forked from OSchip/llvm-project
86 lines
4.2 KiB
C++
86 lines
4.2 KiB
C++
//===--- PatternInit.cpp - Pattern Initialization -------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PatternInit.h"
|
|
#include "CodeGenModule.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Type.h"
|
|
|
|
llvm::Constant *clang::CodeGen::initializationPatternFor(CodeGenModule &CGM,
|
|
llvm::Type *Ty) {
|
|
// The following value is a guaranteed unmappable pointer value and has a
|
|
// repeated byte-pattern which makes it easier to synthesize. We use it for
|
|
// pointers as well as integers so that aggregates are likely to be
|
|
// initialized with this repeated value.
|
|
// For 32-bit platforms it's a bit trickier because, across systems, only the
|
|
// zero page can reasonably be expected to be unmapped. We use max 0xFFFFFFFF
|
|
// assuming that memory access will overlap into zero page.
|
|
const uint64_t IntValue =
|
|
CGM.getContext().getTargetInfo().getMaxPointerWidth() < 64
|
|
? 0xFFFFFFFFFFFFFFFFull
|
|
: 0xAAAAAAAAAAAAAAAAull;
|
|
// Floating-point values are initialized as NaNs because they propagate. Using
|
|
// a repeated byte pattern means that it will be easier to initialize
|
|
// all-floating-point aggregates and arrays with memset. Further, aggregates
|
|
// which mix integral and a few floats might also initialize with memset
|
|
// followed by a handful of stores for the floats. Using fairly unique NaNs
|
|
// also means they'll be easier to distinguish in a crash.
|
|
constexpr bool NegativeNaN = true;
|
|
constexpr uint64_t NaNPayload = 0xFFFFFFFFFFFFFFFFull;
|
|
if (Ty->isIntOrIntVectorTy()) {
|
|
unsigned BitWidth = cast<llvm::IntegerType>(
|
|
Ty->isVectorTy() ? Ty->getVectorElementType() : Ty)
|
|
->getBitWidth();
|
|
if (BitWidth <= 64)
|
|
return llvm::ConstantInt::get(Ty, IntValue);
|
|
return llvm::ConstantInt::get(
|
|
Ty, llvm::APInt::getSplat(BitWidth, llvm::APInt(64, IntValue)));
|
|
}
|
|
if (Ty->isPtrOrPtrVectorTy()) {
|
|
auto *PtrTy = cast<llvm::PointerType>(
|
|
Ty->isVectorTy() ? Ty->getVectorElementType() : Ty);
|
|
unsigned PtrWidth = CGM.getContext().getTargetInfo().getPointerWidth(
|
|
PtrTy->getAddressSpace());
|
|
if (PtrWidth > 64)
|
|
llvm_unreachable("pattern initialization of unsupported pointer width");
|
|
llvm::Type *IntTy = llvm::IntegerType::get(CGM.getLLVMContext(), PtrWidth);
|
|
auto *Int = llvm::ConstantInt::get(IntTy, IntValue);
|
|
return llvm::ConstantExpr::getIntToPtr(Int, PtrTy);
|
|
}
|
|
if (Ty->isFPOrFPVectorTy()) {
|
|
unsigned BitWidth = llvm::APFloat::semanticsSizeInBits(
|
|
(Ty->isVectorTy() ? Ty->getVectorElementType() : Ty)
|
|
->getFltSemantics());
|
|
llvm::APInt Payload(64, NaNPayload);
|
|
if (BitWidth >= 64)
|
|
Payload = llvm::APInt::getSplat(BitWidth, Payload);
|
|
return llvm::ConstantFP::getQNaN(Ty, NegativeNaN, &Payload);
|
|
}
|
|
if (Ty->isArrayTy()) {
|
|
// Note: this doesn't touch tail padding (at the end of an object, before
|
|
// the next array object). It is instead handled by replaceUndef.
|
|
auto *ArrTy = cast<llvm::ArrayType>(Ty);
|
|
llvm::SmallVector<llvm::Constant *, 8> Element(
|
|
ArrTy->getNumElements(),
|
|
initializationPatternFor(CGM, ArrTy->getElementType()));
|
|
return llvm::ConstantArray::get(ArrTy, Element);
|
|
}
|
|
|
|
// Note: this doesn't touch struct padding. It will initialize as much union
|
|
// padding as is required for the largest type in the union. Padding is
|
|
// instead handled by replaceUndef. Stores to structs with volatile members
|
|
// don't have a volatile qualifier when initialized according to C++. This is
|
|
// fine because stack-based volatiles don't really have volatile semantics
|
|
// anyways, and the initialization shouldn't be observable.
|
|
auto *StructTy = cast<llvm::StructType>(Ty);
|
|
llvm::SmallVector<llvm::Constant *, 8> Struct(StructTy->getNumElements());
|
|
for (unsigned El = 0; El != Struct.size(); ++El)
|
|
Struct[El] = initializationPatternFor(CGM, StructTy->getElementType(El));
|
|
return llvm::ConstantStruct::get(StructTy, Struct);
|
|
}
|