
// TODO: Maybe restrict if SGPR inputs.
if (numBitsUnsigned(MulLHS, DAG) <= 32 &&
numBitsUnsigned(MulRHS, DAG) <= 32) {
MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32);
MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32);
AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64);
return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false);
}
if (numBitsSigned(MulLHS, DAG) < 32 && numBitsSigned(MulRHS, DAG) < 32) {
MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32);
MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32);
AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64);
return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true);
}
return SDValue();
}
if (SDValue V = reassociateScalarOps(N, DAG)) {
return V;
}
if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
return SDValue();
// add x, zext (setcc) => addcarry x, 0, setcc
// add x, sext (setcc) => subcarry x, 0, setcc
unsigned Opc = LHS.getOpcode();
if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND ||
Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY)
std::swap(RHS, LHS);
Opc = RHS.getOpcode();
switch (Opc) {
default: break;
case ISD::ZERO_EXTEND:
case ISD::SIGN_EXTEND:
case ISD::ANY_EXTEND: {
auto Cond = RHS.getOperand(0);
if (!isBoolSGPR(Cond))
break;
SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY;
return DAG.getNode(Opc, SL, VTList, Args);
}
case ISD::ADDCARRY: {
// add x, (addcarry y, 0, cc) => addcarry x, y, cc
auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
if (!C || C->getZExtValue() != 0) break;
SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) };
return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args);
}
}
return SDValue();
}
SDValue SITargetLowering::performSubCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
EVT VT = N->getValueType(0);
if (VT != MVT::i32)
return SDValue();
SDLoc SL(N);
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
if (LHS.getOpcode() == ISD::SUBCARRY) {
// sub (subcarry x, 0, cc), y => subcarry x, y, cc
auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
if (!C || !C->isNullValue())
return SDValue();
SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) };
return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args);
}
return SDValue();
}
SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
if (N->getValueType(0) != MVT::i32)
return SDValue();
auto C = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (!C || C->getZExtValue() != 0)
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDValue LHS = N->getOperand(0);
// addcarry (add x, y), 0, cc => addcarry x, y, cc
// subcarry (sub x, y), 0, cc => subcarry x, y, cc
unsigned LHSOpc = LHS.getOpcode();
unsigned Opc = N->getOpcode();
if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) ||
(LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) {
SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) };
return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
}
return SDValue();
}
SDValue SITargetLowering::performFAddCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
return SDValue();
SelectionDAG &DAG = DCI.DAG;
EVT VT = N->getValueType(0);
SDLoc SL(N);
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
// These should really be instruction patterns, but writing patterns with
// source modiifiers is a pain.
// fadd (fadd (a, a), b) -> mad 2.0, a, b
if (LHS.getOpcode() == ISD::FADD) {
SDValue A = LHS.getOperand(0);
if (A == LHS.getOperand(1)) {
unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
if (FusedOp != 0) {
const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
}
}
}
// fadd (b, fadd (a, a)) -> mad 2.0, a, b
if (RHS.getOpcode() == ISD::FADD) {
SDValue A = RHS.getOperand(0);
if (A == RHS.getOperand(1)) {
unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
if (FusedOp != 0) {
const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
}
}
}
return SDValue();
}
SDValue SITargetLowering::performFSubCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc SL(N);
EVT VT = N->getValueType(0);
assert(!VT.isVector());
// Try to get the fneg to fold into the source modifier. This undoes generic
// DAG combines and folds them into the mad.
//
// Only do this if we are not trying to support denormals. v_mad_f32 does
// not support denormals ever.
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
if (LHS.getOpcode() == ISD::FADD) {
// (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
SDValue A = LHS.getOperand(0);
if (A == LHS.getOperand(1)) {
unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
if (FusedOp != 0){
const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
}
}
}
if (RHS.getOpcode() == ISD::FADD) {
// (fsub c, (fadd a, a)) -> mad -2.0, a, c
SDValue A = RHS.getOperand(0);
if (A == RHS.getOperand(1)) {
unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
if (FusedOp != 0){
const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
}
}
}
return SDValue();
}
SDValue SITargetLowering::performFMACombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
EVT VT = N->getValueType(0);
SDLoc SL(N);
if (!Subtarget->hasDot2Insts() || VT != MVT::f32)
return SDValue();
// FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) ->
// FDOT2((V2F16)S0, (V2F16)S1, (F32)z))
SDValue Op1 = N->getOperand(0);
SDValue Op2 = N->getOperand(1);
SDValue FMA = N->getOperand(2);
if (FMA.getOpcode() != ISD::FMA ||
Op1.getOpcode() != ISD::FP_EXTEND ||
Op2.getOpcode() != ISD::FP_EXTEND)
return SDValue();
// fdot2_f32_f16 always flushes fp32 denormal operand and output to zero,
// regardless of the denorm mode setting. Therefore, unsafe-fp-math/fp-contract
// is sufficient to allow generaing fdot2.
const TargetOptions &Options = DAG.getTarget().Options;
if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
(N->getFlags().hasAllowContract() &&
FMA->getFlags().hasAllowContract())) {
Op1 = Op1.getOperand(0);
Op2 = Op2.getOperand(0);
if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return SDValue();
SDValue Vec1 = Op1.getOperand(0);
SDValue Idx1 = Op1.getOperand(1);
SDValue Vec2 = Op2.getOperand(0);
SDValue FMAOp1 = FMA.getOperand(0);
SDValue FMAOp2 = FMA.getOperand(1);
SDValue FMAAcc = FMA.getOperand(2);
if (FMAOp1.getOpcode() != ISD::FP_EXTEND ||
FMAOp2.getOpcode() != ISD::FP_EXTEND)
return SDValue();
FMAOp1 = FMAOp1.getOperand(0);
FMAOp2 = FMAOp2.getOperand(0);
if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return SDValue();
SDValue Vec3 = FMAOp1.getOperand(0);
SDValue Vec4 = FMAOp2.getOperand(0);
SDValue Idx2 = FMAOp1.getOperand(1);
if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) ||
// Idx1 and Idx2 cannot be the same.
Idx1 == Idx2)
return SDValue();
if (Vec1 == Vec2 || Vec3 == Vec4)
return SDValue();
if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16)
return SDValue();
if ((Vec1 == Vec3 && Vec2 == Vec4) ||
(Vec1 == Vec4 && Vec2 == Vec3)) {
return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc,
DAG.getTargetConstant(0, SL, MVT::i1));
}
}
return SDValue();
}
SDValue SITargetLowering::performSetCCCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDLoc SL(N);
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
EVT VT = LHS.getValueType();
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
auto CRHS = dyn_cast<ConstantSDNode>(RHS);
if (!CRHS) {
CRHS = dyn_cast<ConstantSDNode>(LHS);
if (CRHS) {
std::swap(LHS, RHS);
CC = getSetCCSwappedOperands(CC);
}
}
if (CRHS) {
if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
isBoolSGPR(LHS.getOperand(0))) {
// setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
// setcc (sext from i1 cc), -1, eq|sle|uge) => cc
// setcc (sext from i1 cc), 0, eq|sge|ule) => not cc => xor cc, -1
// setcc (sext from i1 cc), 0, ne|ugt|slt) => cc
if ((CRHS->isAllOnesValue() &&
(CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
(CRHS->isNullValue() &&
(CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
DAG.getConstant(-1, SL, MVT::i1));
if ((CRHS->isAllOnesValue() &&
(CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
(CRHS->isNullValue() &&
(CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
return LHS.getOperand(0);
}
uint64_t CRHSVal = CRHS->getZExtValue();
if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
LHS.getOpcode() == ISD::SELECT &&
isa<ConstantSDNode>(LHS.getOperand(1)) &&
isa<ConstantSDNode>(LHS.getOperand(2)) &&
LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) &&
isBoolSGPR(LHS.getOperand(0))) {
// Given CT != FT:
// setcc (select cc, CT, CF), CF, eq => xor cc, -1
// setcc (select cc, CT, CF), CF, ne => cc
// setcc (select cc, CT, CF), CT, ne => xor cc, -1
// setcc (select cc, CT, CF), CT, eq => cc
uint64_t CT = LHS.getConstantOperandVal(1);
uint64_t CF = LHS.getConstantOperandVal(2);
if ((CF == CRHSVal && CC == ISD::SETEQ) ||
(CT == CRHSVal && CC == ISD::SETNE))
return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
DAG.getConstant(-1, SL, MVT::i1));
if ((CF == CRHSVal && CC == ISD::SETNE) ||
(CT == CRHSVal && CC == ISD::SETEQ))
return LHS.getOperand(0);
}
}
if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() &&
VT != MVT::f16))
return SDValue();
// Match isinf/isfinite pattern
// (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
// (fcmp one (fabs x), inf) -> (fp_class x,
// (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero)
if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) {
const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
if (!CRHS)
return SDValue();
const APFloat &APF = CRHS->getValueAPF();
if (APF.isInfinity() && !APF.isNegative()) {
const unsigned IsInfMask = SIInstrFlags::P_INFINITY |
SIInstrFlags::N_INFINITY;
const unsigned IsFiniteMask = SIInstrFlags::N_ZERO |
SIInstrFlags::P_ZERO |
SIInstrFlags::N_NORMAL |
SIInstrFlags::P_NORMAL |
SIInstrFlags::N_SUBNORMAL |
SIInstrFlags::P_SUBNORMAL;
unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask;
return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
DAG.getConstant(Mask, SL, MVT::i32));
}
}
return SDValue();
}
SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDLoc SL(N);
unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
SDValue Src = N->getOperand(0);
SDValue Srl = N->getOperand(0);
if (Srl.getOpcode() == ISD::ZERO_EXTEND)
Srl = Srl.getOperand(0);
// TODO: Handle (or x, (srl y, 8)) pattern when known bits are zero.
if (Srl.getOpcode() == ISD::SRL) {
// cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
// cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
// cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x
if (const ConstantSDNode *C =
dyn_cast<ConstantSDNode>(Srl.getOperand(1))) {
Srl = DAG.getZExtOrTrunc(Srl.getOperand(0), SDLoc(Srl.getOperand(0)),
EVT(MVT::i32));
unsigned SrcOffset = C->getZExtValue() + 8 * Offset;
if (SrcOffset < 32 && SrcOffset % 8 == 0) {
return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + SrcOffset / 8, SL,
MVT::f32, Srl);
}
}
}
APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
KnownBits Known;
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
!DCI.isBeforeLegalizeOps());
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLI.SimplifyDemandedBits(Src, Demanded, Known, TLO)) {
DCI.CommitTargetLoweringOpt(TLO);
}
return SDValue();
}
SDValue SITargetLowering::performClampCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
if (!CSrc)
return SDValue();
const MachineFunction &MF = DCI.DAG.getMachineFunction();
const APFloat &F = CSrc->getValueAPF();
APFloat Zero = APFloat::getZero(F.getSemantics());
APFloat::cmpResult Cmp0 = F.compare(Zero);
if (Cmp0 == APFloat::cmpLessThan ||
(Cmp0 == APFloat::cmpUnordered &&
MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) {
return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
}
APFloat One(F.getSemantics(), "1.0");
APFloat::cmpResult Cmp1 = F.compare(One);
if (Cmp1 == APFloat::cmpGreaterThan)
return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
return SDValue(CSrc, 0);
}
SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
return SDValue();
switch (N->getOpcode()) {
default:
return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
case ISD::ADD:
return performAddCombine(N, DCI);
case ISD::SUB:
return performSubCombine(N, DCI);
case ISD::ADDCARRY:
case ISD::SUBCARRY:
return performAddCarrySubCarryCombine(N, DCI);
case ISD::FADD:
return performFAddCombine(N, DCI);
case ISD::FSUB:
return performFSubCombine(N, DCI);
case ISD::SETCC:
return performSetCCCombine(N, DCI);
case ISD::FMAXNUM:
case ISD::FMINNUM:
case ISD::FMAXNUM_IEEE:
case ISD::FMINNUM_IEEE:
case ISD::SMAX:
case ISD::SMIN:
case ISD::UMAX:
case ISD::UMIN:
case AMDGPUISD::FMIN_LEGACY:
case AMDGPUISD::FMAX_LEGACY:
return performMinMaxCombine(N, DCI);
case ISD::FMA:
return performFMACombine(N, DCI);
case ISD::LOAD: {
if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI))
return Widended;
LLVM_FALLTHROUGH;
}
case ISD::STORE:
case ISD::ATOMIC_LOAD:
case ISD::ATOMIC_STORE:
case ISD::ATOMIC_CMP_SWAP:
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
case ISD::ATOMIC_SWAP:
case ISD::ATOMIC_LOAD_ADD:
case ISD::ATOMIC_LOAD_SUB:
case ISD::ATOMIC_LOAD_AND:
case ISD::ATOMIC_LOAD_OR:
case ISD::ATOMIC_LOAD_XOR:
case ISD::ATOMIC_LOAD_NAND:
case ISD::ATOMIC_LOAD_MIN:
case ISD::ATOMIC_LOAD_MAX:
case ISD::ATOMIC_LOAD_UMIN:
case ISD::ATOMIC_LOAD_UMAX:
case ISD::ATOMIC_LOAD_FADD:
case AMDGPUISD::ATOMIC_INC:
case AMDGPUISD::ATOMIC_DEC:
case AMDGPUISD::ATOMIC_LOAD_FMIN:
case AMDGPUISD::ATOMIC_LOAD_FMAX: // TODO: Target mem intrinsics.
if (DCI.isBeforeLegalize())
break;
return performMemSDNodeCombine(cast<MemSDNode>(N), DCI);
case ISD::AND:
return performAndCombine(N, DCI);
case ISD::OR:
return performOrCombine(N, DCI);
case ISD::XOR:
return performXorCombine(N, DCI);
case ISD::ZERO_EXTEND:
return performZeroExtendCombine(N, DCI);
case ISD::SIGN_EXTEND_INREG:
return performSignExtendInRegCombine(N , DCI);
case AMDGPUISD::FP_CLASS:
return performClassCombine(N, DCI);
case ISD::FCANONICALIZE:
return performFCanonicalizeCombine(N, DCI);
case AMDGPUISD::RCP:
return performRcpCombine(N, DCI);
case AMDGPUISD::FRACT:
case AMDGPUISD::RSQ:
case AMDGPUISD::RCP_LEGACY:
case AMDGPUISD::RSQ_LEGACY:
case AMDGPUISD::RCP_IFLAG:
case AMDGPUISD::RSQ_CLAMP:
case AMDGPUISD::LDEXP: {
SDValue Src = N->getOperand(0);
if (Src.isUndef())
return Src;
break;
}
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
return performUCharToFloatCombine(N, DCI);
case AMDGPUISD::CVT_F32_UBYTE0:
case AMDGPUISD::CVT_F32_UBYTE1:
case AMDGPUISD::CVT_F32_UBYTE2:
case AMDGPUISD::CVT_F32_UBYTE3:
return performCvtF32UByteNCombine(N, DCI);
case AMDGPUISD::FMED3:
return performFMed3Combine(N, DCI);
case AMDGPUISD::CVT_PKRTZ_F16_F32:
return performCvtPkRTZCombine(N, DCI);
case AMDGPUISD::CLAMP:
return performClampCombine(N, DCI);
case ISD::SCALAR_TO_VECTOR: {
SelectionDAG &DAG = DCI.DAG;
EVT VT = N->getValueType(0);
// v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
if (VT == MVT::v2i16 || VT == MVT::v2f16) {
SDLoc SL(N);
SDValue Src = N->getOperand(0);
EVT EltVT = Src.getValueType();
if (EltVT == MVT::f16)
Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
}
break;
}
case ISD::EXTRACT_VECTOR_ELT:
return performExtractVectorEltCombine(N, DCI);
case ISD::INSERT_VECTOR_ELT:
return performInsertVectorEltCombine(N, DCI);
}
return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
}
/// Helper function for adjustWritemask
static unsigned SubIdx2Lane(unsigned Idx) {
switch (Idx) {
default: return 0;
case AMDGPU::sub0: return 0;
case AMDGPU::sub1: return 1;
case AMDGPU::sub2: return 2;
case AMDGPU::sub3: return 3;
case AMDGPU::sub4: return 4; // Possible with TFE/LWE
}
}
/// Adjust the writemask of MIMG instructions
SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
SelectionDAG &DAG) const {
unsigned Opcode = Node->getMachineOpcode();
// Subtract 1 because the vdata output is not a MachineSDNode operand.
int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1;
if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx))
return Node; // not implemented for D16
SDNode *Users[5] = { nullptr };
unsigned Lane = 0;
unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1;
unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
unsigned NewDmask = 0;
unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1;
unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1;
bool UsesTFC = (Node->getConstantOperandVal(TFEIdx) ||
Node->getConstantOperandVal(LWEIdx)) ? 1 : 0;
unsigned TFCLane = 0;
bool HasChain = Node->getNumValues() > 1;
if (OldDmask == 0) {
// These are folded out, but on the chance it happens don't assert.
return Node;
}
unsigned OldBitsSet = countPopulation(OldDmask);
// Work out which is the TFE/LWE lane if that is enabled.
if (UsesTFC) {
TFCLane = OldBitsSet;
}
// Try to figure out the used register components
for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
I != E; ++I) {
// Don't look at users of the chain.
if (I.getUse().getResNo() != 0)
continue;
// Abort if we can't understand the usage
if (!I->isMachineOpcode() ||
I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
return Node;
// Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
// Note that subregs are packed, i.e. Lane==0 is the first bit set
// in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
// set, etc.
Lane = SubIdx2Lane(I->getConstantOperandVal(1));
// Check if the use is for the TFE/LWE generated result at VGPRn+1.
if (UsesTFC && Lane == TFCLane) {
Users[Lane] = *I;
} else {
// Set which texture component corresponds to the lane.
unsigned Comp;
for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) {
Comp = countTrailingZeros(Dmask);
Dmask &= ~(1 << Comp);
}
// Abort if we have more than one user per component.
if (Users[Lane])
return Node;
Users[Lane] = *I;
NewDmask |= 1 << Comp;
}
}
// Don't allow 0 dmask, as hardware assumes one channel enabled.
bool NoChannels = !NewDmask;
if (NoChannels) {
if (!UsesTFC) {
// No uses of the result and not using TFC. Then do nothing.
return Node;
}
// If the original dmask has one channel - then nothing to do
if (OldBitsSet == 1)
return Node;
// Use an arbitrary dmask - required for the instruction to work
NewDmask = 1;
}
// Abort if there's no change
if (NewDmask == OldDmask)
return Node;
unsigned BitsSet = countPopulation(NewDmask);
// Check for TFE or LWE - increase the number of channels by one to account
// for the extra return value
// This will need adjustment for D16 if this is also included in
// adjustWriteMask (this function) but at present D16 are excluded.
unsigned NewChannels = BitsSet + UsesTFC;
int NewOpcode =
AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels);
assert(NewOpcode != -1 &&
NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&
"failed to find equivalent MIMG op");
// Adjust the writemask in the node
SmallVector<SDValue, 12> Ops;
Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();
MVT ResultVT = NewChannels == 1 ?
SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 :
NewChannels == 5 ? 8 : NewChannels);
SDVTList NewVTList = HasChain ?
DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);
MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node),
NewVTList, Ops);
if (HasChain) {
// Update chain.
DAG.setNodeMemRefs(NewNode, Node->memoperands());
DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
}
if (NewChannels == 1) {
assert(Node->hasNUsesOfValue(1, 0));
SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY,
SDLoc(Node), Users[Lane]->getValueType(0),
SDValue(NewNode, 0));
DAG.ReplaceAllUsesWith(Users[Lane], Copy);
return nullptr;
}
// Update the users of the node with the new indices
for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) {
SDNode *User = Users[i];
if (!User) {
// Handle the special case of NoChannels. We set NewDmask to 1 above, but
// Users[0] is still nullptr because channel 0 doesn't really have a use.
if (i || !NoChannels)
continue;
} else {
SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);
}
switch (Idx) {
default: break;
case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
case AMDGPU::sub3: Idx = AMDGPU::sub4; break;
}
}
DAG.RemoveDeadNode(Node);
return nullptr;
}
static bool isFrameIndexOp(SDValue Op) {
if (Op.getOpcode() == ISD::AssertZext)
Op = Op.getOperand(0);
return isa<FrameIndexSDNode>(Op);
}
/// Legalize target independent instructions (e.g. INSERT_SUBREG)
/// with frame index operands.
/// LLVM assumes that inputs are to these instructions are registers.
SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
SelectionDAG &DAG) const {
if (Node->getOpcode() == ISD::CopyToReg) {
RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
SDValue SrcVal = Node->getOperand(2);
// Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
// to try understanding copies to physical registers.
if (SrcVal.getValueType() == MVT::i1 &&
TargetRegisterInfo::isPhysicalRegister(DestReg->getReg())) {
SDLoc SL(Node);
MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
SDValue VReg = DAG.getRegister(
MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
SDNode *Glued = Node->getGluedNode();
SDValue ToVReg
= DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal,
SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
SDValue ToResultReg
= DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
VReg, ToVReg.getValue(1));
DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
DAG.RemoveDeadNode(Node);
return ToResultReg.getNode();
}
}
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
if (!isFrameIndexOp(Node->getOperand(i))) {
Ops.push_back(Node->getOperand(i));
continue;
}
SDLoc DL(Node);
Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
Node->getOperand(i).getValueType(),
Node->getOperand(i)), 0));
}
return DAG.UpdateNodeOperands(Node, Ops);
}
/// Fold the instructions after selecting them.
/// Returns null if users were already updated.
SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
SelectionDAG &DAG) const {
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
unsigned Opcode = Node->getMachineOpcode();
if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
!TII->isGather4(Opcode)) {
return adjustWritemask(Node, DAG);
}
if (Opcode == AMDGPU::INSERT_SUBREG ||
Opcode == AMDGPU::REG_SEQUENCE) {
legalizeTargetIndependentNode(Node, DAG);
return Node;
}
switch (Opcode) {
case AMDGPU::V_DIV_SCALE_F32:
case AMDGPU::V_DIV_SCALE_F64: {
// Satisfy the operand register constraint when one of the inputs is
// undefined. Ordinarily each undef value will have its own implicit_def of
// a vreg, so force these to use a single register.
SDValue Src0 = Node->getOperand(0);
SDValue Src1 = Node->getOperand(1);
SDValue Src2 = Node->getOperand(2);
if ((Src0.isMachineOpcode() &&
Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
(Src0 == Src1 || Src0 == Src2))
break;
MVT VT = Src0.getValueType().getSimpleVT();
const TargetRegisterClass *RC = getRegClassFor(VT);
MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);
SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node),
UndefReg, Src0, SDValue());
// src0 must be the same register as src1 or src2, even if the value is
// undefined, so make sure we don't violate this constraint.
if (Src0.isMachineOpcode() &&
Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
if (Src1.isMachineOpcode() &&
Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
Src0 = Src1;
else if (Src2.isMachineOpcode() &&
Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
Src0 = Src2;
else {
assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF);
Src0 = UndefReg;
Src1 = UndefReg;
}
} else
break;
SmallVector<SDValue, 4> Ops = { Src0, Src1, Src2 };
for (unsigned I = 3, N = Node->getNumOperands(); I != N; ++I)
Ops.push_back(Node->getOperand(I));
Ops.push_back(ImpDef.getValue(1));
return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
}
default:
break;
}
return Node;
}
/// Assign the register class depending on the number of
/// bits set in the writemask
void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
SDNode *Node) const {
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
if (TII->isVOP3(MI.getOpcode())) {
// Make sure constant bus requirements are respected.
TII->legalizeOperandsVOP3(MRI, MI);
return;
}
// Replace unused atomics with the no return version.
int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode());
if (NoRetAtomicOp != -1) {
if (!Node->hasAnyUseOfValue(0)) {
MI.setDesc(TII->get(NoRetAtomicOp));
MI.RemoveOperand(0);
return;
}
// For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg
// instruction, because the return type of these instructions is a vec2 of
// the memory type, so it can be tied to the input operand.
// This means these instructions always have a use, so we need to add a
// special case to check if the atomic has only one extract_subreg use,
// which itself has no uses.
if ((Node->hasNUsesOfValue(1, 0) &&
Node->use_begin()->isMachineOpcode() &&
Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG &&
!Node->use_begin()->hasAnyUseOfValue(0))) {
unsigned Def = MI.getOperand(0).getReg();
// Change this into a noret atomic.
MI.setDesc(TII->get(NoRetAtomicOp));
MI.RemoveOperand(0);
// If we only remove the def operand from the atomic instruction, the
// extract_subreg will be left with a use of a vreg without a def.
// So we need to insert an implicit_def to avoid machine verifier
// errors.
BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
TII->get(AMDGPU::IMPLICIT_DEF), Def);
}
return;
}
}
static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
uint64_t Val) {
SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
}
MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
const SDLoc &DL,
SDValue Ptr) const {
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
// Build the half of the subregister with the constants before building the
// full 128-bit register. If we are building multiple resource descriptors,
// this will allow CSEing of the 2-component register.
const SDValue Ops0[] = {
DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
buildSMovImm32(DAG, DL, 0),
DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
};
SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
MVT::v2i32, Ops0), 0);
// Combine the constants and the pointer.
const SDValue Ops1[] = {
DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
Ptr,
DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
SubRegHi,
DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
};
return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
}
/// Return a resource descriptor with the 'Add TID' bit enabled
/// The TID (Thread ID) is multiplied by the stride value (bits [61:48]
/// of the resource descriptor) to create an offset, which is added to
/// the resource pointer.
MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
SDValue Ptr, uint32_t RsrcDword1,
uint64_t RsrcDword2And3) const {
SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
if (RsrcDword1) {
PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
DAG.getConstant(RsrcDword1, DL, MVT::i32)),
0);
}
SDValue DataLo = buildSMovImm32(DAG, DL,
RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
const SDValue Ops[] = {
DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
PtrLo,
DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
PtrHi,
DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
DataLo,
DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
DataHi,
DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
};
return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
}
//===----------------------------------------------------------------------===//
// SI Inline Assembly Support
//===----------------------------------------------------------------------===//
std::pair<unsigned, const TargetRegisterClass *>
SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
StringRef Constraint,
MVT VT) const {
const TargetRegisterClass *RC = nullptr;
if (Constraint.size() == 1) {
switch (Constraint[0]) {
default:
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
case 's':
case 'r':
switch (VT.getSizeInBits()) {
default:
return std::make_pair(0U, nullptr);
case 32:
case 16:
RC = &AMDGPU::SReg_32_XM0RegClass;
break;
case 64:
RC = &AMDGPU::SGPR_64RegClass;
break;
case 96:
RC = &AMDGPU::SReg_96RegClass;
break;
case 128:
RC = &AMDGPU::SReg_128RegClass;
break;
case 160:
RC = &AMDGPU::SReg_160RegClass;
break;
case 256:
RC = &AMDGPU::SReg_256RegClass;
break;
case 512:
RC = &AMDGPU::SReg_512RegClass;
break;
}
break;
case 'v':
switch (VT.getSizeInBits()) {
default:
return std::make_pair(0U, nullptr);
case 32:
case 16:
RC = &AMDGPU::VGPR_32RegClass;
break;
case 64:
RC = &AMDGPU::VReg_64RegClass;
break;
case 96:
RC = &AMDGPU::VReg_96RegClass;
break;
case 128:
RC = &AMDGPU::VReg_128RegClass;
break;
case 160:
RC = &AMDGPU::VReg_160RegClass;
break;
case 256:
RC = &AMDGPU::VReg_256RegClass;
break;
case 512:
RC = &AMDGPU::VReg_512RegClass;
break;
}
break;
}
// We actually support i128, i16 and f16 as inline parameters
// even if they are not reported as legal
if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 ||
VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16))
return std::make_pair(0U, RC);
}
if (Constraint.size() > 1) {
if (Constraint[1] == 'v') {
RC = &AMDGPU::VGPR_32RegClass;
} else if (Constraint[1] == 's') {
RC = &AMDGPU::SGPR_32RegClass;
}
if (RC) {
uint32_t Idx;
bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
if (!Failed && Idx < RC->getNumRegs())
return std::make_pair(RC->getRegister(Idx), RC);
}
}
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}
SITargetLowering::ConstraintType
SITargetLowering::getConstraintType(StringRef Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
default: break;
case 's':
case 'v':
return C_RegisterClass;
}
}
return TargetLowering::getConstraintType(Constraint);
}
// Figure out which registers should be reserved for stack access. Only after
// the function is legalized do we know all of the non-spill stack objects or if
// calls are present.
void SITargetLowering::finalizeLowering(MachineFunction &MF) const {
MachineRegisterInfo &MRI = MF.getRegInfo();
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
const MachineFrameInfo &MFI = MF.getFrameInfo();
const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
if (Info->isEntryFunction()) {
// Callable functions have fixed registers used for stack access.
reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
}
// We have to assume the SP is needed in case there are calls in the function
// during lowering. Calls are only detected after the function is
// lowered. We're about to reserve registers, so don't bother using it if we
// aren't really going to use it.
bool NeedSP = !Info->isEntryFunction() ||
MFI.hasVarSizedObjects() ||
MFI.hasCalls();
if (NeedSP) {
unsigned ReservedStackPtrOffsetReg = TRI->reservedStackPtrOffsetReg(MF);
Info->setStackPtrOffsetReg(ReservedStackPtrOffsetReg);
assert(Info->getStackPtrOffsetReg() != Info->getFrameOffsetReg());
assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),
Info->getStackPtrOffsetReg()));
if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG)
MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
}
// We need to worry about replacing the default register with itself in case
// of MIR testcases missing the MFI.
if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG)
MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
if (Info->getFrameOffsetReg() != AMDGPU::FP_REG)
MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
if (Info->getScratchWaveOffsetReg() != AMDGPU::SCRATCH_WAVE_OFFSET_REG) {
MRI.replaceRegWith(AMDGPU::SCRATCH_WAVE_OFFSET_REG,
Info->getScratchWaveOffsetReg());
}
Info->limitOccupancy(MF);
TargetLoweringBase::finalizeLowering(MF);
}
void SITargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
KnownBits &Known,
const APInt &DemandedElts,
const SelectionDAG &DAG,
unsigned Depth) const {
TargetLowering::computeKnownBitsForFrameIndex(Op, Known, DemandedElts,
DAG, Depth);
if (getSubtarget()->enableHugePrivateBuffer())
return;
// Technically it may be possible to have a dispatch with a single workitem
// that uses the full private memory size, but that's not really useful. We
// can't use vaddr in MUBUF instructions if we don't know the address
// calculation won't overflow, so assume the sign bit is never set.
Known.Zero.setHighBits(AssumeFrameIndexHighZeroBits);
}
LLVM_ATTRIBUTE_UNUSED
static bool isCopyFromRegOfInlineAsm(const SDNode *N) {
assert(N->getOpcode() == ISD::CopyFromReg);
do {
// Follow the chain until we find an INLINEASM node.
N = N->getOperand(0).getNode();
if (N->getOpcode() == ISD::INLINEASM ||
N->getOpcode() == ISD::INLINEASM_BR)
return true;
} while (N->getOpcode() == ISD::CopyFromReg);
return false;
}
bool SITargetLowering::isSDNodeSourceOfDivergence(const SDNode * N,
FunctionLoweringInfo * FLI, LegacyDivergenceAnalysis * KDA) const
{
switch (N->getOpcode()) {
case ISD::CopyFromReg:
{
const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1));
const MachineFunction * MF = FLI->MF;
const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
const MachineRegisterInfo &MRI = MF->getRegInfo();
const SIRegisterInfo &TRI = ST.getInstrInfo()->getRegisterInfo();
unsigned Reg = R->getReg();
if (TRI.isPhysicalRegister(Reg))
return !TRI.isSGPRReg(MRI, Reg);
if (MRI.isLiveIn(Reg)) {
// workitem.id.x workitem.id.y workitem.id.z
// Any VGPR formal argument is also considered divergent
if (!TRI.isSGPRReg(MRI, Reg))
return true;
// Formal arguments of non-entry functions
// are conservatively considered divergent
else if (!AMDGPU::isEntryFunctionCC(FLI->Fn->getCallingConv()))
return true;
return false;
}
const Value *V = FLI->getValueFromVirtualReg(Reg);
if (V)
return KDA->isDivergent(V);
assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N));
return !TRI.isSGPRReg(MRI, Reg);
}
break;
case ISD::LOAD: {
const LoadSDNode *L = cast<LoadSDNode>(N);
unsigned AS = L->getAddressSpace();
// A flat load may access private memory.
return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS;
} break;
case ISD::CALLSEQ_END:
return true;
break;
case ISD::INTRINSIC_WO_CHAIN:
{
}
return AMDGPU::isIntrinsicSourceOfDivergence(
cast<ConstantSDNode>(N->getOperand(0))->getZExtValue());
case ISD::INTRINSIC_W_CHAIN:
return AMDGPU::isIntrinsicSourceOfDivergence(
cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
// In some cases intrinsics that are a source of divergence have been
// lowered to AMDGPUISD so we also need to check those too.
case AMDGPUISD::INTERP_MOV:
case AMDGPUISD::INTERP_P1:
case AMDGPUISD::INTERP_P2:
return true;
}
return false;
}
bool SITargetLowering::denormalsEnabledForType(EVT VT) const {
switch (VT.getScalarType().getSimpleVT().SimpleTy) {
case MVT::f32:
return Subtarget->hasFP32Denormals();
case MVT::f64:
return Subtarget->hasFP64Denormals();
case MVT::f16:
return Subtarget->hasFP16Denormals();
default:
return false;
}
}
bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
const SelectionDAG &DAG,
bool SNaN,
unsigned Depth) const {
if (Op.getOpcode() == AMDGPUISD::CLAMP) {
const MachineFunction &MF = DAG.getMachineFunction();
const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
if (Info->getMode().DX10Clamp)
return true; // Clamped to 0.
return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
}
return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG,
SNaN, Depth);
}
TargetLowering::AtomicExpansionKind
SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
switch (RMW->getOperation()) {
case AtomicRMWInst::FAdd: {
Type *Ty = RMW->getType();
// We don't have a way to support 16-bit atomics now, so just leave them
// as-is.
if (Ty->isHalfTy())
return AtomicExpansionKind::None;
if (!Ty->isFloatTy())
return AtomicExpansionKind::CmpXChg;
// TODO: Do have these for flat. Older targets also had them for buffers.
unsigned AS = RMW->getPointerAddressSpace();
return (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomics()) ?
AtomicExpansionKind::None : AtomicExpansionKind::CmpXChg;
}
default:
break;
}
return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW);
}