llvm-project/clang/lib/Frontend/ASTUnit.cpp

2911 lines
106 KiB
C++

//===--- ASTUnit.cpp - ASTUnit utility ------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// ASTUnit Implementation.
//
//===----------------------------------------------------------------------===//
#include "clang/Frontend/ASTUnit.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclVisitor.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/TypeOrdering.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/TargetOptions.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/FrontendActions.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "clang/Frontend/FrontendOptions.h"
#include "clang/Frontend/MultiplexConsumer.h"
#include "clang/Frontend/Utils.h"
#include "clang/Lex/HeaderSearch.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/PreprocessorOptions.h"
#include "clang/Serialization/ASTReader.h"
#include "clang/Serialization/ASTWriter.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/Atomic.h"
#include "llvm/Support/CrashRecoveryContext.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/MutexGuard.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/raw_ostream.h"
#include <cstdio>
#include <cstdlib>
#include <sys/stat.h>
using namespace clang;
using llvm::TimeRecord;
namespace {
class SimpleTimer {
bool WantTiming;
TimeRecord Start;
std::string Output;
public:
explicit SimpleTimer(bool WantTiming) : WantTiming(WantTiming) {
if (WantTiming)
Start = TimeRecord::getCurrentTime();
}
void setOutput(const Twine &Output) {
if (WantTiming)
this->Output = Output.str();
}
~SimpleTimer() {
if (WantTiming) {
TimeRecord Elapsed = TimeRecord::getCurrentTime();
Elapsed -= Start;
llvm::errs() << Output << ':';
Elapsed.print(Elapsed, llvm::errs());
llvm::errs() << '\n';
}
}
};
struct OnDiskData {
/// \brief The file in which the precompiled preamble is stored.
std::string PreambleFile;
/// \brief Temporary files that should be removed when the ASTUnit is
/// destroyed.
SmallVector<llvm::sys::Path, 4> TemporaryFiles;
/// \brief Erase temporary files.
void CleanTemporaryFiles();
/// \brief Erase the preamble file.
void CleanPreambleFile();
/// \brief Erase temporary files and the preamble file.
void Cleanup();
};
}
static llvm::sys::SmartMutex<false> &getOnDiskMutex() {
static llvm::sys::SmartMutex<false> M(/* recursive = */ true);
return M;
}
static void cleanupOnDiskMapAtExit();
typedef llvm::DenseMap<const ASTUnit *, OnDiskData *> OnDiskDataMap;
static OnDiskDataMap &getOnDiskDataMap() {
static OnDiskDataMap M;
static bool hasRegisteredAtExit = false;
if (!hasRegisteredAtExit) {
hasRegisteredAtExit = true;
atexit(cleanupOnDiskMapAtExit);
}
return M;
}
static void cleanupOnDiskMapAtExit() {
// Use the mutex because there can be an alive thread destroying an ASTUnit.
llvm::MutexGuard Guard(getOnDiskMutex());
OnDiskDataMap &M = getOnDiskDataMap();
for (OnDiskDataMap::iterator I = M.begin(), E = M.end(); I != E; ++I) {
// We don't worry about freeing the memory associated with OnDiskDataMap.
// All we care about is erasing stale files.
I->second->Cleanup();
}
}
static OnDiskData &getOnDiskData(const ASTUnit *AU) {
// We require the mutex since we are modifying the structure of the
// DenseMap.
llvm::MutexGuard Guard(getOnDiskMutex());
OnDiskDataMap &M = getOnDiskDataMap();
OnDiskData *&D = M[AU];
if (!D)
D = new OnDiskData();
return *D;
}
static void erasePreambleFile(const ASTUnit *AU) {
getOnDiskData(AU).CleanPreambleFile();
}
static void removeOnDiskEntry(const ASTUnit *AU) {
// We require the mutex since we are modifying the structure of the
// DenseMap.
llvm::MutexGuard Guard(getOnDiskMutex());
OnDiskDataMap &M = getOnDiskDataMap();
OnDiskDataMap::iterator I = M.find(AU);
if (I != M.end()) {
I->second->Cleanup();
delete I->second;
M.erase(AU);
}
}
static void setPreambleFile(const ASTUnit *AU, StringRef preambleFile) {
getOnDiskData(AU).PreambleFile = preambleFile;
}
static const std::string &getPreambleFile(const ASTUnit *AU) {
return getOnDiskData(AU).PreambleFile;
}
void OnDiskData::CleanTemporaryFiles() {
for (unsigned I = 0, N = TemporaryFiles.size(); I != N; ++I)
TemporaryFiles[I].eraseFromDisk();
TemporaryFiles.clear();
}
void OnDiskData::CleanPreambleFile() {
if (!PreambleFile.empty()) {
llvm::sys::Path(PreambleFile).eraseFromDisk();
PreambleFile.clear();
}
}
void OnDiskData::Cleanup() {
CleanTemporaryFiles();
CleanPreambleFile();
}
struct ASTUnit::ASTWriterData {
SmallString<128> Buffer;
llvm::BitstreamWriter Stream;
ASTWriter Writer;
ASTWriterData() : Stream(Buffer), Writer(Stream) { }
};
void ASTUnit::clearFileLevelDecls() {
for (FileDeclsTy::iterator
I = FileDecls.begin(), E = FileDecls.end(); I != E; ++I)
delete I->second;
FileDecls.clear();
}
void ASTUnit::CleanTemporaryFiles() {
getOnDiskData(this).CleanTemporaryFiles();
}
void ASTUnit::addTemporaryFile(const llvm::sys::Path &TempFile) {
getOnDiskData(this).TemporaryFiles.push_back(TempFile);
}
/// \brief After failing to build a precompiled preamble (due to
/// errors in the source that occurs in the preamble), the number of
/// reparses during which we'll skip even trying to precompile the
/// preamble.
const unsigned DefaultPreambleRebuildInterval = 5;
/// \brief Tracks the number of ASTUnit objects that are currently active.
///
/// Used for debugging purposes only.
static llvm::sys::cas_flag ActiveASTUnitObjects;
ASTUnit::ASTUnit(bool _MainFileIsAST)
: Reader(0), OnlyLocalDecls(false), CaptureDiagnostics(false),
MainFileIsAST(_MainFileIsAST),
TUKind(TU_Complete), WantTiming(getenv("LIBCLANG_TIMING")),
OwnsRemappedFileBuffers(true),
NumStoredDiagnosticsFromDriver(0),
PreambleRebuildCounter(0), SavedMainFileBuffer(0), PreambleBuffer(0),
NumWarningsInPreamble(0),
ShouldCacheCodeCompletionResults(false),
IncludeBriefCommentsInCodeCompletion(false), UserFilesAreVolatile(false),
CompletionCacheTopLevelHashValue(0),
PreambleTopLevelHashValue(0),
CurrentTopLevelHashValue(0),
UnsafeToFree(false) {
if (getenv("LIBCLANG_OBJTRACKING")) {
llvm::sys::AtomicIncrement(&ActiveASTUnitObjects);
fprintf(stderr, "+++ %d translation units\n", ActiveASTUnitObjects);
}
}
ASTUnit::~ASTUnit() {
clearFileLevelDecls();
// Clean up the temporary files and the preamble file.
removeOnDiskEntry(this);
// Free the buffers associated with remapped files. We are required to
// perform this operation here because we explicitly request that the
// compiler instance *not* free these buffers for each invocation of the
// parser.
if (Invocation.getPtr() && OwnsRemappedFileBuffers) {
PreprocessorOptions &PPOpts = Invocation->getPreprocessorOpts();
for (PreprocessorOptions::remapped_file_buffer_iterator
FB = PPOpts.remapped_file_buffer_begin(),
FBEnd = PPOpts.remapped_file_buffer_end();
FB != FBEnd;
++FB)
delete FB->second;
}
delete SavedMainFileBuffer;
delete PreambleBuffer;
ClearCachedCompletionResults();
if (getenv("LIBCLANG_OBJTRACKING")) {
llvm::sys::AtomicDecrement(&ActiveASTUnitObjects);
fprintf(stderr, "--- %d translation units\n", ActiveASTUnitObjects);
}
}
void ASTUnit::setPreprocessor(Preprocessor *pp) { PP = pp; }
/// \brief Determine the set of code-completion contexts in which this
/// declaration should be shown.
static unsigned getDeclShowContexts(const NamedDecl *ND,
const LangOptions &LangOpts,
bool &IsNestedNameSpecifier) {
IsNestedNameSpecifier = false;
if (isa<UsingShadowDecl>(ND))
ND = dyn_cast<NamedDecl>(ND->getUnderlyingDecl());
if (!ND)
return 0;
uint64_t Contexts = 0;
if (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND) ||
isa<ClassTemplateDecl>(ND) || isa<TemplateTemplateParmDecl>(ND)) {
// Types can appear in these contexts.
if (LangOpts.CPlusPlus || !isa<TagDecl>(ND))
Contexts |= (1LL << CodeCompletionContext::CCC_TopLevel)
| (1LL << CodeCompletionContext::CCC_ObjCIvarList)
| (1LL << CodeCompletionContext::CCC_ClassStructUnion)
| (1LL << CodeCompletionContext::CCC_Statement)
| (1LL << CodeCompletionContext::CCC_Type)
| (1LL << CodeCompletionContext::CCC_ParenthesizedExpression);
// In C++, types can appear in expressions contexts (for functional casts).
if (LangOpts.CPlusPlus)
Contexts |= (1LL << CodeCompletionContext::CCC_Expression);
// In Objective-C, message sends can send interfaces. In Objective-C++,
// all types are available due to functional casts.
if (LangOpts.CPlusPlus || isa<ObjCInterfaceDecl>(ND))
Contexts |= (1LL << CodeCompletionContext::CCC_ObjCMessageReceiver);
// In Objective-C, you can only be a subclass of another Objective-C class
if (isa<ObjCInterfaceDecl>(ND))
Contexts |= (1LL << CodeCompletionContext::CCC_ObjCInterfaceName);
// Deal with tag names.
if (isa<EnumDecl>(ND)) {
Contexts |= (1LL << CodeCompletionContext::CCC_EnumTag);
// Part of the nested-name-specifier in C++0x.
if (LangOpts.CPlusPlus11)
IsNestedNameSpecifier = true;
} else if (const RecordDecl *Record = dyn_cast<RecordDecl>(ND)) {
if (Record->isUnion())
Contexts |= (1LL << CodeCompletionContext::CCC_UnionTag);
else
Contexts |= (1LL << CodeCompletionContext::CCC_ClassOrStructTag);
if (LangOpts.CPlusPlus)
IsNestedNameSpecifier = true;
} else if (isa<ClassTemplateDecl>(ND))
IsNestedNameSpecifier = true;
} else if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
// Values can appear in these contexts.
Contexts = (1LL << CodeCompletionContext::CCC_Statement)
| (1LL << CodeCompletionContext::CCC_Expression)
| (1LL << CodeCompletionContext::CCC_ParenthesizedExpression)
| (1LL << CodeCompletionContext::CCC_ObjCMessageReceiver);
} else if (isa<ObjCProtocolDecl>(ND)) {
Contexts = (1LL << CodeCompletionContext::CCC_ObjCProtocolName);
} else if (isa<ObjCCategoryDecl>(ND)) {
Contexts = (1LL << CodeCompletionContext::CCC_ObjCCategoryName);
} else if (isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND)) {
Contexts = (1LL << CodeCompletionContext::CCC_Namespace);
// Part of the nested-name-specifier.
IsNestedNameSpecifier = true;
}
return Contexts;
}
void ASTUnit::CacheCodeCompletionResults() {
if (!TheSema)
return;
SimpleTimer Timer(WantTiming);
Timer.setOutput("Cache global code completions for " + getMainFileName());
// Clear out the previous results.
ClearCachedCompletionResults();
// Gather the set of global code completions.
typedef CodeCompletionResult Result;
SmallVector<Result, 8> Results;
CachedCompletionAllocator = new GlobalCodeCompletionAllocator;
CodeCompletionTUInfo CCTUInfo(CachedCompletionAllocator);
TheSema->GatherGlobalCodeCompletions(*CachedCompletionAllocator,
CCTUInfo, Results);
// Translate global code completions into cached completions.
llvm::DenseMap<CanQualType, unsigned> CompletionTypes;
for (unsigned I = 0, N = Results.size(); I != N; ++I) {
switch (Results[I].Kind) {
case Result::RK_Declaration: {
bool IsNestedNameSpecifier = false;
CachedCodeCompletionResult CachedResult;
CachedResult.Completion = Results[I].CreateCodeCompletionString(*TheSema,
*CachedCompletionAllocator,
CCTUInfo,
IncludeBriefCommentsInCodeCompletion);
CachedResult.ShowInContexts = getDeclShowContexts(Results[I].Declaration,
Ctx->getLangOpts(),
IsNestedNameSpecifier);
CachedResult.Priority = Results[I].Priority;
CachedResult.Kind = Results[I].CursorKind;
CachedResult.Availability = Results[I].Availability;
// Keep track of the type of this completion in an ASTContext-agnostic
// way.
QualType UsageType = getDeclUsageType(*Ctx, Results[I].Declaration);
if (UsageType.isNull()) {
CachedResult.TypeClass = STC_Void;
CachedResult.Type = 0;
} else {
CanQualType CanUsageType
= Ctx->getCanonicalType(UsageType.getUnqualifiedType());
CachedResult.TypeClass = getSimplifiedTypeClass(CanUsageType);
// Determine whether we have already seen this type. If so, we save
// ourselves the work of formatting the type string by using the
// temporary, CanQualType-based hash table to find the associated value.
unsigned &TypeValue = CompletionTypes[CanUsageType];
if (TypeValue == 0) {
TypeValue = CompletionTypes.size();
CachedCompletionTypes[QualType(CanUsageType).getAsString()]
= TypeValue;
}
CachedResult.Type = TypeValue;
}
CachedCompletionResults.push_back(CachedResult);
/// Handle nested-name-specifiers in C++.
if (TheSema->Context.getLangOpts().CPlusPlus &&
IsNestedNameSpecifier && !Results[I].StartsNestedNameSpecifier) {
// The contexts in which a nested-name-specifier can appear in C++.
uint64_t NNSContexts
= (1LL << CodeCompletionContext::CCC_TopLevel)
| (1LL << CodeCompletionContext::CCC_ObjCIvarList)
| (1LL << CodeCompletionContext::CCC_ClassStructUnion)
| (1LL << CodeCompletionContext::CCC_Statement)
| (1LL << CodeCompletionContext::CCC_Expression)
| (1LL << CodeCompletionContext::CCC_ObjCMessageReceiver)
| (1LL << CodeCompletionContext::CCC_EnumTag)
| (1LL << CodeCompletionContext::CCC_UnionTag)
| (1LL << CodeCompletionContext::CCC_ClassOrStructTag)
| (1LL << CodeCompletionContext::CCC_Type)
| (1LL << CodeCompletionContext::CCC_PotentiallyQualifiedName)
| (1LL << CodeCompletionContext::CCC_ParenthesizedExpression);
if (isa<NamespaceDecl>(Results[I].Declaration) ||
isa<NamespaceAliasDecl>(Results[I].Declaration))
NNSContexts |= (1LL << CodeCompletionContext::CCC_Namespace);
if (unsigned RemainingContexts
= NNSContexts & ~CachedResult.ShowInContexts) {
// If there any contexts where this completion can be a
// nested-name-specifier but isn't already an option, create a
// nested-name-specifier completion.
Results[I].StartsNestedNameSpecifier = true;
CachedResult.Completion
= Results[I].CreateCodeCompletionString(*TheSema,
*CachedCompletionAllocator,
CCTUInfo,
IncludeBriefCommentsInCodeCompletion);
CachedResult.ShowInContexts = RemainingContexts;
CachedResult.Priority = CCP_NestedNameSpecifier;
CachedResult.TypeClass = STC_Void;
CachedResult.Type = 0;
CachedCompletionResults.push_back(CachedResult);
}
}
break;
}
case Result::RK_Keyword:
case Result::RK_Pattern:
// Ignore keywords and patterns; we don't care, since they are so
// easily regenerated.
break;
case Result::RK_Macro: {
CachedCodeCompletionResult CachedResult;
CachedResult.Completion
= Results[I].CreateCodeCompletionString(*TheSema,
*CachedCompletionAllocator,
CCTUInfo,
IncludeBriefCommentsInCodeCompletion);
CachedResult.ShowInContexts
= (1LL << CodeCompletionContext::CCC_TopLevel)
| (1LL << CodeCompletionContext::CCC_ObjCInterface)
| (1LL << CodeCompletionContext::CCC_ObjCImplementation)
| (1LL << CodeCompletionContext::CCC_ObjCIvarList)
| (1LL << CodeCompletionContext::CCC_ClassStructUnion)
| (1LL << CodeCompletionContext::CCC_Statement)
| (1LL << CodeCompletionContext::CCC_Expression)
| (1LL << CodeCompletionContext::CCC_ObjCMessageReceiver)
| (1LL << CodeCompletionContext::CCC_MacroNameUse)
| (1LL << CodeCompletionContext::CCC_PreprocessorExpression)
| (1LL << CodeCompletionContext::CCC_ParenthesizedExpression)
| (1LL << CodeCompletionContext::CCC_OtherWithMacros);
CachedResult.Priority = Results[I].Priority;
CachedResult.Kind = Results[I].CursorKind;
CachedResult.Availability = Results[I].Availability;
CachedResult.TypeClass = STC_Void;
CachedResult.Type = 0;
CachedCompletionResults.push_back(CachedResult);
break;
}
}
}
// Save the current top-level hash value.
CompletionCacheTopLevelHashValue = CurrentTopLevelHashValue;
}
void ASTUnit::ClearCachedCompletionResults() {
CachedCompletionResults.clear();
CachedCompletionTypes.clear();
CachedCompletionAllocator = 0;
}
namespace {
/// \brief Gathers information from ASTReader that will be used to initialize
/// a Preprocessor.
class ASTInfoCollector : public ASTReaderListener {
Preprocessor &PP;
ASTContext &Context;
LangOptions &LangOpt;
HeaderSearch &HSI;
IntrusiveRefCntPtr<TargetOptions> &TargetOpts;
IntrusiveRefCntPtr<TargetInfo> &Target;
unsigned &Counter;
unsigned NumHeaderInfos;
bool InitializedLanguage;
public:
ASTInfoCollector(Preprocessor &PP, ASTContext &Context, LangOptions &LangOpt,
HeaderSearch &HSI,
IntrusiveRefCntPtr<TargetOptions> &TargetOpts,
IntrusiveRefCntPtr<TargetInfo> &Target,
unsigned &Counter)
: PP(PP), Context(Context), LangOpt(LangOpt), HSI(HSI),
TargetOpts(TargetOpts), Target(Target),
Counter(Counter), NumHeaderInfos(0),
InitializedLanguage(false) {}
virtual bool ReadLanguageOptions(const LangOptions &LangOpts,
bool Complain) {
if (InitializedLanguage)
return false;
LangOpt = LangOpts;
InitializedLanguage = true;
updated();
return false;
}
virtual bool ReadTargetOptions(const TargetOptions &TargetOpts,
bool Complain) {
// If we've already initialized the target, don't do it again.
if (Target)
return false;
this->TargetOpts = new TargetOptions(TargetOpts);
Target = TargetInfo::CreateTargetInfo(PP.getDiagnostics(),
&*this->TargetOpts);
updated();
return false;
}
virtual void ReadHeaderFileInfo(const HeaderFileInfo &HFI, unsigned ID) {
HSI.setHeaderFileInfoForUID(HFI, NumHeaderInfos++);
}
virtual void ReadCounter(const serialization::ModuleFile &M, unsigned Value) {
Counter = Value;
}
private:
void updated() {
if (!Target || !InitializedLanguage)
return;
// Inform the target of the language options.
//
// FIXME: We shouldn't need to do this, the target should be immutable once
// created. This complexity should be lifted elsewhere.
Target->setForcedLangOptions(LangOpt);
// Initialize the preprocessor.
PP.Initialize(*Target);
// Initialize the ASTContext
Context.InitBuiltinTypes(*Target);
}
};
class StoredDiagnosticConsumer : public DiagnosticConsumer {
SmallVectorImpl<StoredDiagnostic> &StoredDiags;
public:
explicit StoredDiagnosticConsumer(
SmallVectorImpl<StoredDiagnostic> &StoredDiags)
: StoredDiags(StoredDiags) { }
virtual void HandleDiagnostic(DiagnosticsEngine::Level Level,
const Diagnostic &Info);
DiagnosticConsumer *clone(DiagnosticsEngine &Diags) const {
// Just drop any diagnostics that come from cloned consumers; they'll
// have different source managers anyway.
// FIXME: We'd like to be able to capture these somehow, even if it's just
// file/line/column, because they could occur when parsing module maps or
// building modules on-demand.
return new IgnoringDiagConsumer();
}
};
/// \brief RAII object that optionally captures diagnostics, if
/// there is no diagnostic client to capture them already.
class CaptureDroppedDiagnostics {
DiagnosticsEngine &Diags;
StoredDiagnosticConsumer Client;
DiagnosticConsumer *PreviousClient;
public:
CaptureDroppedDiagnostics(bool RequestCapture, DiagnosticsEngine &Diags,
SmallVectorImpl<StoredDiagnostic> &StoredDiags)
: Diags(Diags), Client(StoredDiags), PreviousClient(0)
{
if (RequestCapture || Diags.getClient() == 0) {
PreviousClient = Diags.takeClient();
Diags.setClient(&Client);
}
}
~CaptureDroppedDiagnostics() {
if (Diags.getClient() == &Client) {
Diags.takeClient();
Diags.setClient(PreviousClient);
}
}
};
} // anonymous namespace
void StoredDiagnosticConsumer::HandleDiagnostic(DiagnosticsEngine::Level Level,
const Diagnostic &Info) {
// Default implementation (Warnings/errors count).
DiagnosticConsumer::HandleDiagnostic(Level, Info);
StoredDiags.push_back(StoredDiagnostic(Level, Info));
}
ASTDeserializationListener *ASTUnit::getDeserializationListener() {
if (WriterData)
return &WriterData->Writer;
return 0;
}
llvm::MemoryBuffer *ASTUnit::getBufferForFile(StringRef Filename,
std::string *ErrorStr) {
assert(FileMgr);
return FileMgr->getBufferForFile(Filename, ErrorStr);
}
/// \brief Configure the diagnostics object for use with ASTUnit.
void ASTUnit::ConfigureDiags(IntrusiveRefCntPtr<DiagnosticsEngine> &Diags,
const char **ArgBegin, const char **ArgEnd,
ASTUnit &AST, bool CaptureDiagnostics) {
if (!Diags.getPtr()) {
// No diagnostics engine was provided, so create our own diagnostics object
// with the default options.
DiagnosticConsumer *Client = 0;
if (CaptureDiagnostics)
Client = new StoredDiagnosticConsumer(AST.StoredDiagnostics);
Diags = CompilerInstance::createDiagnostics(new DiagnosticOptions(),
Client,
/*ShouldOwnClient=*/true,
/*ShouldCloneClient=*/false);
} else if (CaptureDiagnostics) {
Diags->setClient(new StoredDiagnosticConsumer(AST.StoredDiagnostics));
}
}
ASTUnit *ASTUnit::LoadFromASTFile(const std::string &Filename,
IntrusiveRefCntPtr<DiagnosticsEngine> Diags,
const FileSystemOptions &FileSystemOpts,
bool OnlyLocalDecls,
RemappedFile *RemappedFiles,
unsigned NumRemappedFiles,
bool CaptureDiagnostics,
bool AllowPCHWithCompilerErrors,
bool UserFilesAreVolatile) {
OwningPtr<ASTUnit> AST(new ASTUnit(true));
// Recover resources if we crash before exiting this method.
llvm::CrashRecoveryContextCleanupRegistrar<ASTUnit>
ASTUnitCleanup(AST.get());
llvm::CrashRecoveryContextCleanupRegistrar<DiagnosticsEngine,
llvm::CrashRecoveryContextReleaseRefCleanup<DiagnosticsEngine> >
DiagCleanup(Diags.getPtr());
ConfigureDiags(Diags, 0, 0, *AST, CaptureDiagnostics);
AST->OnlyLocalDecls = OnlyLocalDecls;
AST->CaptureDiagnostics = CaptureDiagnostics;
AST->Diagnostics = Diags;
AST->FileMgr = new FileManager(FileSystemOpts);
AST->UserFilesAreVolatile = UserFilesAreVolatile;
AST->SourceMgr = new SourceManager(AST->getDiagnostics(),
AST->getFileManager(),
UserFilesAreVolatile);
AST->HSOpts = new HeaderSearchOptions();
AST->HeaderInfo.reset(new HeaderSearch(AST->HSOpts,
AST->getFileManager(),
AST->getDiagnostics(),
AST->ASTFileLangOpts,
/*Target=*/0));
for (unsigned I = 0; I != NumRemappedFiles; ++I) {
FilenameOrMemBuf fileOrBuf = RemappedFiles[I].second;
if (const llvm::MemoryBuffer *
memBuf = fileOrBuf.dyn_cast<const llvm::MemoryBuffer *>()) {
// Create the file entry for the file that we're mapping from.
const FileEntry *FromFile
= AST->getFileManager().getVirtualFile(RemappedFiles[I].first,
memBuf->getBufferSize(),
0);
if (!FromFile) {
AST->getDiagnostics().Report(diag::err_fe_remap_missing_from_file)
<< RemappedFiles[I].first;
delete memBuf;
continue;
}
// Override the contents of the "from" file with the contents of
// the "to" file.
AST->getSourceManager().overrideFileContents(FromFile, memBuf);
} else {
const char *fname = fileOrBuf.get<const char *>();
const FileEntry *ToFile = AST->FileMgr->getFile(fname);
if (!ToFile) {
AST->getDiagnostics().Report(diag::err_fe_remap_missing_to_file)
<< RemappedFiles[I].first << fname;
continue;
}
// Create the file entry for the file that we're mapping from.
const FileEntry *FromFile
= AST->getFileManager().getVirtualFile(RemappedFiles[I].first,
ToFile->getSize(),
0);
if (!FromFile) {
AST->getDiagnostics().Report(diag::err_fe_remap_missing_from_file)
<< RemappedFiles[I].first;
delete memBuf;
continue;
}
// Override the contents of the "from" file with the contents of
// the "to" file.
AST->getSourceManager().overrideFileContents(FromFile, ToFile);
}
}
// Gather Info for preprocessor construction later on.
HeaderSearch &HeaderInfo = *AST->HeaderInfo.get();
unsigned Counter;
OwningPtr<ASTReader> Reader;
AST->PP = new Preprocessor(new PreprocessorOptions(),
AST->getDiagnostics(), AST->ASTFileLangOpts,
/*Target=*/0, AST->getSourceManager(), HeaderInfo,
*AST,
/*IILookup=*/0,
/*OwnsHeaderSearch=*/false,
/*DelayInitialization=*/true);
Preprocessor &PP = *AST->PP;
AST->Ctx = new ASTContext(AST->ASTFileLangOpts,
AST->getSourceManager(),
/*Target=*/0,
PP.getIdentifierTable(),
PP.getSelectorTable(),
PP.getBuiltinInfo(),
/* size_reserve = */0,
/*DelayInitialization=*/true);
ASTContext &Context = *AST->Ctx;
bool disableValid = false;
if (::getenv("LIBCLANG_DISABLE_PCH_VALIDATION"))
disableValid = true;
Reader.reset(new ASTReader(PP, Context,
/*isysroot=*/"",
/*DisableValidation=*/disableValid,
AllowPCHWithCompilerErrors));
// Recover resources if we crash before exiting this method.
llvm::CrashRecoveryContextCleanupRegistrar<ASTReader>
ReaderCleanup(Reader.get());
Reader->setListener(new ASTInfoCollector(*AST->PP, Context,
AST->ASTFileLangOpts, HeaderInfo,
AST->TargetOpts, AST->Target,
Counter));
switch (Reader->ReadAST(Filename, serialization::MK_MainFile,
SourceLocation(), ASTReader::ARR_None)) {
case ASTReader::Success:
break;
case ASTReader::Failure:
case ASTReader::OutOfDate:
case ASTReader::VersionMismatch:
case ASTReader::ConfigurationMismatch:
case ASTReader::HadErrors:
AST->getDiagnostics().Report(diag::err_fe_unable_to_load_pch);
return NULL;
}
AST->OriginalSourceFile = Reader->getOriginalSourceFile();
PP.setCounterValue(Counter);
// Attach the AST reader to the AST context as an external AST
// source, so that declarations will be deserialized from the
// AST file as needed.
ASTReader *ReaderPtr = Reader.get();
OwningPtr<ExternalASTSource> Source(Reader.take());
// Unregister the cleanup for ASTReader. It will get cleaned up
// by the ASTUnit cleanup.
ReaderCleanup.unregister();
Context.setExternalSource(Source);
// Create an AST consumer, even though it isn't used.
AST->Consumer.reset(new ASTConsumer);
// Create a semantic analysis object and tell the AST reader about it.
AST->TheSema.reset(new Sema(PP, Context, *AST->Consumer));
AST->TheSema->Initialize();
ReaderPtr->InitializeSema(*AST->TheSema);
AST->Reader = ReaderPtr;
return AST.take();
}
namespace {
/// \brief Preprocessor callback class that updates a hash value with the names
/// of all macros that have been defined by the translation unit.
class MacroDefinitionTrackerPPCallbacks : public PPCallbacks {
unsigned &Hash;
public:
explicit MacroDefinitionTrackerPPCallbacks(unsigned &Hash) : Hash(Hash) { }
virtual void MacroDefined(const Token &MacroNameTok, const MacroInfo *MI) {
Hash = llvm::HashString(MacroNameTok.getIdentifierInfo()->getName(), Hash);
}
};
/// \brief Add the given declaration to the hash of all top-level entities.
void AddTopLevelDeclarationToHash(Decl *D, unsigned &Hash) {
if (!D)
return;
DeclContext *DC = D->getDeclContext();
if (!DC)
return;
if (!(DC->isTranslationUnit() || DC->getLookupParent()->isTranslationUnit()))
return;
if (NamedDecl *ND = dyn_cast<NamedDecl>(D)) {
if (ND->getIdentifier())
Hash = llvm::HashString(ND->getIdentifier()->getName(), Hash);
else if (DeclarationName Name = ND->getDeclName()) {
std::string NameStr = Name.getAsString();
Hash = llvm::HashString(NameStr, Hash);
}
return;
}
}
class TopLevelDeclTrackerConsumer : public ASTConsumer {
ASTUnit &Unit;
unsigned &Hash;
public:
TopLevelDeclTrackerConsumer(ASTUnit &_Unit, unsigned &Hash)
: Unit(_Unit), Hash(Hash) {
Hash = 0;
}
void handleTopLevelDecl(Decl *D) {
if (!D)
return;
// FIXME: Currently ObjC method declarations are incorrectly being
// reported as top-level declarations, even though their DeclContext
// is the containing ObjC @interface/@implementation. This is a
// fundamental problem in the parser right now.
if (isa<ObjCMethodDecl>(D))
return;
AddTopLevelDeclarationToHash(D, Hash);
Unit.addTopLevelDecl(D);
handleFileLevelDecl(D);
}
void handleFileLevelDecl(Decl *D) {
Unit.addFileLevelDecl(D);
if (NamespaceDecl *NSD = dyn_cast<NamespaceDecl>(D)) {
for (NamespaceDecl::decl_iterator
I = NSD->decls_begin(), E = NSD->decls_end(); I != E; ++I)
handleFileLevelDecl(*I);
}
}
bool HandleTopLevelDecl(DeclGroupRef D) {
for (DeclGroupRef::iterator it = D.begin(), ie = D.end(); it != ie; ++it)
handleTopLevelDecl(*it);
return true;
}
// We're not interested in "interesting" decls.
void HandleInterestingDecl(DeclGroupRef) {}
void HandleTopLevelDeclInObjCContainer(DeclGroupRef D) {
for (DeclGroupRef::iterator it = D.begin(), ie = D.end(); it != ie; ++it)
handleTopLevelDecl(*it);
}
virtual ASTDeserializationListener *GetASTDeserializationListener() {
return Unit.getDeserializationListener();
}
};
class TopLevelDeclTrackerAction : public ASTFrontendAction {
public:
ASTUnit &Unit;
virtual ASTConsumer *CreateASTConsumer(CompilerInstance &CI,
StringRef InFile) {
CI.getPreprocessor().addPPCallbacks(
new MacroDefinitionTrackerPPCallbacks(Unit.getCurrentTopLevelHashValue()));
return new TopLevelDeclTrackerConsumer(Unit,
Unit.getCurrentTopLevelHashValue());
}
public:
TopLevelDeclTrackerAction(ASTUnit &_Unit) : Unit(_Unit) {}
virtual bool hasCodeCompletionSupport() const { return false; }
virtual TranslationUnitKind getTranslationUnitKind() {
return Unit.getTranslationUnitKind();
}
};
class PrecompilePreambleConsumer : public PCHGenerator {
ASTUnit &Unit;
unsigned &Hash;
std::vector<Decl *> TopLevelDecls;
public:
PrecompilePreambleConsumer(ASTUnit &Unit, const Preprocessor &PP,
StringRef isysroot, raw_ostream *Out)
: PCHGenerator(PP, "", 0, isysroot, Out), Unit(Unit),
Hash(Unit.getCurrentTopLevelHashValue()) {
Hash = 0;
}
virtual bool HandleTopLevelDecl(DeclGroupRef D) {
for (DeclGroupRef::iterator it = D.begin(), ie = D.end(); it != ie; ++it) {
Decl *D = *it;
// FIXME: Currently ObjC method declarations are incorrectly being
// reported as top-level declarations, even though their DeclContext
// is the containing ObjC @interface/@implementation. This is a
// fundamental problem in the parser right now.
if (isa<ObjCMethodDecl>(D))
continue;
AddTopLevelDeclarationToHash(D, Hash);
TopLevelDecls.push_back(D);
}
return true;
}
virtual void HandleTranslationUnit(ASTContext &Ctx) {
PCHGenerator::HandleTranslationUnit(Ctx);
if (!Unit.getDiagnostics().hasErrorOccurred()) {
// Translate the top-level declarations we captured during
// parsing into declaration IDs in the precompiled
// preamble. This will allow us to deserialize those top-level
// declarations when requested.
for (unsigned I = 0, N = TopLevelDecls.size(); I != N; ++I)
Unit.addTopLevelDeclFromPreamble(
getWriter().getDeclID(TopLevelDecls[I]));
}
}
};
class PrecompilePreambleAction : public ASTFrontendAction {
ASTUnit &Unit;
public:
explicit PrecompilePreambleAction(ASTUnit &Unit) : Unit(Unit) {}
virtual ASTConsumer *CreateASTConsumer(CompilerInstance &CI,
StringRef InFile) {
std::string Sysroot;
std::string OutputFile;
raw_ostream *OS = 0;
if (GeneratePCHAction::ComputeASTConsumerArguments(CI, InFile, Sysroot,
OutputFile,
OS))
return 0;
if (!CI.getFrontendOpts().RelocatablePCH)
Sysroot.clear();
CI.getPreprocessor().addPPCallbacks(
new MacroDefinitionTrackerPPCallbacks(Unit.getCurrentTopLevelHashValue()));
return new PrecompilePreambleConsumer(Unit, CI.getPreprocessor(), Sysroot,
OS);
}
virtual bool hasCodeCompletionSupport() const { return false; }
virtual bool hasASTFileSupport() const { return false; }
virtual TranslationUnitKind getTranslationUnitKind() { return TU_Prefix; }
};
}
static void checkAndRemoveNonDriverDiags(SmallVectorImpl<StoredDiagnostic> &
StoredDiagnostics) {
// Get rid of stored diagnostics except the ones from the driver which do not
// have a source location.
for (unsigned I = 0; I < StoredDiagnostics.size(); ++I) {
if (StoredDiagnostics[I].getLocation().isValid()) {
StoredDiagnostics.erase(StoredDiagnostics.begin()+I);
--I;
}
}
}
static void checkAndSanitizeDiags(SmallVectorImpl<StoredDiagnostic> &
StoredDiagnostics,
SourceManager &SM) {
// The stored diagnostic has the old source manager in it; update
// the locations to refer into the new source manager. Since we've
// been careful to make sure that the source manager's state
// before and after are identical, so that we can reuse the source
// location itself.
for (unsigned I = 0, N = StoredDiagnostics.size(); I < N; ++I) {
if (StoredDiagnostics[I].getLocation().isValid()) {
FullSourceLoc Loc(StoredDiagnostics[I].getLocation(), SM);
StoredDiagnostics[I].setLocation(Loc);
}
}
}
/// Parse the source file into a translation unit using the given compiler
/// invocation, replacing the current translation unit.
///
/// \returns True if a failure occurred that causes the ASTUnit not to
/// contain any translation-unit information, false otherwise.
bool ASTUnit::Parse(llvm::MemoryBuffer *OverrideMainBuffer) {
delete SavedMainFileBuffer;
SavedMainFileBuffer = 0;
if (!Invocation) {
delete OverrideMainBuffer;
return true;
}
// Create the compiler instance to use for building the AST.
OwningPtr<CompilerInstance> Clang(new CompilerInstance());
// Recover resources if we crash before exiting this method.
llvm::CrashRecoveryContextCleanupRegistrar<CompilerInstance>
CICleanup(Clang.get());
IntrusiveRefCntPtr<CompilerInvocation>
CCInvocation(new CompilerInvocation(*Invocation));
Clang->setInvocation(CCInvocation.getPtr());
OriginalSourceFile = Clang->getFrontendOpts().Inputs[0].getFile();
// Set up diagnostics, capturing any diagnostics that would
// otherwise be dropped.
Clang->setDiagnostics(&getDiagnostics());
// Create the target instance.
Clang->setTarget(TargetInfo::CreateTargetInfo(Clang->getDiagnostics(),
&Clang->getTargetOpts()));
if (!Clang->hasTarget()) {
delete OverrideMainBuffer;
return true;
}
// Inform the target of the language options.
//
// FIXME: We shouldn't need to do this, the target should be immutable once
// created. This complexity should be lifted elsewhere.
Clang->getTarget().setForcedLangOptions(Clang->getLangOpts());
assert(Clang->getFrontendOpts().Inputs.size() == 1 &&
"Invocation must have exactly one source file!");
assert(Clang->getFrontendOpts().Inputs[0].getKind() != IK_AST &&
"FIXME: AST inputs not yet supported here!");
assert(Clang->getFrontendOpts().Inputs[0].getKind() != IK_LLVM_IR &&
"IR inputs not support here!");
// Configure the various subsystems.
// FIXME: Should we retain the previous file manager?
LangOpts = &Clang->getLangOpts();
FileSystemOpts = Clang->getFileSystemOpts();
FileMgr = new FileManager(FileSystemOpts);
SourceMgr = new SourceManager(getDiagnostics(), *FileMgr,
UserFilesAreVolatile);
TheSema.reset();
Ctx = 0;
PP = 0;
Reader = 0;
// Clear out old caches and data.
TopLevelDecls.clear();
clearFileLevelDecls();
CleanTemporaryFiles();
if (!OverrideMainBuffer) {
checkAndRemoveNonDriverDiags(StoredDiagnostics);
TopLevelDeclsInPreamble.clear();
}
// Create a file manager object to provide access to and cache the filesystem.
Clang->setFileManager(&getFileManager());
// Create the source manager.
Clang->setSourceManager(&getSourceManager());
// If the main file has been overridden due to the use of a preamble,
// make that override happen and introduce the preamble.
PreprocessorOptions &PreprocessorOpts = Clang->getPreprocessorOpts();
if (OverrideMainBuffer) {
PreprocessorOpts.addRemappedFile(OriginalSourceFile, OverrideMainBuffer);
PreprocessorOpts.PrecompiledPreambleBytes.first = Preamble.size();
PreprocessorOpts.PrecompiledPreambleBytes.second
= PreambleEndsAtStartOfLine;
PreprocessorOpts.ImplicitPCHInclude = getPreambleFile(this);
PreprocessorOpts.DisablePCHValidation = true;
// The stored diagnostic has the old source manager in it; update
// the locations to refer into the new source manager. Since we've
// been careful to make sure that the source manager's state
// before and after are identical, so that we can reuse the source
// location itself.
checkAndSanitizeDiags(StoredDiagnostics, getSourceManager());
// Keep track of the override buffer;
SavedMainFileBuffer = OverrideMainBuffer;
}
OwningPtr<TopLevelDeclTrackerAction> Act(
new TopLevelDeclTrackerAction(*this));
// Recover resources if we crash before exiting this method.
llvm::CrashRecoveryContextCleanupRegistrar<TopLevelDeclTrackerAction>
ActCleanup(Act.get());
if (!Act->BeginSourceFile(*Clang.get(), Clang->getFrontendOpts().Inputs[0]))
goto error;
if (OverrideMainBuffer) {
std::string ModName = getPreambleFile(this);
TranslateStoredDiagnostics(Clang->getModuleManager(), ModName,
getSourceManager(), PreambleDiagnostics,
StoredDiagnostics);
}
if (!Act->Execute())
goto error;
transferASTDataFromCompilerInstance(*Clang);
Act->EndSourceFile();
FailedParseDiagnostics.clear();
return false;
error:
// Remove the overridden buffer we used for the preamble.
if (OverrideMainBuffer) {
delete OverrideMainBuffer;
SavedMainFileBuffer = 0;
}
// Keep the ownership of the data in the ASTUnit because the client may
// want to see the diagnostics.
transferASTDataFromCompilerInstance(*Clang);
FailedParseDiagnostics.swap(StoredDiagnostics);
StoredDiagnostics.clear();
NumStoredDiagnosticsFromDriver = 0;
return true;
}
/// \brief Simple function to retrieve a path for a preamble precompiled header.
static std::string GetPreamblePCHPath() {
// FIXME: This is lame; sys::Path should provide this function (in particular,
// it should know how to find the temporary files dir).
// FIXME: This is really lame. I copied this code from the Driver!
// FIXME: This is a hack so that we can override the preamble file during
// crash-recovery testing, which is the only case where the preamble files
// are not necessarily cleaned up.
const char *TmpFile = ::getenv("CINDEXTEST_PREAMBLE_FILE");
if (TmpFile)
return TmpFile;
std::string Error;
const char *TmpDir = ::getenv("TMPDIR");
if (!TmpDir)
TmpDir = ::getenv("TEMP");
if (!TmpDir)
TmpDir = ::getenv("TMP");
#ifdef LLVM_ON_WIN32
if (!TmpDir)
TmpDir = ::getenv("USERPROFILE");
#endif
if (!TmpDir)
TmpDir = "/tmp";
llvm::sys::Path P(TmpDir);
P.createDirectoryOnDisk(true);
P.appendComponent("preamble");
P.appendSuffix("pch");
if (P.makeUnique(/*reuse_current=*/false, /*ErrMsg*/0))
return std::string();
return P.str();
}
/// \brief Compute the preamble for the main file, providing the source buffer
/// that corresponds to the main file along with a pair (bytes, start-of-line)
/// that describes the preamble.
std::pair<llvm::MemoryBuffer *, std::pair<unsigned, bool> >
ASTUnit::ComputePreamble(CompilerInvocation &Invocation,
unsigned MaxLines, bool &CreatedBuffer) {
FrontendOptions &FrontendOpts = Invocation.getFrontendOpts();
PreprocessorOptions &PreprocessorOpts = Invocation.getPreprocessorOpts();
CreatedBuffer = false;
// Try to determine if the main file has been remapped, either from the
// command line (to another file) or directly through the compiler invocation
// (to a memory buffer).
llvm::MemoryBuffer *Buffer = 0;
llvm::sys::PathWithStatus MainFilePath(FrontendOpts.Inputs[0].getFile());
if (const llvm::sys::FileStatus *MainFileStatus = MainFilePath.getFileStatus()) {
// Check whether there is a file-file remapping of the main file
for (PreprocessorOptions::remapped_file_iterator
M = PreprocessorOpts.remapped_file_begin(),
E = PreprocessorOpts.remapped_file_end();
M != E;
++M) {
llvm::sys::PathWithStatus MPath(M->first);
if (const llvm::sys::FileStatus *MStatus = MPath.getFileStatus()) {
if (MainFileStatus->uniqueID == MStatus->uniqueID) {
// We found a remapping. Try to load the resulting, remapped source.
if (CreatedBuffer) {
delete Buffer;
CreatedBuffer = false;
}
Buffer = getBufferForFile(M->second);
if (!Buffer)
return std::make_pair((llvm::MemoryBuffer*)0,
std::make_pair(0, true));
CreatedBuffer = true;
}
}
}
// Check whether there is a file-buffer remapping. It supercedes the
// file-file remapping.
for (PreprocessorOptions::remapped_file_buffer_iterator
M = PreprocessorOpts.remapped_file_buffer_begin(),
E = PreprocessorOpts.remapped_file_buffer_end();
M != E;
++M) {
llvm::sys::PathWithStatus MPath(M->first);
if (const llvm::sys::FileStatus *MStatus = MPath.getFileStatus()) {
if (MainFileStatus->uniqueID == MStatus->uniqueID) {
// We found a remapping.
if (CreatedBuffer) {
delete Buffer;
CreatedBuffer = false;
}
Buffer = const_cast<llvm::MemoryBuffer *>(M->second);
}
}
}
}
// If the main source file was not remapped, load it now.
if (!Buffer) {
Buffer = getBufferForFile(FrontendOpts.Inputs[0].getFile());
if (!Buffer)
return std::make_pair((llvm::MemoryBuffer*)0, std::make_pair(0, true));
CreatedBuffer = true;
}
return std::make_pair(Buffer, Lexer::ComputePreamble(Buffer,
*Invocation.getLangOpts(),
MaxLines));
}
static llvm::MemoryBuffer *CreatePaddedMainFileBuffer(llvm::MemoryBuffer *Old,
unsigned NewSize,
StringRef NewName) {
llvm::MemoryBuffer *Result
= llvm::MemoryBuffer::getNewUninitMemBuffer(NewSize, NewName);
memcpy(const_cast<char*>(Result->getBufferStart()),
Old->getBufferStart(), Old->getBufferSize());
memset(const_cast<char*>(Result->getBufferStart()) + Old->getBufferSize(),
' ', NewSize - Old->getBufferSize() - 1);
const_cast<char*>(Result->getBufferEnd())[-1] = '\n';
return Result;
}
/// \brief Attempt to build or re-use a precompiled preamble when (re-)parsing
/// the source file.
///
/// This routine will compute the preamble of the main source file. If a
/// non-trivial preamble is found, it will precompile that preamble into a
/// precompiled header so that the precompiled preamble can be used to reduce
/// reparsing time. If a precompiled preamble has already been constructed,
/// this routine will determine if it is still valid and, if so, avoid
/// rebuilding the precompiled preamble.
///
/// \param AllowRebuild When true (the default), this routine is
/// allowed to rebuild the precompiled preamble if it is found to be
/// out-of-date.
///
/// \param MaxLines When non-zero, the maximum number of lines that
/// can occur within the preamble.
///
/// \returns If the precompiled preamble can be used, returns a newly-allocated
/// buffer that should be used in place of the main file when doing so.
/// Otherwise, returns a NULL pointer.
llvm::MemoryBuffer *ASTUnit::getMainBufferWithPrecompiledPreamble(
const CompilerInvocation &PreambleInvocationIn,
bool AllowRebuild,
unsigned MaxLines) {
IntrusiveRefCntPtr<CompilerInvocation>
PreambleInvocation(new CompilerInvocation(PreambleInvocationIn));
FrontendOptions &FrontendOpts = PreambleInvocation->getFrontendOpts();
PreprocessorOptions &PreprocessorOpts
= PreambleInvocation->getPreprocessorOpts();
bool CreatedPreambleBuffer = false;
std::pair<llvm::MemoryBuffer *, std::pair<unsigned, bool> > NewPreamble
= ComputePreamble(*PreambleInvocation, MaxLines, CreatedPreambleBuffer);
// If ComputePreamble() Take ownership of the preamble buffer.
OwningPtr<llvm::MemoryBuffer> OwnedPreambleBuffer;
if (CreatedPreambleBuffer)
OwnedPreambleBuffer.reset(NewPreamble.first);
if (!NewPreamble.second.first) {
// We couldn't find a preamble in the main source. Clear out the current
// preamble, if we have one. It's obviously no good any more.
Preamble.clear();
erasePreambleFile(this);
// The next time we actually see a preamble, precompile it.
PreambleRebuildCounter = 1;
return 0;
}
if (!Preamble.empty()) {
// We've previously computed a preamble. Check whether we have the same
// preamble now that we did before, and that there's enough space in
// the main-file buffer within the precompiled preamble to fit the
// new main file.
if (Preamble.size() == NewPreamble.second.first &&
PreambleEndsAtStartOfLine == NewPreamble.second.second &&
NewPreamble.first->getBufferSize() < PreambleReservedSize-2 &&
memcmp(Preamble.getBufferStart(), NewPreamble.first->getBufferStart(),
NewPreamble.second.first) == 0) {
// The preamble has not changed. We may be able to re-use the precompiled
// preamble.
// Check that none of the files used by the preamble have changed.
bool AnyFileChanged = false;
// First, make a record of those files that have been overridden via
// remapping or unsaved_files.
llvm::StringMap<std::pair<off_t, time_t> > OverriddenFiles;
for (PreprocessorOptions::remapped_file_iterator
R = PreprocessorOpts.remapped_file_begin(),
REnd = PreprocessorOpts.remapped_file_end();
!AnyFileChanged && R != REnd;
++R) {
struct stat StatBuf;
if (FileMgr->getNoncachedStatValue(R->second, StatBuf)) {
// If we can't stat the file we're remapping to, assume that something
// horrible happened.
AnyFileChanged = true;
break;
}
OverriddenFiles[R->first] = std::make_pair(StatBuf.st_size,
StatBuf.st_mtime);
}
for (PreprocessorOptions::remapped_file_buffer_iterator
R = PreprocessorOpts.remapped_file_buffer_begin(),
REnd = PreprocessorOpts.remapped_file_buffer_end();
!AnyFileChanged && R != REnd;
++R) {
// FIXME: Should we actually compare the contents of file->buffer
// remappings?
OverriddenFiles[R->first] = std::make_pair(R->second->getBufferSize(),
0);
}
// Check whether anything has changed.
for (llvm::StringMap<std::pair<off_t, time_t> >::iterator
F = FilesInPreamble.begin(), FEnd = FilesInPreamble.end();
!AnyFileChanged && F != FEnd;
++F) {
llvm::StringMap<std::pair<off_t, time_t> >::iterator Overridden
= OverriddenFiles.find(F->first());
if (Overridden != OverriddenFiles.end()) {
// This file was remapped; check whether the newly-mapped file
// matches up with the previous mapping.
if (Overridden->second != F->second)
AnyFileChanged = true;
continue;
}
// The file was not remapped; check whether it has changed on disk.
struct stat StatBuf;
if (FileMgr->getNoncachedStatValue(F->first(), StatBuf)) {
// If we can't stat the file, assume that something horrible happened.
AnyFileChanged = true;
} else if (StatBuf.st_size != F->second.first ||
StatBuf.st_mtime != F->second.second)
AnyFileChanged = true;
}
if (!AnyFileChanged) {
// Okay! We can re-use the precompiled preamble.
// Set the state of the diagnostic object to mimic its state
// after parsing the preamble.
getDiagnostics().Reset();
ProcessWarningOptions(getDiagnostics(),
PreambleInvocation->getDiagnosticOpts());
getDiagnostics().setNumWarnings(NumWarningsInPreamble);
// Create a version of the main file buffer that is padded to
// buffer size we reserved when creating the preamble.
return CreatePaddedMainFileBuffer(NewPreamble.first,
PreambleReservedSize,
FrontendOpts.Inputs[0].getFile());
}
}
// If we aren't allowed to rebuild the precompiled preamble, just
// return now.
if (!AllowRebuild)
return 0;
// We can't reuse the previously-computed preamble. Build a new one.
Preamble.clear();
PreambleDiagnostics.clear();
erasePreambleFile(this);
PreambleRebuildCounter = 1;
} else if (!AllowRebuild) {
// We aren't allowed to rebuild the precompiled preamble; just
// return now.
return 0;
}
// If the preamble rebuild counter > 1, it's because we previously
// failed to build a preamble and we're not yet ready to try
// again. Decrement the counter and return a failure.
if (PreambleRebuildCounter > 1) {
--PreambleRebuildCounter;
return 0;
}
// Create a temporary file for the precompiled preamble. In rare
// circumstances, this can fail.
std::string PreamblePCHPath = GetPreamblePCHPath();
if (PreamblePCHPath.empty()) {
// Try again next time.
PreambleRebuildCounter = 1;
return 0;
}
// We did not previously compute a preamble, or it can't be reused anyway.
SimpleTimer PreambleTimer(WantTiming);
PreambleTimer.setOutput("Precompiling preamble");
// Create a new buffer that stores the preamble. The buffer also contains
// extra space for the original contents of the file (which will be present
// when we actually parse the file) along with more room in case the file
// grows.
PreambleReservedSize = NewPreamble.first->getBufferSize();
if (PreambleReservedSize < 4096)
PreambleReservedSize = 8191;
else
PreambleReservedSize *= 2;
// Save the preamble text for later; we'll need to compare against it for
// subsequent reparses.
StringRef MainFilename = PreambleInvocation->getFrontendOpts().Inputs[0].getFile();
Preamble.assign(FileMgr->getFile(MainFilename),
NewPreamble.first->getBufferStart(),
NewPreamble.first->getBufferStart()
+ NewPreamble.second.first);
PreambleEndsAtStartOfLine = NewPreamble.second.second;
delete PreambleBuffer;
PreambleBuffer
= llvm::MemoryBuffer::getNewUninitMemBuffer(PreambleReservedSize,
FrontendOpts.Inputs[0].getFile());
memcpy(const_cast<char*>(PreambleBuffer->getBufferStart()),
NewPreamble.first->getBufferStart(), Preamble.size());
memset(const_cast<char*>(PreambleBuffer->getBufferStart()) + Preamble.size(),
' ', PreambleReservedSize - Preamble.size() - 1);
const_cast<char*>(PreambleBuffer->getBufferEnd())[-1] = '\n';
// Remap the main source file to the preamble buffer.
llvm::sys::PathWithStatus MainFilePath(FrontendOpts.Inputs[0].getFile());
PreprocessorOpts.addRemappedFile(MainFilePath.str(), PreambleBuffer);
// Tell the compiler invocation to generate a temporary precompiled header.
FrontendOpts.ProgramAction = frontend::GeneratePCH;
// FIXME: Generate the precompiled header into memory?
FrontendOpts.OutputFile = PreamblePCHPath;
PreprocessorOpts.PrecompiledPreambleBytes.first = 0;
PreprocessorOpts.PrecompiledPreambleBytes.second = false;
// Create the compiler instance to use for building the precompiled preamble.
OwningPtr<CompilerInstance> Clang(new CompilerInstance());
// Recover resources if we crash before exiting this method.
llvm::CrashRecoveryContextCleanupRegistrar<CompilerInstance>
CICleanup(Clang.get());
Clang->setInvocation(&*PreambleInvocation);
OriginalSourceFile = Clang->getFrontendOpts().Inputs[0].getFile();
// Set up diagnostics, capturing all of the diagnostics produced.
Clang->setDiagnostics(&getDiagnostics());
// Create the target instance.
Clang->setTarget(TargetInfo::CreateTargetInfo(Clang->getDiagnostics(),
&Clang->getTargetOpts()));
if (!Clang->hasTarget()) {
llvm::sys::Path(FrontendOpts.OutputFile).eraseFromDisk();
Preamble.clear();
PreambleRebuildCounter = DefaultPreambleRebuildInterval;
PreprocessorOpts.eraseRemappedFile(
PreprocessorOpts.remapped_file_buffer_end() - 1);
return 0;
}
// Inform the target of the language options.
//
// FIXME: We shouldn't need to do this, the target should be immutable once
// created. This complexity should be lifted elsewhere.
Clang->getTarget().setForcedLangOptions(Clang->getLangOpts());
assert(Clang->getFrontendOpts().Inputs.size() == 1 &&
"Invocation must have exactly one source file!");
assert(Clang->getFrontendOpts().Inputs[0].getKind() != IK_AST &&
"FIXME: AST inputs not yet supported here!");
assert(Clang->getFrontendOpts().Inputs[0].getKind() != IK_LLVM_IR &&
"IR inputs not support here!");
// Clear out old caches and data.
getDiagnostics().Reset();
ProcessWarningOptions(getDiagnostics(), Clang->getDiagnosticOpts());
checkAndRemoveNonDriverDiags(StoredDiagnostics);
TopLevelDecls.clear();
TopLevelDeclsInPreamble.clear();
// Create a file manager object to provide access to and cache the filesystem.
Clang->setFileManager(new FileManager(Clang->getFileSystemOpts()));
// Create the source manager.
Clang->setSourceManager(new SourceManager(getDiagnostics(),
Clang->getFileManager()));
OwningPtr<PrecompilePreambleAction> Act;
Act.reset(new PrecompilePreambleAction(*this));
if (!Act->BeginSourceFile(*Clang.get(), Clang->getFrontendOpts().Inputs[0])) {
llvm::sys::Path(FrontendOpts.OutputFile).eraseFromDisk();
Preamble.clear();
PreambleRebuildCounter = DefaultPreambleRebuildInterval;
PreprocessorOpts.eraseRemappedFile(
PreprocessorOpts.remapped_file_buffer_end() - 1);
return 0;
}
Act->Execute();
Act->EndSourceFile();
if (Diagnostics->hasErrorOccurred()) {
// There were errors parsing the preamble, so no precompiled header was
// generated. Forget that we even tried.
// FIXME: Should we leave a note for ourselves to try again?
llvm::sys::Path(FrontendOpts.OutputFile).eraseFromDisk();
Preamble.clear();
TopLevelDeclsInPreamble.clear();
PreambleRebuildCounter = DefaultPreambleRebuildInterval;
PreprocessorOpts.eraseRemappedFile(
PreprocessorOpts.remapped_file_buffer_end() - 1);
return 0;
}
// Transfer any diagnostics generated when parsing the preamble into the set
// of preamble diagnostics.
PreambleDiagnostics.clear();
PreambleDiagnostics.insert(PreambleDiagnostics.end(),
stored_diag_afterDriver_begin(), stored_diag_end());
checkAndRemoveNonDriverDiags(StoredDiagnostics);
// Keep track of the preamble we precompiled.
setPreambleFile(this, FrontendOpts.OutputFile);
NumWarningsInPreamble = getDiagnostics().getNumWarnings();
// Keep track of all of the files that the source manager knows about,
// so we can verify whether they have changed or not.
FilesInPreamble.clear();
SourceManager &SourceMgr = Clang->getSourceManager();
const llvm::MemoryBuffer *MainFileBuffer
= SourceMgr.getBuffer(SourceMgr.getMainFileID());
for (SourceManager::fileinfo_iterator F = SourceMgr.fileinfo_begin(),
FEnd = SourceMgr.fileinfo_end();
F != FEnd;
++F) {
const FileEntry *File = F->second->OrigEntry;
if (!File || F->second->getRawBuffer() == MainFileBuffer)
continue;
FilesInPreamble[File->getName()]
= std::make_pair(F->second->getSize(), File->getModificationTime());
}
PreambleRebuildCounter = 1;
PreprocessorOpts.eraseRemappedFile(
PreprocessorOpts.remapped_file_buffer_end() - 1);
// If the hash of top-level entities differs from the hash of the top-level
// entities the last time we rebuilt the preamble, clear out the completion
// cache.
if (CurrentTopLevelHashValue != PreambleTopLevelHashValue) {
CompletionCacheTopLevelHashValue = 0;
PreambleTopLevelHashValue = CurrentTopLevelHashValue;
}
return CreatePaddedMainFileBuffer(NewPreamble.first,
PreambleReservedSize,
FrontendOpts.Inputs[0].getFile());
}
void ASTUnit::RealizeTopLevelDeclsFromPreamble() {
std::vector<Decl *> Resolved;
Resolved.reserve(TopLevelDeclsInPreamble.size());
ExternalASTSource &Source = *getASTContext().getExternalSource();
for (unsigned I = 0, N = TopLevelDeclsInPreamble.size(); I != N; ++I) {
// Resolve the declaration ID to an actual declaration, possibly
// deserializing the declaration in the process.
Decl *D = Source.GetExternalDecl(TopLevelDeclsInPreamble[I]);
if (D)
Resolved.push_back(D);
}
TopLevelDeclsInPreamble.clear();
TopLevelDecls.insert(TopLevelDecls.begin(), Resolved.begin(), Resolved.end());
}
void ASTUnit::transferASTDataFromCompilerInstance(CompilerInstance &CI) {
// Steal the created target, context, and preprocessor.
TheSema.reset(CI.takeSema());
Consumer.reset(CI.takeASTConsumer());
Ctx = &CI.getASTContext();
PP = &CI.getPreprocessor();
CI.setSourceManager(0);
CI.setFileManager(0);
Target = &CI.getTarget();
Reader = CI.getModuleManager();
}
StringRef ASTUnit::getMainFileName() const {
if (Invocation && !Invocation->getFrontendOpts().Inputs.empty()) {
const FrontendInputFile &Input = Invocation->getFrontendOpts().Inputs[0];
if (Input.isFile())
return Input.getFile();
else
return Input.getBuffer()->getBufferIdentifier();
}
if (SourceMgr) {
if (const FileEntry *
FE = SourceMgr->getFileEntryForID(SourceMgr->getMainFileID()))
return FE->getName();
}
return StringRef();
}
ASTUnit *ASTUnit::create(CompilerInvocation *CI,
IntrusiveRefCntPtr<DiagnosticsEngine> Diags,
bool CaptureDiagnostics,
bool UserFilesAreVolatile) {
OwningPtr<ASTUnit> AST;
AST.reset(new ASTUnit(false));
ConfigureDiags(Diags, 0, 0, *AST, CaptureDiagnostics);
AST->Diagnostics = Diags;
AST->Invocation = CI;
AST->FileSystemOpts = CI->getFileSystemOpts();
AST->FileMgr = new FileManager(AST->FileSystemOpts);
AST->UserFilesAreVolatile = UserFilesAreVolatile;
AST->SourceMgr = new SourceManager(AST->getDiagnostics(), *AST->FileMgr,
UserFilesAreVolatile);
return AST.take();
}
ASTUnit *ASTUnit::LoadFromCompilerInvocationAction(CompilerInvocation *CI,
IntrusiveRefCntPtr<DiagnosticsEngine> Diags,
ASTFrontendAction *Action,
ASTUnit *Unit,
bool Persistent,
StringRef ResourceFilesPath,
bool OnlyLocalDecls,
bool CaptureDiagnostics,
bool PrecompilePreamble,
bool CacheCodeCompletionResults,
bool IncludeBriefCommentsInCodeCompletion,
bool UserFilesAreVolatile,
OwningPtr<ASTUnit> *ErrAST) {
assert(CI && "A CompilerInvocation is required");
OwningPtr<ASTUnit> OwnAST;
ASTUnit *AST = Unit;
if (!AST) {
// Create the AST unit.
OwnAST.reset(create(CI, Diags, CaptureDiagnostics, UserFilesAreVolatile));
AST = OwnAST.get();
}
if (!ResourceFilesPath.empty()) {
// Override the resources path.
CI->getHeaderSearchOpts().ResourceDir = ResourceFilesPath;
}
AST->OnlyLocalDecls = OnlyLocalDecls;
AST->CaptureDiagnostics = CaptureDiagnostics;
if (PrecompilePreamble)
AST->PreambleRebuildCounter = 2;
AST->TUKind = Action ? Action->getTranslationUnitKind() : TU_Complete;
AST->ShouldCacheCodeCompletionResults = CacheCodeCompletionResults;
AST->IncludeBriefCommentsInCodeCompletion
= IncludeBriefCommentsInCodeCompletion;
// Recover resources if we crash before exiting this method.
llvm::CrashRecoveryContextCleanupRegistrar<ASTUnit>
ASTUnitCleanup(OwnAST.get());
llvm::CrashRecoveryContextCleanupRegistrar<DiagnosticsEngine,
llvm::CrashRecoveryContextReleaseRefCleanup<DiagnosticsEngine> >
DiagCleanup(Diags.getPtr());
// We'll manage file buffers ourselves.
CI->getPreprocessorOpts().RetainRemappedFileBuffers = true;
CI->getFrontendOpts().DisableFree = false;
ProcessWarningOptions(AST->getDiagnostics(), CI->getDiagnosticOpts());
// Create the compiler instance to use for building the AST.
OwningPtr<CompilerInstance> Clang(new CompilerInstance());
// Recover resources if we crash before exiting this method.
llvm::CrashRecoveryContextCleanupRegistrar<CompilerInstance>
CICleanup(Clang.get());
Clang->setInvocation(CI);
AST->OriginalSourceFile = Clang->getFrontendOpts().Inputs[0].getFile();
// Set up diagnostics, capturing any diagnostics that would
// otherwise be dropped.
Clang->setDiagnostics(&AST->getDiagnostics());
// Create the target instance.
Clang->setTarget(TargetInfo::CreateTargetInfo(Clang->getDiagnostics(),
&Clang->getTargetOpts()));
if (!Clang->hasTarget())
return 0;
// Inform the target of the language options.
//
// FIXME: We shouldn't need to do this, the target should be immutable once
// created. This complexity should be lifted elsewhere.
Clang->getTarget().setForcedLangOptions(Clang->getLangOpts());
assert(Clang->getFrontendOpts().Inputs.size() == 1 &&
"Invocation must have exactly one source file!");
assert(Clang->getFrontendOpts().Inputs[0].getKind() != IK_AST &&
"FIXME: AST inputs not yet supported here!");
assert(Clang->getFrontendOpts().Inputs[0].getKind() != IK_LLVM_IR &&
"IR inputs not supported here!");
// Configure the various subsystems.
AST->TheSema.reset();
AST->Ctx = 0;
AST->PP = 0;
AST->Reader = 0;
// Create a file manager object to provide access to and cache the filesystem.
Clang->setFileManager(&AST->getFileManager());
// Create the source manager.
Clang->setSourceManager(&AST->getSourceManager());
ASTFrontendAction *Act = Action;
OwningPtr<TopLevelDeclTrackerAction> TrackerAct;
if (!Act) {
TrackerAct.reset(new TopLevelDeclTrackerAction(*AST));
Act = TrackerAct.get();
}
// Recover resources if we crash before exiting this method.
llvm::CrashRecoveryContextCleanupRegistrar<TopLevelDeclTrackerAction>
ActCleanup(TrackerAct.get());
if (!Act->BeginSourceFile(*Clang.get(), Clang->getFrontendOpts().Inputs[0])) {
AST->transferASTDataFromCompilerInstance(*Clang);
if (OwnAST && ErrAST)
ErrAST->swap(OwnAST);
return 0;
}
if (Persistent && !TrackerAct) {
Clang->getPreprocessor().addPPCallbacks(
new MacroDefinitionTrackerPPCallbacks(AST->getCurrentTopLevelHashValue()));
std::vector<ASTConsumer*> Consumers;
if (Clang->hasASTConsumer())
Consumers.push_back(Clang->takeASTConsumer());
Consumers.push_back(new TopLevelDeclTrackerConsumer(*AST,
AST->getCurrentTopLevelHashValue()));
Clang->setASTConsumer(new MultiplexConsumer(Consumers));
}
if (!Act->Execute()) {
AST->transferASTDataFromCompilerInstance(*Clang);
if (OwnAST && ErrAST)
ErrAST->swap(OwnAST);
return 0;
}
// Steal the created target, context, and preprocessor.
AST->transferASTDataFromCompilerInstance(*Clang);
Act->EndSourceFile();
if (OwnAST)
return OwnAST.take();
else
return AST;
}
bool ASTUnit::LoadFromCompilerInvocation(bool PrecompilePreamble) {
if (!Invocation)
return true;
// We'll manage file buffers ourselves.
Invocation->getPreprocessorOpts().RetainRemappedFileBuffers = true;
Invocation->getFrontendOpts().DisableFree = false;
ProcessWarningOptions(getDiagnostics(), Invocation->getDiagnosticOpts());
llvm::MemoryBuffer *OverrideMainBuffer = 0;
if (PrecompilePreamble) {
PreambleRebuildCounter = 2;
OverrideMainBuffer
= getMainBufferWithPrecompiledPreamble(*Invocation);
}
SimpleTimer ParsingTimer(WantTiming);
ParsingTimer.setOutput("Parsing " + getMainFileName());
// Recover resources if we crash before exiting this method.
llvm::CrashRecoveryContextCleanupRegistrar<llvm::MemoryBuffer>
MemBufferCleanup(OverrideMainBuffer);
return Parse(OverrideMainBuffer);
}
ASTUnit *ASTUnit::LoadFromCompilerInvocation(CompilerInvocation *CI,
IntrusiveRefCntPtr<DiagnosticsEngine> Diags,
bool OnlyLocalDecls,
bool CaptureDiagnostics,
bool PrecompilePreamble,
TranslationUnitKind TUKind,
bool CacheCodeCompletionResults,
bool IncludeBriefCommentsInCodeCompletion,
bool UserFilesAreVolatile) {
// Create the AST unit.
OwningPtr<ASTUnit> AST;
AST.reset(new ASTUnit(false));
ConfigureDiags(Diags, 0, 0, *AST, CaptureDiagnostics);
AST->Diagnostics = Diags;
AST->OnlyLocalDecls = OnlyLocalDecls;
AST->CaptureDiagnostics = CaptureDiagnostics;
AST->TUKind = TUKind;
AST->ShouldCacheCodeCompletionResults = CacheCodeCompletionResults;
AST->IncludeBriefCommentsInCodeCompletion
= IncludeBriefCommentsInCodeCompletion;
AST->Invocation = CI;
AST->FileSystemOpts = CI->getFileSystemOpts();
AST->FileMgr = new FileManager(AST->FileSystemOpts);
AST->UserFilesAreVolatile = UserFilesAreVolatile;
// Recover resources if we crash before exiting this method.
llvm::CrashRecoveryContextCleanupRegistrar<ASTUnit>
ASTUnitCleanup(AST.get());
llvm::CrashRecoveryContextCleanupRegistrar<DiagnosticsEngine,
llvm::CrashRecoveryContextReleaseRefCleanup<DiagnosticsEngine> >
DiagCleanup(Diags.getPtr());
return AST->LoadFromCompilerInvocation(PrecompilePreamble)? 0 : AST.take();
}
ASTUnit *ASTUnit::LoadFromCommandLine(const char **ArgBegin,
const char **ArgEnd,
IntrusiveRefCntPtr<DiagnosticsEngine> Diags,
StringRef ResourceFilesPath,
bool OnlyLocalDecls,
bool CaptureDiagnostics,
RemappedFile *RemappedFiles,
unsigned NumRemappedFiles,
bool RemappedFilesKeepOriginalName,
bool PrecompilePreamble,
TranslationUnitKind TUKind,
bool CacheCodeCompletionResults,
bool IncludeBriefCommentsInCodeCompletion,
bool AllowPCHWithCompilerErrors,
bool SkipFunctionBodies,
bool UserFilesAreVolatile,
bool ForSerialization,
OwningPtr<ASTUnit> *ErrAST) {
if (!Diags.getPtr()) {
// No diagnostics engine was provided, so create our own diagnostics object
// with the default options.
Diags = CompilerInstance::createDiagnostics(new DiagnosticOptions());
}
SmallVector<StoredDiagnostic, 4> StoredDiagnostics;
IntrusiveRefCntPtr<CompilerInvocation> CI;
{
CaptureDroppedDiagnostics Capture(CaptureDiagnostics, *Diags,
StoredDiagnostics);
CI = clang::createInvocationFromCommandLine(
llvm::makeArrayRef(ArgBegin, ArgEnd),
Diags);
if (!CI)
return 0;
}
// Override any files that need remapping
for (unsigned I = 0; I != NumRemappedFiles; ++I) {
FilenameOrMemBuf fileOrBuf = RemappedFiles[I].second;
if (const llvm::MemoryBuffer *
memBuf = fileOrBuf.dyn_cast<const llvm::MemoryBuffer *>()) {
CI->getPreprocessorOpts().addRemappedFile(RemappedFiles[I].first, memBuf);
} else {
const char *fname = fileOrBuf.get<const char *>();
CI->getPreprocessorOpts().addRemappedFile(RemappedFiles[I].first, fname);
}
}
PreprocessorOptions &PPOpts = CI->getPreprocessorOpts();
PPOpts.RemappedFilesKeepOriginalName = RemappedFilesKeepOriginalName;
PPOpts.AllowPCHWithCompilerErrors = AllowPCHWithCompilerErrors;
// Override the resources path.
CI->getHeaderSearchOpts().ResourceDir = ResourceFilesPath;
CI->getFrontendOpts().SkipFunctionBodies = SkipFunctionBodies;
// Create the AST unit.
OwningPtr<ASTUnit> AST;
AST.reset(new ASTUnit(false));
ConfigureDiags(Diags, ArgBegin, ArgEnd, *AST, CaptureDiagnostics);
AST->Diagnostics = Diags;
Diags = 0; // Zero out now to ease cleanup during crash recovery.
AST->FileSystemOpts = CI->getFileSystemOpts();
AST->FileMgr = new FileManager(AST->FileSystemOpts);
AST->OnlyLocalDecls = OnlyLocalDecls;
AST->CaptureDiagnostics = CaptureDiagnostics;
AST->TUKind = TUKind;
AST->ShouldCacheCodeCompletionResults = CacheCodeCompletionResults;
AST->IncludeBriefCommentsInCodeCompletion
= IncludeBriefCommentsInCodeCompletion;
AST->UserFilesAreVolatile = UserFilesAreVolatile;
AST->NumStoredDiagnosticsFromDriver = StoredDiagnostics.size();
AST->StoredDiagnostics.swap(StoredDiagnostics);
AST->Invocation = CI;
if (ForSerialization)
AST->WriterData.reset(new ASTWriterData());
CI = 0; // Zero out now to ease cleanup during crash recovery.
// Recover resources if we crash before exiting this method.
llvm::CrashRecoveryContextCleanupRegistrar<ASTUnit>
ASTUnitCleanup(AST.get());
if (AST->LoadFromCompilerInvocation(PrecompilePreamble)) {
// Some error occurred, if caller wants to examine diagnostics, pass it the
// ASTUnit.
if (ErrAST) {
AST->StoredDiagnostics.swap(AST->FailedParseDiagnostics);
ErrAST->swap(AST);
}
return 0;
}
return AST.take();
}
bool ASTUnit::Reparse(RemappedFile *RemappedFiles, unsigned NumRemappedFiles) {
if (!Invocation)
return true;
clearFileLevelDecls();
SimpleTimer ParsingTimer(WantTiming);
ParsingTimer.setOutput("Reparsing " + getMainFileName());
// Remap files.
PreprocessorOptions &PPOpts = Invocation->getPreprocessorOpts();
for (PreprocessorOptions::remapped_file_buffer_iterator
R = PPOpts.remapped_file_buffer_begin(),
REnd = PPOpts.remapped_file_buffer_end();
R != REnd;
++R) {
delete R->second;
}
Invocation->getPreprocessorOpts().clearRemappedFiles();
for (unsigned I = 0; I != NumRemappedFiles; ++I) {
FilenameOrMemBuf fileOrBuf = RemappedFiles[I].second;
if (const llvm::MemoryBuffer *
memBuf = fileOrBuf.dyn_cast<const llvm::MemoryBuffer *>()) {
Invocation->getPreprocessorOpts().addRemappedFile(RemappedFiles[I].first,
memBuf);
} else {
const char *fname = fileOrBuf.get<const char *>();
Invocation->getPreprocessorOpts().addRemappedFile(RemappedFiles[I].first,
fname);
}
}
// If we have a preamble file lying around, or if we might try to
// build a precompiled preamble, do so now.
llvm::MemoryBuffer *OverrideMainBuffer = 0;
if (!getPreambleFile(this).empty() || PreambleRebuildCounter > 0)
OverrideMainBuffer = getMainBufferWithPrecompiledPreamble(*Invocation);
// Clear out the diagnostics state.
getDiagnostics().Reset();
ProcessWarningOptions(getDiagnostics(), Invocation->getDiagnosticOpts());
if (OverrideMainBuffer)
getDiagnostics().setNumWarnings(NumWarningsInPreamble);
// Parse the sources
bool Result = Parse(OverrideMainBuffer);
// If we're caching global code-completion results, and the top-level
// declarations have changed, clear out the code-completion cache.
if (!Result && ShouldCacheCodeCompletionResults &&
CurrentTopLevelHashValue != CompletionCacheTopLevelHashValue)
CacheCodeCompletionResults();
// We now need to clear out the completion info related to this translation
// unit; it'll be recreated if necessary.
CCTUInfo.reset();
return Result;
}
//----------------------------------------------------------------------------//
// Code completion
//----------------------------------------------------------------------------//
namespace {
/// \brief Code completion consumer that combines the cached code-completion
/// results from an ASTUnit with the code-completion results provided to it,
/// then passes the result on to
class AugmentedCodeCompleteConsumer : public CodeCompleteConsumer {
uint64_t NormalContexts;
ASTUnit &AST;
CodeCompleteConsumer &Next;
public:
AugmentedCodeCompleteConsumer(ASTUnit &AST, CodeCompleteConsumer &Next,
const CodeCompleteOptions &CodeCompleteOpts)
: CodeCompleteConsumer(CodeCompleteOpts, Next.isOutputBinary()),
AST(AST), Next(Next)
{
// Compute the set of contexts in which we will look when we don't have
// any information about the specific context.
NormalContexts
= (1LL << CodeCompletionContext::CCC_TopLevel)
| (1LL << CodeCompletionContext::CCC_ObjCInterface)
| (1LL << CodeCompletionContext::CCC_ObjCImplementation)
| (1LL << CodeCompletionContext::CCC_ObjCIvarList)
| (1LL << CodeCompletionContext::CCC_Statement)
| (1LL << CodeCompletionContext::CCC_Expression)
| (1LL << CodeCompletionContext::CCC_ObjCMessageReceiver)
| (1LL << CodeCompletionContext::CCC_DotMemberAccess)
| (1LL << CodeCompletionContext::CCC_ArrowMemberAccess)
| (1LL << CodeCompletionContext::CCC_ObjCPropertyAccess)
| (1LL << CodeCompletionContext::CCC_ObjCProtocolName)
| (1LL << CodeCompletionContext::CCC_ParenthesizedExpression)
| (1LL << CodeCompletionContext::CCC_Recovery);
if (AST.getASTContext().getLangOpts().CPlusPlus)
NormalContexts |= (1LL << CodeCompletionContext::CCC_EnumTag)
| (1LL << CodeCompletionContext::CCC_UnionTag)
| (1LL << CodeCompletionContext::CCC_ClassOrStructTag);
}
virtual void ProcessCodeCompleteResults(Sema &S,
CodeCompletionContext Context,
CodeCompletionResult *Results,
unsigned NumResults);
virtual void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg,
OverloadCandidate *Candidates,
unsigned NumCandidates) {
Next.ProcessOverloadCandidates(S, CurrentArg, Candidates, NumCandidates);
}
virtual CodeCompletionAllocator &getAllocator() {
return Next.getAllocator();
}
virtual CodeCompletionTUInfo &getCodeCompletionTUInfo() {
return Next.getCodeCompletionTUInfo();
}
};
}
/// \brief Helper function that computes which global names are hidden by the
/// local code-completion results.
static void CalculateHiddenNames(const CodeCompletionContext &Context,
CodeCompletionResult *Results,
unsigned NumResults,
ASTContext &Ctx,
llvm::StringSet<llvm::BumpPtrAllocator> &HiddenNames){
bool OnlyTagNames = false;
switch (Context.getKind()) {
case CodeCompletionContext::CCC_Recovery:
case CodeCompletionContext::CCC_TopLevel:
case CodeCompletionContext::CCC_ObjCInterface:
case CodeCompletionContext::CCC_ObjCImplementation:
case CodeCompletionContext::CCC_ObjCIvarList:
case CodeCompletionContext::CCC_ClassStructUnion:
case CodeCompletionContext::CCC_Statement:
case CodeCompletionContext::CCC_Expression:
case CodeCompletionContext::CCC_ObjCMessageReceiver:
case CodeCompletionContext::CCC_DotMemberAccess:
case CodeCompletionContext::CCC_ArrowMemberAccess:
case CodeCompletionContext::CCC_ObjCPropertyAccess:
case CodeCompletionContext::CCC_Namespace:
case CodeCompletionContext::CCC_Type:
case CodeCompletionContext::CCC_Name:
case CodeCompletionContext::CCC_PotentiallyQualifiedName:
case CodeCompletionContext::CCC_ParenthesizedExpression:
case CodeCompletionContext::CCC_ObjCInterfaceName:
break;
case CodeCompletionContext::CCC_EnumTag:
case CodeCompletionContext::CCC_UnionTag:
case CodeCompletionContext::CCC_ClassOrStructTag:
OnlyTagNames = true;
break;
case CodeCompletionContext::CCC_ObjCProtocolName:
case CodeCompletionContext::CCC_MacroName:
case CodeCompletionContext::CCC_MacroNameUse:
case CodeCompletionContext::CCC_PreprocessorExpression:
case CodeCompletionContext::CCC_PreprocessorDirective:
case CodeCompletionContext::CCC_NaturalLanguage:
case CodeCompletionContext::CCC_SelectorName:
case CodeCompletionContext::CCC_TypeQualifiers:
case CodeCompletionContext::CCC_Other:
case CodeCompletionContext::CCC_OtherWithMacros:
case CodeCompletionContext::CCC_ObjCInstanceMessage:
case CodeCompletionContext::CCC_ObjCClassMessage:
case CodeCompletionContext::CCC_ObjCCategoryName:
// We're looking for nothing, or we're looking for names that cannot
// be hidden.
return;
}
typedef CodeCompletionResult Result;
for (unsigned I = 0; I != NumResults; ++I) {
if (Results[I].Kind != Result::RK_Declaration)
continue;
unsigned IDNS
= Results[I].Declaration->getUnderlyingDecl()->getIdentifierNamespace();
bool Hiding = false;
if (OnlyTagNames)
Hiding = (IDNS & Decl::IDNS_Tag);
else {
unsigned HiddenIDNS = (Decl::IDNS_Type | Decl::IDNS_Member |
Decl::IDNS_Namespace | Decl::IDNS_Ordinary |
Decl::IDNS_NonMemberOperator);
if (Ctx.getLangOpts().CPlusPlus)
HiddenIDNS |= Decl::IDNS_Tag;
Hiding = (IDNS & HiddenIDNS);
}
if (!Hiding)
continue;
DeclarationName Name = Results[I].Declaration->getDeclName();
if (IdentifierInfo *Identifier = Name.getAsIdentifierInfo())
HiddenNames.insert(Identifier->getName());
else
HiddenNames.insert(Name.getAsString());
}
}
void AugmentedCodeCompleteConsumer::ProcessCodeCompleteResults(Sema &S,
CodeCompletionContext Context,
CodeCompletionResult *Results,
unsigned NumResults) {
// Merge the results we were given with the results we cached.
bool AddedResult = false;
uint64_t InContexts =
Context.getKind() == CodeCompletionContext::CCC_Recovery
? NormalContexts : (1LL << Context.getKind());
// Contains the set of names that are hidden by "local" completion results.
llvm::StringSet<llvm::BumpPtrAllocator> HiddenNames;
typedef CodeCompletionResult Result;
SmallVector<Result, 8> AllResults;
for (ASTUnit::cached_completion_iterator
C = AST.cached_completion_begin(),
CEnd = AST.cached_completion_end();
C != CEnd; ++C) {
// If the context we are in matches any of the contexts we are
// interested in, we'll add this result.
if ((C->ShowInContexts & InContexts) == 0)
continue;
// If we haven't added any results previously, do so now.
if (!AddedResult) {
CalculateHiddenNames(Context, Results, NumResults, S.Context,
HiddenNames);
AllResults.insert(AllResults.end(), Results, Results + NumResults);
AddedResult = true;
}
// Determine whether this global completion result is hidden by a local
// completion result. If so, skip it.
if (C->Kind != CXCursor_MacroDefinition &&
HiddenNames.count(C->Completion->getTypedText()))
continue;
// Adjust priority based on similar type classes.
unsigned Priority = C->Priority;
CodeCompletionString *Completion = C->Completion;
if (!Context.getPreferredType().isNull()) {
if (C->Kind == CXCursor_MacroDefinition) {
Priority = getMacroUsagePriority(C->Completion->getTypedText(),
S.getLangOpts(),
Context.getPreferredType()->isAnyPointerType());
} else if (C->Type) {
CanQualType Expected
= S.Context.getCanonicalType(
Context.getPreferredType().getUnqualifiedType());
SimplifiedTypeClass ExpectedSTC = getSimplifiedTypeClass(Expected);
if (ExpectedSTC == C->TypeClass) {
// We know this type is similar; check for an exact match.
llvm::StringMap<unsigned> &CachedCompletionTypes
= AST.getCachedCompletionTypes();
llvm::StringMap<unsigned>::iterator Pos
= CachedCompletionTypes.find(QualType(Expected).getAsString());
if (Pos != CachedCompletionTypes.end() && Pos->second == C->Type)
Priority /= CCF_ExactTypeMatch;
else
Priority /= CCF_SimilarTypeMatch;
}
}
}
// Adjust the completion string, if required.
if (C->Kind == CXCursor_MacroDefinition &&
Context.getKind() == CodeCompletionContext::CCC_MacroNameUse) {
// Create a new code-completion string that just contains the
// macro name, without its arguments.
CodeCompletionBuilder Builder(getAllocator(), getCodeCompletionTUInfo(),
CCP_CodePattern, C->Availability);
Builder.AddTypedTextChunk(C->Completion->getTypedText());
Priority = CCP_CodePattern;
Completion = Builder.TakeString();
}
AllResults.push_back(Result(Completion, Priority, C->Kind,
C->Availability));
}
// If we did not add any cached completion results, just forward the
// results we were given to the next consumer.
if (!AddedResult) {
Next.ProcessCodeCompleteResults(S, Context, Results, NumResults);
return;
}
Next.ProcessCodeCompleteResults(S, Context, AllResults.data(),
AllResults.size());
}
void ASTUnit::CodeComplete(StringRef File, unsigned Line, unsigned Column,
RemappedFile *RemappedFiles,
unsigned NumRemappedFiles,
bool IncludeMacros,
bool IncludeCodePatterns,
bool IncludeBriefComments,
CodeCompleteConsumer &Consumer,
DiagnosticsEngine &Diag, LangOptions &LangOpts,
SourceManager &SourceMgr, FileManager &FileMgr,
SmallVectorImpl<StoredDiagnostic> &StoredDiagnostics,
SmallVectorImpl<const llvm::MemoryBuffer *> &OwnedBuffers) {
if (!Invocation)
return;
SimpleTimer CompletionTimer(WantTiming);
CompletionTimer.setOutput("Code completion @ " + File + ":" +
Twine(Line) + ":" + Twine(Column));
IntrusiveRefCntPtr<CompilerInvocation>
CCInvocation(new CompilerInvocation(*Invocation));
FrontendOptions &FrontendOpts = CCInvocation->getFrontendOpts();
CodeCompleteOptions &CodeCompleteOpts = FrontendOpts.CodeCompleteOpts;
PreprocessorOptions &PreprocessorOpts = CCInvocation->getPreprocessorOpts();
CodeCompleteOpts.IncludeMacros = IncludeMacros &&
CachedCompletionResults.empty();
CodeCompleteOpts.IncludeCodePatterns = IncludeCodePatterns;
CodeCompleteOpts.IncludeGlobals = CachedCompletionResults.empty();
CodeCompleteOpts.IncludeBriefComments = IncludeBriefComments;
assert(IncludeBriefComments == this->IncludeBriefCommentsInCodeCompletion);
FrontendOpts.CodeCompletionAt.FileName = File;
FrontendOpts.CodeCompletionAt.Line = Line;
FrontendOpts.CodeCompletionAt.Column = Column;
// Set the language options appropriately.
LangOpts = *CCInvocation->getLangOpts();
OwningPtr<CompilerInstance> Clang(new CompilerInstance());
// Recover resources if we crash before exiting this method.
llvm::CrashRecoveryContextCleanupRegistrar<CompilerInstance>
CICleanup(Clang.get());
Clang->setInvocation(&*CCInvocation);
OriginalSourceFile = Clang->getFrontendOpts().Inputs[0].getFile();
// Set up diagnostics, capturing any diagnostics produced.
Clang->setDiagnostics(&Diag);
ProcessWarningOptions(Diag, CCInvocation->getDiagnosticOpts());
CaptureDroppedDiagnostics Capture(true,
Clang->getDiagnostics(),
StoredDiagnostics);
// Create the target instance.
Clang->setTarget(TargetInfo::CreateTargetInfo(Clang->getDiagnostics(),
&Clang->getTargetOpts()));
if (!Clang->hasTarget()) {
Clang->setInvocation(0);
return;
}
// Inform the target of the language options.
//
// FIXME: We shouldn't need to do this, the target should be immutable once
// created. This complexity should be lifted elsewhere.
Clang->getTarget().setForcedLangOptions(Clang->getLangOpts());
assert(Clang->getFrontendOpts().Inputs.size() == 1 &&
"Invocation must have exactly one source file!");
assert(Clang->getFrontendOpts().Inputs[0].getKind() != IK_AST &&
"FIXME: AST inputs not yet supported here!");
assert(Clang->getFrontendOpts().Inputs[0].getKind() != IK_LLVM_IR &&
"IR inputs not support here!");
// Use the source and file managers that we were given.
Clang->setFileManager(&FileMgr);
Clang->setSourceManager(&SourceMgr);
// Remap files.
PreprocessorOpts.clearRemappedFiles();
PreprocessorOpts.RetainRemappedFileBuffers = true;
for (unsigned I = 0; I != NumRemappedFiles; ++I) {
FilenameOrMemBuf fileOrBuf = RemappedFiles[I].second;
if (const llvm::MemoryBuffer *
memBuf = fileOrBuf.dyn_cast<const llvm::MemoryBuffer *>()) {
PreprocessorOpts.addRemappedFile(RemappedFiles[I].first, memBuf);
OwnedBuffers.push_back(memBuf);
} else {
const char *fname = fileOrBuf.get<const char *>();
PreprocessorOpts.addRemappedFile(RemappedFiles[I].first, fname);
}
}
// Use the code completion consumer we were given, but adding any cached
// code-completion results.
AugmentedCodeCompleteConsumer *AugmentedConsumer
= new AugmentedCodeCompleteConsumer(*this, Consumer, CodeCompleteOpts);
Clang->setCodeCompletionConsumer(AugmentedConsumer);
// If we have a precompiled preamble, try to use it. We only allow
// the use of the precompiled preamble if we're if the completion
// point is within the main file, after the end of the precompiled
// preamble.
llvm::MemoryBuffer *OverrideMainBuffer = 0;
if (!getPreambleFile(this).empty()) {
using llvm::sys::FileStatus;
llvm::sys::PathWithStatus CompleteFilePath(File);
llvm::sys::PathWithStatus MainPath(OriginalSourceFile);
if (const FileStatus *CompleteFileStatus = CompleteFilePath.getFileStatus())
if (const FileStatus *MainStatus = MainPath.getFileStatus())
if (CompleteFileStatus->getUniqueID() == MainStatus->getUniqueID() &&
Line > 1)
OverrideMainBuffer
= getMainBufferWithPrecompiledPreamble(*CCInvocation, false,
Line - 1);
}
// If the main file has been overridden due to the use of a preamble,
// make that override happen and introduce the preamble.
if (OverrideMainBuffer) {
PreprocessorOpts.addRemappedFile(OriginalSourceFile, OverrideMainBuffer);
PreprocessorOpts.PrecompiledPreambleBytes.first = Preamble.size();
PreprocessorOpts.PrecompiledPreambleBytes.second
= PreambleEndsAtStartOfLine;
PreprocessorOpts.ImplicitPCHInclude = getPreambleFile(this);
PreprocessorOpts.DisablePCHValidation = true;
OwnedBuffers.push_back(OverrideMainBuffer);
} else {
PreprocessorOpts.PrecompiledPreambleBytes.first = 0;
PreprocessorOpts.PrecompiledPreambleBytes.second = false;
}
// Disable the preprocessing record if modules are not enabled.
if (!Clang->getLangOpts().Modules)
PreprocessorOpts.DetailedRecord = false;
OwningPtr<SyntaxOnlyAction> Act;
Act.reset(new SyntaxOnlyAction);
if (Act->BeginSourceFile(*Clang.get(), Clang->getFrontendOpts().Inputs[0])) {
Act->Execute();
Act->EndSourceFile();
}
}
bool ASTUnit::Save(StringRef File) {
// Write to a temporary file and later rename it to the actual file, to avoid
// possible race conditions.
SmallString<128> TempPath;
TempPath = File;
TempPath += "-%%%%%%%%";
int fd;
if (llvm::sys::fs::unique_file(TempPath.str(), fd, TempPath,
/*makeAbsolute=*/false))
return true;
// FIXME: Can we somehow regenerate the stat cache here, or do we need to
// unconditionally create a stat cache when we parse the file?
llvm::raw_fd_ostream Out(fd, /*shouldClose=*/true);
serialize(Out);
Out.close();
if (Out.has_error()) {
Out.clear_error();
return true;
}
if (llvm::sys::fs::rename(TempPath.str(), File)) {
bool exists;
llvm::sys::fs::remove(TempPath.str(), exists);
return true;
}
return false;
}
static bool serializeUnit(ASTWriter &Writer,
SmallVectorImpl<char> &Buffer,
Sema &S,
bool hasErrors,
raw_ostream &OS) {
Writer.WriteAST(S, std::string(), 0, "", hasErrors);
// Write the generated bitstream to "Out".
if (!Buffer.empty())
OS.write(Buffer.data(), Buffer.size());
return false;
}
bool ASTUnit::serialize(raw_ostream &OS) {
bool hasErrors = getDiagnostics().hasErrorOccurred();
if (WriterData)
return serializeUnit(WriterData->Writer, WriterData->Buffer,
getSema(), hasErrors, OS);
SmallString<128> Buffer;
llvm::BitstreamWriter Stream(Buffer);
ASTWriter Writer(Stream);
return serializeUnit(Writer, Buffer, getSema(), hasErrors, OS);
}
typedef ContinuousRangeMap<unsigned, int, 2> SLocRemap;
static void TranslateSLoc(SourceLocation &L, SLocRemap &Remap) {
unsigned Raw = L.getRawEncoding();
const unsigned MacroBit = 1U << 31;
L = SourceLocation::getFromRawEncoding((Raw & MacroBit) |
((Raw & ~MacroBit) + Remap.find(Raw & ~MacroBit)->second));
}
void ASTUnit::TranslateStoredDiagnostics(
ASTReader *MMan,
StringRef ModName,
SourceManager &SrcMgr,
const SmallVectorImpl<StoredDiagnostic> &Diags,
SmallVectorImpl<StoredDiagnostic> &Out) {
// The stored diagnostic has the old source manager in it; update
// the locations to refer into the new source manager. We also need to remap
// all the locations to the new view. This includes the diag location, any
// associated source ranges, and the source ranges of associated fix-its.
// FIXME: There should be a cleaner way to do this.
SmallVector<StoredDiagnostic, 4> Result;
Result.reserve(Diags.size());
assert(MMan && "Don't have a module manager");
serialization::ModuleFile *Mod = MMan->ModuleMgr.lookup(ModName);
assert(Mod && "Don't have preamble module");
SLocRemap &Remap = Mod->SLocRemap;
for (unsigned I = 0, N = Diags.size(); I != N; ++I) {
// Rebuild the StoredDiagnostic.
const StoredDiagnostic &SD = Diags[I];
SourceLocation L = SD.getLocation();
TranslateSLoc(L, Remap);
FullSourceLoc Loc(L, SrcMgr);
SmallVector<CharSourceRange, 4> Ranges;
Ranges.reserve(SD.range_size());
for (StoredDiagnostic::range_iterator I = SD.range_begin(),
E = SD.range_end();
I != E; ++I) {
SourceLocation BL = I->getBegin();
TranslateSLoc(BL, Remap);
SourceLocation EL = I->getEnd();
TranslateSLoc(EL, Remap);
Ranges.push_back(CharSourceRange(SourceRange(BL, EL), I->isTokenRange()));
}
SmallVector<FixItHint, 2> FixIts;
FixIts.reserve(SD.fixit_size());
for (StoredDiagnostic::fixit_iterator I = SD.fixit_begin(),
E = SD.fixit_end();
I != E; ++I) {
FixIts.push_back(FixItHint());
FixItHint &FH = FixIts.back();
FH.CodeToInsert = I->CodeToInsert;
SourceLocation BL = I->RemoveRange.getBegin();
TranslateSLoc(BL, Remap);
SourceLocation EL = I->RemoveRange.getEnd();
TranslateSLoc(EL, Remap);
FH.RemoveRange = CharSourceRange(SourceRange(BL, EL),
I->RemoveRange.isTokenRange());
}
Result.push_back(StoredDiagnostic(SD.getLevel(), SD.getID(),
SD.getMessage(), Loc, Ranges, FixIts));
}
Result.swap(Out);
}
static inline bool compLocDecl(std::pair<unsigned, Decl *> L,
std::pair<unsigned, Decl *> R) {
return L.first < R.first;
}
void ASTUnit::addFileLevelDecl(Decl *D) {
assert(D);
// We only care about local declarations.
if (D->isFromASTFile())
return;
SourceManager &SM = *SourceMgr;
SourceLocation Loc = D->getLocation();
if (Loc.isInvalid() || !SM.isLocalSourceLocation(Loc))
return;
// We only keep track of the file-level declarations of each file.
if (!D->getLexicalDeclContext()->isFileContext())
return;
SourceLocation FileLoc = SM.getFileLoc(Loc);
assert(SM.isLocalSourceLocation(FileLoc));
FileID FID;
unsigned Offset;
llvm::tie(FID, Offset) = SM.getDecomposedLoc(FileLoc);
if (FID.isInvalid())
return;
LocDeclsTy *&Decls = FileDecls[FID];
if (!Decls)
Decls = new LocDeclsTy();
std::pair<unsigned, Decl *> LocDecl(Offset, D);
if (Decls->empty() || Decls->back().first <= Offset) {
Decls->push_back(LocDecl);
return;
}
LocDeclsTy::iterator
I = std::upper_bound(Decls->begin(), Decls->end(), LocDecl, compLocDecl);
Decls->insert(I, LocDecl);
}
void ASTUnit::findFileRegionDecls(FileID File, unsigned Offset, unsigned Length,
SmallVectorImpl<Decl *> &Decls) {
if (File.isInvalid())
return;
if (SourceMgr->isLoadedFileID(File)) {
assert(Ctx->getExternalSource() && "No external source!");
return Ctx->getExternalSource()->FindFileRegionDecls(File, Offset, Length,
Decls);
}
FileDeclsTy::iterator I = FileDecls.find(File);
if (I == FileDecls.end())
return;
LocDeclsTy &LocDecls = *I->second;
if (LocDecls.empty())
return;
LocDeclsTy::iterator
BeginIt = std::lower_bound(LocDecls.begin(), LocDecls.end(),
std::make_pair(Offset, (Decl*)0), compLocDecl);
if (BeginIt != LocDecls.begin())
--BeginIt;
// If we are pointing at a top-level decl inside an objc container, we need
// to backtrack until we find it otherwise we will fail to report that the
// region overlaps with an objc container.
while (BeginIt != LocDecls.begin() &&
BeginIt->second->isTopLevelDeclInObjCContainer())
--BeginIt;
LocDeclsTy::iterator
EndIt = std::upper_bound(LocDecls.begin(), LocDecls.end(),
std::make_pair(Offset+Length, (Decl*)0),
compLocDecl);
if (EndIt != LocDecls.end())
++EndIt;
for (LocDeclsTy::iterator DIt = BeginIt; DIt != EndIt; ++DIt)
Decls.push_back(DIt->second);
}
SourceLocation ASTUnit::getLocation(const FileEntry *File,
unsigned Line, unsigned Col) const {
const SourceManager &SM = getSourceManager();
SourceLocation Loc = SM.translateFileLineCol(File, Line, Col);
return SM.getMacroArgExpandedLocation(Loc);
}
SourceLocation ASTUnit::getLocation(const FileEntry *File,
unsigned Offset) const {
const SourceManager &SM = getSourceManager();
SourceLocation FileLoc = SM.translateFileLineCol(File, 1, 1);
return SM.getMacroArgExpandedLocation(FileLoc.getLocWithOffset(Offset));
}
/// \brief If \arg Loc is a loaded location from the preamble, returns
/// the corresponding local location of the main file, otherwise it returns
/// \arg Loc.
SourceLocation ASTUnit::mapLocationFromPreamble(SourceLocation Loc) {
FileID PreambleID;
if (SourceMgr)
PreambleID = SourceMgr->getPreambleFileID();
if (Loc.isInvalid() || Preamble.empty() || PreambleID.isInvalid())
return Loc;
unsigned Offs;
if (SourceMgr->isInFileID(Loc, PreambleID, &Offs) && Offs < Preamble.size()) {
SourceLocation FileLoc
= SourceMgr->getLocForStartOfFile(SourceMgr->getMainFileID());
return FileLoc.getLocWithOffset(Offs);
}
return Loc;
}
/// \brief If \arg Loc is a local location of the main file but inside the
/// preamble chunk, returns the corresponding loaded location from the
/// preamble, otherwise it returns \arg Loc.
SourceLocation ASTUnit::mapLocationToPreamble(SourceLocation Loc) {
FileID PreambleID;
if (SourceMgr)
PreambleID = SourceMgr->getPreambleFileID();
if (Loc.isInvalid() || Preamble.empty() || PreambleID.isInvalid())
return Loc;
unsigned Offs;
if (SourceMgr->isInFileID(Loc, SourceMgr->getMainFileID(), &Offs) &&
Offs < Preamble.size()) {
SourceLocation FileLoc = SourceMgr->getLocForStartOfFile(PreambleID);
return FileLoc.getLocWithOffset(Offs);
}
return Loc;
}
bool ASTUnit::isInPreambleFileID(SourceLocation Loc) {
FileID FID;
if (SourceMgr)
FID = SourceMgr->getPreambleFileID();
if (Loc.isInvalid() || FID.isInvalid())
return false;
return SourceMgr->isInFileID(Loc, FID);
}
bool ASTUnit::isInMainFileID(SourceLocation Loc) {
FileID FID;
if (SourceMgr)
FID = SourceMgr->getMainFileID();
if (Loc.isInvalid() || FID.isInvalid())
return false;
return SourceMgr->isInFileID(Loc, FID);
}
SourceLocation ASTUnit::getEndOfPreambleFileID() {
FileID FID;
if (SourceMgr)
FID = SourceMgr->getPreambleFileID();
if (FID.isInvalid())
return SourceLocation();
return SourceMgr->getLocForEndOfFile(FID);
}
SourceLocation ASTUnit::getStartOfMainFileID() {
FileID FID;
if (SourceMgr)
FID = SourceMgr->getMainFileID();
if (FID.isInvalid())
return SourceLocation();
return SourceMgr->getLocForStartOfFile(FID);
}
std::pair<PreprocessingRecord::iterator, PreprocessingRecord::iterator>
ASTUnit::getLocalPreprocessingEntities() const {
if (isMainFileAST()) {
serialization::ModuleFile &
Mod = Reader->getModuleManager().getPrimaryModule();
return Reader->getModulePreprocessedEntities(Mod);
}
if (PreprocessingRecord *PPRec = PP->getPreprocessingRecord())
return std::make_pair(PPRec->local_begin(), PPRec->local_end());
return std::make_pair(PreprocessingRecord::iterator(),
PreprocessingRecord::iterator());
}
bool ASTUnit::visitLocalTopLevelDecls(void *context, DeclVisitorFn Fn) {
if (isMainFileAST()) {
serialization::ModuleFile &
Mod = Reader->getModuleManager().getPrimaryModule();
ASTReader::ModuleDeclIterator MDI, MDE;
llvm::tie(MDI, MDE) = Reader->getModuleFileLevelDecls(Mod);
for (; MDI != MDE; ++MDI) {
if (!Fn(context, *MDI))
return false;
}
return true;
}
for (ASTUnit::top_level_iterator TL = top_level_begin(),
TLEnd = top_level_end();
TL != TLEnd; ++TL) {
if (!Fn(context, *TL))
return false;
}
return true;
}
namespace {
struct PCHLocatorInfo {
serialization::ModuleFile *Mod;
PCHLocatorInfo() : Mod(0) {}
};
}
static bool PCHLocator(serialization::ModuleFile &M, void *UserData) {
PCHLocatorInfo &Info = *static_cast<PCHLocatorInfo*>(UserData);
switch (M.Kind) {
case serialization::MK_Module:
return true; // skip dependencies.
case serialization::MK_PCH:
Info.Mod = &M;
return true; // found it.
case serialization::MK_Preamble:
return false; // look in dependencies.
case serialization::MK_MainFile:
return false; // look in dependencies.
}
return true;
}
const FileEntry *ASTUnit::getPCHFile() {
if (!Reader)
return 0;
PCHLocatorInfo Info;
Reader->getModuleManager().visit(PCHLocator, &Info);
if (Info.Mod)
return Info.Mod->File;
return 0;
}
bool ASTUnit::isModuleFile() {
return isMainFileAST() && !ASTFileLangOpts.CurrentModule.empty();
}
void ASTUnit::PreambleData::countLines() const {
NumLines = 0;
if (empty())
return;
for (std::vector<char>::const_iterator
I = Buffer.begin(), E = Buffer.end(); I != E; ++I) {
if (*I == '\n')
++NumLines;
}
if (Buffer.back() != '\n')
++NumLines;
}
#ifndef NDEBUG
ASTUnit::ConcurrencyState::ConcurrencyState() {
Mutex = new llvm::sys::MutexImpl(/*recursive=*/true);
}
ASTUnit::ConcurrencyState::~ConcurrencyState() {
delete static_cast<llvm::sys::MutexImpl *>(Mutex);
}
void ASTUnit::ConcurrencyState::start() {
bool acquired = static_cast<llvm::sys::MutexImpl *>(Mutex)->tryacquire();
assert(acquired && "Concurrent access to ASTUnit!");
}
void ASTUnit::ConcurrencyState::finish() {
static_cast<llvm::sys::MutexImpl *>(Mutex)->release();
}
#else // NDEBUG
ASTUnit::ConcurrencyState::ConcurrencyState() {}
ASTUnit::ConcurrencyState::~ConcurrencyState() {}
void ASTUnit::ConcurrencyState::start() {}
void ASTUnit::ConcurrencyState::finish() {}
#endif