llvm-project/mlir/test/Transforms/canonicalize.mlir

161 lines
4.4 KiB
MLIR

// RUN: mlir-opt %s -canonicalize | FileCheck %s
// CHECK-LABEL: mlfunc @test_subi_zero
mlfunc @test_subi_zero(%arg0: i32) -> i32 {
// CHECK-NEXT: %c0_i32 = constant 0 : i32
// CHECK-NEXT: return %c0
%y = subi %arg0, %arg0 : i32
return %y: i32
}
// CHECK-LABEL: cfgfunc @test_subi_zero_cfg
cfgfunc @test_subi_zero_cfg(i32) -> i32 {
// CHECK-NEXT: bb0(%arg0: i32):
bb0(%arg0: i32):
// CHECK-NEXT: %c0_i32 = constant 0 : i32
// CHECK-NEXT: return %c0
%y = subi %arg0, %arg0 : i32
return %y: i32
}
// CHECK-LABEL: mlfunc @dim
mlfunc @dim(%arg0 : tensor<8x4xf32>) -> index {
// CHECK: %c4 = constant 4 : index
%0 = dim %arg0, 1 : tensor<8x4xf32>
// CHECK-NEXT: return %c4
return %0 : index
}
// CHECK-LABEL: mlfunc @test_commutative
mlfunc @test_commutative(%arg0: i32) -> (i32, i32) {
// CHECK: %c42_i32 = constant 42 : i32
%c42_i32 = constant 42 : i32
// CHECK-NEXT: %0 = addi %arg0, %c42_i32 : i32
%y = addi %c42_i32, %arg0 : i32
// This should not be swapped.
// CHECK-NEXT: %1 = subi %c42_i32, %arg0 : i32
%z = subi %c42_i32, %arg0 : i32
// CHECK-NEXT: return %0, %1
return %y, %z: i32, i32
}
// CHECK-LABEL: mlfunc @trivial_dce
mlfunc @trivial_dce(%arg0: tensor<8x4xf32>) {
%0 = dim %arg0, 1 : tensor<8x4xf32>
// CHECK-NEXT: return
return
}
// CHECK-LABEL: mlfunc @addi_zero
mlfunc @addi_zero(%arg0: i32) -> i32 {
// CHECK-NEXT: return %arg0
%c0_i32 = constant 0 : i32
%y = addi %c0_i32, %arg0 : i32
return %y: i32
}
// CHECK-LABEL: mlfunc @memref_cast_folding
mlfunc @memref_cast_folding(%arg0: memref<4 x f32>, %arg1: f32) -> f32 {
%1 = memref_cast %arg0: memref<4xf32> to memref<?xf32>
// CHECK-NEXT: %c0 = constant 0 : index
%c0 = constant 0 : index
// CHECK-NEXT: store %arg1, %arg0[%c0] : memref<4xf32>
store %arg1, %1[%c0] : memref<?xf32>
// CHECK-NEXT: %0 = load %arg0[%c0] : memref<4xf32>
%0 = load %1[%c0] : memref<?xf32>
// CHECK-NEXT: dealloc %arg0 : memref<4xf32>
dealloc %1: memref<?xf32>
// CHECK-NEXT: return %0
return %0 : f32
}
// CHECK-LABEL: mlfunc @alloc_const_fold
mlfunc @alloc_const_fold() -> memref<?xf32> {
// CHECK-NEXT: %0 = alloc() : memref<4xf32>
%c4 = constant 4 : index
%a = alloc(%c4) : memref<?xf32>
// CHECK-NEXT: %1 = memref_cast %0 : memref<4xf32> to memref<?xf32>
// CHECK-NEXT: return %1 : memref<?xf32>
return %a : memref<?xf32>
}
// CHECK-LABEL: mlfunc @dyn_shape_fold(%arg0 : index, %arg1 : index)
mlfunc @dyn_shape_fold(%L : index, %M : index) -> memref<? x ? x f32> {
// CHECK: %c0 = constant 0 : index
%zero = constant 0 : index
// The constants below disappear after they propagate into shapes.
%nine = constant 9 : index
%N = constant 1024 : index
%K = constant 512 : index
// CHECK-NEXT: %0 = alloc(%arg0) : memref<?x1024xf32>
%a = alloc(%L, %N) : memref<? x ? x f32>
// CHECK-NEXT: %1 = alloc(%arg1) : memref<4x1024x8x512x?xf32>
%b = alloc(%N, %K, %M) : memref<4 x ? x 8 x ? x ? x f32>
// CHECK-NEXT: %2 = alloc() : memref<512x1024xi32>
%c = alloc(%K, %N) : memref<? x ? x i32>
// CHECK: for %i0 =
for %i = 0 to %L {
// CHECK-NEXT: for %i1 =
for %j = 0 to 10 {
// CHECK-NEXT: %3 = load %0[%i0, %i1] : memref<?x1024xf32>
// CHECK-NEXT: store %3, %1[%c0, %c0, %i0, %i1, %c0] : memref<4x1024x8x512x?xf32>
%v = load %a[%i, %j] : memref<?x?xf32>
store %v, %b[%zero, %zero, %i, %j, %zero] : memref<4x?x8x?x?xf32>
}
}
// CHECK: %4 = alloc() : memref<9x9xf32>
%d = alloc(%nine, %nine) : memref<? x ? x f32>
return %d : memref<? x ? x f32>
}
// CHECK-LABEL: mlfunc @merge_constants
mlfunc @merge_constants() -> (index, index) {
// CHECK-NEXT: %c42 = constant 42 : index
%0 = constant 42 : index
%1 = constant 42 : index
// CHECK-NEXT: return %c42, %c42
return %0, %1: index, index
}
// CHECK-LABEL: mlfunc @hoist_constant
mlfunc @hoist_constant(%arg0 : memref<8xi32>) {
// CHECK-NEXT: %c42_i32 = constant 42 : i32
// CHECK-NEXT: for %i0 = 0 to 8 {
for %i0 = 0 to 8 {
// CHECK-NEXT: store %c42_i32, %arg0[%i0]
%c42_i32 = constant 42 : i32
store %c42_i32, %arg0[%i0] : memref<8xi32>
}
return
}
// CHECK-LABEL: mlfunc @const_fold_propagate
mlfunc @const_fold_propagate() -> memref<?x?xf32> {
%VT_i = constant 512 : index
%VT_i_s = affine_apply (d0) -> (d0 floordiv 8) (%VT_i)
%VT_k_l = affine_apply (d0) -> (d0 floordiv 16) (%VT_i)
// CHECK: = alloc() : memref<64x32xf32>
%Av = alloc(%VT_i_s, %VT_k_l) : memref<?x?xf32>
return %Av : memref<?x?xf32>
}