llvm-project/llvm/lib/CodeGen/MachinePipeliner.cpp

3129 lines
112 KiB
C++

//===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
//
// This SMS implementation is a target-independent back-end pass. When enabled,
// the pass runs just prior to the register allocation pass, while the machine
// IR is in SSA form. If software pipelining is successful, then the original
// loop is replaced by the optimized loop. The optimized loop contains one or
// more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
// the instructions cannot be scheduled in a given MII, we increase the MII by
// one and try again.
//
// The SMS implementation is an extension of the ScheduleDAGInstrs class. We
// represent loop carried dependences in the DAG as order edges to the Phi
// nodes. We also perform several passes over the DAG to eliminate unnecessary
// edges that inhibit the ability to pipeline. The implementation uses the
// DFAPacketizer class to compute the minimum initiation interval and the check
// where an instruction may be inserted in the pipelined schedule.
//
// In order for the SMS pass to work, several target specific hooks need to be
// implemented to get information about the loop structure and to rewrite
// instructions.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PriorityQueue.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/DFAPacketizer.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachinePipeliner.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/ModuloSchedule.h"
#include "llvm/CodeGen/RegisterPressure.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/ScheduleDAGMutation.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <climits>
#include <cstdint>
#include <deque>
#include <functional>
#include <iterator>
#include <map>
#include <memory>
#include <tuple>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "pipeliner"
STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
STATISTIC(NumPipelined, "Number of loops software pipelined");
STATISTIC(NumNodeOrderIssues, "Number of node order issues found");
STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch");
STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop");
STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader");
STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large");
STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII");
STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found");
STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage");
STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages");
/// A command line option to turn software pipelining on or off.
static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
cl::ZeroOrMore,
cl::desc("Enable Software Pipelining"));
/// A command line option to enable SWP at -Os.
static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
cl::desc("Enable SWP at Os."), cl::Hidden,
cl::init(false));
/// A command line argument to limit minimum initial interval for pipelining.
static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
cl::desc("Size limit for the MII."),
cl::Hidden, cl::init(27));
/// A command line argument to limit the number of stages in the pipeline.
static cl::opt<int>
SwpMaxStages("pipeliner-max-stages",
cl::desc("Maximum stages allowed in the generated scheduled."),
cl::Hidden, cl::init(3));
/// A command line option to disable the pruning of chain dependences due to
/// an unrelated Phi.
static cl::opt<bool>
SwpPruneDeps("pipeliner-prune-deps",
cl::desc("Prune dependences between unrelated Phi nodes."),
cl::Hidden, cl::init(true));
/// A command line option to disable the pruning of loop carried order
/// dependences.
static cl::opt<bool>
SwpPruneLoopCarried("pipeliner-prune-loop-carried",
cl::desc("Prune loop carried order dependences."),
cl::Hidden, cl::init(true));
#ifndef NDEBUG
static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
#endif
static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
cl::ReallyHidden, cl::init(false),
cl::ZeroOrMore, cl::desc("Ignore RecMII"));
static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden,
cl::init(false));
static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden,
cl::init(false));
static cl::opt<bool> EmitTestAnnotations(
"pipeliner-annotate-for-testing", cl::Hidden, cl::init(false),
cl::desc("Instead of emitting the pipelined code, annotate instructions "
"with the generated schedule for feeding into the "
"-modulo-schedule-test pass"));
static cl::opt<bool> ExperimentalCodeGen(
"pipeliner-experimental-cg", cl::Hidden, cl::init(false),
cl::desc(
"Use the experimental peeling code generator for software pipelining"));
namespace llvm {
// A command line option to enable the CopyToPhi DAG mutation.
cl::opt<bool>
SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden,
cl::init(true), cl::ZeroOrMore,
cl::desc("Enable CopyToPhi DAG Mutation"));
} // end namespace llvm
unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
char MachinePipeliner::ID = 0;
#ifndef NDEBUG
int MachinePipeliner::NumTries = 0;
#endif
char &llvm::MachinePipelinerID = MachinePipeliner::ID;
INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
"Modulo Software Pipelining", false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
"Modulo Software Pipelining", false, false)
/// The "main" function for implementing Swing Modulo Scheduling.
bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
if (skipFunction(mf.getFunction()))
return false;
if (!EnableSWP)
return false;
if (mf.getFunction().getAttributes().hasAttribute(
AttributeList::FunctionIndex, Attribute::OptimizeForSize) &&
!EnableSWPOptSize.getPosition())
return false;
if (!mf.getSubtarget().enableMachinePipeliner())
return false;
// Cannot pipeline loops without instruction itineraries if we are using
// DFA for the pipeliner.
if (mf.getSubtarget().useDFAforSMS() &&
(!mf.getSubtarget().getInstrItineraryData() ||
mf.getSubtarget().getInstrItineraryData()->isEmpty()))
return false;
MF = &mf;
MLI = &getAnalysis<MachineLoopInfo>();
MDT = &getAnalysis<MachineDominatorTree>();
ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
TII = MF->getSubtarget().getInstrInfo();
RegClassInfo.runOnMachineFunction(*MF);
for (auto &L : *MLI)
scheduleLoop(*L);
return false;
}
/// Attempt to perform the SMS algorithm on the specified loop. This function is
/// the main entry point for the algorithm. The function identifies candidate
/// loops, calculates the minimum initiation interval, and attempts to schedule
/// the loop.
bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
bool Changed = false;
for (auto &InnerLoop : L)
Changed |= scheduleLoop(*InnerLoop);
#ifndef NDEBUG
// Stop trying after reaching the limit (if any).
int Limit = SwpLoopLimit;
if (Limit >= 0) {
if (NumTries >= SwpLoopLimit)
return Changed;
NumTries++;
}
#endif
setPragmaPipelineOptions(L);
if (!canPipelineLoop(L)) {
LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n");
ORE->emit([&]() {
return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop",
L.getStartLoc(), L.getHeader())
<< "Failed to pipeline loop";
});
return Changed;
}
++NumTrytoPipeline;
Changed = swingModuloScheduler(L);
return Changed;
}
void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) {
// Reset the pragma for the next loop in iteration.
disabledByPragma = false;
II_setByPragma = 0;
MachineBasicBlock *LBLK = L.getTopBlock();
if (LBLK == nullptr)
return;
const BasicBlock *BBLK = LBLK->getBasicBlock();
if (BBLK == nullptr)
return;
const Instruction *TI = BBLK->getTerminator();
if (TI == nullptr)
return;
MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop);
if (LoopID == nullptr)
return;
assert(LoopID->getNumOperands() > 0 && "requires atleast one operand");
assert(LoopID->getOperand(0) == LoopID && "invalid loop");
for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
if (MD == nullptr)
continue;
MDString *S = dyn_cast<MDString>(MD->getOperand(0));
if (S == nullptr)
continue;
if (S->getString() == "llvm.loop.pipeline.initiationinterval") {
assert(MD->getNumOperands() == 2 &&
"Pipeline initiation interval hint metadata should have two operands.");
II_setByPragma =
mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive.");
} else if (S->getString() == "llvm.loop.pipeline.disable") {
disabledByPragma = true;
}
}
}
/// Return true if the loop can be software pipelined. The algorithm is
/// restricted to loops with a single basic block. Make sure that the
/// branch in the loop can be analyzed.
bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
if (L.getNumBlocks() != 1) {
ORE->emit([&]() {
return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
L.getStartLoc(), L.getHeader())
<< "Not a single basic block: "
<< ore::NV("NumBlocks", L.getNumBlocks());
});
return false;
}
if (disabledByPragma) {
ORE->emit([&]() {
return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
L.getStartLoc(), L.getHeader())
<< "Disabled by Pragma.";
});
return false;
}
// Check if the branch can't be understood because we can't do pipelining
// if that's the case.
LI.TBB = nullptr;
LI.FBB = nullptr;
LI.BrCond.clear();
if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) {
LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n");
NumFailBranch++;
ORE->emit([&]() {
return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
L.getStartLoc(), L.getHeader())
<< "The branch can't be understood";
});
return false;
}
LI.LoopInductionVar = nullptr;
LI.LoopCompare = nullptr;
if (!TII->analyzeLoopForPipelining(L.getTopBlock())) {
LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n");
NumFailLoop++;
ORE->emit([&]() {
return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
L.getStartLoc(), L.getHeader())
<< "The loop structure is not supported";
});
return false;
}
if (!L.getLoopPreheader()) {
LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n");
NumFailPreheader++;
ORE->emit([&]() {
return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
L.getStartLoc(), L.getHeader())
<< "No loop preheader found";
});
return false;
}
// Remove any subregisters from inputs to phi nodes.
preprocessPhiNodes(*L.getHeader());
return true;
}
void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
MachineRegisterInfo &MRI = MF->getRegInfo();
SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes();
for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) {
MachineOperand &DefOp = PI.getOperand(0);
assert(DefOp.getSubReg() == 0);
auto *RC = MRI.getRegClass(DefOp.getReg());
for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
MachineOperand &RegOp = PI.getOperand(i);
if (RegOp.getSubReg() == 0)
continue;
// If the operand uses a subregister, replace it with a new register
// without subregisters, and generate a copy to the new register.
Register NewReg = MRI.createVirtualRegister(RC);
MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB();
MachineBasicBlock::iterator At = PredB.getFirstTerminator();
const DebugLoc &DL = PredB.findDebugLoc(At);
auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg)
.addReg(RegOp.getReg(), getRegState(RegOp),
RegOp.getSubReg());
Slots.insertMachineInstrInMaps(*Copy);
RegOp.setReg(NewReg);
RegOp.setSubReg(0);
}
}
}
/// The SMS algorithm consists of the following main steps:
/// 1. Computation and analysis of the dependence graph.
/// 2. Ordering of the nodes (instructions).
/// 3. Attempt to Schedule the loop.
bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo,
II_setByPragma);
MachineBasicBlock *MBB = L.getHeader();
// The kernel should not include any terminator instructions. These
// will be added back later.
SMS.startBlock(MBB);
// Compute the number of 'real' instructions in the basic block by
// ignoring terminators.
unsigned size = MBB->size();
for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
E = MBB->instr_end();
I != E; ++I, --size)
;
SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
SMS.schedule();
SMS.exitRegion();
SMS.finishBlock();
return SMS.hasNewSchedule();
}
void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<AAResultsWrapperPass>();
AU.addPreserved<AAResultsWrapperPass>();
AU.addRequired<MachineLoopInfo>();
AU.addRequired<MachineDominatorTree>();
AU.addRequired<LiveIntervals>();
AU.addRequired<MachineOptimizationRemarkEmitterPass>();
MachineFunctionPass::getAnalysisUsage(AU);
}
void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) {
if (II_setByPragma > 0)
MII = II_setByPragma;
else
MII = std::max(ResMII, RecMII);
}
void SwingSchedulerDAG::setMAX_II() {
if (II_setByPragma > 0)
MAX_II = II_setByPragma;
else
MAX_II = MII + 10;
}
/// We override the schedule function in ScheduleDAGInstrs to implement the
/// scheduling part of the Swing Modulo Scheduling algorithm.
void SwingSchedulerDAG::schedule() {
AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
buildSchedGraph(AA);
addLoopCarriedDependences(AA);
updatePhiDependences();
Topo.InitDAGTopologicalSorting();
changeDependences();
postprocessDAG();
LLVM_DEBUG(dump());
NodeSetType NodeSets;
findCircuits(NodeSets);
NodeSetType Circuits = NodeSets;
// Calculate the MII.
unsigned ResMII = calculateResMII();
unsigned RecMII = calculateRecMII(NodeSets);
fuseRecs(NodeSets);
// This flag is used for testing and can cause correctness problems.
if (SwpIgnoreRecMII)
RecMII = 0;
setMII(ResMII, RecMII);
setMAX_II();
LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II
<< " (rec=" << RecMII << ", res=" << ResMII << ")\n");
// Can't schedule a loop without a valid MII.
if (MII == 0) {
LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n");
NumFailZeroMII++;
Pass.ORE->emit([&]() {
return MachineOptimizationRemarkAnalysis(
DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
<< "Invalid Minimal Initiation Interval: 0";
});
return;
}
// Don't pipeline large loops.
if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) {
LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii
<< ", we don't pipleline large loops\n");
NumFailLargeMaxMII++;
Pass.ORE->emit([&]() {
return MachineOptimizationRemarkAnalysis(
DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
<< "Minimal Initiation Interval too large: "
<< ore::NV("MII", (int)MII) << " > "
<< ore::NV("SwpMaxMii", SwpMaxMii) << "."
<< "Refer to -pipeliner-max-mii.";
});
return;
}
computeNodeFunctions(NodeSets);
registerPressureFilter(NodeSets);
colocateNodeSets(NodeSets);
checkNodeSets(NodeSets);
LLVM_DEBUG({
for (auto &I : NodeSets) {
dbgs() << " Rec NodeSet ";
I.dump();
}
});
llvm::stable_sort(NodeSets, std::greater<NodeSet>());
groupRemainingNodes(NodeSets);
removeDuplicateNodes(NodeSets);
LLVM_DEBUG({
for (auto &I : NodeSets) {
dbgs() << " NodeSet ";
I.dump();
}
});
computeNodeOrder(NodeSets);
// check for node order issues
checkValidNodeOrder(Circuits);
SMSchedule Schedule(Pass.MF);
Scheduled = schedulePipeline(Schedule);
if (!Scheduled){
LLVM_DEBUG(dbgs() << "No schedule found, return\n");
NumFailNoSchedule++;
Pass.ORE->emit([&]() {
return MachineOptimizationRemarkAnalysis(
DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
<< "Unable to find schedule";
});
return;
}
unsigned numStages = Schedule.getMaxStageCount();
// No need to generate pipeline if there are no overlapped iterations.
if (numStages == 0) {
LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n");
NumFailZeroStage++;
Pass.ORE->emit([&]() {
return MachineOptimizationRemarkAnalysis(
DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
<< "No need to pipeline - no overlapped iterations in schedule.";
});
return;
}
// Check that the maximum stage count is less than user-defined limit.
if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) {
LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages
<< " : too many stages, abort\n");
NumFailLargeMaxStage++;
Pass.ORE->emit([&]() {
return MachineOptimizationRemarkAnalysis(
DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
<< "Too many stages in schedule: "
<< ore::NV("numStages", (int)numStages) << " > "
<< ore::NV("SwpMaxStages", SwpMaxStages)
<< ". Refer to -pipeliner-max-stages.";
});
return;
}
Pass.ORE->emit([&]() {
return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(),
Loop.getHeader())
<< "Pipelined succesfully!";
});
// Generate the schedule as a ModuloSchedule.
DenseMap<MachineInstr *, int> Cycles, Stages;
std::vector<MachineInstr *> OrderedInsts;
for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle();
++Cycle) {
for (SUnit *SU : Schedule.getInstructions(Cycle)) {
OrderedInsts.push_back(SU->getInstr());
Cycles[SU->getInstr()] = Cycle;
Stages[SU->getInstr()] = Schedule.stageScheduled(SU);
}
}
DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges;
for (auto &KV : NewMIs) {
Cycles[KV.first] = Cycles[KV.second];
Stages[KV.first] = Stages[KV.second];
NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)];
}
ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles),
std::move(Stages));
if (EmitTestAnnotations) {
assert(NewInstrChanges.empty() &&
"Cannot serialize a schedule with InstrChanges!");
ModuloScheduleTestAnnotater MSTI(MF, MS);
MSTI.annotate();
return;
}
// The experimental code generator can't work if there are InstChanges.
if (ExperimentalCodeGen && NewInstrChanges.empty()) {
PeelingModuloScheduleExpander MSE(MF, MS, &LIS);
MSE.expand();
} else {
ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges));
MSE.expand();
MSE.cleanup();
}
++NumPipelined;
}
/// Clean up after the software pipeliner runs.
void SwingSchedulerDAG::finishBlock() {
for (auto &KV : NewMIs)
MF.DeleteMachineInstr(KV.second);
NewMIs.clear();
// Call the superclass.
ScheduleDAGInstrs::finishBlock();
}
/// Return the register values for the operands of a Phi instruction.
/// This function assume the instruction is a Phi.
static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
unsigned &InitVal, unsigned &LoopVal) {
assert(Phi.isPHI() && "Expecting a Phi.");
InitVal = 0;
LoopVal = 0;
for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
if (Phi.getOperand(i + 1).getMBB() != Loop)
InitVal = Phi.getOperand(i).getReg();
else
LoopVal = Phi.getOperand(i).getReg();
assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
}
/// Return the Phi register value that comes the loop block.
static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
if (Phi.getOperand(i + 1).getMBB() == LoopBB)
return Phi.getOperand(i).getReg();
return 0;
}
/// Return true if SUb can be reached from SUa following the chain edges.
static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
SmallPtrSet<SUnit *, 8> Visited;
SmallVector<SUnit *, 8> Worklist;
Worklist.push_back(SUa);
while (!Worklist.empty()) {
const SUnit *SU = Worklist.pop_back_val();
for (auto &SI : SU->Succs) {
SUnit *SuccSU = SI.getSUnit();
if (SI.getKind() == SDep::Order) {
if (Visited.count(SuccSU))
continue;
if (SuccSU == SUb)
return true;
Worklist.push_back(SuccSU);
Visited.insert(SuccSU);
}
}
}
return false;
}
/// Return true if the instruction causes a chain between memory
/// references before and after it.
static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
return MI.isCall() || MI.mayRaiseFPException() ||
MI.hasUnmodeledSideEffects() ||
(MI.hasOrderedMemoryRef() &&
(!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA)));
}
/// Return the underlying objects for the memory references of an instruction.
/// This function calls the code in ValueTracking, but first checks that the
/// instruction has a memory operand.
static void getUnderlyingObjects(const MachineInstr *MI,
SmallVectorImpl<const Value *> &Objs) {
if (!MI->hasOneMemOperand())
return;
MachineMemOperand *MM = *MI->memoperands_begin();
if (!MM->getValue())
return;
getUnderlyingObjects(MM->getValue(), Objs);
for (const Value *V : Objs) {
if (!isIdentifiedObject(V)) {
Objs.clear();
return;
}
Objs.push_back(V);
}
}
/// Add a chain edge between a load and store if the store can be an
/// alias of the load on a subsequent iteration, i.e., a loop carried
/// dependence. This code is very similar to the code in ScheduleDAGInstrs
/// but that code doesn't create loop carried dependences.
void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads;
Value *UnknownValue =
UndefValue::get(Type::getVoidTy(MF.getFunction().getContext()));
for (auto &SU : SUnits) {
MachineInstr &MI = *SU.getInstr();
if (isDependenceBarrier(MI, AA))
PendingLoads.clear();
else if (MI.mayLoad()) {
SmallVector<const Value *, 4> Objs;
::getUnderlyingObjects(&MI, Objs);
if (Objs.empty())
Objs.push_back(UnknownValue);
for (auto V : Objs) {
SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
SUs.push_back(&SU);
}
} else if (MI.mayStore()) {
SmallVector<const Value *, 4> Objs;
::getUnderlyingObjects(&MI, Objs);
if (Objs.empty())
Objs.push_back(UnknownValue);
for (auto V : Objs) {
MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I =
PendingLoads.find(V);
if (I == PendingLoads.end())
continue;
for (auto Load : I->second) {
if (isSuccOrder(Load, &SU))
continue;
MachineInstr &LdMI = *Load->getInstr();
// First, perform the cheaper check that compares the base register.
// If they are the same and the load offset is less than the store
// offset, then mark the dependence as loop carried potentially.
const MachineOperand *BaseOp1, *BaseOp2;
int64_t Offset1, Offset2;
bool Offset1IsScalable, Offset2IsScalable;
if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1,
Offset1IsScalable, TRI) &&
TII->getMemOperandWithOffset(MI, BaseOp2, Offset2,
Offset2IsScalable, TRI)) {
if (BaseOp1->isIdenticalTo(*BaseOp2) &&
Offset1IsScalable == Offset2IsScalable &&
(int)Offset1 < (int)Offset2) {
assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) &&
"What happened to the chain edge?");
SDep Dep(Load, SDep::Barrier);
Dep.setLatency(1);
SU.addPred(Dep);
continue;
}
}
// Second, the more expensive check that uses alias analysis on the
// base registers. If they alias, and the load offset is less than
// the store offset, the mark the dependence as loop carried.
if (!AA) {
SDep Dep(Load, SDep::Barrier);
Dep.setLatency(1);
SU.addPred(Dep);
continue;
}
MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
MachineMemOperand *MMO2 = *MI.memoperands_begin();
if (!MMO1->getValue() || !MMO2->getValue()) {
SDep Dep(Load, SDep::Barrier);
Dep.setLatency(1);
SU.addPred(Dep);
continue;
}
if (MMO1->getValue() == MMO2->getValue() &&
MMO1->getOffset() <= MMO2->getOffset()) {
SDep Dep(Load, SDep::Barrier);
Dep.setLatency(1);
SU.addPred(Dep);
continue;
}
AliasResult AAResult = AA->alias(
MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()),
MemoryLocation::getAfter(MMO2->getValue(), MMO2->getAAInfo()));
if (AAResult != NoAlias) {
SDep Dep(Load, SDep::Barrier);
Dep.setLatency(1);
SU.addPred(Dep);
}
}
}
}
}
}
/// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
/// processes dependences for PHIs. This function adds true dependences
/// from a PHI to a use, and a loop carried dependence from the use to the
/// PHI. The loop carried dependence is represented as an anti dependence
/// edge. This function also removes chain dependences between unrelated
/// PHIs.
void SwingSchedulerDAG::updatePhiDependences() {
SmallVector<SDep, 4> RemoveDeps;
const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
// Iterate over each DAG node.
for (SUnit &I : SUnits) {
RemoveDeps.clear();
// Set to true if the instruction has an operand defined by a Phi.
unsigned HasPhiUse = 0;
unsigned HasPhiDef = 0;
MachineInstr *MI = I.getInstr();
// Iterate over each operand, and we process the definitions.
for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
MOE = MI->operands_end();
MOI != MOE; ++MOI) {
if (!MOI->isReg())
continue;
Register Reg = MOI->getReg();
if (MOI->isDef()) {
// If the register is used by a Phi, then create an anti dependence.
for (MachineRegisterInfo::use_instr_iterator
UI = MRI.use_instr_begin(Reg),
UE = MRI.use_instr_end();
UI != UE; ++UI) {
MachineInstr *UseMI = &*UI;
SUnit *SU = getSUnit(UseMI);
if (SU != nullptr && UseMI->isPHI()) {
if (!MI->isPHI()) {
SDep Dep(SU, SDep::Anti, Reg);
Dep.setLatency(1);
I.addPred(Dep);
} else {
HasPhiDef = Reg;
// Add a chain edge to a dependent Phi that isn't an existing
// predecessor.
if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
I.addPred(SDep(SU, SDep::Barrier));
}
}
}
} else if (MOI->isUse()) {
// If the register is defined by a Phi, then create a true dependence.
MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
if (DefMI == nullptr)
continue;
SUnit *SU = getSUnit(DefMI);
if (SU != nullptr && DefMI->isPHI()) {
if (!MI->isPHI()) {
SDep Dep(SU, SDep::Data, Reg);
Dep.setLatency(0);
ST.adjustSchedDependency(SU, 0, &I, MI->getOperandNo(MOI), Dep);
I.addPred(Dep);
} else {
HasPhiUse = Reg;
// Add a chain edge to a dependent Phi that isn't an existing
// predecessor.
if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
I.addPred(SDep(SU, SDep::Barrier));
}
}
}
}
// Remove order dependences from an unrelated Phi.
if (!SwpPruneDeps)
continue;
for (auto &PI : I.Preds) {
MachineInstr *PMI = PI.getSUnit()->getInstr();
if (PMI->isPHI() && PI.getKind() == SDep::Order) {
if (I.getInstr()->isPHI()) {
if (PMI->getOperand(0).getReg() == HasPhiUse)
continue;
if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
continue;
}
RemoveDeps.push_back(PI);
}
}
for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
I.removePred(RemoveDeps[i]);
}
}
/// Iterate over each DAG node and see if we can change any dependences
/// in order to reduce the recurrence MII.
void SwingSchedulerDAG::changeDependences() {
// See if an instruction can use a value from the previous iteration.
// If so, we update the base and offset of the instruction and change
// the dependences.
for (SUnit &I : SUnits) {
unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
int64_t NewOffset = 0;
if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
NewOffset))
continue;
// Get the MI and SUnit for the instruction that defines the original base.
Register OrigBase = I.getInstr()->getOperand(BasePos).getReg();
MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
if (!DefMI)
continue;
SUnit *DefSU = getSUnit(DefMI);
if (!DefSU)
continue;
// Get the MI and SUnit for the instruction that defins the new base.
MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
if (!LastMI)
continue;
SUnit *LastSU = getSUnit(LastMI);
if (!LastSU)
continue;
if (Topo.IsReachable(&I, LastSU))
continue;
// Remove the dependence. The value now depends on a prior iteration.
SmallVector<SDep, 4> Deps;
for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E;
++P)
if (P->getSUnit() == DefSU)
Deps.push_back(*P);
for (int i = 0, e = Deps.size(); i != e; i++) {
Topo.RemovePred(&I, Deps[i].getSUnit());
I.removePred(Deps[i]);
}
// Remove the chain dependence between the instructions.
Deps.clear();
for (auto &P : LastSU->Preds)
if (P.getSUnit() == &I && P.getKind() == SDep::Order)
Deps.push_back(P);
for (int i = 0, e = Deps.size(); i != e; i++) {
Topo.RemovePred(LastSU, Deps[i].getSUnit());
LastSU->removePred(Deps[i]);
}
// Add a dependence between the new instruction and the instruction
// that defines the new base.
SDep Dep(&I, SDep::Anti, NewBase);
Topo.AddPred(LastSU, &I);
LastSU->addPred(Dep);
// Remember the base and offset information so that we can update the
// instruction during code generation.
InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
}
}
namespace {
// FuncUnitSorter - Comparison operator used to sort instructions by
// the number of functional unit choices.
struct FuncUnitSorter {
const InstrItineraryData *InstrItins;
const MCSubtargetInfo *STI;
DenseMap<InstrStage::FuncUnits, unsigned> Resources;
FuncUnitSorter(const TargetSubtargetInfo &TSI)
: InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {}
// Compute the number of functional unit alternatives needed
// at each stage, and take the minimum value. We prioritize the
// instructions by the least number of choices first.
unsigned minFuncUnits(const MachineInstr *Inst,
InstrStage::FuncUnits &F) const {
unsigned SchedClass = Inst->getDesc().getSchedClass();
unsigned min = UINT_MAX;
if (InstrItins && !InstrItins->isEmpty()) {
for (const InstrStage &IS :
make_range(InstrItins->beginStage(SchedClass),
InstrItins->endStage(SchedClass))) {
InstrStage::FuncUnits funcUnits = IS.getUnits();
unsigned numAlternatives = countPopulation(funcUnits);
if (numAlternatives < min) {
min = numAlternatives;
F = funcUnits;
}
}
return min;
}
if (STI && STI->getSchedModel().hasInstrSchedModel()) {
const MCSchedClassDesc *SCDesc =
STI->getSchedModel().getSchedClassDesc(SchedClass);
if (!SCDesc->isValid())
// No valid Schedule Class Desc for schedClass, should be
// Pseudo/PostRAPseudo
return min;
for (const MCWriteProcResEntry &PRE :
make_range(STI->getWriteProcResBegin(SCDesc),
STI->getWriteProcResEnd(SCDesc))) {
if (!PRE.Cycles)
continue;
const MCProcResourceDesc *ProcResource =
STI->getSchedModel().getProcResource(PRE.ProcResourceIdx);
unsigned NumUnits = ProcResource->NumUnits;
if (NumUnits < min) {
min = NumUnits;
F = PRE.ProcResourceIdx;
}
}
return min;
}
llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
}
// Compute the critical resources needed by the instruction. This
// function records the functional units needed by instructions that
// must use only one functional unit. We use this as a tie breaker
// for computing the resource MII. The instrutions that require
// the same, highly used, functional unit have high priority.
void calcCriticalResources(MachineInstr &MI) {
unsigned SchedClass = MI.getDesc().getSchedClass();
if (InstrItins && !InstrItins->isEmpty()) {
for (const InstrStage &IS :
make_range(InstrItins->beginStage(SchedClass),
InstrItins->endStage(SchedClass))) {
InstrStage::FuncUnits FuncUnits = IS.getUnits();
if (countPopulation(FuncUnits) == 1)
Resources[FuncUnits]++;
}
return;
}
if (STI && STI->getSchedModel().hasInstrSchedModel()) {
const MCSchedClassDesc *SCDesc =
STI->getSchedModel().getSchedClassDesc(SchedClass);
if (!SCDesc->isValid())
// No valid Schedule Class Desc for schedClass, should be
// Pseudo/PostRAPseudo
return;
for (const MCWriteProcResEntry &PRE :
make_range(STI->getWriteProcResBegin(SCDesc),
STI->getWriteProcResEnd(SCDesc))) {
if (!PRE.Cycles)
continue;
Resources[PRE.ProcResourceIdx]++;
}
return;
}
llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
}
/// Return true if IS1 has less priority than IS2.
bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
InstrStage::FuncUnits F1 = 0, F2 = 0;
unsigned MFUs1 = minFuncUnits(IS1, F1);
unsigned MFUs2 = minFuncUnits(IS2, F2);
if (MFUs1 == MFUs2)
return Resources.lookup(F1) < Resources.lookup(F2);
return MFUs1 > MFUs2;
}
};
} // end anonymous namespace
/// Calculate the resource constrained minimum initiation interval for the
/// specified loop. We use the DFA to model the resources needed for
/// each instruction, and we ignore dependences. A different DFA is created
/// for each cycle that is required. When adding a new instruction, we attempt
/// to add it to each existing DFA, until a legal space is found. If the
/// instruction cannot be reserved in an existing DFA, we create a new one.
unsigned SwingSchedulerDAG::calculateResMII() {
LLVM_DEBUG(dbgs() << "calculateResMII:\n");
SmallVector<ResourceManager*, 8> Resources;
MachineBasicBlock *MBB = Loop.getHeader();
Resources.push_back(new ResourceManager(&MF.getSubtarget()));
// Sort the instructions by the number of available choices for scheduling,
// least to most. Use the number of critical resources as the tie breaker.
FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget());
for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
E = MBB->getFirstTerminator();
I != E; ++I)
FUS.calcCriticalResources(*I);
PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
FuncUnitOrder(FUS);
for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
E = MBB->getFirstTerminator();
I != E; ++I)
FuncUnitOrder.push(&*I);
while (!FuncUnitOrder.empty()) {
MachineInstr *MI = FuncUnitOrder.top();
FuncUnitOrder.pop();
if (TII->isZeroCost(MI->getOpcode()))
continue;
// Attempt to reserve the instruction in an existing DFA. At least one
// DFA is needed for each cycle.
unsigned NumCycles = getSUnit(MI)->Latency;
unsigned ReservedCycles = 0;
SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin();
SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end();
LLVM_DEBUG({
dbgs() << "Trying to reserve resource for " << NumCycles
<< " cycles for \n";
MI->dump();
});
for (unsigned C = 0; C < NumCycles; ++C)
while (RI != RE) {
if ((*RI)->canReserveResources(*MI)) {
(*RI)->reserveResources(*MI);
++ReservedCycles;
break;
}
RI++;
}
LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles
<< ", NumCycles:" << NumCycles << "\n");
// Add new DFAs, if needed, to reserve resources.
for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
LLVM_DEBUG(if (SwpDebugResource) dbgs()
<< "NewResource created to reserve resources"
<< "\n");
ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget());
assert(NewResource->canReserveResources(*MI) && "Reserve error.");
NewResource->reserveResources(*MI);
Resources.push_back(NewResource);
}
}
int Resmii = Resources.size();
LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n");
// Delete the memory for each of the DFAs that were created earlier.
for (ResourceManager *RI : Resources) {
ResourceManager *D = RI;
delete D;
}
Resources.clear();
return Resmii;
}
/// Calculate the recurrence-constrainted minimum initiation interval.
/// Iterate over each circuit. Compute the delay(c) and distance(c)
/// for each circuit. The II needs to satisfy the inequality
/// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
/// II that satisfies the inequality, and the RecMII is the maximum
/// of those values.
unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
unsigned RecMII = 0;
for (NodeSet &Nodes : NodeSets) {
if (Nodes.empty())
continue;
unsigned Delay = Nodes.getLatency();
unsigned Distance = 1;
// ii = ceil(delay / distance)
unsigned CurMII = (Delay + Distance - 1) / Distance;
Nodes.setRecMII(CurMII);
if (CurMII > RecMII)
RecMII = CurMII;
}
return RecMII;
}
/// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
/// but we do this to find the circuits, and then change them back.
static void swapAntiDependences(std::vector<SUnit> &SUnits) {
SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
SUnit *SU = &SUnits[i];
for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
IP != EP; ++IP) {
if (IP->getKind() != SDep::Anti)
continue;
DepsAdded.push_back(std::make_pair(SU, *IP));
}
}
for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(),
E = DepsAdded.end();
I != E; ++I) {
// Remove this anti dependency and add one in the reverse direction.
SUnit *SU = I->first;
SDep &D = I->second;
SUnit *TargetSU = D.getSUnit();
unsigned Reg = D.getReg();
unsigned Lat = D.getLatency();
SU->removePred(D);
SDep Dep(SU, SDep::Anti, Reg);
Dep.setLatency(Lat);
TargetSU->addPred(Dep);
}
}
/// Create the adjacency structure of the nodes in the graph.
void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
SwingSchedulerDAG *DAG) {
BitVector Added(SUnits.size());
DenseMap<int, int> OutputDeps;
for (int i = 0, e = SUnits.size(); i != e; ++i) {
Added.reset();
// Add any successor to the adjacency matrix and exclude duplicates.
for (auto &SI : SUnits[i].Succs) {
// Only create a back-edge on the first and last nodes of a dependence
// chain. This records any chains and adds them later.
if (SI.getKind() == SDep::Output) {
int N = SI.getSUnit()->NodeNum;
int BackEdge = i;
auto Dep = OutputDeps.find(BackEdge);
if (Dep != OutputDeps.end()) {
BackEdge = Dep->second;
OutputDeps.erase(Dep);
}
OutputDeps[N] = BackEdge;
}
// Do not process a boundary node, an artificial node.
// A back-edge is processed only if it goes to a Phi.
if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() ||
(SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
continue;
int N = SI.getSUnit()->NodeNum;
if (!Added.test(N)) {
AdjK[i].push_back(N);
Added.set(N);
}
}
// A chain edge between a store and a load is treated as a back-edge in the
// adjacency matrix.
for (auto &PI : SUnits[i].Preds) {
if (!SUnits[i].getInstr()->mayStore() ||
!DAG->isLoopCarriedDep(&SUnits[i], PI, false))
continue;
if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
int N = PI.getSUnit()->NodeNum;
if (!Added.test(N)) {
AdjK[i].push_back(N);
Added.set(N);
}
}
}
}
// Add back-edges in the adjacency matrix for the output dependences.
for (auto &OD : OutputDeps)
if (!Added.test(OD.second)) {
AdjK[OD.first].push_back(OD.second);
Added.set(OD.second);
}
}
/// Identify an elementary circuit in the dependence graph starting at the
/// specified node.
bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
bool HasBackedge) {
SUnit *SV = &SUnits[V];
bool F = false;
Stack.insert(SV);
Blocked.set(V);
for (auto W : AdjK[V]) {
if (NumPaths > MaxPaths)
break;
if (W < S)
continue;
if (W == S) {
if (!HasBackedge)
NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
F = true;
++NumPaths;
break;
} else if (!Blocked.test(W)) {
if (circuit(W, S, NodeSets,
Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge))
F = true;
}
}
if (F)
unblock(V);
else {
for (auto W : AdjK[V]) {
if (W < S)
continue;
if (B[W].count(SV) == 0)
B[W].insert(SV);
}
}
Stack.pop_back();
return F;
}
/// Unblock a node in the circuit finding algorithm.
void SwingSchedulerDAG::Circuits::unblock(int U) {
Blocked.reset(U);
SmallPtrSet<SUnit *, 4> &BU = B[U];
while (!BU.empty()) {
SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
assert(SI != BU.end() && "Invalid B set.");
SUnit *W = *SI;
BU.erase(W);
if (Blocked.test(W->NodeNum))
unblock(W->NodeNum);
}
}
/// Identify all the elementary circuits in the dependence graph using
/// Johnson's circuit algorithm.
void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
// but we do this to find the circuits, and then change them back.
swapAntiDependences(SUnits);
Circuits Cir(SUnits, Topo);
// Create the adjacency structure.
Cir.createAdjacencyStructure(this);
for (int i = 0, e = SUnits.size(); i != e; ++i) {
Cir.reset();
Cir.circuit(i, i, NodeSets);
}
// Change the dependences back so that we've created a DAG again.
swapAntiDependences(SUnits);
}
// Create artificial dependencies between the source of COPY/REG_SEQUENCE that
// is loop-carried to the USE in next iteration. This will help pipeliner avoid
// additional copies that are needed across iterations. An artificial dependence
// edge is added from USE to SOURCE of COPY/REG_SEQUENCE.
// PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried)
// SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE
// PHI-------True-Dep------> USEOfPhi
// The mutation creates
// USEOfPHI -------Artificial-Dep---> SRCOfCopy
// This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy
// (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled
// late to avoid additional copies across iterations. The possible scheduling
// order would be
// USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE.
void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) {
for (SUnit &SU : DAG->SUnits) {
// Find the COPY/REG_SEQUENCE instruction.
if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence())
continue;
// Record the loop carried PHIs.
SmallVector<SUnit *, 4> PHISUs;
// Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions.
SmallVector<SUnit *, 4> SrcSUs;
for (auto &Dep : SU.Preds) {
SUnit *TmpSU = Dep.getSUnit();
MachineInstr *TmpMI = TmpSU->getInstr();
SDep::Kind DepKind = Dep.getKind();
// Save the loop carried PHI.
if (DepKind == SDep::Anti && TmpMI->isPHI())
PHISUs.push_back(TmpSU);
// Save the source of COPY/REG_SEQUENCE.
// If the source has no pre-decessors, we will end up creating cycles.
else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0)
SrcSUs.push_back(TmpSU);
}
if (PHISUs.size() == 0 || SrcSUs.size() == 0)
continue;
// Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this
// SUnit to the container.
SmallVector<SUnit *, 8> UseSUs;
// Do not use iterator based loop here as we are updating the container.
for (size_t Index = 0; Index < PHISUs.size(); ++Index) {
for (auto &Dep : PHISUs[Index]->Succs) {
if (Dep.getKind() != SDep::Data)
continue;
SUnit *TmpSU = Dep.getSUnit();
MachineInstr *TmpMI = TmpSU->getInstr();
if (TmpMI->isPHI() || TmpMI->isRegSequence()) {
PHISUs.push_back(TmpSU);
continue;
}
UseSUs.push_back(TmpSU);
}
}
if (UseSUs.size() == 0)
continue;
SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG);
// Add the artificial dependencies if it does not form a cycle.
for (auto I : UseSUs) {
for (auto Src : SrcSUs) {
if (!SDAG->Topo.IsReachable(I, Src) && Src != I) {
Src->addPred(SDep(I, SDep::Artificial));
SDAG->Topo.AddPred(Src, I);
}
}
}
}
}
/// Return true for DAG nodes that we ignore when computing the cost functions.
/// We ignore the back-edge recurrence in order to avoid unbounded recursion
/// in the calculation of the ASAP, ALAP, etc functions.
static bool ignoreDependence(const SDep &D, bool isPred) {
if (D.isArtificial())
return true;
return D.getKind() == SDep::Anti && isPred;
}
/// Compute several functions need to order the nodes for scheduling.
/// ASAP - Earliest time to schedule a node.
/// ALAP - Latest time to schedule a node.
/// MOV - Mobility function, difference between ALAP and ASAP.
/// D - Depth of each node.
/// H - Height of each node.
void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
ScheduleInfo.resize(SUnits.size());
LLVM_DEBUG({
for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
E = Topo.end();
I != E; ++I) {
const SUnit &SU = SUnits[*I];
dumpNode(SU);
}
});
int maxASAP = 0;
// Compute ASAP and ZeroLatencyDepth.
for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
E = Topo.end();
I != E; ++I) {
int asap = 0;
int zeroLatencyDepth = 0;
SUnit *SU = &SUnits[*I];
for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
EP = SU->Preds.end();
IP != EP; ++IP) {
SUnit *pred = IP->getSUnit();
if (IP->getLatency() == 0)
zeroLatencyDepth =
std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1);
if (ignoreDependence(*IP, true))
continue;
asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() -
getDistance(pred, SU, *IP) * MII));
}
maxASAP = std::max(maxASAP, asap);
ScheduleInfo[*I].ASAP = asap;
ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth;
}
// Compute ALAP, ZeroLatencyHeight, and MOV.
for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
E = Topo.rend();
I != E; ++I) {
int alap = maxASAP;
int zeroLatencyHeight = 0;
SUnit *SU = &SUnits[*I];
for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
ES = SU->Succs.end();
IS != ES; ++IS) {
SUnit *succ = IS->getSUnit();
if (IS->getLatency() == 0)
zeroLatencyHeight =
std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1);
if (ignoreDependence(*IS, true))
continue;
alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() +
getDistance(SU, succ, *IS) * MII));
}
ScheduleInfo[*I].ALAP = alap;
ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight;
}
// After computing the node functions, compute the summary for each node set.
for (NodeSet &I : NodeSets)
I.computeNodeSetInfo(this);
LLVM_DEBUG({
for (unsigned i = 0; i < SUnits.size(); i++) {
dbgs() << "\tNode " << i << ":\n";
dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n";
dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n";
dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n";
dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n";
dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n";
dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n";
dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n";
}
});
}
/// Compute the Pred_L(O) set, as defined in the paper. The set is defined
/// as the predecessors of the elements of NodeOrder that are not also in
/// NodeOrder.
static bool pred_L(SetVector<SUnit *> &NodeOrder,
SmallSetVector<SUnit *, 8> &Preds,
const NodeSet *S = nullptr) {
Preds.clear();
for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
I != E; ++I) {
for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end();
PI != PE; ++PI) {
if (S && S->count(PI->getSUnit()) == 0)
continue;
if (ignoreDependence(*PI, true))
continue;
if (NodeOrder.count(PI->getSUnit()) == 0)
Preds.insert(PI->getSUnit());
}
// Back-edges are predecessors with an anti-dependence.
for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(),
ES = (*I)->Succs.end();
IS != ES; ++IS) {
if (IS->getKind() != SDep::Anti)
continue;
if (S && S->count(IS->getSUnit()) == 0)
continue;
if (NodeOrder.count(IS->getSUnit()) == 0)
Preds.insert(IS->getSUnit());
}
}
return !Preds.empty();
}
/// Compute the Succ_L(O) set, as defined in the paper. The set is defined
/// as the successors of the elements of NodeOrder that are not also in
/// NodeOrder.
static bool succ_L(SetVector<SUnit *> &NodeOrder,
SmallSetVector<SUnit *, 8> &Succs,
const NodeSet *S = nullptr) {
Succs.clear();
for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
I != E; ++I) {
for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end();
SI != SE; ++SI) {
if (S && S->count(SI->getSUnit()) == 0)
continue;
if (ignoreDependence(*SI, false))
continue;
if (NodeOrder.count(SI->getSUnit()) == 0)
Succs.insert(SI->getSUnit());
}
for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(),
PE = (*I)->Preds.end();
PI != PE; ++PI) {
if (PI->getKind() != SDep::Anti)
continue;
if (S && S->count(PI->getSUnit()) == 0)
continue;
if (NodeOrder.count(PI->getSUnit()) == 0)
Succs.insert(PI->getSUnit());
}
}
return !Succs.empty();
}
/// Return true if there is a path from the specified node to any of the nodes
/// in DestNodes. Keep track and return the nodes in any path.
static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
SetVector<SUnit *> &DestNodes,
SetVector<SUnit *> &Exclude,
SmallPtrSet<SUnit *, 8> &Visited) {
if (Cur->isBoundaryNode())
return false;
if (Exclude.contains(Cur))
return false;
if (DestNodes.contains(Cur))
return true;
if (!Visited.insert(Cur).second)
return Path.contains(Cur);
bool FoundPath = false;
for (auto &SI : Cur->Succs)
FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
for (auto &PI : Cur->Preds)
if (PI.getKind() == SDep::Anti)
FoundPath |=
computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
if (FoundPath)
Path.insert(Cur);
return FoundPath;
}
/// Return true if Set1 is a subset of Set2.
template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) {
for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I)
if (Set2.count(*I) == 0)
return false;
return true;
}
/// Compute the live-out registers for the instructions in a node-set.
/// The live-out registers are those that are defined in the node-set,
/// but not used. Except for use operands of Phis.
static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
NodeSet &NS) {
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
MachineRegisterInfo &MRI = MF.getRegInfo();
SmallVector<RegisterMaskPair, 8> LiveOutRegs;
SmallSet<unsigned, 4> Uses;
for (SUnit *SU : NS) {
const MachineInstr *MI = SU->getInstr();
if (MI->isPHI())
continue;
for (const MachineOperand &MO : MI->operands())
if (MO.isReg() && MO.isUse()) {
Register Reg = MO.getReg();
if (Register::isVirtualRegister(Reg))
Uses.insert(Reg);
else if (MRI.isAllocatable(Reg))
for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
++Units)
Uses.insert(*Units);
}
}
for (SUnit *SU : NS)
for (const MachineOperand &MO : SU->getInstr()->operands())
if (MO.isReg() && MO.isDef() && !MO.isDead()) {
Register Reg = MO.getReg();
if (Register::isVirtualRegister(Reg)) {
if (!Uses.count(Reg))
LiveOutRegs.push_back(RegisterMaskPair(Reg,
LaneBitmask::getNone()));
} else if (MRI.isAllocatable(Reg)) {
for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
++Units)
if (!Uses.count(*Units))
LiveOutRegs.push_back(RegisterMaskPair(*Units,
LaneBitmask::getNone()));
}
}
RPTracker.addLiveRegs(LiveOutRegs);
}
/// A heuristic to filter nodes in recurrent node-sets if the register
/// pressure of a set is too high.
void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
for (auto &NS : NodeSets) {
// Skip small node-sets since they won't cause register pressure problems.
if (NS.size() <= 2)
continue;
IntervalPressure RecRegPressure;
RegPressureTracker RecRPTracker(RecRegPressure);
RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
computeLiveOuts(MF, RecRPTracker, NS);
RecRPTracker.closeBottom();
std::vector<SUnit *> SUnits(NS.begin(), NS.end());
llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) {
return A->NodeNum > B->NodeNum;
});
for (auto &SU : SUnits) {
// Since we're computing the register pressure for a subset of the
// instructions in a block, we need to set the tracker for each
// instruction in the node-set. The tracker is set to the instruction
// just after the one we're interested in.
MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
RecRPTracker.setPos(std::next(CurInstI));
RegPressureDelta RPDelta;
ArrayRef<PressureChange> CriticalPSets;
RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
CriticalPSets,
RecRegPressure.MaxSetPressure);
if (RPDelta.Excess.isValid()) {
LLVM_DEBUG(
dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
<< TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
<< ":" << RPDelta.Excess.getUnitInc());
NS.setExceedPressure(SU);
break;
}
RecRPTracker.recede();
}
}
}
/// A heuristic to colocate node sets that have the same set of
/// successors.
void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
unsigned Colocate = 0;
for (int i = 0, e = NodeSets.size(); i < e; ++i) {
NodeSet &N1 = NodeSets[i];
SmallSetVector<SUnit *, 8> S1;
if (N1.empty() || !succ_L(N1, S1))
continue;
for (int j = i + 1; j < e; ++j) {
NodeSet &N2 = NodeSets[j];
if (N1.compareRecMII(N2) != 0)
continue;
SmallSetVector<SUnit *, 8> S2;
if (N2.empty() || !succ_L(N2, S2))
continue;
if (isSubset(S1, S2) && S1.size() == S2.size()) {
N1.setColocate(++Colocate);
N2.setColocate(Colocate);
break;
}
}
}
}
/// Check if the existing node-sets are profitable. If not, then ignore the
/// recurrent node-sets, and attempt to schedule all nodes together. This is
/// a heuristic. If the MII is large and all the recurrent node-sets are small,
/// then it's best to try to schedule all instructions together instead of
/// starting with the recurrent node-sets.
void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
// Look for loops with a large MII.
if (MII < 17)
return;
// Check if the node-set contains only a simple add recurrence.
for (auto &NS : NodeSets) {
if (NS.getRecMII() > 2)
return;
if (NS.getMaxDepth() > MII)
return;
}
NodeSets.clear();
LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n");
return;
}
/// Add the nodes that do not belong to a recurrence set into groups
/// based upon connected componenets.
void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
SetVector<SUnit *> NodesAdded;
SmallPtrSet<SUnit *, 8> Visited;
// Add the nodes that are on a path between the previous node sets and
// the current node set.
for (NodeSet &I : NodeSets) {
SmallSetVector<SUnit *, 8> N;
// Add the nodes from the current node set to the previous node set.
if (succ_L(I, N)) {
SetVector<SUnit *> Path;
for (SUnit *NI : N) {
Visited.clear();
computePath(NI, Path, NodesAdded, I, Visited);
}
if (!Path.empty())
I.insert(Path.begin(), Path.end());
}
// Add the nodes from the previous node set to the current node set.
N.clear();
if (succ_L(NodesAdded, N)) {
SetVector<SUnit *> Path;
for (SUnit *NI : N) {
Visited.clear();
computePath(NI, Path, I, NodesAdded, Visited);
}
if (!Path.empty())
I.insert(Path.begin(), Path.end());
}
NodesAdded.insert(I.begin(), I.end());
}
// Create a new node set with the connected nodes of any successor of a node
// in a recurrent set.
NodeSet NewSet;
SmallSetVector<SUnit *, 8> N;
if (succ_L(NodesAdded, N))
for (SUnit *I : N)
addConnectedNodes(I, NewSet, NodesAdded);
if (!NewSet.empty())
NodeSets.push_back(NewSet);
// Create a new node set with the connected nodes of any predecessor of a node
// in a recurrent set.
NewSet.clear();
if (pred_L(NodesAdded, N))
for (SUnit *I : N)
addConnectedNodes(I, NewSet, NodesAdded);
if (!NewSet.empty())
NodeSets.push_back(NewSet);
// Create new nodes sets with the connected nodes any remaining node that
// has no predecessor.
for (unsigned i = 0; i < SUnits.size(); ++i) {
SUnit *SU = &SUnits[i];
if (NodesAdded.count(SU) == 0) {
NewSet.clear();
addConnectedNodes(SU, NewSet, NodesAdded);
if (!NewSet.empty())
NodeSets.push_back(NewSet);
}
}
}
/// Add the node to the set, and add all of its connected nodes to the set.
void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
SetVector<SUnit *> &NodesAdded) {
NewSet.insert(SU);
NodesAdded.insert(SU);
for (auto &SI : SU->Succs) {
SUnit *Successor = SI.getSUnit();
if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
addConnectedNodes(Successor, NewSet, NodesAdded);
}
for (auto &PI : SU->Preds) {
SUnit *Predecessor = PI.getSUnit();
if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
addConnectedNodes(Predecessor, NewSet, NodesAdded);
}
}
/// Return true if Set1 contains elements in Set2. The elements in common
/// are returned in a different container.
static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
SmallSetVector<SUnit *, 8> &Result) {
Result.clear();
for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
SUnit *SU = Set1[i];
if (Set2.count(SU) != 0)
Result.insert(SU);
}
return !Result.empty();
}
/// Merge the recurrence node sets that have the same initial node.
void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
++I) {
NodeSet &NI = *I;
for (NodeSetType::iterator J = I + 1; J != E;) {
NodeSet &NJ = *J;
if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
if (NJ.compareRecMII(NI) > 0)
NI.setRecMII(NJ.getRecMII());
for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI;
++NII)
I->insert(*NII);
NodeSets.erase(J);
E = NodeSets.end();
} else {
++J;
}
}
}
}
/// Remove nodes that have been scheduled in previous NodeSets.
void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
++I)
for (NodeSetType::iterator J = I + 1; J != E;) {
J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
if (J->empty()) {
NodeSets.erase(J);
E = NodeSets.end();
} else {
++J;
}
}
}
/// Compute an ordered list of the dependence graph nodes, which
/// indicates the order that the nodes will be scheduled. This is a
/// two-level algorithm. First, a partial order is created, which
/// consists of a list of sets ordered from highest to lowest priority.
void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
SmallSetVector<SUnit *, 8> R;
NodeOrder.clear();
for (auto &Nodes : NodeSets) {
LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
OrderKind Order;
SmallSetVector<SUnit *, 8> N;
if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) {
R.insert(N.begin(), N.end());
Order = BottomUp;
LLVM_DEBUG(dbgs() << " Bottom up (preds) ");
} else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) {
R.insert(N.begin(), N.end());
Order = TopDown;
LLVM_DEBUG(dbgs() << " Top down (succs) ");
} else if (isIntersect(N, Nodes, R)) {
// If some of the successors are in the existing node-set, then use the
// top-down ordering.
Order = TopDown;
LLVM_DEBUG(dbgs() << " Top down (intersect) ");
} else if (NodeSets.size() == 1) {
for (auto &N : Nodes)
if (N->Succs.size() == 0)
R.insert(N);
Order = BottomUp;
LLVM_DEBUG(dbgs() << " Bottom up (all) ");
} else {
// Find the node with the highest ASAP.
SUnit *maxASAP = nullptr;
for (SUnit *SU : Nodes) {
if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) ||
(getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum))
maxASAP = SU;
}
R.insert(maxASAP);
Order = BottomUp;
LLVM_DEBUG(dbgs() << " Bottom up (default) ");
}
while (!R.empty()) {
if (Order == TopDown) {
// Choose the node with the maximum height. If more than one, choose
// the node wiTH the maximum ZeroLatencyHeight. If still more than one,
// choose the node with the lowest MOV.
while (!R.empty()) {
SUnit *maxHeight = nullptr;
for (SUnit *I : R) {
if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
maxHeight = I;
else if (getHeight(I) == getHeight(maxHeight) &&
getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
maxHeight = I;
else if (getHeight(I) == getHeight(maxHeight) &&
getZeroLatencyHeight(I) ==
getZeroLatencyHeight(maxHeight) &&
getMOV(I) < getMOV(maxHeight))
maxHeight = I;
}
NodeOrder.insert(maxHeight);
LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " ");
R.remove(maxHeight);
for (const auto &I : maxHeight->Succs) {
if (Nodes.count(I.getSUnit()) == 0)
continue;
if (NodeOrder.contains(I.getSUnit()))
continue;
if (ignoreDependence(I, false))
continue;
R.insert(I.getSUnit());
}
// Back-edges are predecessors with an anti-dependence.
for (const auto &I : maxHeight->Preds) {
if (I.getKind() != SDep::Anti)
continue;
if (Nodes.count(I.getSUnit()) == 0)
continue;
if (NodeOrder.contains(I.getSUnit()))
continue;
R.insert(I.getSUnit());
}
}
Order = BottomUp;
LLVM_DEBUG(dbgs() << "\n Switching order to bottom up ");
SmallSetVector<SUnit *, 8> N;
if (pred_L(NodeOrder, N, &Nodes))
R.insert(N.begin(), N.end());
} else {
// Choose the node with the maximum depth. If more than one, choose
// the node with the maximum ZeroLatencyDepth. If still more than one,
// choose the node with the lowest MOV.
while (!R.empty()) {
SUnit *maxDepth = nullptr;
for (SUnit *I : R) {
if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
maxDepth = I;
else if (getDepth(I) == getDepth(maxDepth) &&
getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
maxDepth = I;
else if (getDepth(I) == getDepth(maxDepth) &&
getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
getMOV(I) < getMOV(maxDepth))
maxDepth = I;
}
NodeOrder.insert(maxDepth);
LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " ");
R.remove(maxDepth);
if (Nodes.isExceedSU(maxDepth)) {
Order = TopDown;
R.clear();
R.insert(Nodes.getNode(0));
break;
}
for (const auto &I : maxDepth->Preds) {
if (Nodes.count(I.getSUnit()) == 0)
continue;
if (NodeOrder.contains(I.getSUnit()))
continue;
R.insert(I.getSUnit());
}
// Back-edges are predecessors with an anti-dependence.
for (const auto &I : maxDepth->Succs) {
if (I.getKind() != SDep::Anti)
continue;
if (Nodes.count(I.getSUnit()) == 0)
continue;
if (NodeOrder.contains(I.getSUnit()))
continue;
R.insert(I.getSUnit());
}
}
Order = TopDown;
LLVM_DEBUG(dbgs() << "\n Switching order to top down ");
SmallSetVector<SUnit *, 8> N;
if (succ_L(NodeOrder, N, &Nodes))
R.insert(N.begin(), N.end());
}
}
LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n");
}
LLVM_DEBUG({
dbgs() << "Node order: ";
for (SUnit *I : NodeOrder)
dbgs() << " " << I->NodeNum << " ";
dbgs() << "\n";
});
}
/// Process the nodes in the computed order and create the pipelined schedule
/// of the instructions, if possible. Return true if a schedule is found.
bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
if (NodeOrder.empty()){
LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" );
return false;
}
bool scheduleFound = false;
unsigned II = 0;
// Keep increasing II until a valid schedule is found.
for (II = MII; II <= MAX_II && !scheduleFound; ++II) {
Schedule.reset();
Schedule.setInitiationInterval(II);
LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n");
SetVector<SUnit *>::iterator NI = NodeOrder.begin();
SetVector<SUnit *>::iterator NE = NodeOrder.end();
do {
SUnit *SU = *NI;
// Compute the schedule time for the instruction, which is based
// upon the scheduled time for any predecessors/successors.
int EarlyStart = INT_MIN;
int LateStart = INT_MAX;
// These values are set when the size of the schedule window is limited
// due to chain dependences.
int SchedEnd = INT_MAX;
int SchedStart = INT_MIN;
Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
II, this);
LLVM_DEBUG({
dbgs() << "\n";
dbgs() << "Inst (" << SU->NodeNum << ") ";
SU->getInstr()->dump();
dbgs() << "\n";
});
LLVM_DEBUG({
dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart,
LateStart, SchedEnd, SchedStart);
});
if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
SchedStart > LateStart)
scheduleFound = false;
else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
} else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
} else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
SchedEnd =
std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
// When scheduling a Phi it is better to start at the late cycle and go
// backwards. The default order may insert the Phi too far away from
// its first dependence.
if (SU->getInstr()->isPHI())
scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
else
scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
} else {
int FirstCycle = Schedule.getFirstCycle();
scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
FirstCycle + getASAP(SU) + II - 1, II);
}
// Even if we find a schedule, make sure the schedule doesn't exceed the
// allowable number of stages. We keep trying if this happens.
if (scheduleFound)
if (SwpMaxStages > -1 &&
Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
scheduleFound = false;
LLVM_DEBUG({
if (!scheduleFound)
dbgs() << "\tCan't schedule\n";
});
} while (++NI != NE && scheduleFound);
// If a schedule is found, check if it is a valid schedule too.
if (scheduleFound)
scheduleFound = Schedule.isValidSchedule(this);
}
LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << " (II=" << II
<< ")\n");
if (scheduleFound) {
Schedule.finalizeSchedule(this);
Pass.ORE->emit([&]() {
return MachineOptimizationRemarkAnalysis(
DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
<< "Schedule found with Initiation Interval: " << ore::NV("II", II)
<< ", MaxStageCount: "
<< ore::NV("MaxStageCount", Schedule.getMaxStageCount());
});
} else
Schedule.reset();
return scheduleFound && Schedule.getMaxStageCount() > 0;
}
/// Return true if we can compute the amount the instruction changes
/// during each iteration. Set Delta to the amount of the change.
bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
const MachineOperand *BaseOp;
int64_t Offset;
bool OffsetIsScalable;
if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
return false;
// FIXME: This algorithm assumes instructions have fixed-size offsets.
if (OffsetIsScalable)
return false;
if (!BaseOp->isReg())
return false;
Register BaseReg = BaseOp->getReg();
MachineRegisterInfo &MRI = MF.getRegInfo();
// Check if there is a Phi. If so, get the definition in the loop.
MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
if (BaseDef && BaseDef->isPHI()) {
BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
BaseDef = MRI.getVRegDef(BaseReg);
}
if (!BaseDef)
return false;
int D = 0;
if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
return false;
Delta = D;
return true;
}
/// Check if we can change the instruction to use an offset value from the
/// previous iteration. If so, return true and set the base and offset values
/// so that we can rewrite the load, if necessary.
/// v1 = Phi(v0, v3)
/// v2 = load v1, 0
/// v3 = post_store v1, 4, x
/// This function enables the load to be rewritten as v2 = load v3, 4.
bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
unsigned &BasePos,
unsigned &OffsetPos,
unsigned &NewBase,
int64_t &Offset) {
// Get the load instruction.
if (TII->isPostIncrement(*MI))
return false;
unsigned BasePosLd, OffsetPosLd;
if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
return false;
Register BaseReg = MI->getOperand(BasePosLd).getReg();
// Look for the Phi instruction.
MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
MachineInstr *Phi = MRI.getVRegDef(BaseReg);
if (!Phi || !Phi->isPHI())
return false;
// Get the register defined in the loop block.
unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
if (!PrevReg)
return false;
// Check for the post-increment load/store instruction.
MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
if (!PrevDef || PrevDef == MI)
return false;
if (!TII->isPostIncrement(*PrevDef))
return false;
unsigned BasePos1 = 0, OffsetPos1 = 0;
if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
return false;
// Make sure that the instructions do not access the same memory location in
// the next iteration.
int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
MachineInstr *NewMI = MF.CloneMachineInstr(MI);
NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset);
bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef);
MF.DeleteMachineInstr(NewMI);
if (!Disjoint)
return false;
// Set the return value once we determine that we return true.
BasePos = BasePosLd;
OffsetPos = OffsetPosLd;
NewBase = PrevReg;
Offset = StoreOffset;
return true;
}
/// Apply changes to the instruction if needed. The changes are need
/// to improve the scheduling and depend up on the final schedule.
void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
SMSchedule &Schedule) {
SUnit *SU = getSUnit(MI);
DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
InstrChanges.find(SU);
if (It != InstrChanges.end()) {
std::pair<unsigned, int64_t> RegAndOffset = It->second;
unsigned BasePos, OffsetPos;
if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
return;
Register BaseReg = MI->getOperand(BasePos).getReg();
MachineInstr *LoopDef = findDefInLoop(BaseReg);
int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
int BaseStageNum = Schedule.stageScheduled(SU);
int BaseCycleNum = Schedule.cycleScheduled(SU);
if (BaseStageNum < DefStageNum) {
MachineInstr *NewMI = MF.CloneMachineInstr(MI);
int OffsetDiff = DefStageNum - BaseStageNum;
if (DefCycleNum < BaseCycleNum) {
NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
if (OffsetDiff > 0)
--OffsetDiff;
}
int64_t NewOffset =
MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
NewMI->getOperand(OffsetPos).setImm(NewOffset);
SU->setInstr(NewMI);
MISUnitMap[NewMI] = SU;
NewMIs[MI] = NewMI;
}
}
}
/// Return the instruction in the loop that defines the register.
/// If the definition is a Phi, then follow the Phi operand to
/// the instruction in the loop.
MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) {
SmallPtrSet<MachineInstr *, 8> Visited;
MachineInstr *Def = MRI.getVRegDef(Reg);
while (Def->isPHI()) {
if (!Visited.insert(Def).second)
break;
for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
if (Def->getOperand(i + 1).getMBB() == BB) {
Def = MRI.getVRegDef(Def->getOperand(i).getReg());
break;
}
}
return Def;
}
/// Return true for an order or output dependence that is loop carried
/// potentially. A dependence is loop carried if the destination defines a valu
/// that may be used or defined by the source in a subsequent iteration.
bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep,
bool isSucc) {
if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) ||
Dep.isArtificial())
return false;
if (!SwpPruneLoopCarried)
return true;
if (Dep.getKind() == SDep::Output)
return true;
MachineInstr *SI = Source->getInstr();
MachineInstr *DI = Dep.getSUnit()->getInstr();
if (!isSucc)
std::swap(SI, DI);
assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
// Assume ordered loads and stores may have a loop carried dependence.
if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
SI->mayRaiseFPException() || DI->mayRaiseFPException() ||
SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
return true;
// Only chain dependences between a load and store can be loop carried.
if (!DI->mayStore() || !SI->mayLoad())
return false;
unsigned DeltaS, DeltaD;
if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
return true;
const MachineOperand *BaseOpS, *BaseOpD;
int64_t OffsetS, OffsetD;
bool OffsetSIsScalable, OffsetDIsScalable;
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable,
TRI) ||
!TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable,
TRI))
return true;
assert(!OffsetSIsScalable && !OffsetDIsScalable &&
"Expected offsets to be byte offsets");
if (!BaseOpS->isIdenticalTo(*BaseOpD))
return true;
// Check that the base register is incremented by a constant value for each
// iteration.
MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg());
if (!Def || !Def->isPHI())
return true;
unsigned InitVal = 0;
unsigned LoopVal = 0;
getPhiRegs(*Def, BB, InitVal, LoopVal);
MachineInstr *LoopDef = MRI.getVRegDef(LoopVal);
int D = 0;
if (!LoopDef || !TII->getIncrementValue(*LoopDef, D))
return true;
uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
// This is the main test, which checks the offset values and the loop
// increment value to determine if the accesses may be loop carried.
if (AccessSizeS == MemoryLocation::UnknownSize ||
AccessSizeD == MemoryLocation::UnknownSize)
return true;
if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD)
return true;
return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD);
}
void SwingSchedulerDAG::postprocessDAG() {
for (auto &M : Mutations)
M->apply(this);
}
/// Try to schedule the node at the specified StartCycle and continue
/// until the node is schedule or the EndCycle is reached. This function
/// returns true if the node is scheduled. This routine may search either
/// forward or backward for a place to insert the instruction based upon
/// the relative values of StartCycle and EndCycle.
bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
bool forward = true;
LLVM_DEBUG({
dbgs() << "Trying to insert node between " << StartCycle << " and "
<< EndCycle << " II: " << II << "\n";
});
if (StartCycle > EndCycle)
forward = false;
// The terminating condition depends on the direction.
int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
for (int curCycle = StartCycle; curCycle != termCycle;
forward ? ++curCycle : --curCycle) {
// Add the already scheduled instructions at the specified cycle to the
// DFA.
ProcItinResources.clearResources();
for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
checkCycle <= LastCycle; checkCycle += II) {
std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(),
E = cycleInstrs.end();
I != E; ++I) {
if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode()))
continue;
assert(ProcItinResources.canReserveResources(*(*I)->getInstr()) &&
"These instructions have already been scheduled.");
ProcItinResources.reserveResources(*(*I)->getInstr());
}
}
if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
ProcItinResources.canReserveResources(*SU->getInstr())) {
LLVM_DEBUG({
dbgs() << "\tinsert at cycle " << curCycle << " ";
SU->getInstr()->dump();
});
ScheduledInstrs[curCycle].push_back(SU);
InstrToCycle.insert(std::make_pair(SU, curCycle));
if (curCycle > LastCycle)
LastCycle = curCycle;
if (curCycle < FirstCycle)
FirstCycle = curCycle;
return true;
}
LLVM_DEBUG({
dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
SU->getInstr()->dump();
});
}
return false;
}
// Return the cycle of the earliest scheduled instruction in the chain.
int SMSchedule::earliestCycleInChain(const SDep &Dep) {
SmallPtrSet<SUnit *, 8> Visited;
SmallVector<SDep, 8> Worklist;
Worklist.push_back(Dep);
int EarlyCycle = INT_MAX;
while (!Worklist.empty()) {
const SDep &Cur = Worklist.pop_back_val();
SUnit *PrevSU = Cur.getSUnit();
if (Visited.count(PrevSU))
continue;
std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
if (it == InstrToCycle.end())
continue;
EarlyCycle = std::min(EarlyCycle, it->second);
for (const auto &PI : PrevSU->Preds)
if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output)
Worklist.push_back(PI);
Visited.insert(PrevSU);
}
return EarlyCycle;
}
// Return the cycle of the latest scheduled instruction in the chain.
int SMSchedule::latestCycleInChain(const SDep &Dep) {
SmallPtrSet<SUnit *, 8> Visited;
SmallVector<SDep, 8> Worklist;
Worklist.push_back(Dep);
int LateCycle = INT_MIN;
while (!Worklist.empty()) {
const SDep &Cur = Worklist.pop_back_val();
SUnit *SuccSU = Cur.getSUnit();
if (Visited.count(SuccSU))
continue;
std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
if (it == InstrToCycle.end())
continue;
LateCycle = std::max(LateCycle, it->second);
for (const auto &SI : SuccSU->Succs)
if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output)
Worklist.push_back(SI);
Visited.insert(SuccSU);
}
return LateCycle;
}
/// If an instruction has a use that spans multiple iterations, then
/// return true. These instructions are characterized by having a back-ege
/// to a Phi, which contains a reference to another Phi.
static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
for (auto &P : SU->Preds)
if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
for (auto &S : P.getSUnit()->Succs)
if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
return P.getSUnit();
return nullptr;
}
/// Compute the scheduling start slot for the instruction. The start slot
/// depends on any predecessor or successor nodes scheduled already.
void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
int *MinEnd, int *MaxStart, int II,
SwingSchedulerDAG *DAG) {
// Iterate over each instruction that has been scheduled already. The start
// slot computation depends on whether the previously scheduled instruction
// is a predecessor or successor of the specified instruction.
for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
// Iterate over each instruction in the current cycle.
for (SUnit *I : getInstructions(cycle)) {
// Because we're processing a DAG for the dependences, we recognize
// the back-edge in recurrences by anti dependences.
for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
const SDep &Dep = SU->Preds[i];
if (Dep.getSUnit() == I) {
if (!DAG->isBackedge(SU, Dep)) {
int EarlyStart = cycle + Dep.getLatency() -
DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
*MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
if (DAG->isLoopCarriedDep(SU, Dep, false)) {
int End = earliestCycleInChain(Dep) + (II - 1);
*MinEnd = std::min(*MinEnd, End);
}
} else {
int LateStart = cycle - Dep.getLatency() +
DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
*MinLateStart = std::min(*MinLateStart, LateStart);
}
}
// For instruction that requires multiple iterations, make sure that
// the dependent instruction is not scheduled past the definition.
SUnit *BE = multipleIterations(I, DAG);
if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
!SU->isPred(I))
*MinLateStart = std::min(*MinLateStart, cycle);
}
for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) {
if (SU->Succs[i].getSUnit() == I) {
const SDep &Dep = SU->Succs[i];
if (!DAG->isBackedge(SU, Dep)) {
int LateStart = cycle - Dep.getLatency() +
DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
*MinLateStart = std::min(*MinLateStart, LateStart);
if (DAG->isLoopCarriedDep(SU, Dep)) {
int Start = latestCycleInChain(Dep) + 1 - II;
*MaxStart = std::max(*MaxStart, Start);
}
} else {
int EarlyStart = cycle + Dep.getLatency() -
DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
*MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
}
}
}
}
}
}
/// Order the instructions within a cycle so that the definitions occur
/// before the uses. Returns true if the instruction is added to the start
/// of the list, or false if added to the end.
void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
std::deque<SUnit *> &Insts) {
MachineInstr *MI = SU->getInstr();
bool OrderBeforeUse = false;
bool OrderAfterDef = false;
bool OrderBeforeDef = false;
unsigned MoveDef = 0;
unsigned MoveUse = 0;
int StageInst1 = stageScheduled(SU);
unsigned Pos = 0;
for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
++I, ++Pos) {
for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
continue;
Register Reg = MO.getReg();
unsigned BasePos, OffsetPos;
if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
if (MI->getOperand(BasePos).getReg() == Reg)
if (unsigned NewReg = SSD->getInstrBaseReg(SU))
Reg = NewReg;
bool Reads, Writes;
std::tie(Reads, Writes) =
(*I)->getInstr()->readsWritesVirtualRegister(Reg);
if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
OrderBeforeUse = true;
if (MoveUse == 0)
MoveUse = Pos;
} else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
// Add the instruction after the scheduled instruction.
OrderAfterDef = true;
MoveDef = Pos;
} else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
OrderBeforeUse = true;
if (MoveUse == 0)
MoveUse = Pos;
} else {
OrderAfterDef = true;
MoveDef = Pos;
}
} else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
OrderBeforeUse = true;
if (MoveUse == 0)
MoveUse = Pos;
if (MoveUse != 0) {
OrderAfterDef = true;
MoveDef = Pos - 1;
}
} else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
// Add the instruction before the scheduled instruction.
OrderBeforeUse = true;
if (MoveUse == 0)
MoveUse = Pos;
} else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
if (MoveUse == 0) {
OrderBeforeDef = true;
MoveUse = Pos;
}
}
}
// Check for order dependences between instructions. Make sure the source
// is ordered before the destination.
for (auto &S : SU->Succs) {
if (S.getSUnit() != *I)
continue;
if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
OrderBeforeUse = true;
if (Pos < MoveUse)
MoveUse = Pos;
}
// We did not handle HW dependences in previous for loop,
// and we normally set Latency = 0 for Anti deps,
// so may have nodes in same cycle with Anti denpendent on HW regs.
else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) {
OrderBeforeUse = true;
if ((MoveUse == 0) || (Pos < MoveUse))
MoveUse = Pos;
}
}
for (auto &P : SU->Preds) {
if (P.getSUnit() != *I)
continue;
if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
OrderAfterDef = true;
MoveDef = Pos;
}
}
}
// A circular dependence.
if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
OrderBeforeUse = false;
// OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
// to a loop-carried dependence.
if (OrderBeforeDef)
OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
// The uncommon case when the instruction order needs to be updated because
// there is both a use and def.
if (OrderBeforeUse && OrderAfterDef) {
SUnit *UseSU = Insts.at(MoveUse);
SUnit *DefSU = Insts.at(MoveDef);
if (MoveUse > MoveDef) {
Insts.erase(Insts.begin() + MoveUse);
Insts.erase(Insts.begin() + MoveDef);
} else {
Insts.erase(Insts.begin() + MoveDef);
Insts.erase(Insts.begin() + MoveUse);
}
orderDependence(SSD, UseSU, Insts);
orderDependence(SSD, SU, Insts);
orderDependence(SSD, DefSU, Insts);
return;
}
// Put the new instruction first if there is a use in the list. Otherwise,
// put it at the end of the list.
if (OrderBeforeUse)
Insts.push_front(SU);
else
Insts.push_back(SU);
}
/// Return true if the scheduled Phi has a loop carried operand.
bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
if (!Phi.isPHI())
return false;
assert(Phi.isPHI() && "Expecting a Phi.");
SUnit *DefSU = SSD->getSUnit(&Phi);
unsigned DefCycle = cycleScheduled(DefSU);
int DefStage = stageScheduled(DefSU);
unsigned InitVal = 0;
unsigned LoopVal = 0;
getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
if (!UseSU)
return true;
if (UseSU->getInstr()->isPHI())
return true;
unsigned LoopCycle = cycleScheduled(UseSU);
int LoopStage = stageScheduled(UseSU);
return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
}
/// Return true if the instruction is a definition that is loop carried
/// and defines the use on the next iteration.
/// v1 = phi(v2, v3)
/// (Def) v3 = op v1
/// (MO) = v1
/// If MO appears before Def, then then v1 and v3 may get assigned to the same
/// register.
bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
MachineInstr *Def, MachineOperand &MO) {
if (!MO.isReg())
return false;
if (Def->isPHI())
return false;
MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
return false;
if (!isLoopCarried(SSD, *Phi))
return false;
unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
MachineOperand &DMO = Def->getOperand(i);
if (!DMO.isReg() || !DMO.isDef())
continue;
if (DMO.getReg() == LoopReg)
return true;
}
return false;
}
// Check if the generated schedule is valid. This function checks if
// an instruction that uses a physical register is scheduled in a
// different stage than the definition. The pipeliner does not handle
// physical register values that may cross a basic block boundary.
bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) {
SUnit &SU = SSD->SUnits[i];
if (!SU.hasPhysRegDefs)
continue;
int StageDef = stageScheduled(&SU);
assert(StageDef != -1 && "Instruction should have been scheduled.");
for (auto &SI : SU.Succs)
if (SI.isAssignedRegDep())
if (Register::isPhysicalRegister(SI.getReg()))
if (stageScheduled(SI.getSUnit()) != StageDef)
return false;
}
return true;
}
/// A property of the node order in swing-modulo-scheduling is
/// that for nodes outside circuits the following holds:
/// none of them is scheduled after both a successor and a
/// predecessor.
/// The method below checks whether the property is met.
/// If not, debug information is printed and statistics information updated.
/// Note that we do not use an assert statement.
/// The reason is that although an invalid node oder may prevent
/// the pipeliner from finding a pipelined schedule for arbitrary II,
/// it does not lead to the generation of incorrect code.
void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
// a sorted vector that maps each SUnit to its index in the NodeOrder
typedef std::pair<SUnit *, unsigned> UnitIndex;
std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
Indices.push_back(std::make_pair(NodeOrder[i], i));
auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
return std::get<0>(i1) < std::get<0>(i2);
};
// sort, so that we can perform a binary search
llvm::sort(Indices, CompareKey);
bool Valid = true;
(void)Valid;
// for each SUnit in the NodeOrder, check whether
// it appears after both a successor and a predecessor
// of the SUnit. If this is the case, and the SUnit
// is not part of circuit, then the NodeOrder is not
// valid.
for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
SUnit *SU = NodeOrder[i];
unsigned Index = i;
bool PredBefore = false;
bool SuccBefore = false;
SUnit *Succ;
SUnit *Pred;
(void)Succ;
(void)Pred;
for (SDep &PredEdge : SU->Preds) {
SUnit *PredSU = PredEdge.getSUnit();
unsigned PredIndex = std::get<1>(
*llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey));
if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
PredBefore = true;
Pred = PredSU;
break;
}
}
for (SDep &SuccEdge : SU->Succs) {
SUnit *SuccSU = SuccEdge.getSUnit();
// Do not process a boundary node, it was not included in NodeOrder,
// hence not in Indices either, call to std::lower_bound() below will
// return Indices.end().
if (SuccSU->isBoundaryNode())
continue;
unsigned SuccIndex = std::get<1>(
*llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey));
if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
SuccBefore = true;
Succ = SuccSU;
break;
}
}
if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
// instructions in circuits are allowed to be scheduled
// after both a successor and predecessor.
bool InCircuit = llvm::any_of(
Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
if (InCircuit)
LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";);
else {
Valid = false;
NumNodeOrderIssues++;
LLVM_DEBUG(dbgs() << "Predecessor ";);
}
LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum
<< " are scheduled before node " << SU->NodeNum
<< "\n";);
}
}
LLVM_DEBUG({
if (!Valid)
dbgs() << "Invalid node order found!\n";
});
}
/// Attempt to fix the degenerate cases when the instruction serialization
/// causes the register lifetimes to overlap. For example,
/// p' = store_pi(p, b)
/// = load p, offset
/// In this case p and p' overlap, which means that two registers are needed.
/// Instead, this function changes the load to use p' and updates the offset.
void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
unsigned OverlapReg = 0;
unsigned NewBaseReg = 0;
for (SUnit *SU : Instrs) {
MachineInstr *MI = SU->getInstr();
for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
// Look for an instruction that uses p. The instruction occurs in the
// same cycle but occurs later in the serialized order.
if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
// Check that the instruction appears in the InstrChanges structure,
// which contains instructions that can have the offset updated.
DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
InstrChanges.find(SU);
if (It != InstrChanges.end()) {
unsigned BasePos, OffsetPos;
// Update the base register and adjust the offset.
if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
MachineInstr *NewMI = MF.CloneMachineInstr(MI);
NewMI->getOperand(BasePos).setReg(NewBaseReg);
int64_t NewOffset =
MI->getOperand(OffsetPos).getImm() - It->second.second;
NewMI->getOperand(OffsetPos).setImm(NewOffset);
SU->setInstr(NewMI);
MISUnitMap[NewMI] = SU;
NewMIs[MI] = NewMI;
}
}
OverlapReg = 0;
NewBaseReg = 0;
break;
}
// Look for an instruction of the form p' = op(p), which uses and defines
// two virtual registers that get allocated to the same physical register.
unsigned TiedUseIdx = 0;
if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
// OverlapReg is p in the example above.
OverlapReg = MI->getOperand(TiedUseIdx).getReg();
// NewBaseReg is p' in the example above.
NewBaseReg = MI->getOperand(i).getReg();
break;
}
}
}
}
/// After the schedule has been formed, call this function to combine
/// the instructions from the different stages/cycles. That is, this
/// function creates a schedule that represents a single iteration.
void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
// Move all instructions to the first stage from later stages.
for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
++stage) {
std::deque<SUnit *> &cycleInstrs =
ScheduledInstrs[cycle + (stage * InitiationInterval)];
for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
E = cycleInstrs.rend();
I != E; ++I)
ScheduledInstrs[cycle].push_front(*I);
}
}
// Erase all the elements in the later stages. Only one iteration should
// remain in the scheduled list, and it contains all the instructions.
for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
ScheduledInstrs.erase(cycle);
// Change the registers in instruction as specified in the InstrChanges
// map. We need to use the new registers to create the correct order.
for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
SUnit *SU = &SSD->SUnits[i];
SSD->applyInstrChange(SU->getInstr(), *this);
}
// Reorder the instructions in each cycle to fix and improve the
// generated code.
for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
std::deque<SUnit *> newOrderPhi;
for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
SUnit *SU = cycleInstrs[i];
if (SU->getInstr()->isPHI())
newOrderPhi.push_back(SU);
}
std::deque<SUnit *> newOrderI;
for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
SUnit *SU = cycleInstrs[i];
if (!SU->getInstr()->isPHI())
orderDependence(SSD, SU, newOrderI);
}
// Replace the old order with the new order.
cycleInstrs.swap(newOrderPhi);
llvm::append_range(cycleInstrs, newOrderI);
SSD->fixupRegisterOverlaps(cycleInstrs);
}
LLVM_DEBUG(dump(););
}
void NodeSet::print(raw_ostream &os) const {
os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
<< " depth " << MaxDepth << " col " << Colocate << "\n";
for (const auto &I : Nodes)
os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
os << "\n";
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the schedule information to the given output.
void SMSchedule::print(raw_ostream &os) const {
// Iterate over each cycle.
for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
// Iterate over each instruction in the cycle.
const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
for (SUnit *CI : cycleInstrs->second) {
os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
os << "(" << CI->NodeNum << ") ";
CI->getInstr()->print(os);
os << "\n";
}
}
}
/// Utility function used for debugging to print the schedule.
LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); }
#endif
void ResourceManager::initProcResourceVectors(
const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) {
unsigned ProcResourceID = 0;
// We currently limit the resource kinds to 64 and below so that we can use
// uint64_t for Masks
assert(SM.getNumProcResourceKinds() < 64 &&
"Too many kinds of resources, unsupported");
// Create a unique bitmask for every processor resource unit.
// Skip resource at index 0, since it always references 'InvalidUnit'.
Masks.resize(SM.getNumProcResourceKinds());
for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
const MCProcResourceDesc &Desc = *SM.getProcResource(I);
if (Desc.SubUnitsIdxBegin)
continue;
Masks[I] = 1ULL << ProcResourceID;
ProcResourceID++;
}
// Create a unique bitmask for every processor resource group.
for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
const MCProcResourceDesc &Desc = *SM.getProcResource(I);
if (!Desc.SubUnitsIdxBegin)
continue;
Masks[I] = 1ULL << ProcResourceID;
for (unsigned U = 0; U < Desc.NumUnits; ++U)
Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]];
ProcResourceID++;
}
LLVM_DEBUG({
if (SwpShowResMask) {
dbgs() << "ProcResourceDesc:\n";
for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
const MCProcResourceDesc *ProcResource = SM.getProcResource(I);
dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n",
ProcResource->Name, I, Masks[I],
ProcResource->NumUnits);
}
dbgs() << " -----------------\n";
}
});
}
bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const {
LLVM_DEBUG({
if (SwpDebugResource)
dbgs() << "canReserveResources:\n";
});
if (UseDFA)
return DFAResources->canReserveResources(MID);
unsigned InsnClass = MID->getSchedClass();
const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
if (!SCDesc->isValid()) {
LLVM_DEBUG({
dbgs() << "No valid Schedule Class Desc for schedClass!\n";
dbgs() << "isPseduo:" << MID->isPseudo() << "\n";
});
return true;
}
const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc);
const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc);
for (; I != E; ++I) {
if (!I->Cycles)
continue;
const MCProcResourceDesc *ProcResource =
SM.getProcResource(I->ProcResourceIdx);
unsigned NumUnits = ProcResource->NumUnits;
LLVM_DEBUG({
if (SwpDebugResource)
dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",
ProcResource->Name, I->ProcResourceIdx,
ProcResourceCount[I->ProcResourceIdx], NumUnits,
I->Cycles);
});
if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits)
return false;
}
LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return true\n\n";);
return true;
}
void ResourceManager::reserveResources(const MCInstrDesc *MID) {
LLVM_DEBUG({
if (SwpDebugResource)
dbgs() << "reserveResources:\n";
});
if (UseDFA)
return DFAResources->reserveResources(MID);
unsigned InsnClass = MID->getSchedClass();
const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
if (!SCDesc->isValid()) {
LLVM_DEBUG({
dbgs() << "No valid Schedule Class Desc for schedClass!\n";
dbgs() << "isPseduo:" << MID->isPseudo() << "\n";
});
return;
}
for (const MCWriteProcResEntry &PRE :
make_range(STI->getWriteProcResBegin(SCDesc),
STI->getWriteProcResEnd(SCDesc))) {
if (!PRE.Cycles)
continue;
++ProcResourceCount[PRE.ProcResourceIdx];
LLVM_DEBUG({
if (SwpDebugResource) {
const MCProcResourceDesc *ProcResource =
SM.getProcResource(PRE.ProcResourceIdx);
dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",
ProcResource->Name, PRE.ProcResourceIdx,
ProcResourceCount[PRE.ProcResourceIdx],
ProcResource->NumUnits, PRE.Cycles);
}
});
}
LLVM_DEBUG({
if (SwpDebugResource)
dbgs() << "reserveResources: done!\n\n";
});
}
bool ResourceManager::canReserveResources(const MachineInstr &MI) const {
return canReserveResources(&MI.getDesc());
}
void ResourceManager::reserveResources(const MachineInstr &MI) {
return reserveResources(&MI.getDesc());
}
void ResourceManager::clearResources() {
if (UseDFA)
return DFAResources->clearResources();
std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0);
}