llvm-project/llvm/lib/CodeGen/SplitKit.cpp

1031 lines
37 KiB
C++

//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the SplitAnalysis class as well as mutator functions for
// live range splitting.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "SplitKit.h"
#include "LiveRangeEdit.h"
#include "VirtRegMap.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
static cl::opt<bool>
AllowSplit("spiller-splits-edges",
cl::desc("Allow critical edge splitting during spilling"));
//===----------------------------------------------------------------------===//
// Split Analysis
//===----------------------------------------------------------------------===//
SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
const LiveIntervals &lis,
const MachineLoopInfo &mli)
: MF(vrm.getMachineFunction()),
VRM(vrm),
LIS(lis),
Loops(mli),
TII(*MF.getTarget().getInstrInfo()),
CurLI(0) {}
void SplitAnalysis::clear() {
UseSlots.clear();
UsingInstrs.clear();
UsingBlocks.clear();
LiveBlocks.clear();
CurLI = 0;
}
bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) {
MachineBasicBlock *T, *F;
SmallVector<MachineOperand, 4> Cond;
return !TII.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
}
/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
void SplitAnalysis::analyzeUses() {
const MachineRegisterInfo &MRI = MF.getRegInfo();
for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(CurLI->reg),
E = MRI.reg_end(); I != E; ++I) {
MachineOperand &MO = I.getOperand();
if (MO.isUse() && MO.isUndef())
continue;
MachineInstr *MI = MO.getParent();
if (MI->isDebugValue() || !UsingInstrs.insert(MI))
continue;
UseSlots.push_back(LIS.getInstructionIndex(MI).getDefIndex());
MachineBasicBlock *MBB = MI->getParent();
UsingBlocks[MBB]++;
}
array_pod_sort(UseSlots.begin(), UseSlots.end());
calcLiveBlockInfo();
DEBUG(dbgs() << " counted "
<< UsingInstrs.size() << " instrs, "
<< UsingBlocks.size() << " blocks.\n");
}
/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
/// where CurLI is live.
void SplitAnalysis::calcLiveBlockInfo() {
if (CurLI->empty())
return;
LiveInterval::const_iterator LVI = CurLI->begin();
LiveInterval::const_iterator LVE = CurLI->end();
SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
UseI = UseSlots.begin();
UseE = UseSlots.end();
// Loop over basic blocks where CurLI is live.
MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
for (;;) {
BlockInfo BI;
BI.MBB = MFI;
SlotIndex Start, Stop;
tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
// The last split point is the latest possible insertion point that dominates
// all successor blocks. If interference reaches LastSplitPoint, it is not
// possible to insert a split or reload that makes CurLI live in the
// outgoing bundle.
MachineBasicBlock::iterator LSP = LIS.getLastSplitPoint(*CurLI, BI.MBB);
if (LSP == BI.MBB->end())
BI.LastSplitPoint = Stop;
else
BI.LastSplitPoint = LIS.getInstructionIndex(LSP);
// LVI is the first live segment overlapping MBB.
BI.LiveIn = LVI->start <= Start;
if (!BI.LiveIn)
BI.Def = LVI->start;
// Find the first and last uses in the block.
BI.Uses = hasUses(MFI);
if (BI.Uses && UseI != UseE) {
BI.FirstUse = *UseI;
assert(BI.FirstUse >= Start);
do ++UseI;
while (UseI != UseE && *UseI < Stop);
BI.LastUse = UseI[-1];
assert(BI.LastUse < Stop);
}
// Look for gaps in the live range.
bool hasGap = false;
BI.LiveOut = true;
while (LVI->end < Stop) {
SlotIndex LastStop = LVI->end;
if (++LVI == LVE || LVI->start >= Stop) {
BI.Kill = LastStop;
BI.LiveOut = false;
break;
}
if (LastStop < LVI->start) {
hasGap = true;
BI.Kill = LastStop;
BI.Def = LVI->start;
}
}
// Don't set LiveThrough when the block has a gap.
BI.LiveThrough = !hasGap && BI.LiveIn && BI.LiveOut;
LiveBlocks.push_back(BI);
// LVI is now at LVE or LVI->end >= Stop.
if (LVI == LVE)
break;
// Live segment ends exactly at Stop. Move to the next segment.
if (LVI->end == Stop && ++LVI == LVE)
break;
// Pick the next basic block.
if (LVI->start < Stop)
++MFI;
else
MFI = LIS.getMBBFromIndex(LVI->start);
}
}
void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const {
for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) {
unsigned count = UsingBlocks.lookup(*I);
OS << " BB#" << (*I)->getNumber();
if (count)
OS << '(' << count << ')';
}
}
void SplitAnalysis::analyze(const LiveInterval *li) {
clear();
CurLI = li;
analyzeUses();
}
//===----------------------------------------------------------------------===//
// LiveIntervalMap
//===----------------------------------------------------------------------===//
// Work around the fact that the std::pair constructors are broken for pointer
// pairs in some implementations. makeVV(x, 0) works.
static inline std::pair<const VNInfo*, VNInfo*>
makeVV(const VNInfo *a, VNInfo *b) {
return std::make_pair(a, b);
}
void LiveIntervalMap::reset(LiveInterval *li) {
LI = li;
Values.clear();
LiveOutCache.clear();
}
bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const {
ValueMap::const_iterator i = Values.find(ParentVNI);
return i != Values.end() && i->second == 0;
}
// defValue - Introduce a LI def for ParentVNI that could be later than
// ParentVNI->def.
VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) {
assert(LI && "call reset first");
assert(ParentVNI && "Mapping NULL value");
assert(Idx.isValid() && "Invalid SlotIndex");
assert(ParentLI.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
// Create a new value.
VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator());
// Preserve the PHIDef bit.
if (ParentVNI->isPHIDef() && Idx == ParentVNI->def)
VNI->setIsPHIDef(true);
// Use insert for lookup, so we can add missing values with a second lookup.
std::pair<ValueMap::iterator,bool> InsP =
Values.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0));
// This is now a complex def. Mark with a NULL in valueMap.
if (!InsP.second)
InsP.first->second = 0;
return VNI;
}
// mapValue - Find the mapped value for ParentVNI at Idx.
// Potentially create phi-def values.
VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
bool *simple) {
assert(LI && "call reset first");
assert(ParentVNI && "Mapping NULL value");
assert(Idx.isValid() && "Invalid SlotIndex");
assert(ParentLI.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
// Use insert for lookup, so we can add missing values with a second lookup.
std::pair<ValueMap::iterator,bool> InsP =
Values.insert(makeVV(ParentVNI, 0));
// This was an unknown value. Create a simple mapping.
if (InsP.second) {
if (simple) *simple = true;
return InsP.first->second = LI->createValueCopy(ParentVNI,
LIS.getVNInfoAllocator());
}
// This was a simple mapped value.
if (InsP.first->second) {
if (simple) *simple = true;
return InsP.first->second;
}
// This is a complex mapped value. There may be multiple defs, and we may need
// to create phi-defs.
if (simple) *simple = false;
MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx);
assert(IdxMBB && "No MBB at Idx");
// Is there a def in the same MBB we can extend?
if (VNInfo *VNI = extendTo(IdxMBB, Idx))
return VNI;
// Now for the fun part. We know that ParentVNI potentially has multiple defs,
// and we may need to create even more phi-defs to preserve VNInfo SSA form.
// Perform a search for all predecessor blocks where we know the dominating
// VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
DEBUG(dbgs() << "\n Reaching defs for BB#" << IdxMBB->getNumber()
<< " at " << Idx << " in " << *LI << '\n');
// Blocks where LI should be live-in.
SmallVector<MachineDomTreeNode*, 16> LiveIn;
LiveIn.push_back(MDT[IdxMBB]);
// Using LiveOutCache as a visited set, perform a BFS for all reaching defs.
for (unsigned i = 0; i != LiveIn.size(); ++i) {
MachineBasicBlock *MBB = LiveIn[i]->getBlock();
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI) {
MachineBasicBlock *Pred = *PI;
// Is this a known live-out block?
std::pair<LiveOutMap::iterator,bool> LOIP =
LiveOutCache.insert(std::make_pair(Pred, LiveOutPair()));
// Yes, we have been here before.
if (!LOIP.second) {
DEBUG(if (VNInfo *VNI = LOIP.first->second.first)
dbgs() << " known valno #" << VNI->id
<< " at BB#" << Pred->getNumber() << '\n');
continue;
}
// Does Pred provide a live-out value?
SlotIndex Last = LIS.getMBBEndIdx(Pred).getPrevSlot();
if (VNInfo *VNI = extendTo(Pred, Last)) {
MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(VNI->def);
DEBUG(dbgs() << " found valno #" << VNI->id
<< " from BB#" << DefMBB->getNumber()
<< " at BB#" << Pred->getNumber() << '\n');
LiveOutPair &LOP = LOIP.first->second;
LOP.first = VNI;
LOP.second = MDT[DefMBB];
continue;
}
// No, we need a live-in value for Pred as well
if (Pred != IdxMBB)
LiveIn.push_back(MDT[Pred]);
}
}
// We may need to add phi-def values to preserve the SSA form.
// This is essentially the same iterative algorithm that SSAUpdater uses,
// except we already have a dominator tree, so we don't have to recompute it.
VNInfo *IdxVNI = 0;
unsigned Changes;
do {
Changes = 0;
DEBUG(dbgs() << " Iterating over " << LiveIn.size() << " blocks.\n");
// Propagate live-out values down the dominator tree, inserting phi-defs when
// necessary. Since LiveIn was created by a BFS, going backwards makes it more
// likely for us to visit immediate dominators before their children.
for (unsigned i = LiveIn.size(); i; --i) {
MachineDomTreeNode *Node = LiveIn[i-1];
MachineBasicBlock *MBB = Node->getBlock();
MachineDomTreeNode *IDom = Node->getIDom();
LiveOutPair IDomValue;
// We need a live-in value to a block with no immediate dominator?
// This is probably an unreachable block that has survived somehow.
bool needPHI = !IDom;
// Get the IDom live-out value.
if (!needPHI) {
LiveOutMap::iterator I = LiveOutCache.find(IDom->getBlock());
if (I != LiveOutCache.end())
IDomValue = I->second;
else
// If IDom is outside our set of live-out blocks, there must be new
// defs, and we need a phi-def here.
needPHI = true;
}
// IDom dominates all of our predecessors, but it may not be the immediate
// dominator. Check if any of them have live-out values that are properly
// dominated by IDom. If so, we need a phi-def here.
if (!needPHI) {
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI) {
LiveOutPair Value = LiveOutCache[*PI];
if (!Value.first || Value.first == IDomValue.first)
continue;
// This predecessor is carrying something other than IDomValue.
// It could be because IDomValue hasn't propagated yet, or it could be
// because MBB is in the dominance frontier of that value.
if (MDT.dominates(IDom, Value.second)) {
needPHI = true;
break;
}
}
}
// Create a phi-def if required.
if (needPHI) {
++Changes;
SlotIndex Start = LIS.getMBBStartIdx(MBB);
VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator());
VNI->setIsPHIDef(true);
DEBUG(dbgs() << " - BB#" << MBB->getNumber()
<< " phi-def #" << VNI->id << " at " << Start << '\n');
// We no longer need LI to be live-in.
LiveIn.erase(LiveIn.begin()+(i-1));
// Blocks in LiveIn are either IdxMBB, or have a value live-through.
if (MBB == IdxMBB)
IdxVNI = VNI;
// Check if we need to update live-out info.
LiveOutMap::iterator I = LiveOutCache.find(MBB);
if (I == LiveOutCache.end() || I->second.second == Node) {
// We already have a live-out defined in MBB, so this must be IdxMBB.
assert(MBB == IdxMBB && "Adding phi-def to known live-out");
LI->addRange(LiveRange(Start, Idx.getNextSlot(), VNI));
} else {
// This phi-def is also live-out, so color the whole block.
LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
I->second = LiveOutPair(VNI, Node);
}
} else if (IDomValue.first) {
// No phi-def here. Remember incoming value for IdxMBB.
if (MBB == IdxMBB)
IdxVNI = IDomValue.first;
// Propagate IDomValue if needed:
// MBB is live-out and doesn't define its own value.
LiveOutMap::iterator I = LiveOutCache.find(MBB);
if (I != LiveOutCache.end() && I->second.second != Node &&
I->second.first != IDomValue.first) {
++Changes;
I->second = IDomValue;
DEBUG(dbgs() << " - BB#" << MBB->getNumber()
<< " idom valno #" << IDomValue.first->id
<< " from BB#" << IDom->getBlock()->getNumber() << '\n');
}
}
}
DEBUG(dbgs() << " - made " << Changes << " changes.\n");
} while (Changes);
assert(IdxVNI && "Didn't find value for Idx");
#ifndef NDEBUG
// Check the LiveOutCache invariants.
for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end();
I != E; ++I) {
assert(I->first && "Null MBB entry in cache");
assert(I->second.first && "Null VNInfo in cache");
assert(I->second.second && "Null DomTreeNode in cache");
if (I->second.second->getBlock() == I->first)
continue;
for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(),
PE = I->first->pred_end(); PI != PE; ++PI)
assert(LiveOutCache.lookup(*PI) == I->second && "Bad invariant");
}
#endif
// Since we went through the trouble of a full BFS visiting all reaching defs,
// the values in LiveIn are now accurate. No more phi-defs are needed
// for these blocks, so we can color the live ranges.
// This makes the next mapValue call much faster.
for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) {
MachineBasicBlock *MBB = LiveIn[i]->getBlock();
SlotIndex Start = LIS.getMBBStartIdx(MBB);
VNInfo *VNI = LiveOutCache.lookup(MBB).first;
// Anything in LiveIn other than IdxMBB is live-through.
// In IdxMBB, we should stop at Idx unless the same value is live-out.
if (MBB == IdxMBB && IdxVNI != VNI)
LI->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI));
else
LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
}
return IdxVNI;
}
#ifndef NDEBUG
void LiveIntervalMap::dumpCache() {
for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end();
I != E; ++I) {
assert(I->first && "Null MBB entry in cache");
assert(I->second.first && "Null VNInfo in cache");
assert(I->second.second && "Null DomTreeNode in cache");
dbgs() << " cache: BB#" << I->first->getNumber()
<< " has valno #" << I->second.first->id << " from BB#"
<< I->second.second->getBlock()->getNumber() << ", preds";
for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(),
PE = I->first->pred_end(); PI != PE; ++PI)
dbgs() << " BB#" << (*PI)->getNumber();
dbgs() << '\n';
}
dbgs() << " cache: " << LiveOutCache.size() << " entries.\n";
}
#endif
// extendTo - Find the last LI value defined in MBB at or before Idx. The
// ParentLI is assumed to be live at Idx. Extend the live range to Idx.
// Return the found VNInfo, or NULL.
VNInfo *LiveIntervalMap::extendTo(const MachineBasicBlock *MBB, SlotIndex Idx) {
assert(LI && "call reset first");
LiveInterval::iterator I = std::upper_bound(LI->begin(), LI->end(), Idx);
if (I == LI->begin())
return 0;
--I;
if (I->end <= LIS.getMBBStartIdx(MBB))
return 0;
if (I->end <= Idx)
I->end = Idx.getNextSlot();
return I->valno;
}
// addSimpleRange - Add a simple range from ParentLI to LI.
// ParentVNI must be live in the [Start;End) interval.
void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End,
const VNInfo *ParentVNI) {
assert(LI && "call reset first");
bool simple;
VNInfo *VNI = mapValue(ParentVNI, Start, &simple);
// A simple mapping is easy.
if (simple) {
LI->addRange(LiveRange(Start, End, VNI));
return;
}
// ParentVNI is a complex value. We must map per MBB.
MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
MachineFunction::iterator MBBE = LIS.getMBBFromIndex(End.getPrevSlot());
if (MBB == MBBE) {
LI->addRange(LiveRange(Start, End, VNI));
return;
}
// First block.
LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
// Run sequence of full blocks.
for (++MBB; MBB != MBBE; ++MBB) {
Start = LIS.getMBBStartIdx(MBB);
LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB),
mapValue(ParentVNI, Start)));
}
// Final block.
Start = LIS.getMBBStartIdx(MBB);
if (Start != End)
LI->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start)));
}
/// addRange - Add live ranges to LI where [Start;End) intersects ParentLI.
/// All needed values whose def is not inside [Start;End) must be defined
/// beforehand so mapValue will work.
void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) {
assert(LI && "call reset first");
LiveInterval::const_iterator B = ParentLI.begin(), E = ParentLI.end();
LiveInterval::const_iterator I = std::lower_bound(B, E, Start);
// Check if --I begins before Start and overlaps.
if (I != B) {
--I;
if (I->end > Start)
addSimpleRange(Start, std::min(End, I->end), I->valno);
++I;
}
// The remaining ranges begin after Start.
for (;I != E && I->start < End; ++I)
addSimpleRange(I->start, std::min(End, I->end), I->valno);
}
//===----------------------------------------------------------------------===//
// Split Editor
//===----------------------------------------------------------------------===//
/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
SplitEditor::SplitEditor(SplitAnalysis &sa,
LiveIntervals &lis,
VirtRegMap &vrm,
MachineDominatorTree &mdt,
LiveRangeEdit &edit)
: SA(sa), LIS(lis), VRM(vrm),
MRI(vrm.getMachineFunction().getRegInfo()),
MDT(mdt),
TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
Edit(edit),
OpenIdx(0),
RegAssign(Allocator)
{
// We don't need an AliasAnalysis since we will only be performing
// cheap-as-a-copy remats anyway.
Edit.anyRematerializable(LIS, TII, 0);
}
void SplitEditor::dump() const {
if (RegAssign.empty()) {
dbgs() << " empty\n";
return;
}
for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
dbgs() << '\n';
}
VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
VNInfo *ParentVNI,
SlotIndex UseIdx,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) {
MachineInstr *CopyMI = 0;
SlotIndex Def;
LiveInterval *LI = Edit.get(RegIdx);
// Attempt cheap-as-a-copy rematerialization.
LiveRangeEdit::Remat RM(ParentVNI);
if (Edit.canRematerializeAt(RM, UseIdx, true, LIS)) {
Def = Edit.rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI);
} else {
// Can't remat, just insert a copy from parent.
CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
.addReg(Edit.getReg());
Def = LIS.InsertMachineInstrInMaps(CopyMI).getDefIndex();
}
// Define the value in Reg.
VNInfo *VNI = LIMappers[RegIdx].defValue(ParentVNI, Def);
VNI->setCopy(CopyMI);
// Add minimal liveness for the new value.
Edit.get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
return VNI;
}
/// Create a new virtual register and live interval.
void SplitEditor::openIntv() {
assert(!OpenIdx && "Previous LI not closed before openIntv");
// Create the complement as index 0.
if (Edit.empty()) {
Edit.create(MRI, LIS, VRM);
LIMappers.push_back(LiveIntervalMap(LIS, MDT, Edit.getParent()));
LIMappers.back().reset(Edit.get(0));
}
// Create the open interval.
OpenIdx = Edit.size();
Edit.create(MRI, LIS, VRM);
LIMappers.push_back(LiveIntervalMap(LIS, MDT, Edit.getParent()));
LIMappers[OpenIdx].reset(Edit.get(OpenIdx));
}
SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
assert(OpenIdx && "openIntv not called before enterIntvBefore");
DEBUG(dbgs() << " enterIntvBefore " << Idx);
Idx = Idx.getBaseIndex();
VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
if (!ParentVNI) {
DEBUG(dbgs() << ": not live\n");
return Idx;
}
DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
assert(MI && "enterIntvBefore called with invalid index");
VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
return VNI->def;
}
SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
SlotIndex End = LIS.getMBBEndIdx(&MBB);
SlotIndex Last = End.getPrevSlot();
DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Last);
if (!ParentVNI) {
DEBUG(dbgs() << ": not live\n");
return End;
}
DEBUG(dbgs() << ": valno " << ParentVNI->id);
VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
LIS.getLastSplitPoint(Edit.getParent(), &MBB));
RegAssign.insert(VNI->def, End, OpenIdx);
DEBUG(dump());
return VNI->def;
}
/// useIntv - indicate that all instructions in MBB should use OpenLI.
void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
}
void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
assert(OpenIdx && "openIntv not called before useIntv");
DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):");
RegAssign.insert(Start, End, OpenIdx);
DEBUG(dump());
}
SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
assert(OpenIdx && "openIntv not called before leaveIntvAfter");
DEBUG(dbgs() << " leaveIntvAfter " << Idx);
// The interval must be live beyond the instruction at Idx.
Idx = Idx.getBoundaryIndex();
VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
if (!ParentVNI) {
DEBUG(dbgs() << ": not live\n");
return Idx.getNextSlot();
}
DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
assert(MI && "No instruction at index");
VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(),
llvm::next(MachineBasicBlock::iterator(MI)));
return VNI->def;
}
SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
assert(OpenIdx && "openIntv not called before leaveIntvBefore");
DEBUG(dbgs() << " leaveIntvBefore " << Idx);
// The interval must be live into the instruction at Idx.
Idx = Idx.getBoundaryIndex();
VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
if (!ParentVNI) {
DEBUG(dbgs() << ": not live\n");
return Idx.getNextSlot();
}
DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
assert(MI && "No instruction at index");
VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
return VNI->def;
}
SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
SlotIndex Start = LIS.getMBBStartIdx(&MBB);
DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Start);
if (!ParentVNI) {
DEBUG(dbgs() << ": not live\n");
return Start;
}
VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
MBB.SkipPHIsAndLabels(MBB.begin()));
RegAssign.insert(Start, VNI->def, OpenIdx);
DEBUG(dump());
return VNI->def;
}
void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
assert(OpenIdx && "openIntv not called before overlapIntv");
assert(Edit.getParent().getVNInfoAt(Start) ==
Edit.getParent().getVNInfoAt(End.getPrevSlot()) &&
"Parent changes value in extended range");
assert(Edit.get(0)->getVNInfoAt(Start) && "Start must come from leaveIntv*");
assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
"Range cannot span basic blocks");
// Treat this as useIntv() for now. The complement interval will be extended
// as needed by mapValue().
DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):");
RegAssign.insert(Start, End, OpenIdx);
DEBUG(dump());
}
/// closeIntv - Indicate that we are done editing the currently open
/// LiveInterval, and ranges can be trimmed.
void SplitEditor::closeIntv() {
assert(OpenIdx && "openIntv not called before closeIntv");
OpenIdx = 0;
}
/// rewriteAssigned - Rewrite all uses of Edit.getReg().
void SplitEditor::rewriteAssigned() {
for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit.getReg()),
RE = MRI.reg_end(); RI != RE;) {
MachineOperand &MO = RI.getOperand();
MachineInstr *MI = MO.getParent();
++RI;
// LiveDebugVariables should have handled all DBG_VALUE instructions.
if (MI->isDebugValue()) {
DEBUG(dbgs() << "Zapping " << *MI);
MO.setReg(0);
continue;
}
// <undef> operands don't really read the register, so just assign them to
// the complement.
if (MO.isUse() && MO.isUndef()) {
MO.setReg(Edit.get(0)->reg);
continue;
}
SlotIndex Idx = LIS.getInstructionIndex(MI);
Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
// Rewrite to the mapped register at Idx.
unsigned RegIdx = RegAssign.lookup(Idx);
MO.setReg(Edit.get(RegIdx)->reg);
DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'
<< Idx << ':' << RegIdx << '\t' << *MI);
// Extend liveness to Idx.
const VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
LIMappers[RegIdx].mapValue(ParentVNI, Idx);
}
}
/// rewriteSplit - Rewrite uses of Intvs[0] according to the ConEQ mapping.
void SplitEditor::rewriteComponents(const SmallVectorImpl<LiveInterval*> &Intvs,
const ConnectedVNInfoEqClasses &ConEq) {
for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Intvs[0]->reg),
RE = MRI.reg_end(); RI != RE;) {
MachineOperand &MO = RI.getOperand();
MachineInstr *MI = MO.getParent();
++RI;
if (MO.isUse() && MO.isUndef())
continue;
// DBG_VALUE instructions should have been eliminated earlier.
SlotIndex Idx = LIS.getInstructionIndex(MI);
Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'
<< Idx << ':');
const VNInfo *VNI = Intvs[0]->getVNInfoAt(Idx);
assert(VNI && "Interval not live at use.");
MO.setReg(Intvs[ConEq.getEqClass(VNI)]->reg);
DEBUG(dbgs() << VNI->id << '\t' << *MI);
}
}
void SplitEditor::finish() {
assert(OpenIdx == 0 && "Previous LI not closed before rewrite");
// At this point, the live intervals in Edit contain VNInfos corresponding to
// the inserted copies.
// Add the original defs from the parent interval.
for (LiveInterval::const_vni_iterator I = Edit.getParent().vni_begin(),
E = Edit.getParent().vni_end(); I != E; ++I) {
const VNInfo *ParentVNI = *I;
if (ParentVNI->isUnused())
continue;
LiveIntervalMap &LIM = LIMappers[RegAssign.lookup(ParentVNI->def)];
VNInfo *VNI = LIM.defValue(ParentVNI, ParentVNI->def);
LIM.getLI()->addRange(LiveRange(ParentVNI->def,
ParentVNI->def.getNextSlot(), VNI));
// Mark all values as complex to force liveness computation.
// This should really only be necessary for remat victims, but we are lazy.
LIM.markComplexMapped(ParentVNI);
}
#ifndef NDEBUG
// Every new interval must have a def by now, otherwise the split is bogus.
for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I)
assert((*I)->hasAtLeastOneValue() && "Split interval has no value");
#endif
// FIXME: Don't recompute the liveness of all values, infer it from the
// overlaps between the parent live interval and RegAssign.
// The mapValue algorithm is only necessary when:
// - The parent value maps to multiple defs, and new phis are needed, or
// - The value has been rematerialized before some uses, and we want to
// minimize the live range so it only reaches the remaining uses.
// All other values have simple liveness that can be computed from RegAssign
// and the parent live interval.
// Extend live ranges to be live-out for successor PHI values.
for (LiveInterval::const_vni_iterator I = Edit.getParent().vni_begin(),
E = Edit.getParent().vni_end(); I != E; ++I) {
const VNInfo *PHIVNI = *I;
if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
continue;
unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
LiveIntervalMap &LIM = LIMappers[RegIdx];
MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
DEBUG(dbgs() << " map phi in BB#" << MBB->getNumber() << '@' << PHIVNI->def
<< " -> " << RegIdx << '\n');
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI) {
SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot();
DEBUG(dbgs() << " pred BB#" << (*PI)->getNumber() << '@' << End);
// The predecessor may not have a live-out value. That is OK, like an
// undef PHI operand.
if (VNInfo *VNI = Edit.getParent().getVNInfoAt(End)) {
DEBUG(dbgs() << " has parent valno #" << VNI->id << " live out\n");
assert(RegAssign.lookup(End) == RegIdx &&
"Different register assignment in phi predecessor");
LIM.mapValue(VNI, End);
}
else
DEBUG(dbgs() << " is not live-out\n");
}
DEBUG(dbgs() << " " << *LIM.getLI() << '\n');
}
// Rewrite instructions.
rewriteAssigned();
// FIXME: Delete defs that were rematted everywhere.
// Get rid of unused values and set phi-kill flags.
for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I)
(*I)->RenumberValues(LIS);
// Now check if any registers were separated into multiple components.
ConnectedVNInfoEqClasses ConEQ(LIS);
for (unsigned i = 0, e = Edit.size(); i != e; ++i) {
// Don't use iterators, they are invalidated by create() below.
LiveInterval *li = Edit.get(i);
unsigned NumComp = ConEQ.Classify(li);
if (NumComp <= 1)
continue;
DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n');
SmallVector<LiveInterval*, 8> dups;
dups.push_back(li);
for (unsigned i = 1; i != NumComp; ++i)
dups.push_back(&Edit.create(MRI, LIS, VRM));
rewriteComponents(dups, ConEQ);
ConEQ.Distribute(&dups[0]);
}
// Calculate spill weight and allocation hints for new intervals.
VirtRegAuxInfo vrai(VRM.getMachineFunction(), LIS, SA.Loops);
for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I){
LiveInterval &li = **I;
vrai.CalculateRegClass(li.reg);
vrai.CalculateWeightAndHint(li);
DEBUG(dbgs() << " new interval " << MRI.getRegClass(li.reg)->getName()
<< ":" << li << '\n');
}
}
//===----------------------------------------------------------------------===//
// Single Block Splitting
//===----------------------------------------------------------------------===//
/// getMultiUseBlocks - if CurLI has more than one use in a basic block, it
/// may be an advantage to split CurLI for the duration of the block.
bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
// If CurLI is local to one block, there is no point to splitting it.
if (LiveBlocks.size() <= 1)
return false;
// Add blocks with multiple uses.
for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) {
const BlockInfo &BI = LiveBlocks[i];
if (!BI.Uses)
continue;
unsigned Instrs = UsingBlocks.lookup(BI.MBB);
if (Instrs <= 1)
continue;
if (Instrs == 2 && BI.LiveIn && BI.LiveOut && !BI.LiveThrough)
continue;
Blocks.insert(BI.MBB);
}
return !Blocks.empty();
}
/// splitSingleBlocks - Split CurLI into a separate live interval inside each
/// basic block in Blocks.
void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n");
for (unsigned i = 0, e = SA.LiveBlocks.size(); i != e; ++i) {
const SplitAnalysis::BlockInfo &BI = SA.LiveBlocks[i];
if (!BI.Uses || !Blocks.count(BI.MBB))
continue;
openIntv();
SlotIndex SegStart = enterIntvBefore(BI.FirstUse);
if (BI.LastUse < BI.LastSplitPoint) {
useIntv(SegStart, leaveIntvAfter(BI.LastUse));
} else {
// THe last use os after tha last valid split point.
SlotIndex SegStop = leaveIntvBefore(BI.LastSplitPoint);
useIntv(SegStart, SegStop);
overlapIntv(SegStop, BI.LastUse);
}
closeIntv();
}
finish();
}
//===----------------------------------------------------------------------===//
// Sub Block Splitting
//===----------------------------------------------------------------------===//
/// getBlockForInsideSplit - If CurLI is contained inside a single basic block,
/// and it wou pay to subdivide the interval inside that block, return it.
/// Otherwise return NULL. The returned block can be passed to
/// SplitEditor::splitInsideBlock.
const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() {
// The interval must be exclusive to one block.
if (UsingBlocks.size() != 1)
return 0;
// Don't to this for less than 4 instructions. We want to be sure that
// splitting actually reduces the instruction count per interval.
if (UsingInstrs.size() < 4)
return 0;
return UsingBlocks.begin()->first;
}
/// splitInsideBlock - Split CurLI into multiple intervals inside MBB.
void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) {
SmallVector<SlotIndex, 32> Uses;
Uses.reserve(SA.UsingInstrs.size());
for (SplitAnalysis::InstrPtrSet::const_iterator I = SA.UsingInstrs.begin(),
E = SA.UsingInstrs.end(); I != E; ++I)
if ((*I)->getParent() == MBB)
Uses.push_back(LIS.getInstructionIndex(*I));
DEBUG(dbgs() << " splitInsideBlock BB#" << MBB->getNumber() << " for "
<< Uses.size() << " instructions.\n");
assert(Uses.size() >= 3 && "Need at least 3 instructions");
array_pod_sort(Uses.begin(), Uses.end());
// Simple algorithm: Find the largest gap between uses as determined by slot
// indices. Create new intervals for instructions before the gap and after the
// gap.
unsigned bestPos = 0;
int bestGap = 0;
DEBUG(dbgs() << " dist (" << Uses[0]);
for (unsigned i = 1, e = Uses.size(); i != e; ++i) {
int g = Uses[i-1].distance(Uses[i]);
DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]);
if (g > bestGap)
bestPos = i, bestGap = g;
}
DEBUG(dbgs() << "), best: -" << bestGap << "-\n");
// bestPos points to the first use after the best gap.
assert(bestPos > 0 && "Invalid gap");
// FIXME: Don't create intervals for low densities.
// First interval before the gap. Don't create single-instr intervals.
if (bestPos > 1) {
openIntv();
useIntv(enterIntvBefore(Uses.front()), leaveIntvAfter(Uses[bestPos-1]));
closeIntv();
}
// Second interval after the gap.
if (bestPos < Uses.size()-1) {
openIntv();
useIntv(enterIntvBefore(Uses[bestPos]), leaveIntvAfter(Uses.back()));
closeIntv();
}
finish();
}