llvm-project/compiler-rt/lib/gwp_asan/guarded_pool_allocator.cpp

511 lines
17 KiB
C++

//===-- guarded_pool_allocator.cpp ------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "gwp_asan/guarded_pool_allocator.h"
#include "gwp_asan/options.h"
// RHEL creates the PRIu64 format macro (for printing uint64_t's) only when this
// macro is defined before including <inttypes.h>.
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS 1
#endif
#include <assert.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
using AllocationMetadata = gwp_asan::GuardedPoolAllocator::AllocationMetadata;
using Error = gwp_asan::GuardedPoolAllocator::Error;
namespace gwp_asan {
namespace {
// Forward declare the pointer to the singleton version of this class.
// Instantiated during initialisation, this allows the signal handler
// to find this class in order to deduce the root cause of failures. Must not be
// referenced by users outside this translation unit, in order to avoid
// init-order-fiasco.
GuardedPoolAllocator *SingletonPtr = nullptr;
class ScopedBoolean {
public:
ScopedBoolean(bool &B) : Bool(B) { Bool = true; }
~ScopedBoolean() { Bool = false; }
private:
bool &Bool;
};
void defaultPrintStackTrace(uintptr_t *Trace, options::Printf_t Printf) {
if (Trace[0] == 0)
Printf(" <unknown (does your allocator support backtracing?)>\n");
for (size_t i = 0; Trace[i] != 0; ++i) {
Printf(" #%zu 0x%zx in <unknown>\n", i, Trace[i]);
}
Printf("\n");
}
} // anonymous namespace
// Gets the singleton implementation of this class. Thread-compatible until
// init() is called, thread-safe afterwards.
GuardedPoolAllocator *getSingleton() { return SingletonPtr; }
void GuardedPoolAllocator::AllocationMetadata::RecordAllocation(
uintptr_t AllocAddr, size_t AllocSize, options::Backtrace_t Backtrace) {
Addr = AllocAddr;
Size = AllocSize;
IsDeallocated = false;
// TODO(hctim): Ask the caller to provide the thread ID, so we don't waste
// other thread's time getting the thread ID under lock.
AllocationTrace.ThreadID = getThreadID();
DeallocationTrace.ThreadID = kInvalidThreadID;
if (Backtrace)
Backtrace(AllocationTrace.Trace, kMaximumStackFrames);
else
AllocationTrace.Trace[0] = 0;
DeallocationTrace.Trace[0] = 0;
}
void GuardedPoolAllocator::AllocationMetadata::RecordDeallocation(
options::Backtrace_t Backtrace) {
IsDeallocated = true;
// Ensure that the unwinder is not called if the recursive flag is set,
// otherwise non-reentrant unwinders may deadlock.
if (Backtrace && !ThreadLocals.RecursiveGuard) {
ScopedBoolean B(ThreadLocals.RecursiveGuard);
Backtrace(DeallocationTrace.Trace, kMaximumStackFrames);
} else {
DeallocationTrace.Trace[0] = 0;
}
DeallocationTrace.ThreadID = getThreadID();
}
void GuardedPoolAllocator::init(const options::Options &Opts) {
// Note: We return from the constructor here if GWP-ASan is not available.
// This will stop heap-allocation of class members, as well as mmap() of the
// guarded slots.
if (!Opts.Enabled || Opts.SampleRate == 0 ||
Opts.MaxSimultaneousAllocations == 0)
return;
// TODO(hctim): Add a death unit test for this.
if (SingletonPtr) {
(*SingletonPtr->Printf)(
"GWP-ASan Error: init() has already been called.\n");
exit(EXIT_FAILURE);
}
if (Opts.SampleRate < 0) {
Opts.Printf("GWP-ASan Error: SampleRate is < 0.\n");
exit(EXIT_FAILURE);
}
if (Opts.SampleRate > INT32_MAX) {
Opts.Printf("GWP-ASan Error: SampleRate is > 2^31.\n");
exit(EXIT_FAILURE);
}
if (Opts.MaxSimultaneousAllocations < 0) {
Opts.Printf("GWP-ASan Error: MaxSimultaneousAllocations is < 0.\n");
exit(EXIT_FAILURE);
}
SingletonPtr = this;
MaxSimultaneousAllocations = Opts.MaxSimultaneousAllocations;
PageSize = getPlatformPageSize();
PerfectlyRightAlign = Opts.PerfectlyRightAlign;
Printf = Opts.Printf;
Backtrace = Opts.Backtrace;
if (Opts.PrintBacktrace)
PrintBacktrace = Opts.PrintBacktrace;
else
PrintBacktrace = defaultPrintStackTrace;
size_t PoolBytesRequired =
PageSize * (1 + MaxSimultaneousAllocations) +
MaxSimultaneousAllocations * maximumAllocationSize();
void *GuardedPoolMemory = mapMemory(PoolBytesRequired);
size_t BytesRequired = MaxSimultaneousAllocations * sizeof(*Metadata);
Metadata = reinterpret_cast<AllocationMetadata *>(mapMemory(BytesRequired));
markReadWrite(Metadata, BytesRequired);
// Allocate memory and set up the free pages queue.
BytesRequired = MaxSimultaneousAllocations * sizeof(*FreeSlots);
FreeSlots = reinterpret_cast<size_t *>(mapMemory(BytesRequired));
markReadWrite(FreeSlots, BytesRequired);
// Multiply the sample rate by 2 to give a good, fast approximation for (1 /
// SampleRate) chance of sampling.
if (Opts.SampleRate != 1)
AdjustedSampleRate = static_cast<uint32_t>(Opts.SampleRate) * 2;
else
AdjustedSampleRate = 1;
GuardedPagePool = reinterpret_cast<uintptr_t>(GuardedPoolMemory);
GuardedPagePoolEnd =
reinterpret_cast<uintptr_t>(GuardedPoolMemory) + PoolBytesRequired;
// Ensure that signal handlers are installed as late as possible, as the class
// is not thread-safe until init() is finished, and thus a SIGSEGV may cause a
// race to members if recieved during init().
if (Opts.InstallSignalHandlers)
installSignalHandlers();
}
void *GuardedPoolAllocator::allocate(size_t Size) {
// GuardedPagePoolEnd == 0 when GWP-ASan is disabled. If we are disabled, fall
// back to the supporting allocator.
if (GuardedPagePoolEnd == 0)
return nullptr;
// Protect against recursivity.
if (ThreadLocals.RecursiveGuard)
return nullptr;
ScopedBoolean SB(ThreadLocals.RecursiveGuard);
if (Size == 0 || Size > maximumAllocationSize())
return nullptr;
size_t Index;
{
ScopedLock L(PoolMutex);
Index = reserveSlot();
}
if (Index == kInvalidSlotID)
return nullptr;
uintptr_t Ptr = slotToAddr(Index);
Ptr += allocationSlotOffset(Size);
AllocationMetadata *Meta = addrToMetadata(Ptr);
// If a slot is multiple pages in size, and the allocation takes up a single
// page, we can improve overflow detection by leaving the unused pages as
// unmapped.
markReadWrite(reinterpret_cast<void *>(getPageAddr(Ptr)), Size);
Meta->RecordAllocation(Ptr, Size, Backtrace);
return reinterpret_cast<void *>(Ptr);
}
void GuardedPoolAllocator::deallocate(void *Ptr) {
assert(pointerIsMine(Ptr) && "Pointer is not mine!");
uintptr_t UPtr = reinterpret_cast<uintptr_t>(Ptr);
uintptr_t SlotStart = slotToAddr(addrToSlot(UPtr));
AllocationMetadata *Meta = addrToMetadata(UPtr);
if (Meta->Addr != UPtr) {
reportError(UPtr, Error::INVALID_FREE);
exit(EXIT_FAILURE);
}
// Intentionally scope the mutex here, so that other threads can access the
// pool during the expensive markInaccessible() call.
{
ScopedLock L(PoolMutex);
if (Meta->IsDeallocated) {
reportError(UPtr, Error::DOUBLE_FREE);
exit(EXIT_FAILURE);
}
// Ensure that the deallocation is recorded before marking the page as
// inaccessible. Otherwise, a racy use-after-free will have inconsistent
// metadata.
Meta->RecordDeallocation(Backtrace);
}
markInaccessible(reinterpret_cast<void *>(SlotStart),
maximumAllocationSize());
// And finally, lock again to release the slot back into the pool.
ScopedLock L(PoolMutex);
freeSlot(addrToSlot(UPtr));
}
size_t GuardedPoolAllocator::getSize(const void *Ptr) {
assert(pointerIsMine(Ptr));
ScopedLock L(PoolMutex);
AllocationMetadata *Meta = addrToMetadata(reinterpret_cast<uintptr_t>(Ptr));
assert(Meta->Addr == reinterpret_cast<uintptr_t>(Ptr));
return Meta->Size;
}
size_t GuardedPoolAllocator::maximumAllocationSize() const { return PageSize; }
AllocationMetadata *GuardedPoolAllocator::addrToMetadata(uintptr_t Ptr) const {
return &Metadata[addrToSlot(Ptr)];
}
size_t GuardedPoolAllocator::addrToSlot(uintptr_t Ptr) const {
assert(pointerIsMine(reinterpret_cast<void *>(Ptr)));
size_t ByteOffsetFromPoolStart = Ptr - GuardedPagePool;
return ByteOffsetFromPoolStart / (maximumAllocationSize() + PageSize);
}
uintptr_t GuardedPoolAllocator::slotToAddr(size_t N) const {
return GuardedPagePool + (PageSize * (1 + N)) + (maximumAllocationSize() * N);
}
uintptr_t GuardedPoolAllocator::getPageAddr(uintptr_t Ptr) const {
assert(pointerIsMine(reinterpret_cast<void *>(Ptr)));
return Ptr & ~(static_cast<uintptr_t>(PageSize) - 1);
}
bool GuardedPoolAllocator::isGuardPage(uintptr_t Ptr) const {
assert(pointerIsMine(reinterpret_cast<void *>(Ptr)));
size_t PageOffsetFromPoolStart = (Ptr - GuardedPagePool) / PageSize;
size_t PagesPerSlot = maximumAllocationSize() / PageSize;
return (PageOffsetFromPoolStart % (PagesPerSlot + 1)) == 0;
}
size_t GuardedPoolAllocator::reserveSlot() {
// Avoid potential reuse of a slot before we have made at least a single
// allocation in each slot. Helps with our use-after-free detection.
if (NumSampledAllocations < MaxSimultaneousAllocations)
return NumSampledAllocations++;
if (FreeSlotsLength == 0)
return kInvalidSlotID;
size_t ReservedIndex = getRandomUnsigned32() % FreeSlotsLength;
size_t SlotIndex = FreeSlots[ReservedIndex];
FreeSlots[ReservedIndex] = FreeSlots[--FreeSlotsLength];
return SlotIndex;
}
void GuardedPoolAllocator::freeSlot(size_t SlotIndex) {
assert(FreeSlotsLength < MaxSimultaneousAllocations);
FreeSlots[FreeSlotsLength++] = SlotIndex;
}
uintptr_t GuardedPoolAllocator::allocationSlotOffset(size_t Size) const {
assert(Size > 0);
bool ShouldRightAlign = getRandomUnsigned32() % 2 == 0;
if (!ShouldRightAlign)
return 0;
uintptr_t Offset = maximumAllocationSize();
if (!PerfectlyRightAlign) {
if (Size == 3)
Size = 4;
else if (Size > 4 && Size <= 8)
Size = 8;
else if (Size > 8 && (Size % 16) != 0)
Size += 16 - (Size % 16);
}
Offset -= Size;
return Offset;
}
void GuardedPoolAllocator::reportError(uintptr_t AccessPtr, Error E) {
if (SingletonPtr)
SingletonPtr->reportErrorInternal(AccessPtr, E);
}
size_t GuardedPoolAllocator::getNearestSlot(uintptr_t Ptr) const {
if (Ptr <= GuardedPagePool + PageSize)
return 0;
if (Ptr > GuardedPagePoolEnd - PageSize)
return MaxSimultaneousAllocations - 1;
if (!isGuardPage(Ptr))
return addrToSlot(Ptr);
if (Ptr % PageSize <= PageSize / 2)
return addrToSlot(Ptr - PageSize); // Round down.
return addrToSlot(Ptr + PageSize); // Round up.
}
Error GuardedPoolAllocator::diagnoseUnknownError(uintptr_t AccessPtr,
AllocationMetadata **Meta) {
// Let's try and figure out what the source of this error is.
if (isGuardPage(AccessPtr)) {
size_t Slot = getNearestSlot(AccessPtr);
AllocationMetadata *SlotMeta = addrToMetadata(slotToAddr(Slot));
// Ensure that this slot was allocated once upon a time.
if (!SlotMeta->Addr)
return Error::UNKNOWN;
*Meta = SlotMeta;
if (SlotMeta->Addr < AccessPtr)
return Error::BUFFER_OVERFLOW;
return Error::BUFFER_UNDERFLOW;
}
// Access wasn't a guard page, check for use-after-free.
AllocationMetadata *SlotMeta = addrToMetadata(AccessPtr);
if (SlotMeta->IsDeallocated) {
*Meta = SlotMeta;
return Error::USE_AFTER_FREE;
}
// If we have reached here, the error is still unknown. There is no metadata
// available.
*Meta = nullptr;
return Error::UNKNOWN;
}
namespace {
// Prints the provided error and metadata information.
void printErrorType(Error E, uintptr_t AccessPtr, AllocationMetadata *Meta,
options::Printf_t Printf, uint64_t ThreadID) {
// Print using intermediate strings. Platforms like Android don't like when
// you print multiple times to the same line, as there may be a newline
// appended to a log file automatically per Printf() call.
const char *ErrorString;
switch (E) {
case Error::UNKNOWN:
ErrorString = "GWP-ASan couldn't automatically determine the source of "
"the memory error. It was likely caused by a wild memory "
"access into the GWP-ASan pool. The error occured";
break;
case Error::USE_AFTER_FREE:
ErrorString = "Use after free";
break;
case Error::DOUBLE_FREE:
ErrorString = "Double free";
break;
case Error::INVALID_FREE:
ErrorString = "Invalid (wild) free";
break;
case Error::BUFFER_OVERFLOW:
ErrorString = "Buffer overflow";
break;
case Error::BUFFER_UNDERFLOW:
ErrorString = "Buffer underflow";
break;
}
constexpr size_t kDescriptionBufferLen = 128;
char DescriptionBuffer[kDescriptionBufferLen];
if (Meta) {
if (E == Error::USE_AFTER_FREE) {
snprintf(DescriptionBuffer, kDescriptionBufferLen,
"(%zu byte%s into a %zu-byte allocation at 0x%zx)",
AccessPtr - Meta->Addr, (AccessPtr - Meta->Addr == 1) ? "" : "s",
Meta->Size, Meta->Addr);
} else if (AccessPtr < Meta->Addr) {
snprintf(DescriptionBuffer, kDescriptionBufferLen,
"(%zu byte%s to the left of a %zu-byte allocation at 0x%zx)",
Meta->Addr - AccessPtr, (Meta->Addr - AccessPtr == 1) ? "" : "s",
Meta->Size, Meta->Addr);
} else if (AccessPtr > Meta->Addr) {
snprintf(DescriptionBuffer, kDescriptionBufferLen,
"(%zu byte%s to the right of a %zu-byte allocation at 0x%zx)",
AccessPtr - Meta->Addr, (AccessPtr - Meta->Addr == 1) ? "" : "s",
Meta->Size, Meta->Addr);
} else {
snprintf(DescriptionBuffer, kDescriptionBufferLen,
"(a %zu-byte allocation)", Meta->Size);
}
}
// Possible number of digits of a 64-bit number: ceil(log10(2^64)) == 20. Add
// a null terminator, and round to the nearest 8-byte boundary.
constexpr size_t kThreadBufferLen = 24;
char ThreadBuffer[kThreadBufferLen];
if (ThreadID == GuardedPoolAllocator::kInvalidThreadID)
snprintf(ThreadBuffer, kThreadBufferLen, "<unknown>");
else
snprintf(ThreadBuffer, kThreadBufferLen, "%" PRIu64, ThreadID);
Printf("%s at 0x%zx %s by thread %s here:\n", ErrorString, AccessPtr,
DescriptionBuffer, ThreadBuffer);
}
void printAllocDeallocTraces(uintptr_t AccessPtr, AllocationMetadata *Meta,
options::Printf_t Printf,
options::PrintBacktrace_t PrintBacktrace) {
assert(Meta != nullptr && "Metadata is non-null for printAllocDeallocTraces");
if (Meta->IsDeallocated) {
if (Meta->DeallocationTrace.ThreadID ==
GuardedPoolAllocator::kInvalidThreadID)
Printf("0x%zx was deallocated by thread <unknown> here:\n", AccessPtr);
else
Printf("0x%zx was deallocated by thread %zu here:\n", AccessPtr,
Meta->DeallocationTrace.ThreadID);
PrintBacktrace(Meta->DeallocationTrace.Trace, Printf);
}
if (Meta->AllocationTrace.ThreadID == GuardedPoolAllocator::kInvalidThreadID)
Printf("0x%zx was allocated by thread <unknown> here:\n", Meta->Addr);
else
Printf("0x%zx was allocated by thread %zu here:\n", Meta->Addr,
Meta->AllocationTrace.ThreadID);
PrintBacktrace(Meta->AllocationTrace.Trace, Printf);
}
struct ScopedEndOfReportDecorator {
ScopedEndOfReportDecorator(options::Printf_t Printf) : Printf(Printf) {}
~ScopedEndOfReportDecorator() { Printf("*** End GWP-ASan report ***\n"); }
options::Printf_t Printf;
};
} // anonymous namespace
void GuardedPoolAllocator::reportErrorInternal(uintptr_t AccessPtr, Error E) {
if (!pointerIsMine(reinterpret_cast<void *>(AccessPtr))) {
return;
}
// Attempt to prevent races to re-use the same slot that triggered this error.
// This does not guarantee that there are no races, because another thread can
// take the locks during the time that the signal handler is being called.
PoolMutex.tryLock();
ThreadLocals.RecursiveGuard = true;
Printf("*** GWP-ASan detected a memory error ***\n");
ScopedEndOfReportDecorator Decorator(Printf);
AllocationMetadata *Meta = nullptr;
if (E == Error::UNKNOWN) {
E = diagnoseUnknownError(AccessPtr, &Meta);
} else {
size_t Slot = getNearestSlot(AccessPtr);
Meta = addrToMetadata(slotToAddr(Slot));
// Ensure that this slot has been previously allocated.
if (!Meta->Addr)
Meta = nullptr;
}
// Print the error information.
uint64_t ThreadID = getThreadID();
printErrorType(E, AccessPtr, Meta, Printf, ThreadID);
if (Backtrace) {
static constexpr unsigned kMaximumStackFramesForCrashTrace = 128;
uintptr_t Trace[kMaximumStackFramesForCrashTrace];
Backtrace(Trace, kMaximumStackFramesForCrashTrace);
PrintBacktrace(Trace, Printf);
} else {
Printf(" <unknown (does your allocator support backtracing?)>\n\n");
}
if (Meta)
printAllocDeallocTraces(AccessPtr, Meta, Printf, PrintBacktrace);
}
TLS_INITIAL_EXEC
GuardedPoolAllocator::ThreadLocalPackedVariables
GuardedPoolAllocator::ThreadLocals;
} // namespace gwp_asan