llvm-project/clang/Lex/LiteralSupport.cpp

629 lines
19 KiB
C++

//===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Steve Naroff and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the NumericLiteralParser, CharLiteralParser, and
// StringLiteralParser interfaces.
//
//===----------------------------------------------------------------------===//
#include "clang/Lex/LiteralSupport.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/Diagnostic.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/StringExtras.h"
using namespace llvm;
using namespace clang;
/// HexDigitValue - Return the value of the specified hex digit, or -1 if it's
/// not valid.
static int HexDigitValue(char C) {
if (C >= '0' && C <= '9') return C-'0';
if (C >= 'a' && C <= 'f') return C-'a'+10;
if (C >= 'A' && C <= 'F') return C-'A'+10;
return -1;
}
/// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
/// either a character or a string literal.
static unsigned ProcessCharEscape(const char *&ThisTokBuf,
const char *ThisTokEnd, bool &HadError,
SourceLocation Loc, Preprocessor &PP) {
// Skip the '\' char.
++ThisTokBuf;
// We know that this character can't be off the end of the buffer, because
// that would have been \", which would not have been the end of string.
unsigned ResultChar = *ThisTokBuf++;
switch (ResultChar) {
// These map to themselves.
case '\\': case '\'': case '"': case '?': break;
// These have fixed mappings.
case 'a':
// TODO: K&R: the meaning of '\\a' is different in traditional C
ResultChar = 7;
break;
case 'b':
ResultChar = 8;
break;
case 'e':
PP.Diag(Loc, diag::ext_nonstandard_escape, "e");
ResultChar = 27;
break;
case 'f':
ResultChar = 12;
break;
case 'n':
ResultChar = 10;
break;
case 'r':
ResultChar = 13;
break;
case 't':
ResultChar = 9;
break;
case 'v':
ResultChar = 11;
break;
//case 'u': case 'U': // FIXME: UCNs.
case 'x': // Hex escape.
if (ThisTokBuf == ThisTokEnd ||
(ResultChar = HexDigitValue(*ThisTokBuf)) == ~0U) {
PP.Diag(Loc, diag::err_hex_escape_no_digits);
HadError = 1;
ResultChar = 0;
break;
}
++ThisTokBuf; // Consumed one hex digit.
// FIXME: warn_hex_escape_too_large. '\x12345'
assert(0 && "hex escape: unimp!");
break;
case '0': case '1': case '2': case '3':
case '4': case '5': case '6': case '7':
// Octal escapes.
// FIXME: warn_octal_escape_too_large. '\012345'
assert(0 && "octal escape: unimp!");
break;
// Otherwise, these are not valid escapes.
case '(': case '{': case '[': case '%':
// GCC accepts these as extensions. We warn about them as such though.
if (!PP.getLangOptions().NoExtensions) {
PP.Diag(Loc, diag::ext_nonstandard_escape,
std::string()+(char)ResultChar);
break;
}
// FALL THROUGH.
default:
if (isgraph(ThisTokBuf[0])) {
PP.Diag(Loc, diag::ext_unknown_escape, std::string()+(char)ResultChar);
} else {
PP.Diag(Loc, diag::ext_unknown_escape, "x"+utohexstr(ResultChar));
}
break;
}
return ResultChar;
}
/// integer-constant: [C99 6.4.4.1]
/// decimal-constant integer-suffix
/// octal-constant integer-suffix
/// hexadecimal-constant integer-suffix
/// decimal-constant:
/// nonzero-digit
/// decimal-constant digit
/// octal-constant:
/// 0
/// octal-constant octal-digit
/// hexadecimal-constant:
/// hexadecimal-prefix hexadecimal-digit
/// hexadecimal-constant hexadecimal-digit
/// hexadecimal-prefix: one of
/// 0x 0X
/// integer-suffix:
/// unsigned-suffix [long-suffix]
/// unsigned-suffix [long-long-suffix]
/// long-suffix [unsigned-suffix]
/// long-long-suffix [unsigned-sufix]
/// nonzero-digit:
/// 1 2 3 4 5 6 7 8 9
/// octal-digit:
/// 0 1 2 3 4 5 6 7
/// hexadecimal-digit:
/// 0 1 2 3 4 5 6 7 8 9
/// a b c d e f
/// A B C D E F
/// unsigned-suffix: one of
/// u U
/// long-suffix: one of
/// l L
/// long-long-suffix: one of
/// ll LL
///
/// floating-constant: [C99 6.4.4.2]
/// TODO: add rules...
///
NumericLiteralParser::
NumericLiteralParser(const char *begin, const char *end,
SourceLocation TokLoc, Preprocessor &pp)
: PP(pp), ThisTokBegin(begin), ThisTokEnd(end) {
s = DigitsBegin = begin;
saw_exponent = false;
saw_period = false;
saw_float_suffix = false;
isLong = false;
isUnsigned = false;
isLongLong = false;
hadError = false;
if (*s == '0') { // parse radix
s++;
if ((*s == 'x' || *s == 'X') && (isxdigit(s[1]) || s[1] == '.')) {
s++;
radix = 16;
DigitsBegin = s;
s = SkipHexDigits(s);
if (s == ThisTokEnd) {
} else if (*s == '.') {
s++;
saw_period = true;
s = SkipHexDigits(s);
}
// A binary exponent can appear with or with a '.'. If dotted, the
// binary exponent is required.
if (*s == 'p' || *s == 'P') {
s++;
saw_exponent = true;
if (*s == '+' || *s == '-') s++; // sign
const char *first_non_digit = SkipDigits(s);
if (first_non_digit == s) {
Diag(TokLoc, diag::err_exponent_has_no_digits);
return;
} else {
s = first_non_digit;
}
} else if (saw_period) {
Diag(TokLoc, diag::err_hexconstant_requires_exponent);
return;
}
} else {
// For now, the radix is set to 8. If we discover that we have a
// floating point constant, the radix will change to 10. Octal floating
// point constants are not permitted (only decimal and hexadecimal).
radix = 8;
DigitsBegin = s;
s = SkipOctalDigits(s);
if (s == ThisTokEnd) {
} else if (*s == '.') {
s++;
radix = 10;
saw_period = true;
s = SkipDigits(s);
}
if (*s == 'e' || *s == 'E') { // exponent
s++;
radix = 10;
saw_exponent = true;
if (*s == '+' || *s == '-') s++; // sign
const char *first_non_digit = SkipDigits(s);
if (first_non_digit == s) {
Diag(TokLoc, diag::err_exponent_has_no_digits);
return;
} else {
s = first_non_digit;
}
}
}
} else { // the first digit is non-zero
radix = 10;
s = SkipDigits(s);
if (s == ThisTokEnd) {
} else if (*s == '.') {
s++;
saw_period = true;
s = SkipDigits(s);
}
if (*s == 'e' || *s == 'E') { // exponent
s++;
saw_exponent = true;
if (*s == '+' || *s == '-') s++; // sign
const char *first_non_digit = SkipDigits(s);
if (first_non_digit == s) {
Diag(TokLoc, diag::err_exponent_has_no_digits);
return;
} else {
s = first_non_digit;
}
}
}
SuffixBegin = s;
if (saw_period || saw_exponent) {
if (s < ThisTokEnd) { // parse size suffix (float, long double)
if (*s == 'f' || *s == 'F') {
saw_float_suffix = true;
s++;
} else if (*s == 'l' || *s == 'L') {
isLong = true;
s++;
}
if (s != ThisTokEnd) {
Diag(TokLoc, diag::err_invalid_suffix_float_constant,
std::string(SuffixBegin, ThisTokEnd));
return;
}
}
} else {
if (s < ThisTokEnd) {
// parse int suffix - they can appear in any order ("ul", "lu", "llu").
if (*s == 'u' || *s == 'U') {
s++;
isUnsigned = true; // unsigned
if ((s < ThisTokEnd) && (*s == 'l' || *s == 'L')) {
s++;
// handle "long long" type - l's need to be adjacent and same case.
if ((s < ThisTokEnd) && (*s == *(s-1))) {
isLongLong = true; // unsigned long long
s++;
} else {
isLong = true; // unsigned long
}
}
} else if (*s == 'l' || *s == 'L') {
s++;
// handle "long long" types - l's need to be adjacent and same case.
if ((s < ThisTokEnd) && (*s == *(s-1))) {
s++;
if ((s < ThisTokEnd) && (*s == 'u' || *s == 'U')) {
isUnsigned = true; // unsigned long long
s++;
} else {
isLongLong = true; // long long
}
} else { // handle "long" types
if ((s < ThisTokEnd) && (*s == 'u' || *s == 'U')) {
isUnsigned = true; // unsigned long
s++;
} else {
isLong = true; // long
}
}
}
if (s != ThisTokEnd) {
Diag(TokLoc, diag::err_invalid_suffix_integer_constant,
std::string(SuffixBegin, ThisTokEnd));
return;
}
}
}
}
bool NumericLiteralParser::GetIntegerValue(uintmax_t &val) {
uintmax_t max_value = UINTMAX_MAX / radix;
unsigned max_digit = UINTMAX_MAX % radix;
val = 0;
s = DigitsBegin;
while (s < SuffixBegin) {
unsigned C = HexDigitValue(*s++);
if (val > max_value || (val == max_value && C > max_digit)) {
return false; // Overflow!
} else {
val *= radix;
val += C;
}
}
return true;
}
bool NumericLiteralParser::GetIntegerValue(int &val) {
intmax_t max_value = INT_MAX / radix;
unsigned max_digit = INT_MAX % radix;
val = 0;
s = DigitsBegin;
while (s < SuffixBegin) {
unsigned C = HexDigitValue(*s++);
if (val > max_value || (val == max_value && C > max_digit)) {
return false; // Overflow!
} else {
val *= radix;
val += C;
}
}
return true;
}
/// GetIntegerValue - Convert this numeric literal value to an APInt that
/// matches Val's input width. If there is an overflow, set Val to the low bits
/// of the result and return true. Otherwise, return false.
bool NumericLiteralParser::GetIntegerValue(APInt &Val) {
Val = 0;
s = DigitsBegin;
APInt RadixVal(Val.getBitWidth(), radix);
APInt CharVal(Val.getBitWidth(), 0);
APInt OldVal = Val;
bool OverflowOccurred = false;
while (s < SuffixBegin) {
unsigned C = HexDigitValue(*s++);
// If this letter is out of bound for this radix, reject it.
assert(C < radix && "NumericLiteralParser ctor should have rejected this");
CharVal = C;
// Add the digit to the value in the appropriate radix. If adding in digits
// made the value smaller, then this overflowed.
OldVal = Val;
// Multiply by radix, did overflow occur on the multiply?
Val *= RadixVal;
OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
OldVal = Val;
// Add value, did overflow occur on the value?
Val += CharVal;
OverflowOccurred |= Val.ult(OldVal);
OverflowOccurred |= Val.ult(CharVal);
}
return OverflowOccurred;
}
void NumericLiteralParser::Diag(SourceLocation Loc, unsigned DiagID,
const std::string &M) {
PP.Diag(Loc, DiagID, M);
hadError = true;
}
CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
SourceLocation Loc, Preprocessor &PP) {
// At this point we know that the character matches the regex "L?'.*'".
HadError = false;
Value = 0;
// Determine if this is a wide character.
IsWide = begin[0] == 'L';
if (IsWide) ++begin;
// Skip over the entry quote.
assert(begin[0] == '\'' && "Invalid token lexed");
++begin;
// FIXME: This assumes that 'int' is 32-bits in overflow calculation, and the
// size of "value".
assert(PP.getTargetInfo().getIntWidth(Loc) == 32 &&
"Assumes sizeof(int) == 4 for now");
// FIXME: This assumes that wchar_t is 32-bits for now.
assert(PP.getTargetInfo().getWCharWidth(Loc) == 32 &&
"Assumes sizeof(wchar_t) == 4 for now");
// FIXME: This extensively assumes that 'char' is 8-bits.
assert(PP.getTargetInfo().getCharWidth(Loc) == 8 &&
"Assumes char is 8 bits");
bool isFirstChar = true;
bool isMultiChar = false;
while (begin[0] != '\'') {
unsigned ResultChar;
if (begin[0] != '\\') // If this is a normal character, consume it.
ResultChar = *begin++;
else // Otherwise, this is an escape character.
ResultChar = ProcessCharEscape(begin, end, HadError, Loc, PP);
// If this is a multi-character constant (e.g. 'abc'), handle it. These are
// implementation defined (C99 6.4.4.4p10).
if (!isFirstChar) {
// If this is the second character being processed, do special handling.
if (!isMultiChar) {
isMultiChar = true;
// Warn about discarding the top bits for multi-char wide-character
// constants (L'abcd').
if (IsWide)
PP.Diag(Loc, diag::warn_extraneous_wide_char_constant);
}
if (IsWide) {
// Emulate GCC's (unintentional?) behavior: L'ab' -> L'b'.
Value = 0;
} else {
// Narrow character literals act as though their value is concatenated
// in this implementation.
if (((Value << 8) >> 8) != Value)
PP.Diag(Loc, diag::warn_char_constant_too_large);
Value <<= 8;
}
}
Value += ResultChar;
isFirstChar = false;
}
// If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
// if 'char' is signed for this target (C99 6.4.4.4p10). Note that multiple
// character constants are not sign extended in the this implementation:
// '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
if (!IsWide && !isMultiChar && (Value & 128) &&
PP.getTargetInfo().isCharSigned(Loc))
Value = (signed char)Value;
}
/// string-literal: [C99 6.4.5]
/// " [s-char-sequence] "
/// L" [s-char-sequence] "
/// s-char-sequence:
/// s-char
/// s-char-sequence s-char
/// s-char:
/// any source character except the double quote ",
/// backslash \, or newline character
/// escape-character
/// universal-character-name
/// escape-character: [C99 6.4.4.4]
/// \ escape-code
/// universal-character-name
/// escape-code:
/// character-escape-code
/// octal-escape-code
/// hex-escape-code
/// character-escape-code: one of
/// n t b r f v a
/// \ ' " ?
/// octal-escape-code:
/// octal-digit
/// octal-digit octal-digit
/// octal-digit octal-digit octal-digit
/// hex-escape-code:
/// x hex-digit
/// hex-escape-code hex-digit
/// universal-character-name:
/// \u hex-quad
/// \U hex-quad hex-quad
/// hex-quad:
/// hex-digit hex-digit hex-digit hex-digit
///
StringLiteralParser::
StringLiteralParser(const LexerToken *StringToks, unsigned NumStringToks,
Preprocessor &pp, TargetInfo &t)
: PP(pp), Target(t) {
// Scan all of the string portions, remember the max individual token length,
// computing a bound on the concatenated string length, and see whether any
// piece is a wide-string. If any of the string portions is a wide-string
// literal, the result is a wide-string literal [C99 6.4.5p4].
MaxTokenLength = StringToks[0].getLength();
SizeBound = StringToks[0].getLength()-2; // -2 for "".
AnyWide = StringToks[0].getKind() == tok::wide_string_literal;
hadError = false;
// Implement Translation Phase #6: concatenation of string literals
/// (C99 5.1.1.2p1). The common case is only one string fragment.
for (unsigned i = 1; i != NumStringToks; ++i) {
// The string could be shorter than this if it needs cleaning, but this is a
// reasonable bound, which is all we need.
SizeBound += StringToks[i].getLength()-2; // -2 for "".
// Remember maximum string piece length.
if (StringToks[i].getLength() > MaxTokenLength)
MaxTokenLength = StringToks[i].getLength();
// Remember if we see any wide strings.
AnyWide |= StringToks[i].getKind() == tok::wide_string_literal;
}
// Include space for the null terminator.
++SizeBound;
// TODO: K&R warning: "traditional C rejects string constant concatenation"
// Get the width in bytes of wchar_t. If no wchar_t strings are used, do not
// query the target. As such, wchar_tByteWidth is only valid if AnyWide=true.
wchar_tByteWidth = ~0U;
if (AnyWide) {
wchar_tByteWidth = Target.getWCharWidth(StringToks[0].getLocation());
assert((wchar_tByteWidth & 7) == 0 && "Assumes wchar_t is byte multiple!");
wchar_tByteWidth /= 8;
}
// The output buffer size needs to be large enough to hold wide characters.
// This is a worst-case assumption which basically corresponds to L"" "long".
if (AnyWide)
SizeBound *= wchar_tByteWidth;
// Size the temporary buffer to hold the result string data.
ResultBuf.resize(SizeBound);
// Likewise, but for each string piece.
SmallString<512> TokenBuf;
TokenBuf.resize(MaxTokenLength);
// Loop over all the strings, getting their spelling, and expanding them to
// wide strings as appropriate.
ResultPtr = &ResultBuf[0]; // Next byte to fill in.
for (unsigned i = 0, e = NumStringToks; i != e; ++i) {
const char *ThisTokBuf = &TokenBuf[0];
// Get the spelling of the token, which eliminates trigraphs, etc. We know
// that ThisTokBuf points to a buffer that is big enough for the whole token
// and 'spelled' tokens can only shrink.
unsigned ThisTokLen = PP.getSpelling(StringToks[i], ThisTokBuf);
const char *ThisTokEnd = ThisTokBuf+ThisTokLen-1; // Skip end quote.
// TODO: Input character set mapping support.
// Skip L marker for wide strings.
if (ThisTokBuf[0] == 'L') ++ThisTokBuf;
assert(ThisTokBuf[0] == '"' && "Expected quote, lexer broken?");
++ThisTokBuf;
while (ThisTokBuf != ThisTokEnd) {
// Is this a span of non-escape characters?
if (ThisTokBuf[0] != '\\') {
const char *InStart = ThisTokBuf;
do {
++ThisTokBuf;
} while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
// Copy the character span over.
unsigned Len = ThisTokBuf-InStart;
if (!AnyWide) {
memcpy(ResultPtr, InStart, Len);
ResultPtr += Len;
} else {
// Note: our internal rep of wide char tokens is always little-endian.
for (; Len; --Len, ++InStart) {
*ResultPtr++ = InStart[0];
// Add zeros at the end.
for (unsigned i = 1, e = wchar_tByteWidth; i != e; ++i)
*ResultPtr++ = 0;
}
}
continue;
}
// Otherwise, this is an escape character. Process it.
unsigned ResultChar = ProcessCharEscape(ThisTokBuf, ThisTokEnd, hadError,
StringToks[i].getLocation(), PP);
// Note: our internal rep of wide char tokens is always little-endian.
*ResultPtr++ = ResultChar & 0xFF;
if (AnyWide) {
for (unsigned i = 1, e = wchar_tByteWidth; i != e; ++i)
*ResultPtr++ = ResultChar >> i*8;
}
}
}
// Add zero terminator.
*ResultPtr = 0;
if (AnyWide) {
for (unsigned i = 1, e = wchar_tByteWidth; i != e; ++i)
*ResultPtr++ = 0;
}
}