forked from OSchip/llvm-project
1494 lines
54 KiB
C++
1494 lines
54 KiB
C++
//===- DWARFVerifier.cpp --------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "llvm/DebugInfo/DWARF/DWARFVerifier.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFDebugLine.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFDie.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFExpression.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFSection.h"
|
|
#include "llvm/Support/DJB.h"
|
|
#include "llvm/Support/FormatVariadic.h"
|
|
#include "llvm/Support/WithColor.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <map>
|
|
#include <set>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
using namespace dwarf;
|
|
using namespace object;
|
|
|
|
DWARFVerifier::DieRangeInfo::address_range_iterator
|
|
DWARFVerifier::DieRangeInfo::insert(const DWARFAddressRange &R) {
|
|
auto Begin = Ranges.begin();
|
|
auto End = Ranges.end();
|
|
auto Pos = std::lower_bound(Begin, End, R);
|
|
|
|
if (Pos != End) {
|
|
if (Pos->intersects(R))
|
|
return std::move(Pos);
|
|
if (Pos != Begin) {
|
|
auto Iter = Pos - 1;
|
|
if (Iter->intersects(R))
|
|
return std::move(Iter);
|
|
}
|
|
}
|
|
|
|
Ranges.insert(Pos, R);
|
|
return Ranges.end();
|
|
}
|
|
|
|
DWARFVerifier::DieRangeInfo::die_range_info_iterator
|
|
DWARFVerifier::DieRangeInfo::insert(const DieRangeInfo &RI) {
|
|
auto End = Children.end();
|
|
auto Iter = Children.begin();
|
|
while (Iter != End) {
|
|
if (Iter->intersects(RI))
|
|
return Iter;
|
|
++Iter;
|
|
}
|
|
Children.insert(RI);
|
|
return Children.end();
|
|
}
|
|
|
|
bool DWARFVerifier::DieRangeInfo::contains(const DieRangeInfo &RHS) const {
|
|
auto I1 = Ranges.begin(), E1 = Ranges.end();
|
|
auto I2 = RHS.Ranges.begin(), E2 = RHS.Ranges.end();
|
|
if (I2 == E2)
|
|
return true;
|
|
|
|
DWARFAddressRange R = *I2;
|
|
while (I1 != E1) {
|
|
bool Covered = I1->LowPC <= R.LowPC;
|
|
if (R.LowPC == R.HighPC || (Covered && R.HighPC <= I1->HighPC)) {
|
|
if (++I2 == E2)
|
|
return true;
|
|
R = *I2;
|
|
continue;
|
|
}
|
|
if (!Covered)
|
|
return false;
|
|
if (R.LowPC < I1->HighPC)
|
|
R.LowPC = I1->HighPC;
|
|
++I1;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool DWARFVerifier::DieRangeInfo::intersects(const DieRangeInfo &RHS) const {
|
|
auto I1 = Ranges.begin(), E1 = Ranges.end();
|
|
auto I2 = RHS.Ranges.begin(), E2 = RHS.Ranges.end();
|
|
while (I1 != E1 && I2 != E2) {
|
|
if (I1->intersects(*I2))
|
|
return true;
|
|
if (I1->LowPC < I2->LowPC)
|
|
++I1;
|
|
else
|
|
++I2;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool DWARFVerifier::verifyUnitHeader(const DWARFDataExtractor DebugInfoData,
|
|
uint64_t *Offset, unsigned UnitIndex,
|
|
uint8_t &UnitType, bool &isUnitDWARF64) {
|
|
uint64_t AbbrOffset, Length;
|
|
uint8_t AddrSize = 0;
|
|
uint16_t Version;
|
|
bool Success = true;
|
|
|
|
bool ValidLength = false;
|
|
bool ValidVersion = false;
|
|
bool ValidAddrSize = false;
|
|
bool ValidType = true;
|
|
bool ValidAbbrevOffset = true;
|
|
|
|
uint64_t OffsetStart = *Offset;
|
|
Length = DebugInfoData.getU32(Offset);
|
|
if (Length == dwarf::DW_LENGTH_DWARF64) {
|
|
Length = DebugInfoData.getU64(Offset);
|
|
isUnitDWARF64 = true;
|
|
}
|
|
Version = DebugInfoData.getU16(Offset);
|
|
|
|
if (Version >= 5) {
|
|
UnitType = DebugInfoData.getU8(Offset);
|
|
AddrSize = DebugInfoData.getU8(Offset);
|
|
AbbrOffset = isUnitDWARF64 ? DebugInfoData.getU64(Offset) : DebugInfoData.getU32(Offset);
|
|
ValidType = dwarf::isUnitType(UnitType);
|
|
} else {
|
|
UnitType = 0;
|
|
AbbrOffset = isUnitDWARF64 ? DebugInfoData.getU64(Offset) : DebugInfoData.getU32(Offset);
|
|
AddrSize = DebugInfoData.getU8(Offset);
|
|
}
|
|
|
|
if (!DCtx.getDebugAbbrev()->getAbbreviationDeclarationSet(AbbrOffset))
|
|
ValidAbbrevOffset = false;
|
|
|
|
ValidLength = DebugInfoData.isValidOffset(OffsetStart + Length + 3);
|
|
ValidVersion = DWARFContext::isSupportedVersion(Version);
|
|
ValidAddrSize = AddrSize == 4 || AddrSize == 8;
|
|
if (!ValidLength || !ValidVersion || !ValidAddrSize || !ValidAbbrevOffset ||
|
|
!ValidType) {
|
|
Success = false;
|
|
error() << format("Units[%d] - start offset: 0x%08" PRIx64 " \n", UnitIndex,
|
|
OffsetStart);
|
|
if (!ValidLength)
|
|
note() << "The length for this unit is too "
|
|
"large for the .debug_info provided.\n";
|
|
if (!ValidVersion)
|
|
note() << "The 16 bit unit header version is not valid.\n";
|
|
if (!ValidType)
|
|
note() << "The unit type encoding is not valid.\n";
|
|
if (!ValidAbbrevOffset)
|
|
note() << "The offset into the .debug_abbrev section is "
|
|
"not valid.\n";
|
|
if (!ValidAddrSize)
|
|
note() << "The address size is unsupported.\n";
|
|
}
|
|
*Offset = OffsetStart + Length + (isUnitDWARF64 ? 12 : 4);
|
|
return Success;
|
|
}
|
|
|
|
unsigned DWARFVerifier::verifyUnitContents(DWARFUnit &Unit) {
|
|
unsigned NumUnitErrors = 0;
|
|
unsigned NumDies = Unit.getNumDIEs();
|
|
for (unsigned I = 0; I < NumDies; ++I) {
|
|
auto Die = Unit.getDIEAtIndex(I);
|
|
|
|
if (Die.getTag() == DW_TAG_null)
|
|
continue;
|
|
|
|
for (auto AttrValue : Die.attributes()) {
|
|
NumUnitErrors += verifyDebugInfoAttribute(Die, AttrValue);
|
|
NumUnitErrors += verifyDebugInfoForm(Die, AttrValue);
|
|
}
|
|
|
|
NumUnitErrors += verifyDebugInfoCallSite(Die);
|
|
}
|
|
|
|
DWARFDie Die = Unit.getUnitDIE(/* ExtractUnitDIEOnly = */ false);
|
|
if (!Die) {
|
|
error() << "Compilation unit without DIE.\n";
|
|
NumUnitErrors++;
|
|
return NumUnitErrors;
|
|
}
|
|
|
|
if (!dwarf::isUnitType(Die.getTag())) {
|
|
error() << "Compilation unit root DIE is not a unit DIE: "
|
|
<< dwarf::TagString(Die.getTag()) << ".\n";
|
|
NumUnitErrors++;
|
|
}
|
|
|
|
uint8_t UnitType = Unit.getUnitType();
|
|
if (!DWARFUnit::isMatchingUnitTypeAndTag(UnitType, Die.getTag())) {
|
|
error() << "Compilation unit type (" << dwarf::UnitTypeString(UnitType)
|
|
<< ") and root DIE (" << dwarf::TagString(Die.getTag())
|
|
<< ") do not match.\n";
|
|
NumUnitErrors++;
|
|
}
|
|
|
|
DieRangeInfo RI;
|
|
NumUnitErrors += verifyDieRanges(Die, RI);
|
|
|
|
return NumUnitErrors;
|
|
}
|
|
|
|
unsigned DWARFVerifier::verifyDebugInfoCallSite(const DWARFDie &Die) {
|
|
if (Die.getTag() != DW_TAG_call_site && Die.getTag() != DW_TAG_GNU_call_site)
|
|
return 0;
|
|
|
|
DWARFDie Curr = Die.getParent();
|
|
for (; Curr.isValid() && !Curr.isSubprogramDIE(); Curr = Die.getParent()) {
|
|
if (Curr.getTag() == DW_TAG_inlined_subroutine) {
|
|
error() << "Call site entry nested within inlined subroutine:";
|
|
Curr.dump(OS);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
if (!Curr.isValid()) {
|
|
error() << "Call site entry not nested within a valid subprogram:";
|
|
Die.dump(OS);
|
|
return 1;
|
|
}
|
|
|
|
Optional<DWARFFormValue> CallAttr =
|
|
Curr.find({DW_AT_call_all_calls, DW_AT_call_all_source_calls,
|
|
DW_AT_call_all_tail_calls, DW_AT_GNU_all_call_sites,
|
|
DW_AT_GNU_all_source_call_sites,
|
|
DW_AT_GNU_all_tail_call_sites});
|
|
if (!CallAttr) {
|
|
error() << "Subprogram with call site entry has no DW_AT_call attribute:";
|
|
Curr.dump(OS);
|
|
Die.dump(OS, /*indent*/ 1);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
unsigned DWARFVerifier::verifyAbbrevSection(const DWARFDebugAbbrev *Abbrev) {
|
|
unsigned NumErrors = 0;
|
|
if (Abbrev) {
|
|
const DWARFAbbreviationDeclarationSet *AbbrDecls =
|
|
Abbrev->getAbbreviationDeclarationSet(0);
|
|
for (auto AbbrDecl : *AbbrDecls) {
|
|
SmallDenseSet<uint16_t> AttributeSet;
|
|
for (auto Attribute : AbbrDecl.attributes()) {
|
|
auto Result = AttributeSet.insert(Attribute.Attr);
|
|
if (!Result.second) {
|
|
error() << "Abbreviation declaration contains multiple "
|
|
<< AttributeString(Attribute.Attr) << " attributes.\n";
|
|
AbbrDecl.dump(OS);
|
|
++NumErrors;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return NumErrors;
|
|
}
|
|
|
|
bool DWARFVerifier::handleDebugAbbrev() {
|
|
OS << "Verifying .debug_abbrev...\n";
|
|
|
|
const DWARFObject &DObj = DCtx.getDWARFObj();
|
|
unsigned NumErrors = 0;
|
|
if (!DObj.getAbbrevSection().empty())
|
|
NumErrors += verifyAbbrevSection(DCtx.getDebugAbbrev());
|
|
if (!DObj.getAbbrevDWOSection().empty())
|
|
NumErrors += verifyAbbrevSection(DCtx.getDebugAbbrevDWO());
|
|
|
|
return NumErrors == 0;
|
|
}
|
|
|
|
unsigned DWARFVerifier::verifyUnitSection(const DWARFSection &S,
|
|
DWARFSectionKind SectionKind) {
|
|
const DWARFObject &DObj = DCtx.getDWARFObj();
|
|
DWARFDataExtractor DebugInfoData(DObj, S, DCtx.isLittleEndian(), 0);
|
|
unsigned NumDebugInfoErrors = 0;
|
|
uint64_t OffsetStart = 0, Offset = 0, UnitIdx = 0;
|
|
uint8_t UnitType = 0;
|
|
bool isUnitDWARF64 = false;
|
|
bool isHeaderChainValid = true;
|
|
bool hasDIE = DebugInfoData.isValidOffset(Offset);
|
|
DWARFUnitVector TypeUnitVector;
|
|
DWARFUnitVector CompileUnitVector;
|
|
while (hasDIE) {
|
|
OffsetStart = Offset;
|
|
if (!verifyUnitHeader(DebugInfoData, &Offset, UnitIdx, UnitType,
|
|
isUnitDWARF64)) {
|
|
isHeaderChainValid = false;
|
|
if (isUnitDWARF64)
|
|
break;
|
|
} else {
|
|
DWARFUnitHeader Header;
|
|
Header.extract(DCtx, DebugInfoData, &OffsetStart, SectionKind);
|
|
DWARFUnit *Unit;
|
|
switch (UnitType) {
|
|
case dwarf::DW_UT_type:
|
|
case dwarf::DW_UT_split_type: {
|
|
Unit = TypeUnitVector.addUnit(std::make_unique<DWARFTypeUnit>(
|
|
DCtx, S, Header, DCtx.getDebugAbbrev(), &DObj.getRangesSection(),
|
|
&DObj.getLocSection(), DObj.getStrSection(),
|
|
DObj.getStrOffsetsSection(), &DObj.getAppleObjCSection(),
|
|
DObj.getLineSection(), DCtx.isLittleEndian(), false,
|
|
TypeUnitVector));
|
|
break;
|
|
}
|
|
case dwarf::DW_UT_skeleton:
|
|
case dwarf::DW_UT_split_compile:
|
|
case dwarf::DW_UT_compile:
|
|
case dwarf::DW_UT_partial:
|
|
// UnitType = 0 means that we are verifying a compile unit in DWARF v4.
|
|
case 0: {
|
|
Unit = CompileUnitVector.addUnit(std::make_unique<DWARFCompileUnit>(
|
|
DCtx, S, Header, DCtx.getDebugAbbrev(), &DObj.getRangesSection(),
|
|
&DObj.getLocSection(), DObj.getStrSection(),
|
|
DObj.getStrOffsetsSection(), &DObj.getAppleObjCSection(),
|
|
DObj.getLineSection(), DCtx.isLittleEndian(), false,
|
|
CompileUnitVector));
|
|
break;
|
|
}
|
|
default: { llvm_unreachable("Invalid UnitType."); }
|
|
}
|
|
NumDebugInfoErrors += verifyUnitContents(*Unit);
|
|
}
|
|
hasDIE = DebugInfoData.isValidOffset(Offset);
|
|
++UnitIdx;
|
|
}
|
|
if (UnitIdx == 0 && !hasDIE) {
|
|
warn() << "Section is empty.\n";
|
|
isHeaderChainValid = true;
|
|
}
|
|
if (!isHeaderChainValid)
|
|
++NumDebugInfoErrors;
|
|
NumDebugInfoErrors += verifyDebugInfoReferences();
|
|
return NumDebugInfoErrors;
|
|
}
|
|
|
|
bool DWARFVerifier::handleDebugInfo() {
|
|
const DWARFObject &DObj = DCtx.getDWARFObj();
|
|
unsigned NumErrors = 0;
|
|
|
|
OS << "Verifying .debug_info Unit Header Chain...\n";
|
|
DObj.forEachInfoSections([&](const DWARFSection &S) {
|
|
NumErrors += verifyUnitSection(S, DW_SECT_INFO);
|
|
});
|
|
|
|
OS << "Verifying .debug_types Unit Header Chain...\n";
|
|
DObj.forEachTypesSections([&](const DWARFSection &S) {
|
|
NumErrors += verifyUnitSection(S, DW_SECT_TYPES);
|
|
});
|
|
return NumErrors == 0;
|
|
}
|
|
|
|
unsigned DWARFVerifier::verifyDieRanges(const DWARFDie &Die,
|
|
DieRangeInfo &ParentRI) {
|
|
unsigned NumErrors = 0;
|
|
|
|
if (!Die.isValid())
|
|
return NumErrors;
|
|
|
|
auto RangesOrError = Die.getAddressRanges();
|
|
if (!RangesOrError) {
|
|
// FIXME: Report the error.
|
|
++NumErrors;
|
|
llvm::consumeError(RangesOrError.takeError());
|
|
return NumErrors;
|
|
}
|
|
|
|
DWARFAddressRangesVector Ranges = RangesOrError.get();
|
|
// Build RI for this DIE and check that ranges within this DIE do not
|
|
// overlap.
|
|
DieRangeInfo RI(Die);
|
|
|
|
// TODO support object files better
|
|
//
|
|
// Some object file formats (i.e. non-MachO) support COMDAT. ELF in
|
|
// particular does so by placing each function into a section. The DWARF data
|
|
// for the function at that point uses a section relative DW_FORM_addrp for
|
|
// the DW_AT_low_pc and a DW_FORM_data4 for the offset as the DW_AT_high_pc.
|
|
// In such a case, when the Die is the CU, the ranges will overlap, and we
|
|
// will flag valid conflicting ranges as invalid.
|
|
//
|
|
// For such targets, we should read the ranges from the CU and partition them
|
|
// by the section id. The ranges within a particular section should be
|
|
// disjoint, although the ranges across sections may overlap. We would map
|
|
// the child die to the entity that it references and the section with which
|
|
// it is associated. The child would then be checked against the range
|
|
// information for the associated section.
|
|
//
|
|
// For now, simply elide the range verification for the CU DIEs if we are
|
|
// processing an object file.
|
|
|
|
if (!IsObjectFile || IsMachOObject || Die.getTag() != DW_TAG_compile_unit) {
|
|
for (auto Range : Ranges) {
|
|
if (!Range.valid()) {
|
|
++NumErrors;
|
|
error() << "Invalid address range " << Range << "\n";
|
|
continue;
|
|
}
|
|
|
|
// Verify that ranges don't intersect.
|
|
const auto IntersectingRange = RI.insert(Range);
|
|
if (IntersectingRange != RI.Ranges.end()) {
|
|
++NumErrors;
|
|
error() << "DIE has overlapping address ranges: " << Range << " and "
|
|
<< *IntersectingRange << "\n";
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Verify that children don't intersect.
|
|
const auto IntersectingChild = ParentRI.insert(RI);
|
|
if (IntersectingChild != ParentRI.Children.end()) {
|
|
++NumErrors;
|
|
error() << "DIEs have overlapping address ranges:";
|
|
dump(Die);
|
|
dump(IntersectingChild->Die) << '\n';
|
|
}
|
|
|
|
// Verify that ranges are contained within their parent.
|
|
bool ShouldBeContained = !Ranges.empty() && !ParentRI.Ranges.empty() &&
|
|
!(Die.getTag() == DW_TAG_subprogram &&
|
|
ParentRI.Die.getTag() == DW_TAG_subprogram);
|
|
if (ShouldBeContained && !ParentRI.contains(RI)) {
|
|
++NumErrors;
|
|
error() << "DIE address ranges are not contained in its parent's ranges:";
|
|
dump(ParentRI.Die);
|
|
dump(Die, 2) << '\n';
|
|
}
|
|
|
|
// Recursively check children.
|
|
for (DWARFDie Child : Die)
|
|
NumErrors += verifyDieRanges(Child, RI);
|
|
|
|
return NumErrors;
|
|
}
|
|
|
|
unsigned DWARFVerifier::verifyDebugInfoAttribute(const DWARFDie &Die,
|
|
DWARFAttribute &AttrValue) {
|
|
unsigned NumErrors = 0;
|
|
auto ReportError = [&](const Twine &TitleMsg) {
|
|
++NumErrors;
|
|
error() << TitleMsg << '\n';
|
|
dump(Die) << '\n';
|
|
};
|
|
|
|
const DWARFObject &DObj = DCtx.getDWARFObj();
|
|
const auto Attr = AttrValue.Attr;
|
|
switch (Attr) {
|
|
case DW_AT_ranges:
|
|
// Make sure the offset in the DW_AT_ranges attribute is valid.
|
|
if (auto SectionOffset = AttrValue.Value.getAsSectionOffset()) {
|
|
if (*SectionOffset >= DObj.getRangesSection().Data.size())
|
|
ReportError("DW_AT_ranges offset is beyond .debug_ranges bounds:");
|
|
break;
|
|
}
|
|
ReportError("DIE has invalid DW_AT_ranges encoding:");
|
|
break;
|
|
case DW_AT_stmt_list:
|
|
// Make sure the offset in the DW_AT_stmt_list attribute is valid.
|
|
if (auto SectionOffset = AttrValue.Value.getAsSectionOffset()) {
|
|
if (*SectionOffset >= DObj.getLineSection().Data.size())
|
|
ReportError("DW_AT_stmt_list offset is beyond .debug_line bounds: " +
|
|
llvm::formatv("{0:x8}", *SectionOffset));
|
|
break;
|
|
}
|
|
ReportError("DIE has invalid DW_AT_stmt_list encoding:");
|
|
break;
|
|
case DW_AT_location: {
|
|
auto VerifyLocationExpr = [&](ArrayRef<uint8_t> D) {
|
|
DWARFUnit *U = Die.getDwarfUnit();
|
|
DataExtractor Data(toStringRef(D), DCtx.isLittleEndian(), 0);
|
|
DWARFExpression Expression(Data, U->getVersion(),
|
|
U->getAddressByteSize());
|
|
bool Error = llvm::any_of(Expression, [](DWARFExpression::Operation &Op) {
|
|
return Op.isError();
|
|
});
|
|
if (Error || !Expression.verify(U))
|
|
ReportError("DIE contains invalid DWARF expression:");
|
|
};
|
|
if (Optional<ArrayRef<uint8_t>> Expr = AttrValue.Value.getAsBlock()) {
|
|
// Verify inlined location.
|
|
VerifyLocationExpr(*Expr);
|
|
} else if (auto LocOffset = AttrValue.Value.getAsSectionOffset()) {
|
|
// Verify location list.
|
|
if (auto DebugLoc = DCtx.getDebugLoc())
|
|
if (auto LocList = DebugLoc->getLocationListAtOffset(*LocOffset))
|
|
for (const auto &Entry : LocList->Entries)
|
|
VerifyLocationExpr(Entry.Loc);
|
|
}
|
|
break;
|
|
}
|
|
case DW_AT_specification:
|
|
case DW_AT_abstract_origin: {
|
|
if (auto ReferencedDie = Die.getAttributeValueAsReferencedDie(Attr)) {
|
|
auto DieTag = Die.getTag();
|
|
auto RefTag = ReferencedDie.getTag();
|
|
if (DieTag == RefTag)
|
|
break;
|
|
if (DieTag == DW_TAG_inlined_subroutine && RefTag == DW_TAG_subprogram)
|
|
break;
|
|
if (DieTag == DW_TAG_variable && RefTag == DW_TAG_member)
|
|
break;
|
|
// This might be reference to a function declaration.
|
|
if (DieTag == DW_TAG_GNU_call_site && RefTag == DW_TAG_subprogram)
|
|
break;
|
|
ReportError("DIE with tag " + TagString(DieTag) + " has " +
|
|
AttributeString(Attr) +
|
|
" that points to DIE with "
|
|
"incompatible tag " +
|
|
TagString(RefTag));
|
|
}
|
|
break;
|
|
}
|
|
case DW_AT_type: {
|
|
DWARFDie TypeDie = Die.getAttributeValueAsReferencedDie(DW_AT_type);
|
|
if (TypeDie && !isType(TypeDie.getTag())) {
|
|
ReportError("DIE has " + AttributeString(Attr) +
|
|
" with incompatible tag " + TagString(TypeDie.getTag()));
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
return NumErrors;
|
|
}
|
|
|
|
unsigned DWARFVerifier::verifyDebugInfoForm(const DWARFDie &Die,
|
|
DWARFAttribute &AttrValue) {
|
|
const DWARFObject &DObj = DCtx.getDWARFObj();
|
|
auto DieCU = Die.getDwarfUnit();
|
|
unsigned NumErrors = 0;
|
|
const auto Form = AttrValue.Value.getForm();
|
|
switch (Form) {
|
|
case DW_FORM_ref1:
|
|
case DW_FORM_ref2:
|
|
case DW_FORM_ref4:
|
|
case DW_FORM_ref8:
|
|
case DW_FORM_ref_udata: {
|
|
// Verify all CU relative references are valid CU offsets.
|
|
Optional<uint64_t> RefVal = AttrValue.Value.getAsReference();
|
|
assert(RefVal);
|
|
if (RefVal) {
|
|
auto CUSize = DieCU->getNextUnitOffset() - DieCU->getOffset();
|
|
auto CUOffset = AttrValue.Value.getRawUValue();
|
|
if (CUOffset >= CUSize) {
|
|
++NumErrors;
|
|
error() << FormEncodingString(Form) << " CU offset "
|
|
<< format("0x%08" PRIx64, CUOffset)
|
|
<< " is invalid (must be less than CU size of "
|
|
<< format("0x%08" PRIx64, CUSize) << "):\n";
|
|
Die.dump(OS, 0, DumpOpts);
|
|
dump(Die) << '\n';
|
|
} else {
|
|
// Valid reference, but we will verify it points to an actual
|
|
// DIE later.
|
|
ReferenceToDIEOffsets[*RefVal].insert(Die.getOffset());
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case DW_FORM_ref_addr: {
|
|
// Verify all absolute DIE references have valid offsets in the
|
|
// .debug_info section.
|
|
Optional<uint64_t> RefVal = AttrValue.Value.getAsReference();
|
|
assert(RefVal);
|
|
if (RefVal) {
|
|
if (*RefVal >= DieCU->getInfoSection().Data.size()) {
|
|
++NumErrors;
|
|
error() << "DW_FORM_ref_addr offset beyond .debug_info "
|
|
"bounds:\n";
|
|
dump(Die) << '\n';
|
|
} else {
|
|
// Valid reference, but we will verify it points to an actual
|
|
// DIE later.
|
|
ReferenceToDIEOffsets[*RefVal].insert(Die.getOffset());
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case DW_FORM_strp: {
|
|
auto SecOffset = AttrValue.Value.getAsSectionOffset();
|
|
assert(SecOffset); // DW_FORM_strp is a section offset.
|
|
if (SecOffset && *SecOffset >= DObj.getStrSection().size()) {
|
|
++NumErrors;
|
|
error() << "DW_FORM_strp offset beyond .debug_str bounds:\n";
|
|
dump(Die) << '\n';
|
|
}
|
|
break;
|
|
}
|
|
case DW_FORM_strx:
|
|
case DW_FORM_strx1:
|
|
case DW_FORM_strx2:
|
|
case DW_FORM_strx3:
|
|
case DW_FORM_strx4: {
|
|
auto Index = AttrValue.Value.getRawUValue();
|
|
auto DieCU = Die.getDwarfUnit();
|
|
// Check that we have a valid DWARF v5 string offsets table.
|
|
if (!DieCU->getStringOffsetsTableContribution()) {
|
|
++NumErrors;
|
|
error() << FormEncodingString(Form)
|
|
<< " used without a valid string offsets table:\n";
|
|
dump(Die) << '\n';
|
|
break;
|
|
}
|
|
// Check that the index is within the bounds of the section.
|
|
unsigned ItemSize = DieCU->getDwarfStringOffsetsByteSize();
|
|
// Use a 64-bit type to calculate the offset to guard against overflow.
|
|
uint64_t Offset =
|
|
(uint64_t)DieCU->getStringOffsetsBase() + Index * ItemSize;
|
|
if (DObj.getStrOffsetsSection().Data.size() < Offset + ItemSize) {
|
|
++NumErrors;
|
|
error() << FormEncodingString(Form) << " uses index "
|
|
<< format("%" PRIu64, Index) << ", which is too large:\n";
|
|
dump(Die) << '\n';
|
|
break;
|
|
}
|
|
// Check that the string offset is valid.
|
|
uint64_t StringOffset = *DieCU->getStringOffsetSectionItem(Index);
|
|
if (StringOffset >= DObj.getStrSection().size()) {
|
|
++NumErrors;
|
|
error() << FormEncodingString(Form) << " uses index "
|
|
<< format("%" PRIu64, Index)
|
|
<< ", but the referenced string"
|
|
" offset is beyond .debug_str bounds:\n";
|
|
dump(Die) << '\n';
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
return NumErrors;
|
|
}
|
|
|
|
unsigned DWARFVerifier::verifyDebugInfoReferences() {
|
|
// Take all references and make sure they point to an actual DIE by
|
|
// getting the DIE by offset and emitting an error
|
|
OS << "Verifying .debug_info references...\n";
|
|
unsigned NumErrors = 0;
|
|
for (const std::pair<uint64_t, std::set<uint64_t>> &Pair :
|
|
ReferenceToDIEOffsets) {
|
|
if (DCtx.getDIEForOffset(Pair.first))
|
|
continue;
|
|
++NumErrors;
|
|
error() << "invalid DIE reference " << format("0x%08" PRIx64, Pair.first)
|
|
<< ". Offset is in between DIEs:\n";
|
|
for (auto Offset : Pair.second)
|
|
dump(DCtx.getDIEForOffset(Offset)) << '\n';
|
|
OS << "\n";
|
|
}
|
|
return NumErrors;
|
|
}
|
|
|
|
void DWARFVerifier::verifyDebugLineStmtOffsets() {
|
|
std::map<uint64_t, DWARFDie> StmtListToDie;
|
|
for (const auto &CU : DCtx.compile_units()) {
|
|
auto Die = CU->getUnitDIE();
|
|
// Get the attribute value as a section offset. No need to produce an
|
|
// error here if the encoding isn't correct because we validate this in
|
|
// the .debug_info verifier.
|
|
auto StmtSectionOffset = toSectionOffset(Die.find(DW_AT_stmt_list));
|
|
if (!StmtSectionOffset)
|
|
continue;
|
|
const uint64_t LineTableOffset = *StmtSectionOffset;
|
|
auto LineTable = DCtx.getLineTableForUnit(CU.get());
|
|
if (LineTableOffset < DCtx.getDWARFObj().getLineSection().Data.size()) {
|
|
if (!LineTable) {
|
|
++NumDebugLineErrors;
|
|
error() << ".debug_line[" << format("0x%08" PRIx64, LineTableOffset)
|
|
<< "] was not able to be parsed for CU:\n";
|
|
dump(Die) << '\n';
|
|
continue;
|
|
}
|
|
} else {
|
|
// Make sure we don't get a valid line table back if the offset is wrong.
|
|
assert(LineTable == nullptr);
|
|
// Skip this line table as it isn't valid. No need to create an error
|
|
// here because we validate this in the .debug_info verifier.
|
|
continue;
|
|
}
|
|
auto Iter = StmtListToDie.find(LineTableOffset);
|
|
if (Iter != StmtListToDie.end()) {
|
|
++NumDebugLineErrors;
|
|
error() << "two compile unit DIEs, "
|
|
<< format("0x%08" PRIx64, Iter->second.getOffset()) << " and "
|
|
<< format("0x%08" PRIx64, Die.getOffset())
|
|
<< ", have the same DW_AT_stmt_list section offset:\n";
|
|
dump(Iter->second);
|
|
dump(Die) << '\n';
|
|
// Already verified this line table before, no need to do it again.
|
|
continue;
|
|
}
|
|
StmtListToDie[LineTableOffset] = Die;
|
|
}
|
|
}
|
|
|
|
void DWARFVerifier::verifyDebugLineRows() {
|
|
for (const auto &CU : DCtx.compile_units()) {
|
|
auto Die = CU->getUnitDIE();
|
|
auto LineTable = DCtx.getLineTableForUnit(CU.get());
|
|
// If there is no line table we will have created an error in the
|
|
// .debug_info verifier or in verifyDebugLineStmtOffsets().
|
|
if (!LineTable)
|
|
continue;
|
|
|
|
// Verify prologue.
|
|
uint32_t MaxDirIndex = LineTable->Prologue.IncludeDirectories.size();
|
|
uint32_t FileIndex = 1;
|
|
StringMap<uint16_t> FullPathMap;
|
|
for (const auto &FileName : LineTable->Prologue.FileNames) {
|
|
// Verify directory index.
|
|
if (FileName.DirIdx > MaxDirIndex) {
|
|
++NumDebugLineErrors;
|
|
error() << ".debug_line["
|
|
<< format("0x%08" PRIx64,
|
|
*toSectionOffset(Die.find(DW_AT_stmt_list)))
|
|
<< "].prologue.file_names[" << FileIndex
|
|
<< "].dir_idx contains an invalid index: " << FileName.DirIdx
|
|
<< "\n";
|
|
}
|
|
|
|
// Check file paths for duplicates.
|
|
std::string FullPath;
|
|
const bool HasFullPath = LineTable->getFileNameByIndex(
|
|
FileIndex, CU->getCompilationDir(),
|
|
DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, FullPath);
|
|
assert(HasFullPath && "Invalid index?");
|
|
(void)HasFullPath;
|
|
auto It = FullPathMap.find(FullPath);
|
|
if (It == FullPathMap.end())
|
|
FullPathMap[FullPath] = FileIndex;
|
|
else if (It->second != FileIndex) {
|
|
warn() << ".debug_line["
|
|
<< format("0x%08" PRIx64,
|
|
*toSectionOffset(Die.find(DW_AT_stmt_list)))
|
|
<< "].prologue.file_names[" << FileIndex
|
|
<< "] is a duplicate of file_names[" << It->second << "]\n";
|
|
}
|
|
|
|
FileIndex++;
|
|
}
|
|
|
|
// Verify rows.
|
|
uint64_t PrevAddress = 0;
|
|
uint32_t RowIndex = 0;
|
|
for (const auto &Row : LineTable->Rows) {
|
|
// Verify row address.
|
|
if (Row.Address.Address < PrevAddress) {
|
|
++NumDebugLineErrors;
|
|
error() << ".debug_line["
|
|
<< format("0x%08" PRIx64,
|
|
*toSectionOffset(Die.find(DW_AT_stmt_list)))
|
|
<< "] row[" << RowIndex
|
|
<< "] decreases in address from previous row:\n";
|
|
|
|
DWARFDebugLine::Row::dumpTableHeader(OS);
|
|
if (RowIndex > 0)
|
|
LineTable->Rows[RowIndex - 1].dump(OS);
|
|
Row.dump(OS);
|
|
OS << '\n';
|
|
}
|
|
|
|
// Verify file index.
|
|
if (!LineTable->hasFileAtIndex(Row.File)) {
|
|
++NumDebugLineErrors;
|
|
bool isDWARF5 = LineTable->Prologue.getVersion() >= 5;
|
|
error() << ".debug_line["
|
|
<< format("0x%08" PRIx64,
|
|
*toSectionOffset(Die.find(DW_AT_stmt_list)))
|
|
<< "][" << RowIndex << "] has invalid file index " << Row.File
|
|
<< " (valid values are [" << (isDWARF5 ? "0," : "1,")
|
|
<< LineTable->Prologue.FileNames.size()
|
|
<< (isDWARF5 ? ")" : "]") << "):\n";
|
|
DWARFDebugLine::Row::dumpTableHeader(OS);
|
|
Row.dump(OS);
|
|
OS << '\n';
|
|
}
|
|
if (Row.EndSequence)
|
|
PrevAddress = 0;
|
|
else
|
|
PrevAddress = Row.Address.Address;
|
|
++RowIndex;
|
|
}
|
|
}
|
|
}
|
|
|
|
DWARFVerifier::DWARFVerifier(raw_ostream &S, DWARFContext &D,
|
|
DIDumpOptions DumpOpts)
|
|
: OS(S), DCtx(D), DumpOpts(std::move(DumpOpts)), IsObjectFile(false),
|
|
IsMachOObject(false) {
|
|
if (const auto *F = DCtx.getDWARFObj().getFile()) {
|
|
IsObjectFile = F->isRelocatableObject();
|
|
IsMachOObject = F->isMachO();
|
|
}
|
|
}
|
|
|
|
bool DWARFVerifier::handleDebugLine() {
|
|
NumDebugLineErrors = 0;
|
|
OS << "Verifying .debug_line...\n";
|
|
verifyDebugLineStmtOffsets();
|
|
verifyDebugLineRows();
|
|
return NumDebugLineErrors == 0;
|
|
}
|
|
|
|
unsigned DWARFVerifier::verifyAppleAccelTable(const DWARFSection *AccelSection,
|
|
DataExtractor *StrData,
|
|
const char *SectionName) {
|
|
unsigned NumErrors = 0;
|
|
DWARFDataExtractor AccelSectionData(DCtx.getDWARFObj(), *AccelSection,
|
|
DCtx.isLittleEndian(), 0);
|
|
AppleAcceleratorTable AccelTable(AccelSectionData, *StrData);
|
|
|
|
OS << "Verifying " << SectionName << "...\n";
|
|
|
|
// Verify that the fixed part of the header is not too short.
|
|
if (!AccelSectionData.isValidOffset(AccelTable.getSizeHdr())) {
|
|
error() << "Section is too small to fit a section header.\n";
|
|
return 1;
|
|
}
|
|
|
|
// Verify that the section is not too short.
|
|
if (Error E = AccelTable.extract()) {
|
|
error() << toString(std::move(E)) << '\n';
|
|
return 1;
|
|
}
|
|
|
|
// Verify that all buckets have a valid hash index or are empty.
|
|
uint32_t NumBuckets = AccelTable.getNumBuckets();
|
|
uint32_t NumHashes = AccelTable.getNumHashes();
|
|
|
|
uint64_t BucketsOffset =
|
|
AccelTable.getSizeHdr() + AccelTable.getHeaderDataLength();
|
|
uint64_t HashesBase = BucketsOffset + NumBuckets * 4;
|
|
uint64_t OffsetsBase = HashesBase + NumHashes * 4;
|
|
for (uint32_t BucketIdx = 0; BucketIdx < NumBuckets; ++BucketIdx) {
|
|
uint32_t HashIdx = AccelSectionData.getU32(&BucketsOffset);
|
|
if (HashIdx >= NumHashes && HashIdx != UINT32_MAX) {
|
|
error() << format("Bucket[%d] has invalid hash index: %u.\n", BucketIdx,
|
|
HashIdx);
|
|
++NumErrors;
|
|
}
|
|
}
|
|
uint32_t NumAtoms = AccelTable.getAtomsDesc().size();
|
|
if (NumAtoms == 0) {
|
|
error() << "No atoms: failed to read HashData.\n";
|
|
return 1;
|
|
}
|
|
if (!AccelTable.validateForms()) {
|
|
error() << "Unsupported form: failed to read HashData.\n";
|
|
return 1;
|
|
}
|
|
|
|
for (uint32_t HashIdx = 0; HashIdx < NumHashes; ++HashIdx) {
|
|
uint64_t HashOffset = HashesBase + 4 * HashIdx;
|
|
uint64_t DataOffset = OffsetsBase + 4 * HashIdx;
|
|
uint32_t Hash = AccelSectionData.getU32(&HashOffset);
|
|
uint64_t HashDataOffset = AccelSectionData.getU32(&DataOffset);
|
|
if (!AccelSectionData.isValidOffsetForDataOfSize(HashDataOffset,
|
|
sizeof(uint64_t))) {
|
|
error() << format("Hash[%d] has invalid HashData offset: "
|
|
"0x%08" PRIx64 ".\n",
|
|
HashIdx, HashDataOffset);
|
|
++NumErrors;
|
|
}
|
|
|
|
uint64_t StrpOffset;
|
|
uint64_t StringOffset;
|
|
uint32_t StringCount = 0;
|
|
uint64_t Offset;
|
|
unsigned Tag;
|
|
while ((StrpOffset = AccelSectionData.getU32(&HashDataOffset)) != 0) {
|
|
const uint32_t NumHashDataObjects =
|
|
AccelSectionData.getU32(&HashDataOffset);
|
|
for (uint32_t HashDataIdx = 0; HashDataIdx < NumHashDataObjects;
|
|
++HashDataIdx) {
|
|
std::tie(Offset, Tag) = AccelTable.readAtoms(&HashDataOffset);
|
|
auto Die = DCtx.getDIEForOffset(Offset);
|
|
if (!Die) {
|
|
const uint32_t BucketIdx =
|
|
NumBuckets ? (Hash % NumBuckets) : UINT32_MAX;
|
|
StringOffset = StrpOffset;
|
|
const char *Name = StrData->getCStr(&StringOffset);
|
|
if (!Name)
|
|
Name = "<NULL>";
|
|
|
|
error() << format(
|
|
"%s Bucket[%d] Hash[%d] = 0x%08x "
|
|
"Str[%u] = 0x%08" PRIx64 " DIE[%d] = 0x%08" PRIx64 " "
|
|
"is not a valid DIE offset for \"%s\".\n",
|
|
SectionName, BucketIdx, HashIdx, Hash, StringCount, StrpOffset,
|
|
HashDataIdx, Offset, Name);
|
|
|
|
++NumErrors;
|
|
continue;
|
|
}
|
|
if ((Tag != dwarf::DW_TAG_null) && (Die.getTag() != Tag)) {
|
|
error() << "Tag " << dwarf::TagString(Tag)
|
|
<< " in accelerator table does not match Tag "
|
|
<< dwarf::TagString(Die.getTag()) << " of DIE[" << HashDataIdx
|
|
<< "].\n";
|
|
++NumErrors;
|
|
}
|
|
}
|
|
++StringCount;
|
|
}
|
|
}
|
|
return NumErrors;
|
|
}
|
|
|
|
unsigned
|
|
DWARFVerifier::verifyDebugNamesCULists(const DWARFDebugNames &AccelTable) {
|
|
// A map from CU offset to the (first) Name Index offset which claims to index
|
|
// this CU.
|
|
DenseMap<uint64_t, uint64_t> CUMap;
|
|
const uint64_t NotIndexed = std::numeric_limits<uint64_t>::max();
|
|
|
|
CUMap.reserve(DCtx.getNumCompileUnits());
|
|
for (const auto &CU : DCtx.compile_units())
|
|
CUMap[CU->getOffset()] = NotIndexed;
|
|
|
|
unsigned NumErrors = 0;
|
|
for (const DWARFDebugNames::NameIndex &NI : AccelTable) {
|
|
if (NI.getCUCount() == 0) {
|
|
error() << formatv("Name Index @ {0:x} does not index any CU\n",
|
|
NI.getUnitOffset());
|
|
++NumErrors;
|
|
continue;
|
|
}
|
|
for (uint32_t CU = 0, End = NI.getCUCount(); CU < End; ++CU) {
|
|
uint64_t Offset = NI.getCUOffset(CU);
|
|
auto Iter = CUMap.find(Offset);
|
|
|
|
if (Iter == CUMap.end()) {
|
|
error() << formatv(
|
|
"Name Index @ {0:x} references a non-existing CU @ {1:x}\n",
|
|
NI.getUnitOffset(), Offset);
|
|
++NumErrors;
|
|
continue;
|
|
}
|
|
|
|
if (Iter->second != NotIndexed) {
|
|
error() << formatv("Name Index @ {0:x} references a CU @ {1:x}, but "
|
|
"this CU is already indexed by Name Index @ {2:x}\n",
|
|
NI.getUnitOffset(), Offset, Iter->second);
|
|
continue;
|
|
}
|
|
Iter->second = NI.getUnitOffset();
|
|
}
|
|
}
|
|
|
|
for (const auto &KV : CUMap) {
|
|
if (KV.second == NotIndexed)
|
|
warn() << formatv("CU @ {0:x} not covered by any Name Index\n", KV.first);
|
|
}
|
|
|
|
return NumErrors;
|
|
}
|
|
|
|
unsigned
|
|
DWARFVerifier::verifyNameIndexBuckets(const DWARFDebugNames::NameIndex &NI,
|
|
const DataExtractor &StrData) {
|
|
struct BucketInfo {
|
|
uint32_t Bucket;
|
|
uint32_t Index;
|
|
|
|
constexpr BucketInfo(uint32_t Bucket, uint32_t Index)
|
|
: Bucket(Bucket), Index(Index) {}
|
|
bool operator<(const BucketInfo &RHS) const { return Index < RHS.Index; };
|
|
};
|
|
|
|
uint32_t NumErrors = 0;
|
|
if (NI.getBucketCount() == 0) {
|
|
warn() << formatv("Name Index @ {0:x} does not contain a hash table.\n",
|
|
NI.getUnitOffset());
|
|
return NumErrors;
|
|
}
|
|
|
|
// Build up a list of (Bucket, Index) pairs. We use this later to verify that
|
|
// each Name is reachable from the appropriate bucket.
|
|
std::vector<BucketInfo> BucketStarts;
|
|
BucketStarts.reserve(NI.getBucketCount() + 1);
|
|
for (uint32_t Bucket = 0, End = NI.getBucketCount(); Bucket < End; ++Bucket) {
|
|
uint32_t Index = NI.getBucketArrayEntry(Bucket);
|
|
if (Index > NI.getNameCount()) {
|
|
error() << formatv("Bucket {0} of Name Index @ {1:x} contains invalid "
|
|
"value {2}. Valid range is [0, {3}].\n",
|
|
Bucket, NI.getUnitOffset(), Index, NI.getNameCount());
|
|
++NumErrors;
|
|
continue;
|
|
}
|
|
if (Index > 0)
|
|
BucketStarts.emplace_back(Bucket, Index);
|
|
}
|
|
|
|
// If there were any buckets with invalid values, skip further checks as they
|
|
// will likely produce many errors which will only confuse the actual root
|
|
// problem.
|
|
if (NumErrors > 0)
|
|
return NumErrors;
|
|
|
|
// Sort the list in the order of increasing "Index" entries.
|
|
array_pod_sort(BucketStarts.begin(), BucketStarts.end());
|
|
|
|
// Insert a sentinel entry at the end, so we can check that the end of the
|
|
// table is covered in the loop below.
|
|
BucketStarts.emplace_back(NI.getBucketCount(), NI.getNameCount() + 1);
|
|
|
|
// Loop invariant: NextUncovered is the (1-based) index of the first Name
|
|
// which is not reachable by any of the buckets we processed so far (and
|
|
// hasn't been reported as uncovered).
|
|
uint32_t NextUncovered = 1;
|
|
for (const BucketInfo &B : BucketStarts) {
|
|
// Under normal circumstances B.Index be equal to NextUncovered, but it can
|
|
// be less if a bucket points to names which are already known to be in some
|
|
// bucket we processed earlier. In that case, we won't trigger this error,
|
|
// but report the mismatched hash value error instead. (We know the hash
|
|
// will not match because we have already verified that the name's hash
|
|
// puts it into the previous bucket.)
|
|
if (B.Index > NextUncovered) {
|
|
error() << formatv("Name Index @ {0:x}: Name table entries [{1}, {2}] "
|
|
"are not covered by the hash table.\n",
|
|
NI.getUnitOffset(), NextUncovered, B.Index - 1);
|
|
++NumErrors;
|
|
}
|
|
uint32_t Idx = B.Index;
|
|
|
|
// The rest of the checks apply only to non-sentinel entries.
|
|
if (B.Bucket == NI.getBucketCount())
|
|
break;
|
|
|
|
// This triggers if a non-empty bucket points to a name with a mismatched
|
|
// hash. Clients are likely to interpret this as an empty bucket, because a
|
|
// mismatched hash signals the end of a bucket, but if this is indeed an
|
|
// empty bucket, the producer should have signalled this by marking the
|
|
// bucket as empty.
|
|
uint32_t FirstHash = NI.getHashArrayEntry(Idx);
|
|
if (FirstHash % NI.getBucketCount() != B.Bucket) {
|
|
error() << formatv(
|
|
"Name Index @ {0:x}: Bucket {1} is not empty but points to a "
|
|
"mismatched hash value {2:x} (belonging to bucket {3}).\n",
|
|
NI.getUnitOffset(), B.Bucket, FirstHash,
|
|
FirstHash % NI.getBucketCount());
|
|
++NumErrors;
|
|
}
|
|
|
|
// This find the end of this bucket and also verifies that all the hashes in
|
|
// this bucket are correct by comparing the stored hashes to the ones we
|
|
// compute ourselves.
|
|
while (Idx <= NI.getNameCount()) {
|
|
uint32_t Hash = NI.getHashArrayEntry(Idx);
|
|
if (Hash % NI.getBucketCount() != B.Bucket)
|
|
break;
|
|
|
|
const char *Str = NI.getNameTableEntry(Idx).getString();
|
|
if (caseFoldingDjbHash(Str) != Hash) {
|
|
error() << formatv("Name Index @ {0:x}: String ({1}) at index {2} "
|
|
"hashes to {3:x}, but "
|
|
"the Name Index hash is {4:x}\n",
|
|
NI.getUnitOffset(), Str, Idx,
|
|
caseFoldingDjbHash(Str), Hash);
|
|
++NumErrors;
|
|
}
|
|
|
|
++Idx;
|
|
}
|
|
NextUncovered = std::max(NextUncovered, Idx);
|
|
}
|
|
return NumErrors;
|
|
}
|
|
|
|
unsigned DWARFVerifier::verifyNameIndexAttribute(
|
|
const DWARFDebugNames::NameIndex &NI, const DWARFDebugNames::Abbrev &Abbr,
|
|
DWARFDebugNames::AttributeEncoding AttrEnc) {
|
|
StringRef FormName = dwarf::FormEncodingString(AttrEnc.Form);
|
|
if (FormName.empty()) {
|
|
error() << formatv("NameIndex @ {0:x}: Abbreviation {1:x}: {2} uses an "
|
|
"unknown form: {3}.\n",
|
|
NI.getUnitOffset(), Abbr.Code, AttrEnc.Index,
|
|
AttrEnc.Form);
|
|
return 1;
|
|
}
|
|
|
|
if (AttrEnc.Index == DW_IDX_type_hash) {
|
|
if (AttrEnc.Form != dwarf::DW_FORM_data8) {
|
|
error() << formatv(
|
|
"NameIndex @ {0:x}: Abbreviation {1:x}: DW_IDX_type_hash "
|
|
"uses an unexpected form {2} (should be {3}).\n",
|
|
NI.getUnitOffset(), Abbr.Code, AttrEnc.Form, dwarf::DW_FORM_data8);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
// A list of known index attributes and their expected form classes.
|
|
// DW_IDX_type_hash is handled specially in the check above, as it has a
|
|
// specific form (not just a form class) we should expect.
|
|
struct FormClassTable {
|
|
dwarf::Index Index;
|
|
DWARFFormValue::FormClass Class;
|
|
StringLiteral ClassName;
|
|
};
|
|
static constexpr FormClassTable Table[] = {
|
|
{dwarf::DW_IDX_compile_unit, DWARFFormValue::FC_Constant, {"constant"}},
|
|
{dwarf::DW_IDX_type_unit, DWARFFormValue::FC_Constant, {"constant"}},
|
|
{dwarf::DW_IDX_die_offset, DWARFFormValue::FC_Reference, {"reference"}},
|
|
{dwarf::DW_IDX_parent, DWARFFormValue::FC_Constant, {"constant"}},
|
|
};
|
|
|
|
ArrayRef<FormClassTable> TableRef(Table);
|
|
auto Iter = find_if(TableRef, [AttrEnc](const FormClassTable &T) {
|
|
return T.Index == AttrEnc.Index;
|
|
});
|
|
if (Iter == TableRef.end()) {
|
|
warn() << formatv("NameIndex @ {0:x}: Abbreviation {1:x} contains an "
|
|
"unknown index attribute: {2}.\n",
|
|
NI.getUnitOffset(), Abbr.Code, AttrEnc.Index);
|
|
return 0;
|
|
}
|
|
|
|
if (!DWARFFormValue(AttrEnc.Form).isFormClass(Iter->Class)) {
|
|
error() << formatv("NameIndex @ {0:x}: Abbreviation {1:x}: {2} uses an "
|
|
"unexpected form {3} (expected form class {4}).\n",
|
|
NI.getUnitOffset(), Abbr.Code, AttrEnc.Index,
|
|
AttrEnc.Form, Iter->ClassName);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
unsigned
|
|
DWARFVerifier::verifyNameIndexAbbrevs(const DWARFDebugNames::NameIndex &NI) {
|
|
if (NI.getLocalTUCount() + NI.getForeignTUCount() > 0) {
|
|
warn() << formatv("Name Index @ {0:x}: Verifying indexes of type units is "
|
|
"not currently supported.\n",
|
|
NI.getUnitOffset());
|
|
return 0;
|
|
}
|
|
|
|
unsigned NumErrors = 0;
|
|
for (const auto &Abbrev : NI.getAbbrevs()) {
|
|
StringRef TagName = dwarf::TagString(Abbrev.Tag);
|
|
if (TagName.empty()) {
|
|
warn() << formatv("NameIndex @ {0:x}: Abbreviation {1:x} references an "
|
|
"unknown tag: {2}.\n",
|
|
NI.getUnitOffset(), Abbrev.Code, Abbrev.Tag);
|
|
}
|
|
SmallSet<unsigned, 5> Attributes;
|
|
for (const auto &AttrEnc : Abbrev.Attributes) {
|
|
if (!Attributes.insert(AttrEnc.Index).second) {
|
|
error() << formatv("NameIndex @ {0:x}: Abbreviation {1:x} contains "
|
|
"multiple {2} attributes.\n",
|
|
NI.getUnitOffset(), Abbrev.Code, AttrEnc.Index);
|
|
++NumErrors;
|
|
continue;
|
|
}
|
|
NumErrors += verifyNameIndexAttribute(NI, Abbrev, AttrEnc);
|
|
}
|
|
|
|
if (NI.getCUCount() > 1 && !Attributes.count(dwarf::DW_IDX_compile_unit)) {
|
|
error() << formatv("NameIndex @ {0:x}: Indexing multiple compile units "
|
|
"and abbreviation {1:x} has no {2} attribute.\n",
|
|
NI.getUnitOffset(), Abbrev.Code,
|
|
dwarf::DW_IDX_compile_unit);
|
|
++NumErrors;
|
|
}
|
|
if (!Attributes.count(dwarf::DW_IDX_die_offset)) {
|
|
error() << formatv(
|
|
"NameIndex @ {0:x}: Abbreviation {1:x} has no {2} attribute.\n",
|
|
NI.getUnitOffset(), Abbrev.Code, dwarf::DW_IDX_die_offset);
|
|
++NumErrors;
|
|
}
|
|
}
|
|
return NumErrors;
|
|
}
|
|
|
|
static SmallVector<StringRef, 2> getNames(const DWARFDie &DIE,
|
|
bool IncludeLinkageName = true) {
|
|
SmallVector<StringRef, 2> Result;
|
|
if (const char *Str = DIE.getName(DINameKind::ShortName))
|
|
Result.emplace_back(Str);
|
|
else if (DIE.getTag() == dwarf::DW_TAG_namespace)
|
|
Result.emplace_back("(anonymous namespace)");
|
|
|
|
if (IncludeLinkageName) {
|
|
if (const char *Str = DIE.getName(DINameKind::LinkageName)) {
|
|
if (Result.empty() || Result[0] != Str)
|
|
Result.emplace_back(Str);
|
|
}
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
unsigned DWARFVerifier::verifyNameIndexEntries(
|
|
const DWARFDebugNames::NameIndex &NI,
|
|
const DWARFDebugNames::NameTableEntry &NTE) {
|
|
// Verifying type unit indexes not supported.
|
|
if (NI.getLocalTUCount() + NI.getForeignTUCount() > 0)
|
|
return 0;
|
|
|
|
const char *CStr = NTE.getString();
|
|
if (!CStr) {
|
|
error() << formatv(
|
|
"Name Index @ {0:x}: Unable to get string associated with name {1}.\n",
|
|
NI.getUnitOffset(), NTE.getIndex());
|
|
return 1;
|
|
}
|
|
StringRef Str(CStr);
|
|
|
|
unsigned NumErrors = 0;
|
|
unsigned NumEntries = 0;
|
|
uint64_t EntryID = NTE.getEntryOffset();
|
|
uint64_t NextEntryID = EntryID;
|
|
Expected<DWARFDebugNames::Entry> EntryOr = NI.getEntry(&NextEntryID);
|
|
for (; EntryOr; ++NumEntries, EntryID = NextEntryID,
|
|
EntryOr = NI.getEntry(&NextEntryID)) {
|
|
uint32_t CUIndex = *EntryOr->getCUIndex();
|
|
if (CUIndex > NI.getCUCount()) {
|
|
error() << formatv("Name Index @ {0:x}: Entry @ {1:x} contains an "
|
|
"invalid CU index ({2}).\n",
|
|
NI.getUnitOffset(), EntryID, CUIndex);
|
|
++NumErrors;
|
|
continue;
|
|
}
|
|
uint64_t CUOffset = NI.getCUOffset(CUIndex);
|
|
uint64_t DIEOffset = CUOffset + *EntryOr->getDIEUnitOffset();
|
|
DWARFDie DIE = DCtx.getDIEForOffset(DIEOffset);
|
|
if (!DIE) {
|
|
error() << formatv("Name Index @ {0:x}: Entry @ {1:x} references a "
|
|
"non-existing DIE @ {2:x}.\n",
|
|
NI.getUnitOffset(), EntryID, DIEOffset);
|
|
++NumErrors;
|
|
continue;
|
|
}
|
|
if (DIE.getDwarfUnit()->getOffset() != CUOffset) {
|
|
error() << formatv("Name Index @ {0:x}: Entry @ {1:x}: mismatched CU of "
|
|
"DIE @ {2:x}: index - {3:x}; debug_info - {4:x}.\n",
|
|
NI.getUnitOffset(), EntryID, DIEOffset, CUOffset,
|
|
DIE.getDwarfUnit()->getOffset());
|
|
++NumErrors;
|
|
}
|
|
if (DIE.getTag() != EntryOr->tag()) {
|
|
error() << formatv("Name Index @ {0:x}: Entry @ {1:x}: mismatched Tag of "
|
|
"DIE @ {2:x}: index - {3}; debug_info - {4}.\n",
|
|
NI.getUnitOffset(), EntryID, DIEOffset, EntryOr->tag(),
|
|
DIE.getTag());
|
|
++NumErrors;
|
|
}
|
|
|
|
auto EntryNames = getNames(DIE);
|
|
if (!is_contained(EntryNames, Str)) {
|
|
error() << formatv("Name Index @ {0:x}: Entry @ {1:x}: mismatched Name "
|
|
"of DIE @ {2:x}: index - {3}; debug_info - {4}.\n",
|
|
NI.getUnitOffset(), EntryID, DIEOffset, Str,
|
|
make_range(EntryNames.begin(), EntryNames.end()));
|
|
++NumErrors;
|
|
}
|
|
}
|
|
handleAllErrors(EntryOr.takeError(),
|
|
[&](const DWARFDebugNames::SentinelError &) {
|
|
if (NumEntries > 0)
|
|
return;
|
|
error() << formatv("Name Index @ {0:x}: Name {1} ({2}) is "
|
|
"not associated with any entries.\n",
|
|
NI.getUnitOffset(), NTE.getIndex(), Str);
|
|
++NumErrors;
|
|
},
|
|
[&](const ErrorInfoBase &Info) {
|
|
error()
|
|
<< formatv("Name Index @ {0:x}: Name {1} ({2}): {3}\n",
|
|
NI.getUnitOffset(), NTE.getIndex(), Str,
|
|
Info.message());
|
|
++NumErrors;
|
|
});
|
|
return NumErrors;
|
|
}
|
|
|
|
static bool isVariableIndexable(const DWARFDie &Die, DWARFContext &DCtx) {
|
|
Optional<DWARFFormValue> Location = Die.findRecursively(DW_AT_location);
|
|
if (!Location)
|
|
return false;
|
|
|
|
auto ContainsInterestingOperators = [&](ArrayRef<uint8_t> D) {
|
|
DWARFUnit *U = Die.getDwarfUnit();
|
|
DataExtractor Data(toStringRef(D), DCtx.isLittleEndian(), U->getAddressByteSize());
|
|
DWARFExpression Expression(Data, U->getVersion(), U->getAddressByteSize());
|
|
return any_of(Expression, [](DWARFExpression::Operation &Op) {
|
|
return !Op.isError() && (Op.getCode() == DW_OP_addr ||
|
|
Op.getCode() == DW_OP_form_tls_address ||
|
|
Op.getCode() == DW_OP_GNU_push_tls_address);
|
|
});
|
|
};
|
|
|
|
if (Optional<ArrayRef<uint8_t>> Expr = Location->getAsBlock()) {
|
|
// Inlined location.
|
|
if (ContainsInterestingOperators(*Expr))
|
|
return true;
|
|
} else if (Optional<uint64_t> Offset = Location->getAsSectionOffset()) {
|
|
// Location list.
|
|
if (const DWARFDebugLoc *DebugLoc = DCtx.getDebugLoc()) {
|
|
if (const DWARFDebugLoc::LocationList *LocList =
|
|
DebugLoc->getLocationListAtOffset(*Offset)) {
|
|
if (any_of(LocList->Entries, [&](const DWARFDebugLoc::Entry &E) {
|
|
return ContainsInterestingOperators(E.Loc);
|
|
}))
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
unsigned DWARFVerifier::verifyNameIndexCompleteness(
|
|
const DWARFDie &Die, const DWARFDebugNames::NameIndex &NI) {
|
|
|
|
// First check, if the Die should be indexed. The code follows the DWARF v5
|
|
// wording as closely as possible.
|
|
|
|
// "All non-defining declarations (that is, debugging information entries
|
|
// with a DW_AT_declaration attribute) are excluded."
|
|
if (Die.find(DW_AT_declaration))
|
|
return 0;
|
|
|
|
// "DW_TAG_namespace debugging information entries without a DW_AT_name
|
|
// attribute are included with the name “(anonymous namespace)”.
|
|
// All other debugging information entries without a DW_AT_name attribute
|
|
// are excluded."
|
|
// "If a subprogram or inlined subroutine is included, and has a
|
|
// DW_AT_linkage_name attribute, there will be an additional index entry for
|
|
// the linkage name."
|
|
auto IncludeLinkageName = Die.getTag() == DW_TAG_subprogram ||
|
|
Die.getTag() == DW_TAG_inlined_subroutine;
|
|
auto EntryNames = getNames(Die, IncludeLinkageName);
|
|
if (EntryNames.empty())
|
|
return 0;
|
|
|
|
// We deviate from the specification here, which says:
|
|
// "The name index must contain an entry for each debugging information entry
|
|
// that defines a named subprogram, label, variable, type, or namespace,
|
|
// subject to ..."
|
|
// Instead whitelisting all TAGs representing a "type" or a "subprogram", to
|
|
// make sure we catch any missing items, we instead blacklist all TAGs that we
|
|
// know shouldn't be indexed.
|
|
switch (Die.getTag()) {
|
|
// Compile units and modules have names but shouldn't be indexed.
|
|
case DW_TAG_compile_unit:
|
|
case DW_TAG_module:
|
|
return 0;
|
|
|
|
// Function and template parameters are not globally visible, so we shouldn't
|
|
// index them.
|
|
case DW_TAG_formal_parameter:
|
|
case DW_TAG_template_value_parameter:
|
|
case DW_TAG_template_type_parameter:
|
|
case DW_TAG_GNU_template_parameter_pack:
|
|
case DW_TAG_GNU_template_template_param:
|
|
return 0;
|
|
|
|
// Object members aren't globally visible.
|
|
case DW_TAG_member:
|
|
return 0;
|
|
|
|
// According to a strict reading of the specification, enumerators should not
|
|
// be indexed (and LLVM currently does not do that). However, this causes
|
|
// problems for the debuggers, so we may need to reconsider this.
|
|
case DW_TAG_enumerator:
|
|
return 0;
|
|
|
|
// Imported declarations should not be indexed according to the specification
|
|
// and LLVM currently does not do that.
|
|
case DW_TAG_imported_declaration:
|
|
return 0;
|
|
|
|
// "DW_TAG_subprogram, DW_TAG_inlined_subroutine, and DW_TAG_label debugging
|
|
// information entries without an address attribute (DW_AT_low_pc,
|
|
// DW_AT_high_pc, DW_AT_ranges, or DW_AT_entry_pc) are excluded."
|
|
case DW_TAG_subprogram:
|
|
case DW_TAG_inlined_subroutine:
|
|
case DW_TAG_label:
|
|
if (Die.findRecursively(
|
|
{DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges, DW_AT_entry_pc}))
|
|
break;
|
|
return 0;
|
|
|
|
// "DW_TAG_variable debugging information entries with a DW_AT_location
|
|
// attribute that includes a DW_OP_addr or DW_OP_form_tls_address operator are
|
|
// included; otherwise, they are excluded."
|
|
//
|
|
// LLVM extension: We also add DW_OP_GNU_push_tls_address to this list.
|
|
case DW_TAG_variable:
|
|
if (isVariableIndexable(Die, DCtx))
|
|
break;
|
|
return 0;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// Now we know that our Die should be present in the Index. Let's check if
|
|
// that's the case.
|
|
unsigned NumErrors = 0;
|
|
uint64_t DieUnitOffset = Die.getOffset() - Die.getDwarfUnit()->getOffset();
|
|
for (StringRef Name : EntryNames) {
|
|
if (none_of(NI.equal_range(Name), [&](const DWARFDebugNames::Entry &E) {
|
|
return E.getDIEUnitOffset() == DieUnitOffset;
|
|
})) {
|
|
error() << formatv("Name Index @ {0:x}: Entry for DIE @ {1:x} ({2}) with "
|
|
"name {3} missing.\n",
|
|
NI.getUnitOffset(), Die.getOffset(), Die.getTag(),
|
|
Name);
|
|
++NumErrors;
|
|
}
|
|
}
|
|
return NumErrors;
|
|
}
|
|
|
|
unsigned DWARFVerifier::verifyDebugNames(const DWARFSection &AccelSection,
|
|
const DataExtractor &StrData) {
|
|
unsigned NumErrors = 0;
|
|
DWARFDataExtractor AccelSectionData(DCtx.getDWARFObj(), AccelSection,
|
|
DCtx.isLittleEndian(), 0);
|
|
DWARFDebugNames AccelTable(AccelSectionData, StrData);
|
|
|
|
OS << "Verifying .debug_names...\n";
|
|
|
|
// This verifies that we can read individual name indices and their
|
|
// abbreviation tables.
|
|
if (Error E = AccelTable.extract()) {
|
|
error() << toString(std::move(E)) << '\n';
|
|
return 1;
|
|
}
|
|
|
|
NumErrors += verifyDebugNamesCULists(AccelTable);
|
|
for (const auto &NI : AccelTable)
|
|
NumErrors += verifyNameIndexBuckets(NI, StrData);
|
|
for (const auto &NI : AccelTable)
|
|
NumErrors += verifyNameIndexAbbrevs(NI);
|
|
|
|
// Don't attempt Entry validation if any of the previous checks found errors
|
|
if (NumErrors > 0)
|
|
return NumErrors;
|
|
for (const auto &NI : AccelTable)
|
|
for (DWARFDebugNames::NameTableEntry NTE : NI)
|
|
NumErrors += verifyNameIndexEntries(NI, NTE);
|
|
|
|
if (NumErrors > 0)
|
|
return NumErrors;
|
|
|
|
for (const std::unique_ptr<DWARFUnit> &U : DCtx.compile_units()) {
|
|
if (const DWARFDebugNames::NameIndex *NI =
|
|
AccelTable.getCUNameIndex(U->getOffset())) {
|
|
auto *CU = cast<DWARFCompileUnit>(U.get());
|
|
for (const DWARFDebugInfoEntry &Die : CU->dies())
|
|
NumErrors += verifyNameIndexCompleteness(DWARFDie(CU, &Die), *NI);
|
|
}
|
|
}
|
|
return NumErrors;
|
|
}
|
|
|
|
bool DWARFVerifier::handleAccelTables() {
|
|
const DWARFObject &D = DCtx.getDWARFObj();
|
|
DataExtractor StrData(D.getStrSection(), DCtx.isLittleEndian(), 0);
|
|
unsigned NumErrors = 0;
|
|
if (!D.getAppleNamesSection().Data.empty())
|
|
NumErrors += verifyAppleAccelTable(&D.getAppleNamesSection(), &StrData,
|
|
".apple_names");
|
|
if (!D.getAppleTypesSection().Data.empty())
|
|
NumErrors += verifyAppleAccelTable(&D.getAppleTypesSection(), &StrData,
|
|
".apple_types");
|
|
if (!D.getAppleNamespacesSection().Data.empty())
|
|
NumErrors += verifyAppleAccelTable(&D.getAppleNamespacesSection(), &StrData,
|
|
".apple_namespaces");
|
|
if (!D.getAppleObjCSection().Data.empty())
|
|
NumErrors += verifyAppleAccelTable(&D.getAppleObjCSection(), &StrData,
|
|
".apple_objc");
|
|
|
|
if (!D.getNamesSection().Data.empty())
|
|
NumErrors += verifyDebugNames(D.getNamesSection(), StrData);
|
|
return NumErrors == 0;
|
|
}
|
|
|
|
raw_ostream &DWARFVerifier::error() const { return WithColor::error(OS); }
|
|
|
|
raw_ostream &DWARFVerifier::warn() const { return WithColor::warning(OS); }
|
|
|
|
raw_ostream &DWARFVerifier::note() const { return WithColor::note(OS); }
|
|
|
|
raw_ostream &DWARFVerifier::dump(const DWARFDie &Die, unsigned indent) const {
|
|
Die.dump(OS, indent, DumpOpts);
|
|
return OS;
|
|
}
|