forked from OSchip/llvm-project
511 lines
17 KiB
C++
511 lines
17 KiB
C++
//===-- guarded_pool_allocator.cpp ------------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "gwp_asan/guarded_pool_allocator.h"
|
|
|
|
#include "gwp_asan/options.h"
|
|
|
|
// RHEL creates the PRIu64 format macro (for printing uint64_t's) only when this
|
|
// macro is defined before including <inttypes.h>.
|
|
#ifndef __STDC_FORMAT_MACROS
|
|
#define __STDC_FORMAT_MACROS 1
|
|
#endif
|
|
|
|
#include <assert.h>
|
|
#include <inttypes.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <time.h>
|
|
|
|
using AllocationMetadata = gwp_asan::GuardedPoolAllocator::AllocationMetadata;
|
|
using Error = gwp_asan::GuardedPoolAllocator::Error;
|
|
|
|
namespace gwp_asan {
|
|
namespace {
|
|
// Forward declare the pointer to the singleton version of this class.
|
|
// Instantiated during initialisation, this allows the signal handler
|
|
// to find this class in order to deduce the root cause of failures. Must not be
|
|
// referenced by users outside this translation unit, in order to avoid
|
|
// init-order-fiasco.
|
|
GuardedPoolAllocator *SingletonPtr = nullptr;
|
|
|
|
class ScopedBoolean {
|
|
public:
|
|
ScopedBoolean(bool &B) : Bool(B) { Bool = true; }
|
|
~ScopedBoolean() { Bool = false; }
|
|
|
|
private:
|
|
bool &Bool;
|
|
};
|
|
|
|
void defaultPrintStackTrace(uintptr_t *Trace, options::Printf_t Printf) {
|
|
if (Trace[0] == 0)
|
|
Printf(" <unknown (does your allocator support backtracing?)>\n");
|
|
|
|
for (size_t i = 0; Trace[i] != 0; ++i) {
|
|
Printf(" #%zu 0x%zx in <unknown>\n", i, Trace[i]);
|
|
}
|
|
Printf("\n");
|
|
}
|
|
} // anonymous namespace
|
|
|
|
// Gets the singleton implementation of this class. Thread-compatible until
|
|
// init() is called, thread-safe afterwards.
|
|
GuardedPoolAllocator *getSingleton() { return SingletonPtr; }
|
|
|
|
void GuardedPoolAllocator::AllocationMetadata::RecordAllocation(
|
|
uintptr_t AllocAddr, size_t AllocSize, options::Backtrace_t Backtrace) {
|
|
Addr = AllocAddr;
|
|
Size = AllocSize;
|
|
IsDeallocated = false;
|
|
|
|
// TODO(hctim): Ask the caller to provide the thread ID, so we don't waste
|
|
// other thread's time getting the thread ID under lock.
|
|
AllocationTrace.ThreadID = getThreadID();
|
|
DeallocationTrace.ThreadID = kInvalidThreadID;
|
|
if (Backtrace)
|
|
Backtrace(AllocationTrace.Trace, kMaximumStackFrames);
|
|
else
|
|
AllocationTrace.Trace[0] = 0;
|
|
DeallocationTrace.Trace[0] = 0;
|
|
}
|
|
|
|
void GuardedPoolAllocator::AllocationMetadata::RecordDeallocation(
|
|
options::Backtrace_t Backtrace) {
|
|
IsDeallocated = true;
|
|
// Ensure that the unwinder is not called if the recursive flag is set,
|
|
// otherwise non-reentrant unwinders may deadlock.
|
|
if (Backtrace && !ThreadLocals.RecursiveGuard) {
|
|
ScopedBoolean B(ThreadLocals.RecursiveGuard);
|
|
Backtrace(DeallocationTrace.Trace, kMaximumStackFrames);
|
|
} else {
|
|
DeallocationTrace.Trace[0] = 0;
|
|
}
|
|
DeallocationTrace.ThreadID = getThreadID();
|
|
}
|
|
|
|
void GuardedPoolAllocator::init(const options::Options &Opts) {
|
|
// Note: We return from the constructor here if GWP-ASan is not available.
|
|
// This will stop heap-allocation of class members, as well as mmap() of the
|
|
// guarded slots.
|
|
if (!Opts.Enabled || Opts.SampleRate == 0 ||
|
|
Opts.MaxSimultaneousAllocations == 0)
|
|
return;
|
|
|
|
// TODO(hctim): Add a death unit test for this.
|
|
if (SingletonPtr) {
|
|
(*SingletonPtr->Printf)(
|
|
"GWP-ASan Error: init() has already been called.\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
if (Opts.SampleRate < 0) {
|
|
Opts.Printf("GWP-ASan Error: SampleRate is < 0.\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
if (Opts.SampleRate > INT32_MAX) {
|
|
Opts.Printf("GWP-ASan Error: SampleRate is > 2^31.\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
if (Opts.MaxSimultaneousAllocations < 0) {
|
|
Opts.Printf("GWP-ASan Error: MaxSimultaneousAllocations is < 0.\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
SingletonPtr = this;
|
|
|
|
MaxSimultaneousAllocations = Opts.MaxSimultaneousAllocations;
|
|
|
|
PageSize = getPlatformPageSize();
|
|
|
|
PerfectlyRightAlign = Opts.PerfectlyRightAlign;
|
|
Printf = Opts.Printf;
|
|
Backtrace = Opts.Backtrace;
|
|
if (Opts.PrintBacktrace)
|
|
PrintBacktrace = Opts.PrintBacktrace;
|
|
else
|
|
PrintBacktrace = defaultPrintStackTrace;
|
|
|
|
size_t PoolBytesRequired =
|
|
PageSize * (1 + MaxSimultaneousAllocations) +
|
|
MaxSimultaneousAllocations * maximumAllocationSize();
|
|
void *GuardedPoolMemory = mapMemory(PoolBytesRequired);
|
|
|
|
size_t BytesRequired = MaxSimultaneousAllocations * sizeof(*Metadata);
|
|
Metadata = reinterpret_cast<AllocationMetadata *>(mapMemory(BytesRequired));
|
|
markReadWrite(Metadata, BytesRequired);
|
|
|
|
// Allocate memory and set up the free pages queue.
|
|
BytesRequired = MaxSimultaneousAllocations * sizeof(*FreeSlots);
|
|
FreeSlots = reinterpret_cast<size_t *>(mapMemory(BytesRequired));
|
|
markReadWrite(FreeSlots, BytesRequired);
|
|
|
|
// Multiply the sample rate by 2 to give a good, fast approximation for (1 /
|
|
// SampleRate) chance of sampling.
|
|
if (Opts.SampleRate != 1)
|
|
AdjustedSampleRate = static_cast<uint32_t>(Opts.SampleRate) * 2;
|
|
else
|
|
AdjustedSampleRate = 1;
|
|
|
|
GuardedPagePool = reinterpret_cast<uintptr_t>(GuardedPoolMemory);
|
|
GuardedPagePoolEnd =
|
|
reinterpret_cast<uintptr_t>(GuardedPoolMemory) + PoolBytesRequired;
|
|
|
|
// Ensure that signal handlers are installed as late as possible, as the class
|
|
// is not thread-safe until init() is finished, and thus a SIGSEGV may cause a
|
|
// race to members if recieved during init().
|
|
if (Opts.InstallSignalHandlers)
|
|
installSignalHandlers();
|
|
}
|
|
|
|
void *GuardedPoolAllocator::allocate(size_t Size) {
|
|
// GuardedPagePoolEnd == 0 when GWP-ASan is disabled. If we are disabled, fall
|
|
// back to the supporting allocator.
|
|
if (GuardedPagePoolEnd == 0)
|
|
return nullptr;
|
|
|
|
// Protect against recursivity.
|
|
if (ThreadLocals.RecursiveGuard)
|
|
return nullptr;
|
|
ScopedBoolean SB(ThreadLocals.RecursiveGuard);
|
|
|
|
if (Size == 0 || Size > maximumAllocationSize())
|
|
return nullptr;
|
|
|
|
size_t Index;
|
|
{
|
|
ScopedLock L(PoolMutex);
|
|
Index = reserveSlot();
|
|
}
|
|
|
|
if (Index == kInvalidSlotID)
|
|
return nullptr;
|
|
|
|
uintptr_t Ptr = slotToAddr(Index);
|
|
Ptr += allocationSlotOffset(Size);
|
|
AllocationMetadata *Meta = addrToMetadata(Ptr);
|
|
|
|
// If a slot is multiple pages in size, and the allocation takes up a single
|
|
// page, we can improve overflow detection by leaving the unused pages as
|
|
// unmapped.
|
|
markReadWrite(reinterpret_cast<void *>(getPageAddr(Ptr)), Size);
|
|
|
|
Meta->RecordAllocation(Ptr, Size, Backtrace);
|
|
|
|
return reinterpret_cast<void *>(Ptr);
|
|
}
|
|
|
|
void GuardedPoolAllocator::deallocate(void *Ptr) {
|
|
assert(pointerIsMine(Ptr) && "Pointer is not mine!");
|
|
uintptr_t UPtr = reinterpret_cast<uintptr_t>(Ptr);
|
|
uintptr_t SlotStart = slotToAddr(addrToSlot(UPtr));
|
|
AllocationMetadata *Meta = addrToMetadata(UPtr);
|
|
if (Meta->Addr != UPtr) {
|
|
reportError(UPtr, Error::INVALID_FREE);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
// Intentionally scope the mutex here, so that other threads can access the
|
|
// pool during the expensive markInaccessible() call.
|
|
{
|
|
ScopedLock L(PoolMutex);
|
|
if (Meta->IsDeallocated) {
|
|
reportError(UPtr, Error::DOUBLE_FREE);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
// Ensure that the deallocation is recorded before marking the page as
|
|
// inaccessible. Otherwise, a racy use-after-free will have inconsistent
|
|
// metadata.
|
|
Meta->RecordDeallocation(Backtrace);
|
|
}
|
|
|
|
markInaccessible(reinterpret_cast<void *>(SlotStart),
|
|
maximumAllocationSize());
|
|
|
|
// And finally, lock again to release the slot back into the pool.
|
|
ScopedLock L(PoolMutex);
|
|
freeSlot(addrToSlot(UPtr));
|
|
}
|
|
|
|
size_t GuardedPoolAllocator::getSize(const void *Ptr) {
|
|
assert(pointerIsMine(Ptr));
|
|
ScopedLock L(PoolMutex);
|
|
AllocationMetadata *Meta = addrToMetadata(reinterpret_cast<uintptr_t>(Ptr));
|
|
assert(Meta->Addr == reinterpret_cast<uintptr_t>(Ptr));
|
|
return Meta->Size;
|
|
}
|
|
|
|
size_t GuardedPoolAllocator::maximumAllocationSize() const { return PageSize; }
|
|
|
|
AllocationMetadata *GuardedPoolAllocator::addrToMetadata(uintptr_t Ptr) const {
|
|
return &Metadata[addrToSlot(Ptr)];
|
|
}
|
|
|
|
size_t GuardedPoolAllocator::addrToSlot(uintptr_t Ptr) const {
|
|
assert(pointerIsMine(reinterpret_cast<void *>(Ptr)));
|
|
size_t ByteOffsetFromPoolStart = Ptr - GuardedPagePool;
|
|
return ByteOffsetFromPoolStart / (maximumAllocationSize() + PageSize);
|
|
}
|
|
|
|
uintptr_t GuardedPoolAllocator::slotToAddr(size_t N) const {
|
|
return GuardedPagePool + (PageSize * (1 + N)) + (maximumAllocationSize() * N);
|
|
}
|
|
|
|
uintptr_t GuardedPoolAllocator::getPageAddr(uintptr_t Ptr) const {
|
|
assert(pointerIsMine(reinterpret_cast<void *>(Ptr)));
|
|
return Ptr & ~(static_cast<uintptr_t>(PageSize) - 1);
|
|
}
|
|
|
|
bool GuardedPoolAllocator::isGuardPage(uintptr_t Ptr) const {
|
|
assert(pointerIsMine(reinterpret_cast<void *>(Ptr)));
|
|
size_t PageOffsetFromPoolStart = (Ptr - GuardedPagePool) / PageSize;
|
|
size_t PagesPerSlot = maximumAllocationSize() / PageSize;
|
|
return (PageOffsetFromPoolStart % (PagesPerSlot + 1)) == 0;
|
|
}
|
|
|
|
size_t GuardedPoolAllocator::reserveSlot() {
|
|
// Avoid potential reuse of a slot before we have made at least a single
|
|
// allocation in each slot. Helps with our use-after-free detection.
|
|
if (NumSampledAllocations < MaxSimultaneousAllocations)
|
|
return NumSampledAllocations++;
|
|
|
|
if (FreeSlotsLength == 0)
|
|
return kInvalidSlotID;
|
|
|
|
size_t ReservedIndex = getRandomUnsigned32() % FreeSlotsLength;
|
|
size_t SlotIndex = FreeSlots[ReservedIndex];
|
|
FreeSlots[ReservedIndex] = FreeSlots[--FreeSlotsLength];
|
|
return SlotIndex;
|
|
}
|
|
|
|
void GuardedPoolAllocator::freeSlot(size_t SlotIndex) {
|
|
assert(FreeSlotsLength < MaxSimultaneousAllocations);
|
|
FreeSlots[FreeSlotsLength++] = SlotIndex;
|
|
}
|
|
|
|
uintptr_t GuardedPoolAllocator::allocationSlotOffset(size_t Size) const {
|
|
assert(Size > 0);
|
|
|
|
bool ShouldRightAlign = getRandomUnsigned32() % 2 == 0;
|
|
if (!ShouldRightAlign)
|
|
return 0;
|
|
|
|
uintptr_t Offset = maximumAllocationSize();
|
|
if (!PerfectlyRightAlign) {
|
|
if (Size == 3)
|
|
Size = 4;
|
|
else if (Size > 4 && Size <= 8)
|
|
Size = 8;
|
|
else if (Size > 8 && (Size % 16) != 0)
|
|
Size += 16 - (Size % 16);
|
|
}
|
|
Offset -= Size;
|
|
return Offset;
|
|
}
|
|
|
|
void GuardedPoolAllocator::reportError(uintptr_t AccessPtr, Error E) {
|
|
if (SingletonPtr)
|
|
SingletonPtr->reportErrorInternal(AccessPtr, E);
|
|
}
|
|
|
|
size_t GuardedPoolAllocator::getNearestSlot(uintptr_t Ptr) const {
|
|
if (Ptr <= GuardedPagePool + PageSize)
|
|
return 0;
|
|
if (Ptr > GuardedPagePoolEnd - PageSize)
|
|
return MaxSimultaneousAllocations - 1;
|
|
|
|
if (!isGuardPage(Ptr))
|
|
return addrToSlot(Ptr);
|
|
|
|
if (Ptr % PageSize <= PageSize / 2)
|
|
return addrToSlot(Ptr - PageSize); // Round down.
|
|
return addrToSlot(Ptr + PageSize); // Round up.
|
|
}
|
|
|
|
Error GuardedPoolAllocator::diagnoseUnknownError(uintptr_t AccessPtr,
|
|
AllocationMetadata **Meta) {
|
|
// Let's try and figure out what the source of this error is.
|
|
if (isGuardPage(AccessPtr)) {
|
|
size_t Slot = getNearestSlot(AccessPtr);
|
|
AllocationMetadata *SlotMeta = addrToMetadata(slotToAddr(Slot));
|
|
|
|
// Ensure that this slot was allocated once upon a time.
|
|
if (!SlotMeta->Addr)
|
|
return Error::UNKNOWN;
|
|
*Meta = SlotMeta;
|
|
|
|
if (SlotMeta->Addr < AccessPtr)
|
|
return Error::BUFFER_OVERFLOW;
|
|
return Error::BUFFER_UNDERFLOW;
|
|
}
|
|
|
|
// Access wasn't a guard page, check for use-after-free.
|
|
AllocationMetadata *SlotMeta = addrToMetadata(AccessPtr);
|
|
if (SlotMeta->IsDeallocated) {
|
|
*Meta = SlotMeta;
|
|
return Error::USE_AFTER_FREE;
|
|
}
|
|
|
|
// If we have reached here, the error is still unknown. There is no metadata
|
|
// available.
|
|
*Meta = nullptr;
|
|
return Error::UNKNOWN;
|
|
}
|
|
|
|
namespace {
|
|
// Prints the provided error and metadata information.
|
|
void printErrorType(Error E, uintptr_t AccessPtr, AllocationMetadata *Meta,
|
|
options::Printf_t Printf, uint64_t ThreadID) {
|
|
// Print using intermediate strings. Platforms like Android don't like when
|
|
// you print multiple times to the same line, as there may be a newline
|
|
// appended to a log file automatically per Printf() call.
|
|
const char *ErrorString;
|
|
switch (E) {
|
|
case Error::UNKNOWN:
|
|
ErrorString = "GWP-ASan couldn't automatically determine the source of "
|
|
"the memory error. It was likely caused by a wild memory "
|
|
"access into the GWP-ASan pool. The error occured";
|
|
break;
|
|
case Error::USE_AFTER_FREE:
|
|
ErrorString = "Use after free";
|
|
break;
|
|
case Error::DOUBLE_FREE:
|
|
ErrorString = "Double free";
|
|
break;
|
|
case Error::INVALID_FREE:
|
|
ErrorString = "Invalid (wild) free";
|
|
break;
|
|
case Error::BUFFER_OVERFLOW:
|
|
ErrorString = "Buffer overflow";
|
|
break;
|
|
case Error::BUFFER_UNDERFLOW:
|
|
ErrorString = "Buffer underflow";
|
|
break;
|
|
}
|
|
|
|
constexpr size_t kDescriptionBufferLen = 128;
|
|
char DescriptionBuffer[kDescriptionBufferLen];
|
|
if (Meta) {
|
|
if (E == Error::USE_AFTER_FREE) {
|
|
snprintf(DescriptionBuffer, kDescriptionBufferLen,
|
|
"(%zu byte%s into a %zu-byte allocation at 0x%zx)",
|
|
AccessPtr - Meta->Addr, (AccessPtr - Meta->Addr == 1) ? "" : "s",
|
|
Meta->Size, Meta->Addr);
|
|
} else if (AccessPtr < Meta->Addr) {
|
|
snprintf(DescriptionBuffer, kDescriptionBufferLen,
|
|
"(%zu byte%s to the left of a %zu-byte allocation at 0x%zx)",
|
|
Meta->Addr - AccessPtr, (Meta->Addr - AccessPtr == 1) ? "" : "s",
|
|
Meta->Size, Meta->Addr);
|
|
} else if (AccessPtr > Meta->Addr) {
|
|
snprintf(DescriptionBuffer, kDescriptionBufferLen,
|
|
"(%zu byte%s to the right of a %zu-byte allocation at 0x%zx)",
|
|
AccessPtr - Meta->Addr, (AccessPtr - Meta->Addr == 1) ? "" : "s",
|
|
Meta->Size, Meta->Addr);
|
|
} else {
|
|
snprintf(DescriptionBuffer, kDescriptionBufferLen,
|
|
"(a %zu-byte allocation)", Meta->Size);
|
|
}
|
|
}
|
|
|
|
// Possible number of digits of a 64-bit number: ceil(log10(2^64)) == 20. Add
|
|
// a null terminator, and round to the nearest 8-byte boundary.
|
|
constexpr size_t kThreadBufferLen = 24;
|
|
char ThreadBuffer[kThreadBufferLen];
|
|
if (ThreadID == GuardedPoolAllocator::kInvalidThreadID)
|
|
snprintf(ThreadBuffer, kThreadBufferLen, "<unknown>");
|
|
else
|
|
snprintf(ThreadBuffer, kThreadBufferLen, "%" PRIu64, ThreadID);
|
|
|
|
Printf("%s at 0x%zx %s by thread %s here:\n", ErrorString, AccessPtr,
|
|
DescriptionBuffer, ThreadBuffer);
|
|
}
|
|
|
|
void printAllocDeallocTraces(uintptr_t AccessPtr, AllocationMetadata *Meta,
|
|
options::Printf_t Printf,
|
|
options::PrintBacktrace_t PrintBacktrace) {
|
|
assert(Meta != nullptr && "Metadata is non-null for printAllocDeallocTraces");
|
|
|
|
if (Meta->IsDeallocated) {
|
|
if (Meta->DeallocationTrace.ThreadID ==
|
|
GuardedPoolAllocator::kInvalidThreadID)
|
|
Printf("0x%zx was deallocated by thread <unknown> here:\n", AccessPtr);
|
|
else
|
|
Printf("0x%zx was deallocated by thread %zu here:\n", AccessPtr,
|
|
Meta->DeallocationTrace.ThreadID);
|
|
|
|
PrintBacktrace(Meta->DeallocationTrace.Trace, Printf);
|
|
}
|
|
|
|
if (Meta->AllocationTrace.ThreadID == GuardedPoolAllocator::kInvalidThreadID)
|
|
Printf("0x%zx was allocated by thread <unknown> here:\n", Meta->Addr);
|
|
else
|
|
Printf("0x%zx was allocated by thread %zu here:\n", Meta->Addr,
|
|
Meta->AllocationTrace.ThreadID);
|
|
|
|
PrintBacktrace(Meta->AllocationTrace.Trace, Printf);
|
|
}
|
|
|
|
struct ScopedEndOfReportDecorator {
|
|
ScopedEndOfReportDecorator(options::Printf_t Printf) : Printf(Printf) {}
|
|
~ScopedEndOfReportDecorator() { Printf("*** End GWP-ASan report ***\n"); }
|
|
options::Printf_t Printf;
|
|
};
|
|
} // anonymous namespace
|
|
|
|
void GuardedPoolAllocator::reportErrorInternal(uintptr_t AccessPtr, Error E) {
|
|
if (!pointerIsMine(reinterpret_cast<void *>(AccessPtr))) {
|
|
return;
|
|
}
|
|
|
|
// Attempt to prevent races to re-use the same slot that triggered this error.
|
|
// This does not guarantee that there are no races, because another thread can
|
|
// take the locks during the time that the signal handler is being called.
|
|
PoolMutex.tryLock();
|
|
ThreadLocals.RecursiveGuard = true;
|
|
|
|
Printf("*** GWP-ASan detected a memory error ***\n");
|
|
ScopedEndOfReportDecorator Decorator(Printf);
|
|
|
|
AllocationMetadata *Meta = nullptr;
|
|
|
|
if (E == Error::UNKNOWN) {
|
|
E = diagnoseUnknownError(AccessPtr, &Meta);
|
|
} else {
|
|
size_t Slot = getNearestSlot(AccessPtr);
|
|
Meta = addrToMetadata(slotToAddr(Slot));
|
|
// Ensure that this slot has been previously allocated.
|
|
if (!Meta->Addr)
|
|
Meta = nullptr;
|
|
}
|
|
|
|
// Print the error information.
|
|
uint64_t ThreadID = getThreadID();
|
|
printErrorType(E, AccessPtr, Meta, Printf, ThreadID);
|
|
if (Backtrace) {
|
|
static constexpr unsigned kMaximumStackFramesForCrashTrace = 128;
|
|
uintptr_t Trace[kMaximumStackFramesForCrashTrace];
|
|
Backtrace(Trace, kMaximumStackFramesForCrashTrace);
|
|
|
|
PrintBacktrace(Trace, Printf);
|
|
} else {
|
|
Printf(" <unknown (does your allocator support backtracing?)>\n\n");
|
|
}
|
|
|
|
if (Meta)
|
|
printAllocDeallocTraces(AccessPtr, Meta, Printf, PrintBacktrace);
|
|
}
|
|
|
|
TLS_INITIAL_EXEC
|
|
GuardedPoolAllocator::ThreadLocalPackedVariables
|
|
GuardedPoolAllocator::ThreadLocals;
|
|
} // namespace gwp_asan
|