llvm-project/lld/ELF/SymbolTable.cpp

354 lines
11 KiB
C++

//===- SymbolTable.cpp ----------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Symbol table is a bag of all known symbols. We put all symbols of
// all input files to the symbol table. The symbol table is basically
// a hash table with the logic to resolve symbol name conflicts using
// the symbol types.
//
//===----------------------------------------------------------------------===//
#include "SymbolTable.h"
#include "Config.h"
#include "Error.h"
#include "Symbols.h"
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/Support/StringSaver.h"
using namespace llvm;
using namespace llvm::object;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;
// All input object files must be for the same architecture
// (e.g. it does not make sense to link x86 object files with
// MIPS object files.) This function checks for that error.
template <class ELFT> static bool isCompatible(InputFile *FileP) {
auto *F = dyn_cast<ELFFileBase<ELFT>>(FileP);
if (!F)
return true;
if (F->getELFKind() == Config->EKind && F->getEMachine() == Config->EMachine)
return true;
StringRef A = F->getName();
StringRef B = Config->Emulation;
if (B.empty())
B = Config->FirstElf->getName();
error(A + " is incompatible with " + B);
return false;
}
// Returns "(internal)", "foo.a(bar.o)" or "baz.o".
static std::string getFilename(InputFile *F) {
if (!F)
return "(internal)";
if (!F->ArchiveName.empty())
return (F->ArchiveName + "(" + F->getName() + ")").str();
return F->getName();
}
// Add symbols in File to the symbol table.
template <class ELFT>
void SymbolTable<ELFT>::addFile(std::unique_ptr<InputFile> File) {
InputFile *FileP = File.get();
if (!isCompatible<ELFT>(FileP))
return;
// .a file
if (auto *F = dyn_cast<ArchiveFile>(FileP)) {
ArchiveFiles.emplace_back(cast<ArchiveFile>(File.release()));
F->parse();
for (Lazy &Sym : F->getLazySymbols())
addLazy(&Sym);
return;
}
// Lazy object file
if (auto *F = dyn_cast<LazyObjectFile>(FileP)) {
LazyObjectFiles.emplace_back(cast<LazyObjectFile>(File.release()));
F->parse();
for (Lazy &Sym : F->getLazySymbols())
addLazy(&Sym);
return;
}
if (Config->Trace)
llvm::outs() << getFilename(FileP) << "\n";
// .so file
if (auto *F = dyn_cast<SharedFile<ELFT>>(FileP)) {
// DSOs are uniquified not by filename but by soname.
F->parseSoName();
if (!SoNames.insert(F->getSoName()).second)
return;
SharedFiles.emplace_back(cast<SharedFile<ELFT>>(File.release()));
F->parseRest();
for (SharedSymbol<ELFT> &B : F->getSharedSymbols())
resolve(&B);
return;
}
// LLVM bitcode file
if (auto *F = dyn_cast<BitcodeFile>(FileP)) {
BitcodeFiles.emplace_back(cast<BitcodeFile>(File.release()));
F->parse(ComdatGroups);
for (SymbolBody *B : F->getSymbols())
if (B)
resolve(B);
return;
}
// Regular object file
auto *F = cast<ObjectFile<ELFT>>(FileP);
ObjectFiles.emplace_back(cast<ObjectFile<ELFT>>(File.release()));
F->parse(ComdatGroups);
for (SymbolBody *B : F->getNonLocalSymbols())
resolve(B);
}
template <class ELFT> void SymbolTable<ELFT>::addCombinedLtoObject() {
if (BitcodeFiles.empty())
return;
// Compile bitcode files.
Lto.reset(new BitcodeCompiler);
for (const std::unique_ptr<BitcodeFile> &F : BitcodeFiles)
Lto->add(*F);
std::unique_ptr<InputFile> IF = Lto->compile();
ObjectFile<ELFT> *Obj = cast<ObjectFile<ELFT>>(IF.release());
// Replace bitcode symbols.
llvm::DenseSet<StringRef> DummyGroups;
Obj->parse(DummyGroups);
for (SymbolBody *Body : Obj->getNonLocalSymbols()) {
Symbol *Sym = insert(Body);
Sym->Body->setUsedInRegularObj();
if (Sym->Body->isShared())
Sym->Body->MustBeInDynSym = true;
if (Sym->Body->MustBeInDynSym)
Body->MustBeInDynSym = true;
if (!Sym->Body->isUndefined() && Body->isUndefined())
continue;
Sym->Body = Body;
}
ObjectFiles.emplace_back(Obj);
}
// Add an undefined symbol.
template <class ELFT>
SymbolBody *SymbolTable<ELFT>::addUndefined(StringRef Name) {
auto *Sym = new (Alloc)
UndefinedElf<ELFT>(Name, STB_GLOBAL, STV_DEFAULT, /*Type*/ 0, false);
resolve(Sym);
return Sym;
}
// Add an undefined symbol. Unlike addUndefined, that symbol
// doesn't have to be resolved, thus "opt" (optional).
template <class ELFT>
SymbolBody *SymbolTable<ELFT>::addUndefinedOpt(StringRef Name) {
auto *Sym = new (Alloc)
UndefinedElf<ELFT>(Name, STB_GLOBAL, STV_HIDDEN, /*Type*/ 0, true);
resolve(Sym);
return Sym;
}
template <class ELFT>
DefinedRegular<ELFT> *SymbolTable<ELFT>::addAbsolute(StringRef Name,
uint8_t Visibility) {
// Pass nullptr because absolute symbols have no corresponding input sections.
auto *Sym = new (Alloc) DefinedRegular<ELFT>(Name, STB_GLOBAL, Visibility);
resolve(Sym);
return Sym;
}
template <class ELFT>
SymbolBody *SymbolTable<ELFT>::addSynthetic(StringRef Name,
OutputSectionBase<ELFT> &Sec,
uintX_t Val) {
auto *Sym = new (Alloc) DefinedSynthetic<ELFT>(Name, Val, Sec);
resolve(Sym);
return Sym;
}
// Add Name as an "ignored" symbol. An ignored symbol is a regular
// linker-synthesized defined symbol, but is only defined if needed.
template <class ELFT>
DefinedRegular<ELFT> *SymbolTable<ELFT>::addIgnored(StringRef Name,
uint8_t Visibility) {
if (!find(Name))
return nullptr;
return addAbsolute(Name, Visibility);
}
// Rename SYM as __wrap_SYM. The original symbol is preserved as __real_SYM.
// Used to implement --wrap.
template <class ELFT> void SymbolTable<ELFT>::wrap(StringRef Name) {
if (Symtab.count(Name) == 0)
return;
StringSaver Saver(Alloc);
Symbol *Sym = addUndefined(Name)->getSymbol();
Symbol *Real = addUndefined(Saver.save("__real_" + Name))->getSymbol();
Symbol *Wrap = addUndefined(Saver.save("__wrap_" + Name))->getSymbol();
Real->Body = Sym->Body;
Sym->Body = Wrap->Body;
}
// Returns a file from which symbol B was created.
// If B does not belong to any file, returns a nullptr.
template <class ELFT> InputFile *SymbolTable<ELFT>::findFile(SymbolBody *B) {
for (const std::unique_ptr<ObjectFile<ELFT>> &F : ObjectFiles) {
ArrayRef<SymbolBody *> Syms = F->getSymbols();
if (std::find(Syms.begin(), Syms.end(), B) != Syms.end())
return F.get();
}
for (const std::unique_ptr<BitcodeFile> &F : BitcodeFiles) {
ArrayRef<SymbolBody *> Syms = F->getSymbols();
if (std::find(Syms.begin(), Syms.end(), B) != Syms.end())
return F.get();
}
return nullptr;
}
// Construct a string in the form of "Sym in File1 and File2".
// Used to construct an error message.
template <class ELFT>
std::string SymbolTable<ELFT>::conflictMsg(SymbolBody *Old, SymbolBody *New) {
InputFile *F1 = findFile(Old);
InputFile *F2 = findFile(New);
StringRef Sym = Old->getName();
return demangle(Sym) + " in " + getFilename(F1) + " and " + getFilename(F2);
}
// This function resolves conflicts if there's an existing symbol with
// the same name. Decisions are made based on symbol type.
template <class ELFT> void SymbolTable<ELFT>::resolve(SymbolBody *New) {
Symbol *Sym = insert(New);
if (Sym->Body == New)
return;
SymbolBody *Existing = Sym->Body;
if (auto *L = dyn_cast<Lazy>(Existing)) {
if (New->isUndefined()) {
addMemberFile(New, L);
return;
}
// Found a definition for something also in an archive.
// Ignore the archive definition.
if (L->isUsedInRegularObj())
New->setUsedInRegularObj();
Sym->Body = New;
return;
}
if (New->isTls() != Existing->isTls()) {
error("TLS attribute mismatch for symbol: " + conflictMsg(Existing, New));
return;
}
// compare() returns -1, 0, or 1 if the lhs symbol is less preferable,
// equivalent (conflicting), or more preferable, respectively.
int Comp = Existing->compare(New);
if (Comp == 0) {
std::string S = "duplicate symbol: " + conflictMsg(Existing, New);
if (Config->AllowMultipleDefinition)
warning(S);
else
error(S);
return;
}
if (Comp < 0)
Sym->Body = New;
}
// Find an existing symbol or create and insert a new one.
template <class ELFT> Symbol *SymbolTable<ELFT>::insert(SymbolBody *New) {
StringRef Name = New->getName();
Symbol *&Sym = Symtab[Name];
if (!Sym)
Sym = new (Alloc) Symbol{New};
New->setBackref(Sym);
return Sym;
}
template <class ELFT> SymbolBody *SymbolTable<ELFT>::find(StringRef Name) {
auto It = Symtab.find(Name);
if (It == Symtab.end())
return nullptr;
return It->second->Body;
}
template <class ELFT> void SymbolTable<ELFT>::addLazy(Lazy *L) {
Symbol *Sym = insert(L);
SymbolBody *Cur = Sym->Body;
if (Cur == L)
return;
if (Cur->isUndefined()) {
Sym->Body = L;
addMemberFile(Cur, L);
}
}
template <class ELFT>
void SymbolTable<ELFT>::addMemberFile(SymbolBody *Undef, Lazy *L) {
if (Undef->isUsedInRegularObj())
L->setUsedInRegularObj();
// Weak undefined symbols should not fetch members from archives.
// If we were to keep old symbol we would not know that an archive member was
// available if a strong undefined symbol shows up afterwards in the link.
// If a strong undefined symbol never shows up, this lazy symbol will
// get to the end of the link and must be treated as the weak undefined one.
// We set UsedInRegularObj in a similar way to what is done with shared
// symbols and copy information to reduce how many special cases are needed.
if (Undef->isWeak()) {
L->setUsedInRegularObj();
L->Binding = Undef->Binding;
L->Type = Undef->Type;
// FIXME: Do we need to copy more?
return;
}
// Fetch a member file that has the definition for L.
// getMember returns nullptr if the member was already read from the library.
if (std::unique_ptr<InputFile> File = L->getFile())
addFile(std::move(File));
}
// This function takes care of the case in which shared libraries depend on
// the user program (not the other way, which is usual). Shared libraries
// may have undefined symbols, expecting that the user program provides
// the definitions for them. An example is BSD's __progname symbol.
// We need to put such symbols to the main program's .dynsym so that
// shared libraries can find them.
// Except this, we ignore undefined symbols in DSOs.
template <class ELFT> void SymbolTable<ELFT>::scanShlibUndefined() {
for (std::unique_ptr<SharedFile<ELFT>> &File : SharedFiles)
for (StringRef U : File->getUndefinedSymbols())
if (SymbolBody *Sym = find(U))
if (Sym->isDefined())
Sym->MustBeInDynSym = true;
}
// This function process the dynamic list option by marking all the symbols
// to be exported in the dynamic table.
template <class ELFT> void SymbolTable<ELFT>::scanDynamicList() {
for (StringRef S : Config->DynamicList)
if (SymbolBody *B = find(S))
B->MustBeInDynSym = true;
}
template class elf::SymbolTable<ELF32LE>;
template class elf::SymbolTable<ELF32BE>;
template class elf::SymbolTable<ELF64LE>;
template class elf::SymbolTable<ELF64BE>;