forked from OSchip/llvm-project
369 lines
14 KiB
C++
369 lines
14 KiB
C++
//===--- Selection.cpp ----------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Selection.h"
|
|
#include "ClangdUnit.h"
|
|
#include "clang/AST/ASTTypeTraits.h"
|
|
#include "clang/AST/PrettyPrinter.h"
|
|
#include "clang/AST/RecursiveASTVisitor.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include <algorithm>
|
|
|
|
namespace clang {
|
|
namespace clangd {
|
|
namespace {
|
|
using Node = SelectionTree::Node;
|
|
using ast_type_traits::DynTypedNode;
|
|
|
|
// Stores a collection of (possibly-overlapping) integer ranges.
|
|
// When new ranges are added, hit-tests them against existing ones.
|
|
class RangeSet {
|
|
public:
|
|
// Returns true if any new offsets are covered.
|
|
// This is naive (linear in number of successful add() calls), but ok for now.
|
|
bool add(unsigned Begin, unsigned End) {
|
|
assert(std::is_sorted(Ranges.begin(), Ranges.end()));
|
|
assert(Begin < End);
|
|
|
|
if (covered(Begin, End))
|
|
return false;
|
|
auto Pair = std::make_pair(Begin, End);
|
|
Ranges.insert(llvm::upper_bound(Ranges, Pair), Pair);
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
bool covered(unsigned Begin, unsigned End) {
|
|
assert(Begin < End);
|
|
for (const auto &R : Ranges) {
|
|
if (Begin < R.first)
|
|
return false; // The prefix [Begin, R.first) is not covered.
|
|
if (Begin < R.second) {
|
|
Begin = R.second; // Prefix is covered, truncate the range.
|
|
if (Begin >= End)
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
std::vector<std::pair<unsigned, unsigned>> Ranges; // Always sorted.
|
|
};
|
|
|
|
// We find the selection by visiting written nodes in the AST, looking for nodes
|
|
// that intersect with the selected character range.
|
|
//
|
|
// While traversing, we maintain a parent stack. As nodes pop off the stack,
|
|
// we decide whether to keep them or not. To be kept, they must either be
|
|
// selected or contain some nodes that are.
|
|
//
|
|
// For simple cases (not inside macros) we prune subtrees that don't intersect.
|
|
class SelectionVisitor : public RecursiveASTVisitor<SelectionVisitor> {
|
|
public:
|
|
// Runs the visitor to gather selected nodes and their ancestors.
|
|
// If there is any selection, the root (TUDecl) is the first node.
|
|
static std::deque<Node> collect(ASTContext &AST, unsigned Begin,
|
|
unsigned End, FileID File) {
|
|
SelectionVisitor V(AST, Begin, End, File);
|
|
V.TraverseAST(AST);
|
|
assert(V.Stack.size() == 1 && "Unpaired push/pop?");
|
|
assert(V.Stack.top() == &V.Nodes.front());
|
|
if (V.Nodes.size() == 1) // TUDecl, but no nodes under it.
|
|
V.Nodes.clear();
|
|
return std::move(V.Nodes);
|
|
}
|
|
|
|
// We traverse all "well-behaved" nodes the same way:
|
|
// - push the node onto the stack
|
|
// - traverse its children recursively
|
|
// - pop it from the stack
|
|
// - hit testing: is intersection(node, selection) - union(children) empty?
|
|
// - attach it to the tree if it or any children hit the selection
|
|
//
|
|
// Two categories of nodes are not "well-behaved":
|
|
// - those without source range information, we don't record those
|
|
// - those that can't be stored in DynTypedNode.
|
|
// We're missing some interesting things like Attr due to the latter.
|
|
bool TraverseDecl(Decl *X) {
|
|
if (X && isa<TranslationUnitDecl>(X))
|
|
return Base::TraverseDecl(X); // Already pushed by constructor.
|
|
// Base::TraverseDecl will suppress children, but not this node itself.
|
|
if (X && X->isImplicit())
|
|
return true;
|
|
return traverseNode(X, [&] { return Base::TraverseDecl(X); });
|
|
}
|
|
bool TraverseTypeLoc(TypeLoc X) {
|
|
return traverseNode(&X, [&] { return Base::TraverseTypeLoc(X); });
|
|
}
|
|
bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc X) {
|
|
return traverseNode(
|
|
&X, [&] { return Base::TraverseNestedNameSpecifierLoc(X); });
|
|
}
|
|
bool TraverseConstructorInitializer(CXXCtorInitializer *X) {
|
|
return traverseNode(
|
|
X, [&] { return Base::TraverseConstructorInitializer(X); });
|
|
}
|
|
// Stmt is the same, but this form allows the data recursion optimization.
|
|
bool dataTraverseStmtPre(Stmt *X) {
|
|
if (!X || canSafelySkipNode(X->getSourceRange()))
|
|
return false;
|
|
push(DynTypedNode::create(*X));
|
|
return true;
|
|
}
|
|
bool dataTraverseStmtPost(Stmt *X) {
|
|
pop();
|
|
return true;
|
|
}
|
|
// Uninteresting parts of the AST that don't have locations within them.
|
|
bool TraverseNestedNameSpecifier(NestedNameSpecifier *) { return true; }
|
|
bool TraverseType(QualType) { return true; }
|
|
|
|
private:
|
|
using Base = RecursiveASTVisitor<SelectionVisitor>;
|
|
|
|
SelectionVisitor(ASTContext &AST, unsigned SelBegin, unsigned SelEnd,
|
|
FileID SelFile)
|
|
: SM(AST.getSourceManager()), LangOpts(AST.getLangOpts()),
|
|
SelBegin(SelBegin), SelEnd(SelEnd), SelFile(SelFile),
|
|
SelBeginTokenStart(SM.getFileOffset(Lexer::GetBeginningOfToken(
|
|
SM.getComposedLoc(SelFile, SelBegin), SM, LangOpts))) {
|
|
// Ensure we have a node for the TU decl, regardless of traversal scope.
|
|
Nodes.emplace_back();
|
|
Nodes.back().ASTNode = DynTypedNode::create(*AST.getTranslationUnitDecl());
|
|
Nodes.back().Parent = nullptr;
|
|
Nodes.back().Selected = SelectionTree::Unselected;
|
|
Stack.push(&Nodes.back());
|
|
}
|
|
|
|
// Generic case of TraverseFoo. Func should be the call to Base::TraverseFoo.
|
|
// Node is always a pointer so the generic code can handle any null checks.
|
|
template <typename T, typename Func>
|
|
bool traverseNode(T *Node, const Func &Body) {
|
|
if (Node == nullptr || canSafelySkipNode(Node->getSourceRange()))
|
|
return true;
|
|
push(DynTypedNode::create(*Node));
|
|
bool Ret = Body();
|
|
pop();
|
|
return Ret;
|
|
}
|
|
|
|
// HIT TESTING
|
|
//
|
|
// We do rough hit testing on the way down the tree to avoid traversing
|
|
// subtrees that don't touch the selection (canSafelySkipNode), but
|
|
// fine-grained hit-testing is mostly done on the way back up (in pop()).
|
|
// This means children get to claim parts of the selection first, and parents
|
|
// are only selected if they own tokens that no child owned.
|
|
//
|
|
// Nodes *usually* nest nicely: a child's getSourceRange() lies within the
|
|
// parent's, and a node (transitively) owns all tokens in its range.
|
|
//
|
|
// Exception 1: child range claims tokens that should be owned by the parent.
|
|
// e.g. in `void foo(int);`, the FunctionTypeLoc should own
|
|
// `void (int)` but the parent FunctionDecl should own `foo`.
|
|
// To handle this case, certain nodes claim small token ranges *before*
|
|
// their children are traversed. (see earlySourceRange).
|
|
//
|
|
// Exception 2: siblings both claim the same node.
|
|
// e.g. `int x, y;` produces two sibling VarDecls.
|
|
// ~~~~~ x
|
|
// ~~~~~~~~ y
|
|
// Here the first ("leftmost") sibling claims the tokens it wants, and the
|
|
// other sibling gets what's left. So selecting "int" only includes the left
|
|
// VarDecl in the selection tree.
|
|
|
|
// An optimization for a common case: nodes outside macro expansions that
|
|
// don't intersect the selection may be recursively skipped.
|
|
bool canSafelySkipNode(SourceRange S) {
|
|
auto B = SM.getDecomposedLoc(S.getBegin());
|
|
auto E = SM.getDecomposedLoc(S.getEnd());
|
|
if (B.first != SelFile || E.first != SelFile)
|
|
return false;
|
|
return B.second >= SelEnd || E.second < SelBeginTokenStart;
|
|
}
|
|
|
|
// Pushes a node onto the ancestor stack. Pairs with pop().
|
|
// Performs early hit detection for some nodes (on the earlySourceRange).
|
|
void push(DynTypedNode Node) {
|
|
bool SelectedEarly = claimRange(earlySourceRange(Node));
|
|
Nodes.emplace_back();
|
|
Nodes.back().ASTNode = std::move(Node);
|
|
Nodes.back().Parent = Stack.top();
|
|
// Early hit detection never selects the whole node.
|
|
Nodes.back().Selected =
|
|
SelectedEarly ? SelectionTree::Partial : SelectionTree::Unselected;
|
|
Stack.push(&Nodes.back());
|
|
}
|
|
|
|
// Pops a node off the ancestor stack, and finalizes it. Pairs with push().
|
|
// Performs primary hit detection.
|
|
void pop() {
|
|
Node &N = *Stack.top();
|
|
if (auto Sel = claimRange(N.ASTNode.getSourceRange()))
|
|
N.Selected = Sel;
|
|
if (N.Selected || !N.Children.empty()) {
|
|
// Attach to the tree.
|
|
N.Parent->Children.push_back(&N);
|
|
} else {
|
|
// Neither N any children are selected, it doesn't belong in the tree.
|
|
assert(&N == &Nodes.back());
|
|
Nodes.pop_back();
|
|
}
|
|
Stack.pop();
|
|
}
|
|
|
|
// Returns the range of tokens that this node will claim directly, and
|
|
// is not available to the node's children.
|
|
// Usually empty, but sometimes children cover tokens but shouldn't own them.
|
|
SourceRange earlySourceRange(const DynTypedNode &N) {
|
|
if (const Decl *D = N.get<Decl>()) {
|
|
// void [[foo]]();
|
|
if (auto *FD = llvm::dyn_cast<FunctionDecl>(D))
|
|
return FD->getNameInfo().getSourceRange();
|
|
// int (*[[s]])();
|
|
else if (auto *VD = llvm::dyn_cast<VarDecl>(D))
|
|
return VD->getLocation();
|
|
}
|
|
return SourceRange();
|
|
}
|
|
|
|
// Perform hit-testing of a complete Node against the selection.
|
|
// This runs for every node in the AST, and must be fast in common cases.
|
|
// This is usually called from pop(), so we can take children into account.
|
|
SelectionTree::Selection claimRange(SourceRange S) {
|
|
if (!S.isValid())
|
|
return SelectionTree::Unselected;
|
|
// getTopMacroCallerLoc() allows selection of constructs in macro args. e.g:
|
|
// #define LOOP_FOREVER(Body) for(;;) { Body }
|
|
// void IncrementLots(int &x) {
|
|
// LOOP_FOREVER( ++x; )
|
|
// }
|
|
// Selecting "++x" or "x" will do the right thing.
|
|
auto B = SM.getDecomposedLoc(SM.getTopMacroCallerLoc(S.getBegin()));
|
|
auto E = SM.getDecomposedLoc(SM.getTopMacroCallerLoc(S.getEnd()));
|
|
// Otherwise, nodes in macro expansions can't be selected.
|
|
if (B.first != SelFile || E.first != SelFile)
|
|
return SelectionTree::Unselected;
|
|
// Cheap test: is there any overlap at all between the selection and range?
|
|
// Note that E.second is the *start* of the last token, which is why we
|
|
// compare against the "rounded-down" SelBegin.
|
|
if (B.second >= SelEnd || E.second < SelBeginTokenStart)
|
|
return SelectionTree::Unselected;
|
|
|
|
// We may have hit something, need some more precise checks.
|
|
// Adjust [B, E) to be a half-open character range.
|
|
E.second += Lexer::MeasureTokenLength(S.getEnd(), SM, LangOpts);
|
|
auto PreciseBounds = std::make_pair(B.second, E.second);
|
|
// Trim range using the selection, drop it if empty.
|
|
B.second = std::max(B.second, SelBegin);
|
|
E.second = std::min(E.second, SelEnd);
|
|
if (B.second >= E.second)
|
|
return SelectionTree::Unselected;
|
|
// Attempt to claim the remaining range. If there's nothing to claim, only
|
|
// children were selected.
|
|
if (!Claimed.add(B.second, E.second))
|
|
return SelectionTree::Unselected;
|
|
// Some of our own characters are covered, this is a true hit.
|
|
// Determine whether the node was completely covered.
|
|
return (PreciseBounds.first >= SelBegin && PreciseBounds.second <= SelEnd)
|
|
? SelectionTree::Complete
|
|
: SelectionTree::Partial;
|
|
}
|
|
|
|
SourceManager &SM;
|
|
const LangOptions &LangOpts;
|
|
std::stack<Node *> Stack;
|
|
RangeSet Claimed;
|
|
std::deque<Node> Nodes; // Stable pointers as we add more nodes.
|
|
// Half-open selection range.
|
|
unsigned SelBegin;
|
|
unsigned SelEnd;
|
|
FileID SelFile;
|
|
// If the selection start slices a token in half, the beginning of that token.
|
|
// This is useful for checking whether the end of a token range overlaps
|
|
// the selection: range.end < SelBeginTokenStart is equivalent to
|
|
// range.end + measureToken(range.end) < SelBegin (assuming range.end points
|
|
// to a token), and it saves a lex every time.
|
|
unsigned SelBeginTokenStart;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void SelectionTree::print(llvm::raw_ostream &OS, const SelectionTree::Node &N,
|
|
int Indent) const {
|
|
if (N.Selected)
|
|
OS.indent(Indent - 1) << (N.Selected == SelectionTree::Complete ? '*'
|
|
: '.');
|
|
else
|
|
OS.indent(Indent);
|
|
if (const TypeLoc *TL = N.ASTNode.get<TypeLoc>()) {
|
|
// TypeLoc is a hierarchy, but has only a single ASTNodeKind.
|
|
// Synthesize the name from the Type subclass (except for QualifiedTypeLoc).
|
|
if (TL->getTypeLocClass() == TypeLoc::Qualified)
|
|
OS << "QualifiedTypeLoc";
|
|
else
|
|
OS << TL->getType()->getTypeClassName() << "TypeLoc";
|
|
} else {
|
|
OS << N.ASTNode.getNodeKind().asStringRef();
|
|
}
|
|
OS << " ";
|
|
N.ASTNode.print(OS, PrintPolicy);
|
|
OS << "\n";
|
|
for (const Node *Child : N.Children)
|
|
print(OS, *Child, Indent + 2);
|
|
}
|
|
|
|
// Decide which selection emulates a "point" query in between characters.
|
|
static std::pair<unsigned, unsigned> pointBounds(unsigned Offset, FileID FID,
|
|
ASTContext &AST) {
|
|
StringRef Buf = AST.getSourceManager().getBufferData(FID);
|
|
// Edge-cases where the choice is forced.
|
|
if (Buf.size() == 0)
|
|
return {0, 0};
|
|
if (Offset == 0)
|
|
return {0, 1};
|
|
if (Offset == Buf.size())
|
|
return {Offset - 1, Offset};
|
|
// We could choose either this byte or the previous. Usually we prefer the
|
|
// character on the right of the cursor (or under a block cursor).
|
|
// But if that's whitespace, we likely want the token on the left.
|
|
if (isWhitespace(Buf[Offset]) && !isWhitespace(Buf[Offset - 1]))
|
|
return {Offset - 1, Offset};
|
|
return {Offset, Offset + 1};
|
|
}
|
|
|
|
SelectionTree::SelectionTree(ASTContext &AST, unsigned Begin, unsigned End)
|
|
: PrintPolicy(AST.getLangOpts()) {
|
|
// No fundamental reason the selection needs to be in the main file,
|
|
// but that's all clangd has needed so far.
|
|
FileID FID = AST.getSourceManager().getMainFileID();
|
|
if (Begin == End)
|
|
std::tie(Begin, End) = pointBounds(Begin, FID, AST);
|
|
PrintPolicy.TerseOutput = true;
|
|
PrintPolicy.IncludeNewlines = false;
|
|
|
|
Nodes = SelectionVisitor::collect(AST, Begin, End, FID);
|
|
Root = Nodes.empty() ? nullptr : &Nodes.front();
|
|
}
|
|
|
|
SelectionTree::SelectionTree(ASTContext &AST, unsigned Offset)
|
|
: SelectionTree(AST, Offset, Offset) {}
|
|
|
|
const Node *SelectionTree::commonAncestor() const {
|
|
if (!Root)
|
|
return nullptr;
|
|
const Node *Ancestor = Root;
|
|
while (Ancestor->Children.size() == 1 && !Ancestor->Selected)
|
|
Ancestor = Ancestor->Children.front();
|
|
return Ancestor;
|
|
}
|
|
|
|
} // namespace clangd
|
|
} // namespace clang
|