llvm-project/compiler-rt/lib/builtins/hexagon/dfdiv.S

492 lines
9.6 KiB
ArmAsm

//===----------------------Hexagon builtin routine ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Double Precision Divide
#define A r1:0
#define AH r1
#define AL r0
#define B r3:2
#define BH r3
#define BL r2
#define Q r5:4
#define QH r5
#define QL r4
#define PROD r7:6
#define PRODHI r7
#define PRODLO r6
#define SFONE r8
#define SFDEN r9
#define SFERROR r10
#define SFRECIP r11
#define EXPBA r13:12
#define EXPB r13
#define EXPA r12
#define REMSUB2 r15:14
#define SIGN r28
#define Q_POSITIVE p3
#define NORMAL p2
#define NO_OVF_UNF p1
#define P_TMP p0
#define RECIPEST_SHIFT 3
#define QADJ 61
#define DFCLASS_NORMAL 0x02
#define DFCLASS_NUMBER 0x0F
#define DFCLASS_INFINITE 0x08
#define DFCLASS_ZERO 0x01
#define DFCLASS_NONZERO (DFCLASS_NUMBER ^ DFCLASS_ZERO)
#define DFCLASS_NONINFINITE (DFCLASS_NUMBER ^ DFCLASS_INFINITE)
#define DF_MANTBITS 52
#define DF_EXPBITS 11
#define SF_MANTBITS 23
#define SF_EXPBITS 8
#define DF_BIAS 0x3ff
#define SR_ROUND_OFF 22
#define Q6_ALIAS(TAG) .global __qdsp_##TAG ; .set __qdsp_##TAG, __hexagon_##TAG
#define FAST_ALIAS(TAG) .global __hexagon_fast_##TAG ; .set __hexagon_fast_##TAG, __hexagon_##TAG
#define FAST2_ALIAS(TAG) .global __hexagon_fast2_##TAG ; .set __hexagon_fast2_##TAG, __hexagon_##TAG
#define END(TAG) .size TAG,.-TAG
.text
.global __hexagon_divdf3
.type __hexagon_divdf3,@function
Q6_ALIAS(divdf3)
FAST_ALIAS(divdf3)
FAST2_ALIAS(divdf3)
.p2align 5
__hexagon_divdf3:
{
NORMAL = dfclass(A,#DFCLASS_NORMAL)
NORMAL = dfclass(B,#DFCLASS_NORMAL)
EXPBA = combine(BH,AH)
SIGN = xor(AH,BH)
}
#undef A
#undef AH
#undef AL
#undef B
#undef BH
#undef BL
#define REM r1:0
#define REMHI r1
#define REMLO r0
#define DENOM r3:2
#define DENOMHI r3
#define DENOMLO r2
{
if (!NORMAL) jump .Ldiv_abnormal
PROD = extractu(DENOM,#SF_MANTBITS,#DF_MANTBITS-SF_MANTBITS)
SFONE = ##0x3f800001
}
{
SFDEN = or(SFONE,PRODLO)
EXPB = extractu(EXPB,#DF_EXPBITS,#DF_MANTBITS-32)
EXPA = extractu(EXPA,#DF_EXPBITS,#DF_MANTBITS-32)
Q_POSITIVE = cmp.gt(SIGN,#-1)
}
#undef SIGN
#define ONE r28
.Ldenorm_continue:
{
SFRECIP,P_TMP = sfrecipa(SFONE,SFDEN)
SFERROR = and(SFONE,#-2)
ONE = #1
EXPA = sub(EXPA,EXPB)
}
#undef EXPB
#define RECIPEST r13
{
SFERROR -= sfmpy(SFRECIP,SFDEN):lib
REMHI = insert(ONE,#DF_EXPBITS+1,#DF_MANTBITS-32)
RECIPEST = ##0x00800000 << RECIPEST_SHIFT
}
{
SFRECIP += sfmpy(SFRECIP,SFERROR):lib
DENOMHI = insert(ONE,#DF_EXPBITS+1,#DF_MANTBITS-32)
SFERROR = and(SFONE,#-2)
}
{
SFERROR -= sfmpy(SFRECIP,SFDEN):lib
QH = #-DF_BIAS+1
QL = #DF_BIAS-1
}
{
SFRECIP += sfmpy(SFRECIP,SFERROR):lib
NO_OVF_UNF = cmp.gt(EXPA,QH)
NO_OVF_UNF = !cmp.gt(EXPA,QL)
}
{
RECIPEST = insert(SFRECIP,#SF_MANTBITS,#RECIPEST_SHIFT)
Q = #0
EXPA = add(EXPA,#-QADJ)
}
#undef SFERROR
#undef SFRECIP
#define TMP r10
#define TMP1 r11
{
RECIPEST = add(RECIPEST,#((-3) << RECIPEST_SHIFT))
}
#define DIV_ITER1B(QSHIFTINSN,QSHIFT,REMSHIFT,EXTRA) \
{ \
PROD = mpyu(RECIPEST,REMHI); \
REM = asl(REM,# ## ( REMSHIFT )); \
}; \
{ \
PRODLO = # ## 0; \
REM -= mpyu(PRODHI,DENOMLO); \
REMSUB2 = mpyu(PRODHI,DENOMHI); \
}; \
{ \
Q += QSHIFTINSN(PROD, # ## ( QSHIFT )); \
REM -= asl(REMSUB2, # ## 32); \
EXTRA \
}
DIV_ITER1B(ASL,14,15,)
DIV_ITER1B(ASR,1,15,)
DIV_ITER1B(ASR,16,15,)
DIV_ITER1B(ASR,31,15,PROD=# ( 0 );)
#undef REMSUB2
#define TMPPAIR r15:14
#define TMPPAIRHI r15
#define TMPPAIRLO r14
#undef RECIPEST
#define EXPB r13
{
// compare or sub with carry
TMPPAIR = sub(REM,DENOM)
P_TMP = cmp.gtu(DENOM,REM)
// set up amt to add to q
if (!P_TMP.new) PRODLO = #2
}
{
Q = add(Q,PROD)
if (!P_TMP) REM = TMPPAIR
TMPPAIR = #0
}
{
P_TMP = cmp.eq(REM,TMPPAIR)
if (!P_TMP.new) QL = or(QL,ONE)
}
{
PROD = neg(Q)
}
{
if (!Q_POSITIVE) Q = PROD
}
#undef REM
#undef REMHI
#undef REMLO
#undef DENOM
#undef DENOMLO
#undef DENOMHI
#define A r1:0
#define AH r1
#define AL r0
#define B r3:2
#define BH r3
#define BL r2
{
A = convert_d2df(Q)
if (!NO_OVF_UNF) jump .Ldiv_ovf_unf
}
{
AH += asl(EXPA,#DF_MANTBITS-32)
jumpr r31
}
.Ldiv_ovf_unf:
{
AH += asl(EXPA,#DF_MANTBITS-32)
EXPB = extractu(AH,#DF_EXPBITS,#DF_MANTBITS-32)
}
{
PROD = abs(Q)
EXPA = add(EXPA,EXPB)
}
{
P_TMP = cmp.gt(EXPA,##DF_BIAS+DF_BIAS) // overflow
if (P_TMP.new) jump:nt .Ldiv_ovf
}
{
P_TMP = cmp.gt(EXPA,#0)
if (P_TMP.new) jump:nt .Lpossible_unf // round up to normal possible...
}
// Underflow
// We know what the infinite range exponent should be (EXPA)
// Q is 2's complement, PROD is abs(Q)
// Normalize Q, shift right, add a high bit, convert, change exponent
#define FUDGE1 7 // how much to shift right
#define FUDGE2 4 // how many guard/round to keep at lsbs
{
EXPB = add(clb(PROD),#-1) // doesn't need to be added in since
EXPA = sub(#FUDGE1,EXPA) // we extract post-converted exponent
TMP = USR
TMP1 = #63
}
{
EXPB = min(EXPA,TMP1)
TMP1 = or(TMP,#0x030)
PROD = asl(PROD,EXPB)
EXPA = #0
}
{
TMPPAIR = extractu(PROD,EXPBA) // bits that will get shifted out
PROD = lsr(PROD,EXPB) // shift out bits
B = #1
}
{
P_TMP = cmp.gtu(B,TMPPAIR)
if (!P_TMP.new) PRODLO = or(BL,PRODLO)
PRODHI = setbit(PRODHI,#DF_MANTBITS-32+FUDGE2)
}
{
Q = neg(PROD)
P_TMP = bitsclr(PRODLO,#(1<<FUDGE2)-1)
if (!P_TMP.new) TMP = TMP1
}
{
USR = TMP
if (Q_POSITIVE) Q = PROD
TMP = #-DF_BIAS-(DF_MANTBITS+FUDGE2)
}
{
A = convert_d2df(Q)
}
{
AH += asl(TMP,#DF_MANTBITS-32)
jumpr r31
}
.Lpossible_unf:
// If upper parts of Q were all F's, but abs(A) == 0x00100000_00000000, we rounded up to min_normal
// The answer is correct, but we need to raise Underflow
{
B = extractu(A,#63,#0)
TMPPAIR = combine(##0x00100000,#0) // min normal
TMP = #0x7FFF
}
{
P_TMP = dfcmp.eq(TMPPAIR,B) // Is everything zero in the rounded value...
P_TMP = bitsset(PRODHI,TMP) // but a bunch of bits set in the unrounded abs(quotient)?
}
#if (__HEXAGON_ARCH__ == 60)
TMP = USR // If not, just return
if (!P_TMP) jumpr r31 // Else, we want to set Unf+Inexact
// Note that inexact is already set...
#else
{
if (!P_TMP) jumpr r31 // If not, just return
TMP = USR // Else, we want to set Unf+Inexact
} // Note that inexact is already set...
#endif
{
TMP = or(TMP,#0x30)
}
{
USR = TMP
}
{
p0 = dfcmp.eq(A,A)
jumpr r31
}
.Ldiv_ovf:
// Raise Overflow, and choose the correct overflow value (saturated normal or infinity)
{
TMP = USR
B = combine(##0x7fefffff,#-1)
AH = mux(Q_POSITIVE,#0,#-1)
}
{
PROD = combine(##0x7ff00000,#0)
QH = extractu(TMP,#2,#SR_ROUND_OFF)
TMP = or(TMP,#0x28)
}
{
USR = TMP
QH ^= lsr(AH,#31)
QL = QH
}
{
p0 = !cmp.eq(QL,#1) // if not round-to-zero
p0 = !cmp.eq(QH,#2) // and not rounding the other way
if (p0.new) B = PROD // go to inf
p0 = dfcmp.eq(B,B) // get exceptions
}
{
A = insert(B,#63,#0)
jumpr r31
}
#undef ONE
#define SIGN r28
#undef NORMAL
#undef NO_OVF_UNF
#define P_INF p1
#define P_ZERO p2
.Ldiv_abnormal:
{
P_TMP = dfclass(A,#DFCLASS_NUMBER)
P_TMP = dfclass(B,#DFCLASS_NUMBER)
Q_POSITIVE = cmp.gt(SIGN,#-1)
}
{
P_INF = dfclass(A,#DFCLASS_INFINITE)
P_INF = dfclass(B,#DFCLASS_INFINITE)
}
{
P_ZERO = dfclass(A,#DFCLASS_ZERO)
P_ZERO = dfclass(B,#DFCLASS_ZERO)
}
{
if (!P_TMP) jump .Ldiv_nan
if (P_INF) jump .Ldiv_invalid
}
{
if (P_ZERO) jump .Ldiv_invalid
}
{
P_ZERO = dfclass(A,#DFCLASS_NONZERO) // nonzero
P_ZERO = dfclass(B,#DFCLASS_NONINFINITE) // non-infinite
}
{
P_INF = dfclass(A,#DFCLASS_NONINFINITE) // non-infinite
P_INF = dfclass(B,#DFCLASS_NONZERO) // nonzero
}
{
if (!P_ZERO) jump .Ldiv_zero_result
if (!P_INF) jump .Ldiv_inf_result
}
// Now we've narrowed it down to (de)normal / (de)normal
// Set up A/EXPA B/EXPB and go back
#undef P_ZERO
#undef P_INF
#define P_TMP2 p1
{
P_TMP = dfclass(A,#DFCLASS_NORMAL)
P_TMP2 = dfclass(B,#DFCLASS_NORMAL)
TMP = ##0x00100000
}
{
EXPBA = combine(BH,AH)
AH = insert(TMP,#DF_EXPBITS+1,#DF_MANTBITS-32) // clear out hidden bit, sign bit
BH = insert(TMP,#DF_EXPBITS+1,#DF_MANTBITS-32) // clear out hidden bit, sign bit
}
{
if (P_TMP) AH = or(AH,TMP) // if normal, add back in hidden bit
if (P_TMP2) BH = or(BH,TMP) // if normal, add back in hidden bit
}
{
QH = add(clb(A),#-DF_EXPBITS)
QL = add(clb(B),#-DF_EXPBITS)
TMP = #1
}
{
EXPA = extractu(EXPA,#DF_EXPBITS,#DF_MANTBITS-32)
EXPB = extractu(EXPB,#DF_EXPBITS,#DF_MANTBITS-32)
}
{
A = asl(A,QH)
B = asl(B,QL)
if (!P_TMP) EXPA = sub(TMP,QH)
if (!P_TMP2) EXPB = sub(TMP,QL)
} // recreate values needed by resume coke
{
PROD = extractu(B,#SF_MANTBITS,#DF_MANTBITS-SF_MANTBITS)
}
{
SFDEN = or(SFONE,PRODLO)
jump .Ldenorm_continue
}
.Ldiv_zero_result:
{
AH = xor(AH,BH)
B = #0
}
{
A = insert(B,#63,#0)
jumpr r31
}
.Ldiv_inf_result:
{
p2 = dfclass(B,#DFCLASS_ZERO)
p2 = dfclass(A,#DFCLASS_NONINFINITE)
}
{
TMP = USR
if (!p2) jump 1f
AH = xor(AH,BH)
}
{
TMP = or(TMP,#0x04) // DBZ
}
{
USR = TMP
}
1:
{
B = combine(##0x7ff00000,#0)
p0 = dfcmp.uo(B,B) // take possible exception
}
{
A = insert(B,#63,#0)
jumpr r31
}
.Ldiv_nan:
{
p0 = dfclass(A,#0x10)
p1 = dfclass(B,#0x10)
if (!p0.new) A = B
if (!p1.new) B = A
}
{
QH = convert_df2sf(A) // get possible invalid exceptions
QL = convert_df2sf(B)
}
{
A = #-1
jumpr r31
}
.Ldiv_invalid:
{
TMP = ##0x7f800001
}
{
A = convert_sf2df(TMP) // get invalid, get DF qNaN
jumpr r31
}
END(__hexagon_divdf3)