llvm-project/llvm/lib/TableGen/Record.cpp

1950 lines
60 KiB
C++

//===- Record.cpp - Record implementation ---------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implement the tablegen record classes.
//
//===----------------------------------------------------------------------===//
#include "llvm/TableGen/Record.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/TableGen/Error.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// std::string wrapper for DenseMap purposes
//===----------------------------------------------------------------------===//
namespace llvm {
/// TableGenStringKey - This is a wrapper for std::string suitable for
/// using as a key to a DenseMap. Because there isn't a particularly
/// good way to indicate tombstone or empty keys for strings, we want
/// to wrap std::string to indicate that this is a "special" string
/// not expected to take on certain values (those of the tombstone and
/// empty keys). This makes things a little safer as it clarifies
/// that DenseMap is really not appropriate for general strings.
class TableGenStringKey {
public:
TableGenStringKey(const std::string &str) : data(str) {}
TableGenStringKey(const char *str) : data(str) {}
const std::string &str() const { return data; }
friend hash_code hash_value(const TableGenStringKey &Value) {
using llvm::hash_value;
return hash_value(Value.str());
}
private:
std::string data;
};
/// Specialize DenseMapInfo for TableGenStringKey.
template<> struct DenseMapInfo<TableGenStringKey> {
static inline TableGenStringKey getEmptyKey() {
TableGenStringKey Empty("<<<EMPTY KEY>>>");
return Empty;
}
static inline TableGenStringKey getTombstoneKey() {
TableGenStringKey Tombstone("<<<TOMBSTONE KEY>>>");
return Tombstone;
}
static unsigned getHashValue(const TableGenStringKey& Val) {
using llvm::hash_value;
return hash_value(Val);
}
static bool isEqual(const TableGenStringKey& LHS,
const TableGenStringKey& RHS) {
return LHS.str() == RHS.str();
}
};
} // namespace llvm
//===----------------------------------------------------------------------===//
// Type implementations
//===----------------------------------------------------------------------===//
BitRecTy BitRecTy::Shared;
IntRecTy IntRecTy::Shared;
StringRecTy StringRecTy::Shared;
DagRecTy DagRecTy::Shared;
void RecTy::dump() const { print(errs()); }
ListRecTy *RecTy::getListTy() {
if (!ListTy)
ListTy.reset(new ListRecTy(this));
return ListTy.get();
}
bool RecTy::typeIsConvertibleTo(const RecTy *RHS) const {
assert(RHS && "NULL pointer");
return Kind == RHS->getRecTyKind();
}
bool BitRecTy::typeIsConvertibleTo(const RecTy *RHS) const{
if (RecTy::typeIsConvertibleTo(RHS) || RHS->getRecTyKind() == IntRecTyKind)
return true;
if (const BitsRecTy *BitsTy = dyn_cast<BitsRecTy>(RHS))
return BitsTy->getNumBits() == 1;
return false;
}
BitsRecTy *BitsRecTy::get(unsigned Sz) {
static std::vector<std::unique_ptr<BitsRecTy>> Shared;
if (Sz >= Shared.size())
Shared.resize(Sz + 1);
std::unique_ptr<BitsRecTy> &Ty = Shared[Sz];
if (!Ty)
Ty.reset(new BitsRecTy(Sz));
return Ty.get();
}
std::string BitsRecTy::getAsString() const {
return "bits<" + utostr(Size) + ">";
}
bool BitsRecTy::typeIsConvertibleTo(const RecTy *RHS) const {
if (RecTy::typeIsConvertibleTo(RHS)) //argument and the sender are same type
return cast<BitsRecTy>(RHS)->Size == Size;
RecTyKind kind = RHS->getRecTyKind();
return (kind == BitRecTyKind && Size == 1) || (kind == IntRecTyKind);
}
bool IntRecTy::typeIsConvertibleTo(const RecTy *RHS) const {
RecTyKind kind = RHS->getRecTyKind();
return kind==BitRecTyKind || kind==BitsRecTyKind || kind==IntRecTyKind;
}
std::string StringRecTy::getAsString() const {
return "string";
}
std::string ListRecTy::getAsString() const {
return "list<" + Ty->getAsString() + ">";
}
bool ListRecTy::typeIsConvertibleTo(const RecTy *RHS) const {
if (const auto *ListTy = dyn_cast<ListRecTy>(RHS))
return Ty->typeIsConvertibleTo(ListTy->getElementType());
return false;
}
std::string DagRecTy::getAsString() const {
return "dag";
}
RecordRecTy *RecordRecTy::get(Record *R) {
return dyn_cast<RecordRecTy>(R->getDefInit()->getType());
}
std::string RecordRecTy::getAsString() const {
return Rec->getName();
}
bool RecordRecTy::typeIsConvertibleTo(const RecTy *RHS) const {
const RecordRecTy *RTy = dyn_cast<RecordRecTy>(RHS);
if (!RTy)
return false;
if (RTy->getRecord() == Rec || Rec->isSubClassOf(RTy->getRecord()))
return true;
for (Record *SC : RTy->getRecord()->getSuperClasses())
if (Rec->isSubClassOf(SC))
return true;
return false;
}
/// resolveTypes - Find a common type that T1 and T2 convert to.
/// Return null if no such type exists.
///
RecTy *llvm::resolveTypes(RecTy *T1, RecTy *T2) {
if (T1->typeIsConvertibleTo(T2))
return T2;
if (T2->typeIsConvertibleTo(T1))
return T1;
// If one is a Record type, check superclasses
if (RecordRecTy *RecTy1 = dyn_cast<RecordRecTy>(T1)) {
// See if T2 inherits from a type T1 also inherits from
for (Record *SuperRec1 : RecTy1->getRecord()->getSuperClasses()) {
RecordRecTy *SuperRecTy1 = RecordRecTy::get(SuperRec1);
RecTy *NewType1 = resolveTypes(SuperRecTy1, T2);
if (NewType1)
return NewType1;
}
}
if (RecordRecTy *RecTy2 = dyn_cast<RecordRecTy>(T2)) {
// See if T1 inherits from a type T2 also inherits from
for (Record *SuperRec2 : RecTy2->getRecord()->getSuperClasses()) {
RecordRecTy *SuperRecTy2 = RecordRecTy::get(SuperRec2);
RecTy *NewType2 = resolveTypes(T1, SuperRecTy2);
if (NewType2)
return NewType2;
}
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// Initializer implementations
//===----------------------------------------------------------------------===//
void Init::anchor() { }
void Init::dump() const { return print(errs()); }
UnsetInit *UnsetInit::get() {
static UnsetInit TheInit;
return &TheInit;
}
Init *UnsetInit::convertInitializerTo(RecTy *Ty) const {
if (auto *BRT = dyn_cast<BitsRecTy>(Ty)) {
SmallVector<Init *, 16> NewBits(BRT->getNumBits());
for (unsigned i = 0; i != BRT->getNumBits(); ++i)
NewBits[i] = UnsetInit::get();
return BitsInit::get(NewBits);
}
// All other types can just be returned.
return const_cast<UnsetInit *>(this);
}
BitInit *BitInit::get(bool V) {
static BitInit True(true);
static BitInit False(false);
return V ? &True : &False;
}
Init *BitInit::convertInitializerTo(RecTy *Ty) const {
if (isa<BitRecTy>(Ty))
return const_cast<BitInit *>(this);
if (isa<IntRecTy>(Ty))
return IntInit::get(getValue());
if (auto *BRT = dyn_cast<BitsRecTy>(Ty)) {
// Can only convert single bit.
if (BRT->getNumBits() == 1)
return BitsInit::get(const_cast<BitInit *>(this));
}
return nullptr;
}
static void
ProfileBitsInit(FoldingSetNodeID &ID, ArrayRef<Init *> Range) {
ID.AddInteger(Range.size());
for (Init *I : Range)
ID.AddPointer(I);
}
BitsInit *BitsInit::get(ArrayRef<Init *> Range) {
static FoldingSet<BitsInit> ThePool;
static std::vector<std::unique_ptr<BitsInit>> TheActualPool;
FoldingSetNodeID ID;
ProfileBitsInit(ID, Range);
void *IP = nullptr;
if (BitsInit *I = ThePool.FindNodeOrInsertPos(ID, IP))
return I;
BitsInit *I = new BitsInit(Range);
ThePool.InsertNode(I, IP);
TheActualPool.push_back(std::unique_ptr<BitsInit>(I));
return I;
}
void BitsInit::Profile(FoldingSetNodeID &ID) const {
ProfileBitsInit(ID, Bits);
}
Init *BitsInit::convertInitializerTo(RecTy *Ty) const {
if (isa<BitRecTy>(Ty)) {
if (getNumBits() != 1) return nullptr; // Only accept if just one bit!
return getBit(0);
}
if (auto *BRT = dyn_cast<BitsRecTy>(Ty)) {
// If the number of bits is right, return it. Otherwise we need to expand
// or truncate.
if (getNumBits() != BRT->getNumBits()) return nullptr;
return const_cast<BitsInit *>(this);
}
if (isa<IntRecTy>(Ty)) {
int64_t Result = 0;
for (unsigned i = 0, e = getNumBits(); i != e; ++i)
if (auto *Bit = dyn_cast<BitInit>(getBit(i)))
Result |= static_cast<int64_t>(Bit->getValue()) << i;
else
return nullptr;
return IntInit::get(Result);
}
return nullptr;
}
Init *
BitsInit::convertInitializerBitRange(const std::vector<unsigned> &Bits) const {
SmallVector<Init *, 16> NewBits(Bits.size());
for (unsigned i = 0, e = Bits.size(); i != e; ++i) {
if (Bits[i] >= getNumBits())
return nullptr;
NewBits[i] = getBit(Bits[i]);
}
return BitsInit::get(NewBits);
}
std::string BitsInit::getAsString() const {
std::string Result = "{ ";
for (unsigned i = 0, e = getNumBits(); i != e; ++i) {
if (i) Result += ", ";
if (Init *Bit = getBit(e-i-1))
Result += Bit->getAsString();
else
Result += "*";
}
return Result + " }";
}
// Fix bit initializer to preserve the behavior that bit reference from a unset
// bits initializer will resolve into VarBitInit to keep the field name and bit
// number used in targets with fixed insn length.
static Init *fixBitInit(const RecordVal *RV, Init *Before, Init *After) {
if (RV || !isa<UnsetInit>(After))
return After;
return Before;
}
// resolveReferences - If there are any field references that refer to fields
// that have been filled in, we can propagate the values now.
//
Init *BitsInit::resolveReferences(Record &R, const RecordVal *RV) const {
bool Changed = false;
SmallVector<Init *, 16> NewBits(getNumBits());
Init *CachedInit = nullptr;
Init *CachedBitVar = nullptr;
bool CachedBitVarChanged = false;
for (unsigned i = 0, e = getNumBits(); i != e; ++i) {
Init *CurBit = Bits[i];
Init *CurBitVar = CurBit->getBitVar();
NewBits[i] = CurBit;
if (CurBitVar == CachedBitVar) {
if (CachedBitVarChanged) {
Init *Bit = CachedInit->getBit(CurBit->getBitNum());
NewBits[i] = fixBitInit(RV, CurBit, Bit);
}
continue;
}
CachedBitVar = CurBitVar;
CachedBitVarChanged = false;
Init *B;
do {
B = CurBitVar;
CurBitVar = CurBitVar->resolveReferences(R, RV);
CachedBitVarChanged |= B != CurBitVar;
Changed |= B != CurBitVar;
} while (B != CurBitVar);
CachedInit = CurBitVar;
if (CachedBitVarChanged) {
Init *Bit = CurBitVar->getBit(CurBit->getBitNum());
NewBits[i] = fixBitInit(RV, CurBit, Bit);
}
}
if (Changed)
return BitsInit::get(NewBits);
return const_cast<BitsInit *>(this);
}
IntInit *IntInit::get(int64_t V) {
static DenseMap<int64_t, std::unique_ptr<IntInit>> ThePool;
std::unique_ptr<IntInit> &I = ThePool[V];
if (!I) I.reset(new IntInit(V));
return I.get();
}
std::string IntInit::getAsString() const {
return itostr(Value);
}
/// canFitInBitfield - Return true if the number of bits is large enough to hold
/// the integer value.
static bool canFitInBitfield(int64_t Value, unsigned NumBits) {
// For example, with NumBits == 4, we permit Values from [-7 .. 15].
return (NumBits >= sizeof(Value) * 8) ||
(Value >> NumBits == 0) || (Value >> (NumBits-1) == -1);
}
Init *IntInit::convertInitializerTo(RecTy *Ty) const {
if (isa<IntRecTy>(Ty))
return const_cast<IntInit *>(this);
if (isa<BitRecTy>(Ty)) {
int64_t Val = getValue();
if (Val != 0 && Val != 1) return nullptr; // Only accept 0 or 1 for a bit!
return BitInit::get(Val != 0);
}
if (auto *BRT = dyn_cast<BitsRecTy>(Ty)) {
int64_t Value = getValue();
// Make sure this bitfield is large enough to hold the integer value.
if (!canFitInBitfield(Value, BRT->getNumBits()))
return nullptr;
SmallVector<Init *, 16> NewBits(BRT->getNumBits());
for (unsigned i = 0; i != BRT->getNumBits(); ++i)
NewBits[i] = BitInit::get(Value & (1LL << i));
return BitsInit::get(NewBits);
}
return nullptr;
}
Init *
IntInit::convertInitializerBitRange(const std::vector<unsigned> &Bits) const {
SmallVector<Init *, 16> NewBits(Bits.size());
for (unsigned i = 0, e = Bits.size(); i != e; ++i) {
if (Bits[i] >= 64)
return nullptr;
NewBits[i] = BitInit::get(Value & (INT64_C(1) << Bits[i]));
}
return BitsInit::get(NewBits);
}
StringInit *StringInit::get(StringRef V) {
static StringMap<std::unique_ptr<StringInit>> ThePool;
std::unique_ptr<StringInit> &I = ThePool[V];
if (!I) I.reset(new StringInit(V));
return I.get();
}
Init *StringInit::convertInitializerTo(RecTy *Ty) const {
if (isa<StringRecTy>(Ty))
return const_cast<StringInit *>(this);
return nullptr;
}
static void ProfileListInit(FoldingSetNodeID &ID,
ArrayRef<Init *> Range,
RecTy *EltTy) {
ID.AddInteger(Range.size());
ID.AddPointer(EltTy);
for (Init *I : Range)
ID.AddPointer(I);
}
ListInit *ListInit::get(ArrayRef<Init *> Range, RecTy *EltTy) {
static FoldingSet<ListInit> ThePool;
static std::vector<std::unique_ptr<ListInit>> TheActualPool;
FoldingSetNodeID ID;
ProfileListInit(ID, Range, EltTy);
void *IP = nullptr;
if (ListInit *I = ThePool.FindNodeOrInsertPos(ID, IP))
return I;
ListInit *I = new ListInit(Range, EltTy);
ThePool.InsertNode(I, IP);
TheActualPool.push_back(std::unique_ptr<ListInit>(I));
return I;
}
void ListInit::Profile(FoldingSetNodeID &ID) const {
RecTy *EltTy = cast<ListRecTy>(getType())->getElementType();
ProfileListInit(ID, Values, EltTy);
}
Init *ListInit::convertInitializerTo(RecTy *Ty) const {
if (auto *LRT = dyn_cast<ListRecTy>(Ty)) {
std::vector<Init*> Elements;
// Verify that all of the elements of the list are subclasses of the
// appropriate class!
for (Init *I : getValues())
if (Init *CI = I->convertInitializerTo(LRT->getElementType()))
Elements.push_back(CI);
else
return nullptr;
if (isa<ListRecTy>(getType()))
return ListInit::get(Elements, Ty);
}
return nullptr;
}
Init *
ListInit::convertInitListSlice(const std::vector<unsigned> &Elements) const {
std::vector<Init*> Vals;
for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
if (Elements[i] >= size())
return nullptr;
Vals.push_back(getElement(Elements[i]));
}
return ListInit::get(Vals, getType());
}
Record *ListInit::getElementAsRecord(unsigned i) const {
assert(i < Values.size() && "List element index out of range!");
DefInit *DI = dyn_cast<DefInit>(Values[i]);
if (!DI)
PrintFatalError("Expected record in list!");
return DI->getDef();
}
Init *ListInit::resolveReferences(Record &R, const RecordVal *RV) const {
std::vector<Init*> Resolved;
Resolved.reserve(size());
bool Changed = false;
for (Init *CurElt : getValues()) {
Init *E;
do {
E = CurElt;
CurElt = CurElt->resolveReferences(R, RV);
Changed |= E != CurElt;
} while (E != CurElt);
Resolved.push_back(E);
}
if (Changed)
return ListInit::get(Resolved, getType());
return const_cast<ListInit *>(this);
}
Init *ListInit::resolveListElementReference(Record &R, const RecordVal *IRV,
unsigned Elt) const {
if (Elt >= size())
return nullptr; // Out of range reference.
Init *E = getElement(Elt);
// If the element is set to some value, or if we are resolving a reference
// to a specific variable and that variable is explicitly unset, then
// replace the VarListElementInit with it.
if (IRV || !isa<UnsetInit>(E))
return E;
return nullptr;
}
std::string ListInit::getAsString() const {
std::string Result = "[";
for (unsigned i = 0, e = Values.size(); i != e; ++i) {
if (i) Result += ", ";
Result += Values[i]->getAsString();
}
return Result + "]";
}
Init *OpInit::resolveListElementReference(Record &R, const RecordVal *IRV,
unsigned Elt) const {
Init *Resolved = resolveReferences(R, IRV);
OpInit *OResolved = dyn_cast<OpInit>(Resolved);
if (OResolved) {
Resolved = OResolved->Fold(&R, nullptr);
}
if (Resolved != this) {
TypedInit *Typed = cast<TypedInit>(Resolved);
if (Init *New = Typed->resolveListElementReference(R, IRV, Elt))
return New;
return VarListElementInit::get(Typed, Elt);
}
return nullptr;
}
Init *OpInit::getBit(unsigned Bit) const {
if (getType() == BitRecTy::get())
return const_cast<OpInit*>(this);
return VarBitInit::get(const_cast<OpInit*>(this), Bit);
}
UnOpInit *UnOpInit::get(UnaryOp opc, Init *lhs, RecTy *Type) {
typedef std::pair<std::pair<unsigned, Init *>, RecTy *> Key;
static DenseMap<Key, std::unique_ptr<UnOpInit>> ThePool;
Key TheKey(std::make_pair(std::make_pair(opc, lhs), Type));
std::unique_ptr<UnOpInit> &I = ThePool[TheKey];
if (!I) I.reset(new UnOpInit(opc, lhs, Type));
return I.get();
}
Init *UnOpInit::Fold(Record *CurRec, MultiClass *CurMultiClass) const {
switch (getOpcode()) {
case CAST: {
if (isa<StringRecTy>(getType())) {
if (StringInit *LHSs = dyn_cast<StringInit>(LHS))
return LHSs;
if (DefInit *LHSd = dyn_cast<DefInit>(LHS))
return StringInit::get(LHSd->getAsString());
if (IntInit *LHSi = dyn_cast<IntInit>(LHS))
return StringInit::get(LHSi->getAsString());
} else {
if (StringInit *LHSs = dyn_cast<StringInit>(LHS)) {
std::string Name = LHSs->getValue();
// From TGParser::ParseIDValue
if (CurRec) {
if (const RecordVal *RV = CurRec->getValue(Name)) {
if (RV->getType() != getType())
PrintFatalError("type mismatch in cast");
return VarInit::get(Name, RV->getType());
}
Init *TemplateArgName = QualifyName(*CurRec, CurMultiClass, Name,
":");
if (CurRec->isTemplateArg(TemplateArgName)) {
const RecordVal *RV = CurRec->getValue(TemplateArgName);
assert(RV && "Template arg doesn't exist??");
if (RV->getType() != getType())
PrintFatalError("type mismatch in cast");
return VarInit::get(TemplateArgName, RV->getType());
}
}
if (CurMultiClass) {
Init *MCName = QualifyName(CurMultiClass->Rec, CurMultiClass, Name,
"::");
if (CurMultiClass->Rec.isTemplateArg(MCName)) {
const RecordVal *RV = CurMultiClass->Rec.getValue(MCName);
assert(RV && "Template arg doesn't exist??");
if (RV->getType() != getType())
PrintFatalError("type mismatch in cast");
return VarInit::get(MCName, RV->getType());
}
}
assert(CurRec && "NULL pointer");
if (Record *D = (CurRec->getRecords()).getDef(Name))
return DefInit::get(D);
PrintFatalError(CurRec->getLoc(),
"Undefined reference:'" + Name + "'\n");
}
if (isa<IntRecTy>(getType())) {
if (BitsInit *BI = dyn_cast<BitsInit>(LHS)) {
if (Init *NewInit = BI->convertInitializerTo(IntRecTy::get()))
return NewInit;
break;
}
}
}
break;
}
case HEAD: {
if (ListInit *LHSl = dyn_cast<ListInit>(LHS)) {
assert(!LHSl->empty() && "Empty list in head");
return LHSl->getElement(0);
}
break;
}
case TAIL: {
if (ListInit *LHSl = dyn_cast<ListInit>(LHS)) {
assert(!LHSl->empty() && "Empty list in tail");
// Note the +1. We can't just pass the result of getValues()
// directly.
return ListInit::get(LHSl->getValues().slice(1), LHSl->getType());
}
break;
}
case EMPTY: {
if (ListInit *LHSl = dyn_cast<ListInit>(LHS))
return IntInit::get(LHSl->empty());
if (StringInit *LHSs = dyn_cast<StringInit>(LHS))
return IntInit::get(LHSs->getValue().empty());
break;
}
}
return const_cast<UnOpInit *>(this);
}
Init *UnOpInit::resolveReferences(Record &R, const RecordVal *RV) const {
Init *lhs = LHS->resolveReferences(R, RV);
if (LHS != lhs)
return (UnOpInit::get(getOpcode(), lhs, getType()))->Fold(&R, nullptr);
return Fold(&R, nullptr);
}
std::string UnOpInit::getAsString() const {
std::string Result;
switch (Opc) {
case CAST: Result = "!cast<" + getType()->getAsString() + ">"; break;
case HEAD: Result = "!head"; break;
case TAIL: Result = "!tail"; break;
case EMPTY: Result = "!empty"; break;
}
return Result + "(" + LHS->getAsString() + ")";
}
BinOpInit *BinOpInit::get(BinaryOp opc, Init *lhs,
Init *rhs, RecTy *Type) {
typedef std::pair<
std::pair<std::pair<unsigned, Init *>, Init *>,
RecTy *
> Key;
static DenseMap<Key, std::unique_ptr<BinOpInit>> ThePool;
Key TheKey(std::make_pair(std::make_pair(std::make_pair(opc, lhs), rhs),
Type));
std::unique_ptr<BinOpInit> &I = ThePool[TheKey];
if (!I) I.reset(new BinOpInit(opc, lhs, rhs, Type));
return I.get();
}
Init *BinOpInit::Fold(Record *CurRec, MultiClass *CurMultiClass) const {
switch (getOpcode()) {
case CONCAT: {
DagInit *LHSs = dyn_cast<DagInit>(LHS);
DagInit *RHSs = dyn_cast<DagInit>(RHS);
if (LHSs && RHSs) {
DefInit *LOp = dyn_cast<DefInit>(LHSs->getOperator());
DefInit *ROp = dyn_cast<DefInit>(RHSs->getOperator());
if (!LOp || !ROp || LOp->getDef() != ROp->getDef())
PrintFatalError("Concated Dag operators do not match!");
std::vector<Init*> Args;
std::vector<std::string> ArgNames;
for (unsigned i = 0, e = LHSs->getNumArgs(); i != e; ++i) {
Args.push_back(LHSs->getArg(i));
ArgNames.push_back(LHSs->getArgName(i));
}
for (unsigned i = 0, e = RHSs->getNumArgs(); i != e; ++i) {
Args.push_back(RHSs->getArg(i));
ArgNames.push_back(RHSs->getArgName(i));
}
return DagInit::get(LHSs->getOperator(), "", Args, ArgNames);
}
break;
}
case LISTCONCAT: {
ListInit *LHSs = dyn_cast<ListInit>(LHS);
ListInit *RHSs = dyn_cast<ListInit>(RHS);
if (LHSs && RHSs) {
std::vector<Init *> Args;
Args.insert(Args.end(), LHSs->begin(), LHSs->end());
Args.insert(Args.end(), RHSs->begin(), RHSs->end());
return ListInit::get(
Args, cast<ListRecTy>(LHSs->getType())->getElementType());
}
break;
}
case STRCONCAT: {
StringInit *LHSs = dyn_cast<StringInit>(LHS);
StringInit *RHSs = dyn_cast<StringInit>(RHS);
if (LHSs && RHSs)
return StringInit::get(LHSs->getValue() + RHSs->getValue());
break;
}
case EQ: {
// try to fold eq comparison for 'bit' and 'int', otherwise fallback
// to string objects.
IntInit *L =
dyn_cast_or_null<IntInit>(LHS->convertInitializerTo(IntRecTy::get()));
IntInit *R =
dyn_cast_or_null<IntInit>(RHS->convertInitializerTo(IntRecTy::get()));
if (L && R)
return IntInit::get(L->getValue() == R->getValue());
StringInit *LHSs = dyn_cast<StringInit>(LHS);
StringInit *RHSs = dyn_cast<StringInit>(RHS);
// Make sure we've resolved
if (LHSs && RHSs)
return IntInit::get(LHSs->getValue() == RHSs->getValue());
break;
}
case ADD:
case AND:
case SHL:
case SRA:
case SRL: {
IntInit *LHSi =
dyn_cast_or_null<IntInit>(LHS->convertInitializerTo(IntRecTy::get()));
IntInit *RHSi =
dyn_cast_or_null<IntInit>(RHS->convertInitializerTo(IntRecTy::get()));
if (LHSi && RHSi) {
int64_t LHSv = LHSi->getValue(), RHSv = RHSi->getValue();
int64_t Result;
switch (getOpcode()) {
default: llvm_unreachable("Bad opcode!");
case ADD: Result = LHSv + RHSv; break;
case AND: Result = LHSv & RHSv; break;
case SHL: Result = LHSv << RHSv; break;
case SRA: Result = LHSv >> RHSv; break;
case SRL: Result = (uint64_t)LHSv >> (uint64_t)RHSv; break;
}
return IntInit::get(Result);
}
break;
}
}
return const_cast<BinOpInit *>(this);
}
Init *BinOpInit::resolveReferences(Record &R, const RecordVal *RV) const {
Init *lhs = LHS->resolveReferences(R, RV);
Init *rhs = RHS->resolveReferences(R, RV);
if (LHS != lhs || RHS != rhs)
return (BinOpInit::get(getOpcode(), lhs, rhs, getType()))->Fold(&R,nullptr);
return Fold(&R, nullptr);
}
std::string BinOpInit::getAsString() const {
std::string Result;
switch (Opc) {
case CONCAT: Result = "!con"; break;
case ADD: Result = "!add"; break;
case AND: Result = "!and"; break;
case SHL: Result = "!shl"; break;
case SRA: Result = "!sra"; break;
case SRL: Result = "!srl"; break;
case EQ: Result = "!eq"; break;
case LISTCONCAT: Result = "!listconcat"; break;
case STRCONCAT: Result = "!strconcat"; break;
}
return Result + "(" + LHS->getAsString() + ", " + RHS->getAsString() + ")";
}
TernOpInit *TernOpInit::get(TernaryOp opc, Init *lhs, Init *mhs, Init *rhs,
RecTy *Type) {
typedef std::pair<
std::pair<
std::pair<std::pair<unsigned, RecTy *>, Init *>,
Init *
>,
Init *
> Key;
static DenseMap<Key, std::unique_ptr<TernOpInit>> ThePool;
Key TheKey(std::make_pair(std::make_pair(std::make_pair(std::make_pair(opc,
Type),
lhs),
mhs),
rhs));
std::unique_ptr<TernOpInit> &I = ThePool[TheKey];
if (!I) I.reset(new TernOpInit(opc, lhs, mhs, rhs, Type));
return I.get();
}
static Init *ForeachHelper(Init *LHS, Init *MHS, Init *RHS, RecTy *Type,
Record *CurRec, MultiClass *CurMultiClass);
static Init *EvaluateOperation(OpInit *RHSo, Init *LHS, Init *Arg,
RecTy *Type, Record *CurRec,
MultiClass *CurMultiClass) {
// If this is a dag, recurse
if (auto *TArg = dyn_cast<TypedInit>(Arg))
if (isa<DagRecTy>(TArg->getType()))
return ForeachHelper(LHS, Arg, RHSo, Type, CurRec, CurMultiClass);
std::vector<Init *> NewOperands;
for (unsigned i = 0; i < RHSo->getNumOperands(); ++i) {
if (auto *RHSoo = dyn_cast<OpInit>(RHSo->getOperand(i))) {
if (Init *Result = EvaluateOperation(RHSoo, LHS, Arg,
Type, CurRec, CurMultiClass))
NewOperands.push_back(Result);
else
NewOperands.push_back(Arg);
} else if (LHS->getAsString() == RHSo->getOperand(i)->getAsString()) {
NewOperands.push_back(Arg);
} else {
NewOperands.push_back(RHSo->getOperand(i));
}
}
// Now run the operator and use its result as the new leaf
const OpInit *NewOp = RHSo->clone(NewOperands);
Init *NewVal = NewOp->Fold(CurRec, CurMultiClass);
return (NewVal != NewOp) ? NewVal : nullptr;
}
static Init *ForeachHelper(Init *LHS, Init *MHS, Init *RHS, RecTy *Type,
Record *CurRec, MultiClass *CurMultiClass) {
OpInit *RHSo = dyn_cast<OpInit>(RHS);
if (!RHSo)
PrintFatalError(CurRec->getLoc(), "!foreach requires an operator\n");
TypedInit *LHSt = dyn_cast<TypedInit>(LHS);
if (!LHSt)
PrintFatalError(CurRec->getLoc(), "!foreach requires typed variable\n");
DagInit *MHSd = dyn_cast<DagInit>(MHS);
if (MHSd && isa<DagRecTy>(Type)) {
Init *Val = MHSd->getOperator();
if (Init *Result = EvaluateOperation(RHSo, LHS, Val,
Type, CurRec, CurMultiClass))
Val = Result;
std::vector<std::pair<Init *, std::string> > args;
for (unsigned int i = 0; i < MHSd->getNumArgs(); ++i) {
Init *Arg = MHSd->getArg(i);
std::string ArgName = MHSd->getArgName(i);
// Process args
if (Init *Result = EvaluateOperation(RHSo, LHS, Arg, Type,
CurRec, CurMultiClass))
Arg = Result;
// TODO: Process arg names
args.push_back(std::make_pair(Arg, ArgName));
}
return DagInit::get(Val, "", args);
}
ListInit *MHSl = dyn_cast<ListInit>(MHS);
if (MHSl && isa<ListRecTy>(Type)) {
std::vector<Init *> NewOperands;
std::vector<Init *> NewList(MHSl->begin(), MHSl->end());
for (Init *&Item : NewList) {
NewOperands.clear();
for(unsigned i = 0; i < RHSo->getNumOperands(); ++i) {
// First, replace the foreach variable with the list item
if (LHS->getAsString() == RHSo->getOperand(i)->getAsString())
NewOperands.push_back(Item);
else
NewOperands.push_back(RHSo->getOperand(i));
}
// Now run the operator and use its result as the new list item
const OpInit *NewOp = RHSo->clone(NewOperands);
Init *NewItem = NewOp->Fold(CurRec, CurMultiClass);
if (NewItem != NewOp)
Item = NewItem;
}
return ListInit::get(NewList, MHSl->getType());
}
return nullptr;
}
Init *TernOpInit::Fold(Record *CurRec, MultiClass *CurMultiClass) const {
switch (getOpcode()) {
case SUBST: {
DefInit *LHSd = dyn_cast<DefInit>(LHS);
VarInit *LHSv = dyn_cast<VarInit>(LHS);
StringInit *LHSs = dyn_cast<StringInit>(LHS);
DefInit *MHSd = dyn_cast<DefInit>(MHS);
VarInit *MHSv = dyn_cast<VarInit>(MHS);
StringInit *MHSs = dyn_cast<StringInit>(MHS);
DefInit *RHSd = dyn_cast<DefInit>(RHS);
VarInit *RHSv = dyn_cast<VarInit>(RHS);
StringInit *RHSs = dyn_cast<StringInit>(RHS);
if (LHSd && MHSd && RHSd) {
Record *Val = RHSd->getDef();
if (LHSd->getAsString() == RHSd->getAsString())
Val = MHSd->getDef();
return DefInit::get(Val);
}
if (LHSv && MHSv && RHSv) {
std::string Val = RHSv->getName();
if (LHSv->getAsString() == RHSv->getAsString())
Val = MHSv->getName();
return VarInit::get(Val, getType());
}
if (LHSs && MHSs && RHSs) {
std::string Val = RHSs->getValue();
std::string::size_type found;
std::string::size_type idx = 0;
while (true) {
found = Val.find(LHSs->getValue(), idx);
if (found == std::string::npos)
break;
Val.replace(found, LHSs->getValue().size(), MHSs->getValue());
idx = found + MHSs->getValue().size();
}
return StringInit::get(Val);
}
break;
}
case FOREACH: {
if (Init *Result = ForeachHelper(LHS, MHS, RHS, getType(),
CurRec, CurMultiClass))
return Result;
break;
}
case IF: {
IntInit *LHSi = dyn_cast<IntInit>(LHS);
if (Init *I = LHS->convertInitializerTo(IntRecTy::get()))
LHSi = dyn_cast<IntInit>(I);
if (LHSi) {
if (LHSi->getValue())
return MHS;
return RHS;
}
break;
}
}
return const_cast<TernOpInit *>(this);
}
Init *TernOpInit::resolveReferences(Record &R,
const RecordVal *RV) const {
Init *lhs = LHS->resolveReferences(R, RV);
if (Opc == IF && lhs != LHS) {
IntInit *Value = dyn_cast<IntInit>(lhs);
if (Init *I = lhs->convertInitializerTo(IntRecTy::get()))
Value = dyn_cast<IntInit>(I);
if (Value) {
// Short-circuit
if (Value->getValue()) {
Init *mhs = MHS->resolveReferences(R, RV);
return (TernOpInit::get(getOpcode(), lhs, mhs,
RHS, getType()))->Fold(&R, nullptr);
}
Init *rhs = RHS->resolveReferences(R, RV);
return (TernOpInit::get(getOpcode(), lhs, MHS,
rhs, getType()))->Fold(&R, nullptr);
}
}
Init *mhs = MHS->resolveReferences(R, RV);
Init *rhs = RHS->resolveReferences(R, RV);
if (LHS != lhs || MHS != mhs || RHS != rhs)
return (TernOpInit::get(getOpcode(), lhs, mhs, rhs,
getType()))->Fold(&R, nullptr);
return Fold(&R, nullptr);
}
std::string TernOpInit::getAsString() const {
std::string Result;
switch (Opc) {
case SUBST: Result = "!subst"; break;
case FOREACH: Result = "!foreach"; break;
case IF: Result = "!if"; break;
}
return Result + "(" + LHS->getAsString() + ", " + MHS->getAsString() + ", " +
RHS->getAsString() + ")";
}
RecTy *TypedInit::getFieldType(const std::string &FieldName) const {
if (RecordRecTy *RecordType = dyn_cast<RecordRecTy>(getType()))
if (RecordVal *Field = RecordType->getRecord()->getValue(FieldName))
return Field->getType();
return nullptr;
}
Init *
TypedInit::convertInitializerTo(RecTy *Ty) const {
if (isa<IntRecTy>(Ty)) {
if (getType()->typeIsConvertibleTo(Ty))
return const_cast<TypedInit *>(this);
return nullptr;
}
if (isa<StringRecTy>(Ty)) {
if (isa<StringRecTy>(getType()))
return const_cast<TypedInit *>(this);
return nullptr;
}
if (isa<BitRecTy>(Ty)) {
// Accept variable if it is already of bit type!
if (isa<BitRecTy>(getType()))
return const_cast<TypedInit *>(this);
if (auto *BitsTy = dyn_cast<BitsRecTy>(getType())) {
// Accept only bits<1> expression.
if (BitsTy->getNumBits() == 1)
return const_cast<TypedInit *>(this);
return nullptr;
}
// Ternary !if can be converted to bit, but only if both sides are
// convertible to a bit.
if (const auto *TOI = dyn_cast<TernOpInit>(this)) {
if (TOI->getOpcode() == TernOpInit::TernaryOp::IF &&
TOI->getMHS()->convertInitializerTo(BitRecTy::get()) &&
TOI->getRHS()->convertInitializerTo(BitRecTy::get()))
return const_cast<TypedInit *>(this);
return nullptr;
}
return nullptr;
}
if (auto *BRT = dyn_cast<BitsRecTy>(Ty)) {
if (BRT->getNumBits() == 1 && isa<BitRecTy>(getType()))
return BitsInit::get(const_cast<TypedInit *>(this));
if (getType()->typeIsConvertibleTo(BRT)) {
SmallVector<Init *, 16> NewBits(BRT->getNumBits());
for (unsigned i = 0; i != BRT->getNumBits(); ++i)
NewBits[i] = VarBitInit::get(const_cast<TypedInit *>(this), i);
return BitsInit::get(NewBits);
}
return nullptr;
}
if (auto *DLRT = dyn_cast<ListRecTy>(Ty)) {
if (auto *SLRT = dyn_cast<ListRecTy>(getType()))
if (SLRT->getElementType()->typeIsConvertibleTo(DLRT->getElementType()))
return const_cast<TypedInit *>(this);
return nullptr;
}
if (auto *DRT = dyn_cast<DagRecTy>(Ty)) {
if (getType()->typeIsConvertibleTo(DRT))
return const_cast<TypedInit *>(this);
return nullptr;
}
if (auto *SRRT = dyn_cast<RecordRecTy>(Ty)) {
// Ensure that this is compatible with Rec.
if (RecordRecTy *DRRT = dyn_cast<RecordRecTy>(getType()))
if (DRRT->getRecord()->isSubClassOf(SRRT->getRecord()) ||
DRRT->getRecord() == SRRT->getRecord())
return const_cast<TypedInit *>(this);
return nullptr;
}
return nullptr;
}
Init *
TypedInit::convertInitializerBitRange(const std::vector<unsigned> &Bits) const {
BitsRecTy *T = dyn_cast<BitsRecTy>(getType());
if (!T) return nullptr; // Cannot subscript a non-bits variable.
unsigned NumBits = T->getNumBits();
SmallVector<Init *, 16> NewBits(Bits.size());
for (unsigned i = 0, e = Bits.size(); i != e; ++i) {
if (Bits[i] >= NumBits)
return nullptr;
NewBits[i] = VarBitInit::get(const_cast<TypedInit *>(this), Bits[i]);
}
return BitsInit::get(NewBits);
}
Init *
TypedInit::convertInitListSlice(const std::vector<unsigned> &Elements) const {
ListRecTy *T = dyn_cast<ListRecTy>(getType());
if (!T) return nullptr; // Cannot subscript a non-list variable.
if (Elements.size() == 1)
return VarListElementInit::get(const_cast<TypedInit *>(this), Elements[0]);
std::vector<Init*> ListInits;
ListInits.reserve(Elements.size());
for (unsigned i = 0, e = Elements.size(); i != e; ++i)
ListInits.push_back(VarListElementInit::get(const_cast<TypedInit *>(this),
Elements[i]));
return ListInit::get(ListInits, T);
}
VarInit *VarInit::get(const std::string &VN, RecTy *T) {
Init *Value = StringInit::get(VN);
return VarInit::get(Value, T);
}
VarInit *VarInit::get(Init *VN, RecTy *T) {
typedef std::pair<RecTy *, Init *> Key;
static DenseMap<Key, std::unique_ptr<VarInit>> ThePool;
Key TheKey(std::make_pair(T, VN));
std::unique_ptr<VarInit> &I = ThePool[TheKey];
if (!I) I.reset(new VarInit(VN, T));
return I.get();
}
const std::string &VarInit::getName() const {
StringInit *NameString = cast<StringInit>(getNameInit());
return NameString->getValue();
}
Init *VarInit::getBit(unsigned Bit) const {
if (getType() == BitRecTy::get())
return const_cast<VarInit*>(this);
return VarBitInit::get(const_cast<VarInit*>(this), Bit);
}
Init *VarInit::resolveListElementReference(Record &R,
const RecordVal *IRV,
unsigned Elt) const {
if (R.isTemplateArg(getNameInit())) return nullptr;
if (IRV && IRV->getNameInit() != getNameInit()) return nullptr;
RecordVal *RV = R.getValue(getNameInit());
assert(RV && "Reference to a non-existent variable?");
ListInit *LI = dyn_cast<ListInit>(RV->getValue());
if (!LI)
return VarListElementInit::get(cast<TypedInit>(RV->getValue()), Elt);
if (Elt >= LI->size())
return nullptr; // Out of range reference.
Init *E = LI->getElement(Elt);
// If the element is set to some value, or if we are resolving a reference
// to a specific variable and that variable is explicitly unset, then
// replace the VarListElementInit with it.
if (IRV || !isa<UnsetInit>(E))
return E;
return nullptr;
}
RecTy *VarInit::getFieldType(const std::string &FieldName) const {
if (RecordRecTy *RTy = dyn_cast<RecordRecTy>(getType()))
if (const RecordVal *RV = RTy->getRecord()->getValue(FieldName))
return RV->getType();
return nullptr;
}
Init *VarInit::getFieldInit(Record &R, const RecordVal *RV,
const std::string &FieldName) const {
if (isa<RecordRecTy>(getType()))
if (const RecordVal *Val = R.getValue(VarName)) {
if (RV != Val && (RV || isa<UnsetInit>(Val->getValue())))
return nullptr;
Init *TheInit = Val->getValue();
assert(TheInit != this && "Infinite loop detected!");
if (Init *I = TheInit->getFieldInit(R, RV, FieldName))
return I;
return nullptr;
}
return nullptr;
}
/// resolveReferences - This method is used by classes that refer to other
/// variables which may not be defined at the time the expression is formed.
/// If a value is set for the variable later, this method will be called on
/// users of the value to allow the value to propagate out.
///
Init *VarInit::resolveReferences(Record &R, const RecordVal *RV) const {
if (RecordVal *Val = R.getValue(VarName))
if (RV == Val || (!RV && !isa<UnsetInit>(Val->getValue())))
return Val->getValue();
return const_cast<VarInit *>(this);
}
VarBitInit *VarBitInit::get(TypedInit *T, unsigned B) {
typedef std::pair<TypedInit *, unsigned> Key;
static DenseMap<Key, std::unique_ptr<VarBitInit>> ThePool;
Key TheKey(std::make_pair(T, B));
std::unique_ptr<VarBitInit> &I = ThePool[TheKey];
if (!I) I.reset(new VarBitInit(T, B));
return I.get();
}
Init *VarBitInit::convertInitializerTo(RecTy *Ty) const {
if (isa<BitRecTy>(Ty))
return const_cast<VarBitInit *>(this);
return nullptr;
}
std::string VarBitInit::getAsString() const {
return TI->getAsString() + "{" + utostr(Bit) + "}";
}
Init *VarBitInit::resolveReferences(Record &R, const RecordVal *RV) const {
Init *I = TI->resolveReferences(R, RV);
if (TI != I)
return I->getBit(getBitNum());
return const_cast<VarBitInit*>(this);
}
VarListElementInit *VarListElementInit::get(TypedInit *T,
unsigned E) {
typedef std::pair<TypedInit *, unsigned> Key;
static DenseMap<Key, std::unique_ptr<VarListElementInit>> ThePool;
Key TheKey(std::make_pair(T, E));
std::unique_ptr<VarListElementInit> &I = ThePool[TheKey];
if (!I) I.reset(new VarListElementInit(T, E));
return I.get();
}
std::string VarListElementInit::getAsString() const {
return TI->getAsString() + "[" + utostr(Element) + "]";
}
Init *
VarListElementInit::resolveReferences(Record &R, const RecordVal *RV) const {
if (Init *I = getVariable()->resolveListElementReference(R, RV,
getElementNum()))
return I;
return const_cast<VarListElementInit *>(this);
}
Init *VarListElementInit::getBit(unsigned Bit) const {
if (getType() == BitRecTy::get())
return const_cast<VarListElementInit*>(this);
return VarBitInit::get(const_cast<VarListElementInit*>(this), Bit);
}
Init *VarListElementInit:: resolveListElementReference(Record &R,
const RecordVal *RV,
unsigned Elt) const {
if (Init *Result = TI->resolveListElementReference(R, RV, Element)) {
if (TypedInit *TInit = dyn_cast<TypedInit>(Result)) {
if (Init *Result2 = TInit->resolveListElementReference(R, RV, Elt))
return Result2;
return VarListElementInit::get(TInit, Elt);
}
return Result;
}
return nullptr;
}
DefInit *DefInit::get(Record *R) {
return R->getDefInit();
}
Init *DefInit::convertInitializerTo(RecTy *Ty) const {
if (auto *RRT = dyn_cast<RecordRecTy>(Ty))
if (getDef()->isSubClassOf(RRT->getRecord()))
return const_cast<DefInit *>(this);
return nullptr;
}
RecTy *DefInit::getFieldType(const std::string &FieldName) const {
if (const RecordVal *RV = Def->getValue(FieldName))
return RV->getType();
return nullptr;
}
Init *DefInit::getFieldInit(Record &R, const RecordVal *RV,
const std::string &FieldName) const {
return Def->getValue(FieldName)->getValue();
}
std::string DefInit::getAsString() const {
return Def->getName();
}
FieldInit *FieldInit::get(Init *R, const std::string &FN) {
typedef std::pair<Init *, TableGenStringKey> Key;
static DenseMap<Key, std::unique_ptr<FieldInit>> ThePool;
Key TheKey(std::make_pair(R, FN));
std::unique_ptr<FieldInit> &I = ThePool[TheKey];
if (!I) I.reset(new FieldInit(R, FN));
return I.get();
}
Init *FieldInit::getBit(unsigned Bit) const {
if (getType() == BitRecTy::get())
return const_cast<FieldInit*>(this);
return VarBitInit::get(const_cast<FieldInit*>(this), Bit);
}
Init *FieldInit::resolveListElementReference(Record &R, const RecordVal *RV,
unsigned Elt) const {
if (Init *ListVal = Rec->getFieldInit(R, RV, FieldName))
if (ListInit *LI = dyn_cast<ListInit>(ListVal)) {
if (Elt >= LI->size()) return nullptr;
Init *E = LI->getElement(Elt);
// If the element is set to some value, or if we are resolving a
// reference to a specific variable and that variable is explicitly
// unset, then replace the VarListElementInit with it.
if (RV || !isa<UnsetInit>(E))
return E;
}
return nullptr;
}
Init *FieldInit::resolveReferences(Record &R, const RecordVal *RV) const {
Init *NewRec = RV ? Rec->resolveReferences(R, RV) : Rec;
if (Init *BitsVal = NewRec->getFieldInit(R, RV, FieldName)) {
Init *BVR = BitsVal->resolveReferences(R, RV);
return BVR->isComplete() ? BVR : const_cast<FieldInit *>(this);
}
if (NewRec != Rec)
return FieldInit::get(NewRec, FieldName);
return const_cast<FieldInit *>(this);
}
static void ProfileDagInit(FoldingSetNodeID &ID, Init *V, const std::string &VN,
ArrayRef<Init *> ArgRange,
ArrayRef<std::string> NameRange) {
ID.AddPointer(V);
ID.AddString(VN);
ArrayRef<Init *>::iterator Arg = ArgRange.begin();
ArrayRef<std::string>::iterator Name = NameRange.begin();
while (Arg != ArgRange.end()) {
assert(Name != NameRange.end() && "Arg name underflow!");
ID.AddPointer(*Arg++);
ID.AddString(*Name++);
}
assert(Name == NameRange.end() && "Arg name overflow!");
}
DagInit *
DagInit::get(Init *V, const std::string &VN,
ArrayRef<Init *> ArgRange,
ArrayRef<std::string> NameRange) {
static FoldingSet<DagInit> ThePool;
static std::vector<std::unique_ptr<DagInit>> TheActualPool;
FoldingSetNodeID ID;
ProfileDagInit(ID, V, VN, ArgRange, NameRange);
void *IP = nullptr;
if (DagInit *I = ThePool.FindNodeOrInsertPos(ID, IP))
return I;
DagInit *I = new DagInit(V, VN, ArgRange, NameRange);
ThePool.InsertNode(I, IP);
TheActualPool.push_back(std::unique_ptr<DagInit>(I));
return I;
}
DagInit *
DagInit::get(Init *V, const std::string &VN,
const std::vector<std::pair<Init*, std::string> > &args) {
std::vector<Init *> Args;
std::vector<std::string> Names;
for (const auto &Arg : args) {
Args.push_back(Arg.first);
Names.push_back(Arg.second);
}
return DagInit::get(V, VN, Args, Names);
}
void DagInit::Profile(FoldingSetNodeID &ID) const {
ProfileDagInit(ID, Val, ValName, Args, ArgNames);
}
Init *DagInit::convertInitializerTo(RecTy *Ty) const {
if (isa<DagRecTy>(Ty))
return const_cast<DagInit *>(this);
return nullptr;
}
Init *DagInit::resolveReferences(Record &R, const RecordVal *RV) const {
std::vector<Init*> NewArgs;
for (unsigned i = 0, e = Args.size(); i != e; ++i)
NewArgs.push_back(Args[i]->resolveReferences(R, RV));
Init *Op = Val->resolveReferences(R, RV);
if (Args != NewArgs || Op != Val)
return DagInit::get(Op, ValName, NewArgs, ArgNames);
return const_cast<DagInit *>(this);
}
std::string DagInit::getAsString() const {
std::string Result = "(" + Val->getAsString();
if (!ValName.empty())
Result += ":" + ValName;
if (!Args.empty()) {
Result += " " + Args[0]->getAsString();
if (!ArgNames[0].empty()) Result += ":$" + ArgNames[0];
for (unsigned i = 1, e = Args.size(); i != e; ++i) {
Result += ", " + Args[i]->getAsString();
if (!ArgNames[i].empty()) Result += ":$" + ArgNames[i];
}
}
return Result + ")";
}
//===----------------------------------------------------------------------===//
// Other implementations
//===----------------------------------------------------------------------===//
RecordVal::RecordVal(Init *N, RecTy *T, bool P)
: NameAndPrefix(N, P), Ty(T) {
Value = UnsetInit::get()->convertInitializerTo(Ty);
assert(Value && "Cannot create unset value for current type!");
}
RecordVal::RecordVal(const std::string &N, RecTy *T, bool P)
: NameAndPrefix(StringInit::get(N), P), Ty(T) {
Value = UnsetInit::get()->convertInitializerTo(Ty);
assert(Value && "Cannot create unset value for current type!");
}
const std::string &RecordVal::getName() const {
return cast<StringInit>(getNameInit())->getValue();
}
void RecordVal::dump() const { errs() << *this; }
void RecordVal::print(raw_ostream &OS, bool PrintSem) const {
if (getPrefix()) OS << "field ";
OS << *getType() << " " << getNameInitAsString();
if (getValue())
OS << " = " << *getValue();
if (PrintSem) OS << ";\n";
}
unsigned Record::LastID = 0;
void Record::init() {
checkName();
// Every record potentially has a def at the top. This value is
// replaced with the top-level def name at instantiation time.
RecordVal DN("NAME", StringRecTy::get(), 0);
addValue(DN);
}
void Record::checkName() {
// Ensure the record name has string type.
const TypedInit *TypedName = cast<const TypedInit>(Name);
if (!isa<StringRecTy>(TypedName->getType()))
PrintFatalError(getLoc(), "Record name is not a string!");
}
DefInit *Record::getDefInit() {
if (!TheInit)
TheInit.reset(new DefInit(this, new RecordRecTy(this)));
return TheInit.get();
}
const std::string &Record::getName() const {
return cast<StringInit>(Name)->getValue();
}
void Record::setName(Init *NewName) {
Name = NewName;
checkName();
// DO NOT resolve record values to the name at this point because
// there might be default values for arguments of this def. Those
// arguments might not have been resolved yet so we don't want to
// prematurely assume values for those arguments were not passed to
// this def.
//
// Nonetheless, it may be that some of this Record's values
// reference the record name. Indeed, the reason for having the
// record name be an Init is to provide this flexibility. The extra
// resolve steps after completely instantiating defs takes care of
// this. See TGParser::ParseDef and TGParser::ParseDefm.
}
void Record::setName(const std::string &Name) {
setName(StringInit::get(Name));
}
/// resolveReferencesTo - If anything in this record refers to RV, replace the
/// reference to RV with the RHS of RV. If RV is null, we resolve all possible
/// references.
void Record::resolveReferencesTo(const RecordVal *RV) {
for (unsigned i = 0, e = Values.size(); i != e; ++i) {
if (RV == &Values[i]) // Skip resolve the same field as the given one
continue;
if (Init *V = Values[i].getValue())
if (Values[i].setValue(V->resolveReferences(*this, RV)))
PrintFatalError(getLoc(), "Invalid value is found when setting '" +
Values[i].getNameInitAsString() +
"' after resolving references" +
(RV ? " against '" + RV->getNameInitAsString() +
"' of (" + RV->getValue()->getAsUnquotedString() +
")"
: "") + "\n");
}
Init *OldName = getNameInit();
Init *NewName = Name->resolveReferences(*this, RV);
if (NewName != OldName) {
// Re-register with RecordKeeper.
setName(NewName);
}
}
void Record::dump() const { errs() << *this; }
raw_ostream &llvm::operator<<(raw_ostream &OS, const Record &R) {
OS << R.getNameInitAsString();
const std::vector<Init *> &TArgs = R.getTemplateArgs();
if (!TArgs.empty()) {
OS << "<";
bool NeedComma = false;
for (const Init *TA : TArgs) {
if (NeedComma) OS << ", ";
NeedComma = true;
const RecordVal *RV = R.getValue(TA);
assert(RV && "Template argument record not found??");
RV->print(OS, false);
}
OS << ">";
}
OS << " {";
ArrayRef<Record *> SC = R.getSuperClasses();
if (!SC.empty()) {
OS << "\t//";
for (const Record *Super : SC)
OS << " " << Super->getNameInitAsString();
}
OS << "\n";
for (const RecordVal &Val : R.getValues())
if (Val.getPrefix() && !R.isTemplateArg(Val.getName()))
OS << Val;
for (const RecordVal &Val : R.getValues())
if (!Val.getPrefix() && !R.isTemplateArg(Val.getName()))
OS << Val;
return OS << "}\n";
}
/// getValueInit - Return the initializer for a value with the specified name,
/// or abort if the field does not exist.
///
Init *Record::getValueInit(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName + "'!\n");
return R->getValue();
}
/// getValueAsString - This method looks up the specified field and returns its
/// value as a string, aborts if the field does not exist or if
/// the value is not a string.
///
std::string Record::getValueAsString(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName + "'!\n");
if (StringInit *SI = dyn_cast<StringInit>(R->getValue()))
return SI->getValue();
PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
FieldName + "' does not have a string initializer!");
}
/// getValueAsBitsInit - This method looks up the specified field and returns
/// its value as a BitsInit, aborts if the field does not exist or if
/// the value is not the right type.
///
BitsInit *Record::getValueAsBitsInit(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName + "'!\n");
if (BitsInit *BI = dyn_cast<BitsInit>(R->getValue()))
return BI;
PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
FieldName + "' does not have a BitsInit initializer!");
}
/// getValueAsListInit - This method looks up the specified field and returns
/// its value as a ListInit, aborting if the field does not exist or if
/// the value is not the right type.
///
ListInit *Record::getValueAsListInit(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName + "'!\n");
if (ListInit *LI = dyn_cast<ListInit>(R->getValue()))
return LI;
PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
FieldName + "' does not have a list initializer!");
}
/// getValueAsListOfDefs - This method looks up the specified field and returns
/// its value as a vector of records, aborting if the field does not exist
/// or if the value is not the right type.
///
std::vector<Record*>
Record::getValueAsListOfDefs(StringRef FieldName) const {
ListInit *List = getValueAsListInit(FieldName);
std::vector<Record*> Defs;
for (Init *I : List->getValues()) {
if (DefInit *DI = dyn_cast<DefInit>(I))
Defs.push_back(DI->getDef());
else
PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
FieldName + "' list is not entirely DefInit!");
}
return Defs;
}
/// getValueAsInt - This method looks up the specified field and returns its
/// value as an int64_t, aborting if the field does not exist or if the value
/// is not the right type.
///
int64_t Record::getValueAsInt(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName + "'!\n");
if (IntInit *II = dyn_cast<IntInit>(R->getValue()))
return II->getValue();
PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
FieldName + "' does not have an int initializer!");
}
/// getValueAsListOfInts - This method looks up the specified field and returns
/// its value as a vector of integers, aborting if the field does not exist or
/// if the value is not the right type.
///
std::vector<int64_t>
Record::getValueAsListOfInts(StringRef FieldName) const {
ListInit *List = getValueAsListInit(FieldName);
std::vector<int64_t> Ints;
for (Init *I : List->getValues()) {
if (IntInit *II = dyn_cast<IntInit>(I))
Ints.push_back(II->getValue());
else
PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
FieldName + "' does not have a list of ints initializer!");
}
return Ints;
}
/// getValueAsListOfStrings - This method looks up the specified field and
/// returns its value as a vector of strings, aborting if the field does not
/// exist or if the value is not the right type.
///
std::vector<std::string>
Record::getValueAsListOfStrings(StringRef FieldName) const {
ListInit *List = getValueAsListInit(FieldName);
std::vector<std::string> Strings;
for (Init *I : List->getValues()) {
if (StringInit *SI = dyn_cast<StringInit>(I))
Strings.push_back(SI->getValue());
else
PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
FieldName + "' does not have a list of strings initializer!");
}
return Strings;
}
/// getValueAsDef - This method looks up the specified field and returns its
/// value as a Record, aborting if the field does not exist or if the value
/// is not the right type.
///
Record *Record::getValueAsDef(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName + "'!\n");
if (DefInit *DI = dyn_cast<DefInit>(R->getValue()))
return DI->getDef();
PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
FieldName + "' does not have a def initializer!");
}
/// getValueAsBit - This method looks up the specified field and returns its
/// value as a bit, aborting if the field does not exist or if the value is
/// not the right type.
///
bool Record::getValueAsBit(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName + "'!\n");
if (BitInit *BI = dyn_cast<BitInit>(R->getValue()))
return BI->getValue();
PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
FieldName + "' does not have a bit initializer!");
}
bool Record::getValueAsBitOrUnset(StringRef FieldName, bool &Unset) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName.str() + "'!\n");
if (isa<UnsetInit>(R->getValue())) {
Unset = true;
return false;
}
Unset = false;
if (BitInit *BI = dyn_cast<BitInit>(R->getValue()))
return BI->getValue();
PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
FieldName + "' does not have a bit initializer!");
}
/// getValueAsDag - This method looks up the specified field and returns its
/// value as an Dag, aborting if the field does not exist or if the value is
/// not the right type.
///
DagInit *Record::getValueAsDag(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName + "'!\n");
if (DagInit *DI = dyn_cast<DagInit>(R->getValue()))
return DI;
PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
FieldName + "' does not have a dag initializer!");
}
void MultiClass::dump() const {
errs() << "Record:\n";
Rec.dump();
errs() << "Defs:\n";
for (const auto &Proto : DefPrototypes)
Proto->dump();
}
void RecordKeeper::dump() const { errs() << *this; }
raw_ostream &llvm::operator<<(raw_ostream &OS, const RecordKeeper &RK) {
OS << "------------- Classes -----------------\n";
for (const auto &C : RK.getClasses())
OS << "class " << *C.second;
OS << "------------- Defs -----------------\n";
for (const auto &D : RK.getDefs())
OS << "def " << *D.second;
return OS;
}
/// getAllDerivedDefinitions - This method returns all concrete definitions
/// that derive from the specified class name. If a class with the specified
/// name does not exist, an error is printed and true is returned.
std::vector<Record*>
RecordKeeper::getAllDerivedDefinitions(const std::string &ClassName) const {
Record *Class = getClass(ClassName);
if (!Class)
PrintFatalError("ERROR: Couldn't find the `" + ClassName + "' class!\n");
std::vector<Record*> Defs;
for (const auto &D : getDefs())
if (D.second->isSubClassOf(Class))
Defs.push_back(D.second.get());
return Defs;
}
/// QualifyName - Return an Init with a qualifier prefix referring
/// to CurRec's name.
Init *llvm::QualifyName(Record &CurRec, MultiClass *CurMultiClass,
Init *Name, const std::string &Scoper) {
RecTy *Type = cast<TypedInit>(Name)->getType();
BinOpInit *NewName =
BinOpInit::get(BinOpInit::STRCONCAT,
BinOpInit::get(BinOpInit::STRCONCAT,
CurRec.getNameInit(),
StringInit::get(Scoper),
Type)->Fold(&CurRec, CurMultiClass),
Name,
Type);
if (CurMultiClass && Scoper != "::") {
NewName =
BinOpInit::get(BinOpInit::STRCONCAT,
BinOpInit::get(BinOpInit::STRCONCAT,
CurMultiClass->Rec.getNameInit(),
StringInit::get("::"),
Type)->Fold(&CurRec, CurMultiClass),
NewName->Fold(&CurRec, CurMultiClass),
Type);
}
return NewName->Fold(&CurRec, CurMultiClass);
}
/// QualifyName - Return an Init with a qualifier prefix referring
/// to CurRec's name.
Init *llvm::QualifyName(Record &CurRec, MultiClass *CurMultiClass,
const std::string &Name,
const std::string &Scoper) {
return QualifyName(CurRec, CurMultiClass, StringInit::get(Name), Scoper);
}