forked from OSchip/llvm-project
361 lines
13 KiB
C++
361 lines
13 KiB
C++
//===- ICF.cpp ------------------------------------------------------------===//
|
|
//
|
|
// The LLVM Linker
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Identical Code Folding is a feature to merge sections not by name (which
|
|
// is regular comdat handling) but by contents. If two non-writable sections
|
|
// have the same data, relocations, attributes, etc., then the two
|
|
// are considered identical and merged by the linker. This optimization
|
|
// makes outputs smaller.
|
|
//
|
|
// ICF is theoretically a problem of reducing graphs by merging as many
|
|
// identical subgraphs as possible if we consider sections as vertices and
|
|
// relocations as edges. It may sound simple, but it is a bit more
|
|
// complicated than you might think. The order of processing sections
|
|
// matters because merging two sections can make other sections, whose
|
|
// relocations now point to the same section, mergeable. Graphs may contain
|
|
// cycles. We need a sophisticated algorithm to do this properly and
|
|
// efficiently.
|
|
//
|
|
// What we do in this file is this. We split sections into groups. Sections
|
|
// in the same group are considered identical.
|
|
//
|
|
// We begin by optimistically putting all sections into a single equivalence
|
|
// class. Then we apply a series of checks that split this initial
|
|
// equivalence class into more and more refined equivalence classes based on
|
|
// the properties by which a section can be distinguished.
|
|
//
|
|
// We begin by checking that the section contents and flags are the
|
|
// same. This only needs to be done once since these properties don't depend
|
|
// on the current equivalence class assignment.
|
|
//
|
|
// Then we split the equivalence classes based on checking that their
|
|
// relocations are the same, where relocation targets are compared by their
|
|
// equivalence class, not the concrete section. This may need to be done
|
|
// multiple times because as the equivalence classes are refined, two
|
|
// sections that had a relocation target in the same equivalence class may
|
|
// now target different equivalence classes, and hence these two sections
|
|
// must be put in different equivalence classes (whereas in the previous
|
|
// iteration they were not since the relocation target was the same.)
|
|
//
|
|
// Our algorithm is smart enough to merge the following mutually-recursive
|
|
// functions.
|
|
//
|
|
// void foo() { bar(); }
|
|
// void bar() { foo(); }
|
|
//
|
|
// This algorithm is so-called "optimistic" algorithm described in
|
|
// http://research.google.com/pubs/pub36912.html. (Note that what GNU
|
|
// gold implemented is different from the optimistic algorithm.)
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ICF.h"
|
|
#include "Config.h"
|
|
#include "OutputSections.h"
|
|
#include "SymbolTable.h"
|
|
|
|
#include "llvm/ADT/Hashing.h"
|
|
#include "llvm/Object/ELF.h"
|
|
#include "llvm/Support/ELF.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace lld;
|
|
using namespace lld::elf;
|
|
using namespace llvm;
|
|
using namespace llvm::ELF;
|
|
using namespace llvm::object;
|
|
|
|
namespace lld {
|
|
namespace elf {
|
|
template <class ELFT> class ICF {
|
|
typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr;
|
|
typedef typename ELFFile<ELFT>::Elf_Sym Elf_Sym;
|
|
typedef typename ELFFile<ELFT>::uintX_t uintX_t;
|
|
typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
|
|
|
|
using Comparator = std::function<bool(const InputSection<ELFT> *,
|
|
const InputSection<ELFT> *)>;
|
|
|
|
public:
|
|
void run(SymbolTable<ELFT> *Symtab);
|
|
|
|
private:
|
|
uint64_t NextId = 1;
|
|
|
|
static void setLive(SymbolTable<ELFT> *S);
|
|
static uint64_t relSize(InputSection<ELFT> *S);
|
|
static uint64_t getHash(InputSection<ELFT> *S);
|
|
static bool isEligible(InputSectionBase<ELFT> *Sec);
|
|
static std::vector<InputSection<ELFT> *> getSections(SymbolTable<ELFT> *S);
|
|
static SymbolBody &getSymbol(const InputSection<ELFT> *Sec,
|
|
const Elf_Rel *Rel);
|
|
|
|
void segregate(InputSection<ELFT> **Begin, InputSection<ELFT> **End,
|
|
Comparator Eq);
|
|
|
|
void forEachGroup(std::vector<InputSection<ELFT> *> &V, Comparator Eq);
|
|
|
|
template <class RelTy>
|
|
static bool relocationEq(iterator_range<const RelTy *> RA,
|
|
iterator_range<const RelTy *> RB);
|
|
|
|
template <class RelTy>
|
|
static bool variableEq(const InputSection<ELFT> *A,
|
|
const InputSection<ELFT> *B,
|
|
iterator_range<const RelTy *> RA,
|
|
iterator_range<const RelTy *> RB);
|
|
|
|
static bool equalsConstant(const InputSection<ELFT> *A,
|
|
const InputSection<ELFT> *B);
|
|
|
|
static bool equalsVariable(const InputSection<ELFT> *A,
|
|
const InputSection<ELFT> *B);
|
|
};
|
|
}
|
|
}
|
|
|
|
// Returns a hash value for S. Note that the information about
|
|
// relocation targets is not included in the hash value.
|
|
template <class ELFT> uint64_t ICF<ELFT>::getHash(InputSection<ELFT> *S) {
|
|
uint64_t Flags = S->getSectionHdr()->sh_flags;
|
|
uint64_t H = hash_combine(Flags, S->getSize());
|
|
for (const Elf_Shdr *Rel : S->RelocSections)
|
|
H = hash_combine(H, (uint64_t)Rel->sh_size);
|
|
return H;
|
|
}
|
|
|
|
// Returns true if Sec is subject of ICF.
|
|
template <class ELFT> bool ICF<ELFT>::isEligible(InputSectionBase<ELFT> *Sec) {
|
|
if (!Sec || Sec == InputSection<ELFT>::Discarded || !Sec->Live)
|
|
return false;
|
|
auto *S = dyn_cast<InputSection<ELFT>>(Sec);
|
|
if (!S)
|
|
return false;
|
|
|
|
// .init and .fini contains instructions that must be executed to
|
|
// initialize and finalize the process. They cannot and should not
|
|
// be merged.
|
|
StringRef Name = S->getSectionName();
|
|
if (Name == ".init" || Name == ".fini")
|
|
return false;
|
|
|
|
const Elf_Shdr &H = *S->getSectionHdr();
|
|
return (H.sh_flags & SHF_ALLOC) && (~H.sh_flags & SHF_WRITE);
|
|
}
|
|
|
|
template <class ELFT>
|
|
std::vector<InputSection<ELFT> *>
|
|
ICF<ELFT>::getSections(SymbolTable<ELFT> *Symtab) {
|
|
std::vector<InputSection<ELFT> *> V;
|
|
for (const std::unique_ptr<ObjectFile<ELFT>> &F : Symtab->getObjectFiles())
|
|
for (InputSectionBase<ELFT> *S : F->getSections())
|
|
if (isEligible(S))
|
|
V.push_back(cast<InputSection<ELFT>>(S));
|
|
return V;
|
|
}
|
|
|
|
template <class ELFT>
|
|
SymbolBody &ICF<ELFT>::getSymbol(const InputSection<ELFT> *Sec,
|
|
const Elf_Rel *Rel) {
|
|
uint32_t SymIdx = Rel->getSymbol(Config->Mips64EL);
|
|
return Sec->File->getSymbolBody(SymIdx).repl();
|
|
}
|
|
|
|
// All sections between Begin and End must have the same group ID before
|
|
// you call this function. This function compare sections between Begin
|
|
// and End using Eq and assign new group IDs for new groups.
|
|
template <class ELFT>
|
|
void ICF<ELFT>::segregate(InputSection<ELFT> **Begin, InputSection<ELFT> **End,
|
|
Comparator Eq) {
|
|
// This loop rearranges [Begin, End) so that all sections that are
|
|
// equal in terms of Eq are contiguous. The algorithm is quadratic in
|
|
// the worst case, but that is not an issue in practice because the
|
|
// number of distinct sections in [Begin, End) is usually very small.
|
|
InputSection<ELFT> **I = Begin;
|
|
for (;;) {
|
|
InputSection<ELFT> *Head = *I;
|
|
auto Bound = std::stable_partition(
|
|
I + 1, End, [&](InputSection<ELFT> *S) { return Eq(Head, S); });
|
|
if (Bound == End)
|
|
return;
|
|
uint64_t Id = NextId++;
|
|
for (; I != Bound; ++I)
|
|
(*I)->GroupId = Id;
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ICF<ELFT>::forEachGroup(std::vector<InputSection<ELFT> *> &V,
|
|
Comparator Eq) {
|
|
for (InputSection<ELFT> **I = V.data(), **E = I + V.size(); I != E;) {
|
|
InputSection<ELFT> *Head = *I;
|
|
auto Bound = std::find_if(I + 1, E, [&](InputSection<ELFT> *S) {
|
|
return S->GroupId != Head->GroupId;
|
|
});
|
|
segregate(I, Bound, Eq);
|
|
I = Bound;
|
|
}
|
|
}
|
|
|
|
// Compare two lists of relocations.
|
|
template <class ELFT>
|
|
template <class RelTy>
|
|
bool ICF<ELFT>::relocationEq(iterator_range<const RelTy *> RelsA,
|
|
iterator_range<const RelTy *> RelsB) {
|
|
const RelTy *IA = RelsA.begin();
|
|
const RelTy *EA = RelsA.end();
|
|
const RelTy *IB = RelsB.begin();
|
|
const RelTy *EB = RelsB.end();
|
|
if (EA - IA != EB - IB)
|
|
return false;
|
|
for (; IA != EA; ++IA, ++IB)
|
|
if (IA->r_offset != IB->r_offset ||
|
|
IA->getType(Config->Mips64EL) != IB->getType(Config->Mips64EL) ||
|
|
getAddend<ELFT>(*IA) != getAddend<ELFT>(*IB))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
// Compare "non-moving" part of two InputSections, namely everything
|
|
// except relocation targets.
|
|
template <class ELFT>
|
|
bool ICF<ELFT>::equalsConstant(const InputSection<ELFT> *A,
|
|
const InputSection<ELFT> *B) {
|
|
if (A->RelocSections.size() != B->RelocSections.size())
|
|
return false;
|
|
|
|
for (size_t I = 0, E = A->RelocSections.size(); I != E; ++I) {
|
|
const Elf_Shdr *RA = A->RelocSections[I];
|
|
const Elf_Shdr *RB = B->RelocSections[I];
|
|
ELFFile<ELFT> &FileA = A->File->getObj();
|
|
ELFFile<ELFT> &FileB = B->File->getObj();
|
|
if (RA->sh_type == SHT_RELA) {
|
|
if (!relocationEq(FileA.relas(RA), FileB.relas(RB)))
|
|
return false;
|
|
} else {
|
|
if (!relocationEq(FileA.rels(RA), FileB.rels(RB)))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return A->getSectionHdr()->sh_flags == B->getSectionHdr()->sh_flags &&
|
|
A->getSize() == B->getSize() &&
|
|
A->getSectionData() == B->getSectionData();
|
|
}
|
|
|
|
template <class ELFT>
|
|
template <class RelTy>
|
|
bool ICF<ELFT>::variableEq(const InputSection<ELFT> *A,
|
|
const InputSection<ELFT> *B,
|
|
iterator_range<const RelTy *> RelsA,
|
|
iterator_range<const RelTy *> RelsB) {
|
|
const RelTy *IA = RelsA.begin();
|
|
const RelTy *EA = RelsA.end();
|
|
const RelTy *IB = RelsB.begin();
|
|
for (; IA != EA; ++IA, ++IB) {
|
|
SymbolBody &SA = getSymbol(A, (const Elf_Rel *)IA);
|
|
SymbolBody &SB = getSymbol(B, (const Elf_Rel *)IB);
|
|
if (&SA == &SB)
|
|
continue;
|
|
|
|
// Or, the symbols should be pointing to the same section
|
|
// in terms of the group ID.
|
|
auto *DA = dyn_cast<DefinedRegular<ELFT>>(&SA);
|
|
auto *DB = dyn_cast<DefinedRegular<ELFT>>(&SB);
|
|
if (!DA || !DB)
|
|
return false;
|
|
if (DA->Sym.st_value != DB->Sym.st_value)
|
|
return false;
|
|
InputSection<ELFT> *X = dyn_cast<InputSection<ELFT>>(DA->Section);
|
|
InputSection<ELFT> *Y = dyn_cast<InputSection<ELFT>>(DB->Section);
|
|
if (X && Y && X->GroupId && X->GroupId == Y->GroupId)
|
|
continue;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Compare "moving" part of two InputSections, namely relocation targets.
|
|
template <class ELFT>
|
|
bool ICF<ELFT>::equalsVariable(const InputSection<ELFT> *A,
|
|
const InputSection<ELFT> *B) {
|
|
for (size_t I = 0, E = A->RelocSections.size(); I != E; ++I) {
|
|
const Elf_Shdr *RA = A->RelocSections[I];
|
|
const Elf_Shdr *RB = B->RelocSections[I];
|
|
ELFFile<ELFT> &FileA = A->File->getObj();
|
|
ELFFile<ELFT> &FileB = B->File->getObj();
|
|
if (RA->sh_type == SHT_RELA) {
|
|
if (!variableEq(A, B, FileA.relas(RA), FileB.relas(RB)))
|
|
return false;
|
|
} else {
|
|
if (!variableEq(A, B, FileA.rels(RA), FileB.rels(RB)))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// The main function of ICF.
|
|
template <class ELFT> void ICF<ELFT>::run(SymbolTable<ELFT> *Symtab) {
|
|
// Initially, we use hash values as section group IDs. Therefore,
|
|
// if two sections have the same ID, they are likely (but not
|
|
// guaranteed) to have the same static contents in terms of ICF.
|
|
std::vector<InputSection<ELFT> *> V = getSections(Symtab);
|
|
for (InputSection<ELFT> *S : V)
|
|
// Set MSB on to avoid collisions with serial group IDs
|
|
S->GroupId = getHash(S) | (uint64_t(1) << 63);
|
|
|
|
// From now on, sections in V are ordered so that sections in
|
|
// the same group are consecutive in the vector.
|
|
std::stable_sort(V.begin(), V.end(),
|
|
[](InputSection<ELFT> *A, InputSection<ELFT> *B) {
|
|
return A->GroupId < B->GroupId;
|
|
});
|
|
|
|
// Compare static contents and assign unique IDs for each static content.
|
|
forEachGroup(V, equalsConstant);
|
|
|
|
// Split groups by comparing relocations until we get a convergence.
|
|
int Cnt = 1;
|
|
for (;;) {
|
|
++Cnt;
|
|
uint64_t Id = NextId;
|
|
forEachGroup(V, equalsVariable);
|
|
if (Id == NextId)
|
|
break;
|
|
}
|
|
log("ICF needed " + Twine(Cnt) + " iterations.");
|
|
|
|
// Merge sections in the same group.
|
|
for (auto I = V.begin(), E = V.end(); I != E;) {
|
|
InputSection<ELFT> *Head = *I++;
|
|
auto Bound = std::find_if(I, E, [&](InputSection<ELFT> *S) {
|
|
return Head->GroupId != S->GroupId;
|
|
});
|
|
if (I == Bound)
|
|
continue;
|
|
log("Selected " + Head->getSectionName());
|
|
while (I != Bound) {
|
|
InputSection<ELFT> *S = *I++;
|
|
log(" Removed " + S->getSectionName());
|
|
Head->replace(S);
|
|
}
|
|
}
|
|
}
|
|
|
|
// ICF entry point function.
|
|
template <class ELFT> void elf::doIcf(SymbolTable<ELFT> *Symtab) {
|
|
ICF<ELFT>().run(Symtab);
|
|
}
|
|
|
|
template void elf::doIcf(SymbolTable<ELF32LE> *);
|
|
template void elf::doIcf(SymbolTable<ELF32BE> *);
|
|
template void elf::doIcf(SymbolTable<ELF64LE> *);
|
|
template void elf::doIcf(SymbolTable<ELF64BE> *);
|