llvm-project/clang-tools-extra/modularize/PreprocessorTracker.cpp

1430 lines
60 KiB
C++

//===--- PreprocessorTracker.cpp - Preprocessor tracking -*- C++ -*------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===--------------------------------------------------------------------===//
//
// The Basic Idea (Macro and Conditional Checking)
//
// Basically we install a PPCallbacks-derived object to track preprocessor
// activity, namely when a header file is entered/exited, when a macro
// is expanded, when "defined" is used, and when #if, #elif, #ifdef,
// and #ifndef are used. We save the state of macro and "defined"
// expressions in a map, keyed on a name/file/line/column quadruple.
// The map entries store the different states (values) that a macro expansion,
// "defined" expression, or condition expression has in the course of
// processing for the one location in the one header containing it,
// plus a list of the nested include stacks for the states. When a macro
// or "defined" expression evaluates to the same value, which is the
// desired case, only one state is stored. Similarly, for conditional
// directives, we save the condition expression states in a separate map.
//
// This information is collected as modularize compiles all the headers
// given to it to process. After all the compilations are performed,
// a check is performed for any entries in the maps that contain more
// than one different state, and for these an output message is generated.
//
// For example:
//
// (...)/SubHeader.h:11:5:
// #if SYMBOL == 1
// ^
// error: Macro instance 'SYMBOL' has different values in this header,
// depending on how it was included.
// 'SYMBOL' expanded to: '1' with respect to these inclusion paths:
// (...)/Header1.h
// (...)/SubHeader.h
// (...)/SubHeader.h:3:9:
// #define SYMBOL 1
// ^
// Macro defined here.
// 'SYMBOL' expanded to: '2' with respect to these inclusion paths:
// (...)/Header2.h
// (...)/SubHeader.h
// (...)/SubHeader.h:7:9:
// #define SYMBOL 2
// ^
// Macro defined here.
//
// The Basic Idea ('Extern "C/C++" {}' Or 'namespace {}') With Nested
// '#include' Checking)
//
// To check for '#include' directives nested inside 'Extern "C/C++" {}'
// or 'namespace {}' blocks, we keep track of the '#include' directives
// while running the preprocessor, and later during a walk of the AST
// we call a function to check for any '#include' directies inside
// an 'Extern "C/C++" {}' or 'namespace {}' block, given its source
// range.
//
// Design and Implementation Details (Macro and Conditional Checking)
//
// A PreprocessorTrackerImpl class implements the PreprocessorTracker
// interface. It uses a PreprocessorCallbacks class derived from PPCallbacks
// to track preprocessor activity, namely entering/exiting a header, macro
// expansions, use of "defined" expressions, and #if, #elif, #ifdef, and
// #ifndef conditional directives. PreprocessorTrackerImpl stores a map
// of MacroExpansionTracker objects keyed on a name/file/line/column
// value represented by a light-weight PPItemKey value object. This
// is the key top-level data structure tracking the values of macro
// expansion instances. Similarly, it stores a map of ConditionalTracker
// objects with the same kind of key, for tracking preprocessor conditional
// directives.
//
// The MacroExpansionTracker object represents one macro reference or use
// of a "defined" expression in a header file. It stores a handle to a
// string representing the unexpanded macro instance, a handle to a string
// representing the unpreprocessed source line containing the unexpanded
// macro instance, and a vector of one or more MacroExpansionInstance
// objects.
//
// The MacroExpansionInstance object represents one or more expansions
// of a macro reference, for the case where the macro expands to the same
// value. MacroExpansionInstance stores a handle to a string representing
// the expanded macro value, a PPItemKey representing the file/line/column
// where the macro was defined, a handle to a string representing the source
// line containing the macro definition, and a vector of InclusionPathHandle
// values that represents the hierarchies of include files for each case
// where the particular header containing the macro reference was referenced
// or included.
// In the normal case where a macro instance always expands to the same
// value, the MacroExpansionTracker object will only contain one
// MacroExpansionInstance representing all the macro expansion instances.
// If a case was encountered where a macro instance expands to a value
// that is different from that seen before, or the macro was defined in
// a different place, a new MacroExpansionInstance object representing
// that case will be added to the vector in MacroExpansionTracker. If a
// macro instance expands to a value already seen before, the
// InclusionPathHandle representing that case's include file hierarchy
// will be added to the existing MacroExpansionInstance object.
// For checking conditional directives, the ConditionalTracker class
// functions similarly to MacroExpansionTracker, but tracks an #if,
// #elif, #ifdef, or #ifndef directive in a header file. It stores
// a vector of one or two ConditionalExpansionInstance objects,
// representing the cases where the conditional expression evaluates
// to true or false. This latter object stores the evaluated value
// of the condition expression (a bool) and a vector of
// InclusionPathHandles.
//
// To reduce the instances of string and object copying, the
// PreprocessorTrackerImpl class uses a StringPool to save all stored
// strings, and defines a StringHandle type to abstract the references
// to the strings.
//
// PreprocessorTrackerImpl also maintains a list representing the unique
// headers, which is just a vector of StringHandle's for the header file
// paths. A HeaderHandle abstracts a reference to a header, and is simply
// the index of the stored header file path.
//
// A HeaderInclusionPath class abstracts a unique hierarchy of header file
// inclusions. It simply stores a vector of HeaderHandles ordered from the
// top-most header (the one from the header list passed to modularize) down
// to the header containing the macro reference. PreprocessorTrackerImpl
// stores a vector of these objects. An InclusionPathHandle typedef
// abstracts a reference to one of the HeaderInclusionPath objects, and is
// simply the index of the stored HeaderInclusionPath object. The
// MacroExpansionInstance object stores a vector of these handles so that
// the reporting function can display the include hierarchies for the macro
// expansion instances represented by that object, to help the user
// understand how the header was included. (A future enhancement might
// be to associate a line number for the #include directives, but I
// think not doing so is good enough for the present.)
//
// A key reason for using these opaque handles was to try to keep all the
// internal objects light-weight value objects, in order to reduce string
// and object copying overhead, and to abstract this implementation detail.
//
// The key data structures are built up while modularize runs the headers
// through the compilation. A PreprocessorTracker instance is created and
// passed down to the AST action and consumer objects in modularize. For
// each new compilation instance, the consumer calls the
// PreprocessorTracker's handleNewPreprocessorEntry function, which sets
// up a PreprocessorCallbacks object for the preprocessor. At the end of
// the compilation instance, the PreprocessorTracker's
// handleNewPreprocessorExit function handles cleaning up with respect
// to the preprocessing instance.
//
// The PreprocessorCallbacks object uses an overidden FileChanged callback
// to determine when a header is entered and exited (including exiting the
// header during #include directives). It calls PreprocessorTracker's
// handleHeaderEntry and handleHeaderExit functions upon entering and
// exiting a header. These functions manage a stack of header handles
// representing by a vector, pushing and popping header handles as headers
// are entered and exited. When a HeaderInclusionPath object is created,
// it simply copies this stack.
//
// The PreprocessorCallbacks object uses an overridden MacroExpands callback
// to track when a macro expansion is performed. It calls a couple of helper
// functions to get the unexpanded and expanded macro values as strings, but
// then calls PreprocessorTrackerImpl's addMacroExpansionInstance function to
// do the rest of the work. The getMacroExpandedString function uses the
// preprocessor's getSpelling to convert tokens to strings using the
// information passed to the MacroExpands callback, and simply concatenates
// them. It makes recursive calls to itself to handle nested macro
// definitions, and also handles function-style macros.
//
// PreprocessorTrackerImpl's addMacroExpansionInstance function looks for
// an existing MacroExpansionTracker entry in its map of MacroExampleTracker
// objects. If none exists, it adds one with one MacroExpansionInstance and
// returns. If a MacroExpansionTracker object already exists, it looks for
// an existing MacroExpansionInstance object stored in the
// MacroExpansionTracker object, one that matches the macro expanded value
// and the macro definition location. If a matching MacroExpansionInstance
// object is found, it just adds the current HeaderInclusionPath object to
// it. If not found, it creates and stores a new MacroExpantionInstance
// object. The addMacroExpansionInstance function calls a couple of helper
// functions to get the pre-formatted location and source line strings for
// the macro reference and the macro definition stored as string handles.
// These helper functions use the current source manager from the
// preprocessor. This is done in advance at this point in time because the
// source manager doesn't exist at the time of the reporting.
//
// For conditional check, the PreprocessorCallbacks class overrides the
// PPCallbacks handlers for #if, #elif, #ifdef, and #ifndef. These handlers
// call the addConditionalExpansionInstance method of
// PreprocessorTrackerImpl. The process is similar to that of macros, but
// with some different data and error messages. A lookup is performed for
// the conditional, and if a ConditionalTracker object doesn't yet exist for
// the conditional, a new one is added, including adding a
// ConditionalExpansionInstance object to it to represent the condition
// expression state. If a ConditionalTracker for the conditional does
// exist, a lookup is made for a ConditionalExpansionInstance object
// matching the condition expression state. If one exists, a
// HeaderInclusionPath is added to it. Otherwise a new
// ConditionalExpansionInstance entry is made. If a ConditionalTracker
// has two ConditionalExpansionInstance objects, it means there was a
// conflict, meaning the conditional expression evaluated differently in
// one or more cases.
//
// After modularize has performed all the compilations, it enters a phase
// of error reporting. This new feature adds to this reporting phase calls
// to the PreprocessorTracker's reportInconsistentMacros and
// reportInconsistentConditionals functions. These functions walk the maps
// of MacroExpansionTracker's and ConditionalTracker's respectively. If
// any of these objects have more than one MacroExpansionInstance or
// ConditionalExpansionInstance objects, it formats and outputs an error
// message like the example shown previously, using the stored data.
//
// A potential issue is that there is some overlap between the #if/#elif
// conditional and macro reporting. I could disable the #if and #elif,
// leaving just the #ifdef and #ifndef, since these don't overlap. Or,
// to make clearer the separate reporting phases, I could add an output
// message marking the phases.
//
// Design and Implementation Details ('Extern "C/C++" {}' Or
// 'namespace {}') With Nested '#include' Checking)
//
// We override the InclusionDirective in PPCallbacks to record information
// about each '#include' directive encountered during preprocessing.
// We co-opt the PPItemKey class to store the information about each
// '#include' directive, including the source file name containing the
// directive, the name of the file being included, and the source line
// and column of the directive. We store these object in a vector,
// after first check to see if an entry already exists.
//
// Later, while the AST is being walked for other checks, we provide
// visit handlers for 'extern "C/C++" {}' and 'namespace (name) {}'
// blocks, checking to see if any '#include' directives occurred
// within the blocks, reporting errors if any found.
//
// Future Directions
//
// We probably should add options to disable any of the checks, in case
// there is some problem with them, or the messages get too verbose.
//
// With the map of all the macro and conditional expansion instances,
// it might be possible to add to the existing modularize error messages
// (the second part referring to definitions being different), attempting
// to tie them to the last macro conflict encountered with respect to the
// order of the code encountered.
//
//===--------------------------------------------------------------------===//
#include "clang/Lex/LexDiagnostic.h"
#include "PreprocessorTracker.h"
#include "clang/Lex/MacroArgs.h"
#include "clang/Lex/PPCallbacks.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Support/StringPool.h"
#include "llvm/Support/raw_ostream.h"
namespace Modularize {
// Forwards.
class PreprocessorTrackerImpl;
// Some handle types
typedef llvm::PooledStringPtr StringHandle;
typedef int HeaderHandle;
const HeaderHandle HeaderHandleInvalid = -1;
typedef int InclusionPathHandle;
const InclusionPathHandle InclusionPathHandleInvalid = -1;
// Some utility functions.
// Get a "file:line:column" source location string.
static std::string getSourceLocationString(clang::Preprocessor &PP,
clang::SourceLocation Loc) {
if (Loc.isInvalid())
return std::string("(none)");
else
return Loc.printToString(PP.getSourceManager());
}
// Get just the file name from a source location.
static std::string getSourceLocationFile(clang::Preprocessor &PP,
clang::SourceLocation Loc) {
std::string Source(getSourceLocationString(PP, Loc));
size_t Offset = Source.find(':', 2);
if (Offset == std::string::npos)
return Source;
return Source.substr(0, Offset);
}
// Get just the line and column from a source location.
static void getSourceLocationLineAndColumn(clang::Preprocessor &PP,
clang::SourceLocation Loc, int &Line,
int &Column) {
clang::PresumedLoc PLoc = PP.getSourceManager().getPresumedLoc(Loc);
if (PLoc.isInvalid()) {
Line = 0;
Column = 0;
return;
}
Line = PLoc.getLine();
Column = PLoc.getColumn();
}
// Retrieve source snippet from file image.
std::string getSourceString(clang::Preprocessor &PP, clang::SourceRange Range) {
clang::SourceLocation BeginLoc = Range.getBegin();
clang::SourceLocation EndLoc = Range.getEnd();
const char *BeginPtr = PP.getSourceManager().getCharacterData(BeginLoc);
const char *EndPtr = PP.getSourceManager().getCharacterData(EndLoc);
size_t Length = EndPtr - BeginPtr;
return llvm::StringRef(BeginPtr, Length).trim().str();
}
// Retrieve source line from file image given a location.
std::string getSourceLine(clang::Preprocessor &PP, clang::SourceLocation Loc) {
const llvm::MemoryBuffer *MemBuffer =
PP.getSourceManager().getBuffer(PP.getSourceManager().getFileID(Loc));
const char *Buffer = MemBuffer->getBufferStart();
const char *BufferEnd = MemBuffer->getBufferEnd();
const char *BeginPtr = PP.getSourceManager().getCharacterData(Loc);
const char *EndPtr = BeginPtr;
while (BeginPtr > Buffer) {
if (*BeginPtr == '\n') {
BeginPtr++;
break;
}
BeginPtr--;
}
while (EndPtr < BufferEnd) {
if (*EndPtr == '\n') {
break;
}
EndPtr++;
}
size_t Length = EndPtr - BeginPtr;
return llvm::StringRef(BeginPtr, Length).str();
}
// Retrieve source line from file image given a file ID and line number.
std::string getSourceLine(clang::Preprocessor &PP, clang::FileID FileID,
int Line) {
const llvm::MemoryBuffer *MemBuffer = PP.getSourceManager().getBuffer(FileID);
const char *Buffer = MemBuffer->getBufferStart();
const char *BufferEnd = MemBuffer->getBufferEnd();
const char *BeginPtr = Buffer;
const char *EndPtr = BufferEnd;
int LineCounter = 1;
if (Line == 1)
BeginPtr = Buffer;
else {
while (Buffer < BufferEnd) {
if (*Buffer == '\n') {
if (++LineCounter == Line) {
BeginPtr = Buffer++ + 1;
break;
}
}
Buffer++;
}
}
while (Buffer < BufferEnd) {
if (*Buffer == '\n') {
EndPtr = Buffer;
break;
}
Buffer++;
}
size_t Length = EndPtr - BeginPtr;
return llvm::StringRef(BeginPtr, Length).str();
}
// Get the string for the Unexpanded macro instance.
// The soureRange is expected to end at the last token
// for the macro instance, which in the case of a function-style
// macro will be a ')', but for an object-style macro, it
// will be the macro name itself.
std::string getMacroUnexpandedString(clang::SourceRange Range,
clang::Preprocessor &PP,
llvm::StringRef MacroName,
const clang::MacroInfo *MI) {
clang::SourceLocation BeginLoc(Range.getBegin());
const char *BeginPtr = PP.getSourceManager().getCharacterData(BeginLoc);
size_t Length;
std::string Unexpanded;
if (MI->isFunctionLike()) {
clang::SourceLocation EndLoc(Range.getEnd());
const char *EndPtr = PP.getSourceManager().getCharacterData(EndLoc) + 1;
Length = (EndPtr - BeginPtr) + 1; // +1 is ')' width.
} else
Length = MacroName.size();
return llvm::StringRef(BeginPtr, Length).trim().str();
}
// Get the expansion for a macro instance, given the information
// provided by PPCallbacks.
// FIXME: This doesn't support function-style macro instances
// passed as arguments to another function-style macro. However,
// since it still expands the inner arguments, it still
// allows modularize to effectively work with respect to macro
// consistency checking, although it displays the incorrect
// expansion in error messages.
std::string getMacroExpandedString(clang::Preprocessor &PP,
llvm::StringRef MacroName,
const clang::MacroInfo *MI,
const clang::MacroArgs *Args) {
std::string Expanded;
// Walk over the macro Tokens.
typedef clang::MacroInfo::tokens_iterator Iter;
for (Iter I = MI->tokens_begin(), E = MI->tokens_end(); I != E; ++I) {
clang::IdentifierInfo *II = I->getIdentifierInfo();
int ArgNo = (II && Args ? MI->getArgumentNum(II) : -1);
if (ArgNo == -1) {
// This isn't an argument, just add it.
if (II == nullptr)
Expanded += PP.getSpelling((*I)); // Not an identifier.
else {
// Token is for an identifier.
std::string Name = II->getName().str();
// Check for nexted macro references.
clang::MacroInfo *MacroInfo = PP.getMacroInfo(II);
if (MacroInfo)
Expanded += getMacroExpandedString(PP, Name, MacroInfo, nullptr);
else
Expanded += Name;
}
continue;
}
// We get here if it's a function-style macro with arguments.
const clang::Token *ResultArgToks;
const clang::Token *ArgTok = Args->getUnexpArgument(ArgNo);
if (Args->ArgNeedsPreexpansion(ArgTok, PP))
ResultArgToks = &(const_cast<clang::MacroArgs *>(Args))
->getPreExpArgument(ArgNo, MI, PP)[0];
else
ResultArgToks = ArgTok; // Use non-preexpanded Tokens.
// If the arg token didn't expand into anything, ignore it.
if (ResultArgToks->is(clang::tok::eof))
continue;
unsigned NumToks = clang::MacroArgs::getArgLength(ResultArgToks);
// Append the resulting argument expansions.
for (unsigned ArgumentIndex = 0; ArgumentIndex < NumToks; ++ArgumentIndex) {
const clang::Token &AT = ResultArgToks[ArgumentIndex];
clang::IdentifierInfo *II = AT.getIdentifierInfo();
if (II == nullptr)
Expanded += PP.getSpelling(AT); // Not an identifier.
else {
// It's an identifier. Check for further expansion.
std::string Name = II->getName().str();
clang::MacroInfo *MacroInfo = PP.getMacroInfo(II);
if (MacroInfo)
Expanded += getMacroExpandedString(PP, Name, MacroInfo, nullptr);
else
Expanded += Name;
}
}
}
return Expanded;
}
// Get the string representing a vector of Tokens.
std::string
getTokensSpellingString(clang::Preprocessor &PP,
llvm::SmallVectorImpl<clang::Token> &Tokens) {
std::string Expanded;
// Walk over the macro Tokens.
typedef llvm::SmallVectorImpl<clang::Token>::iterator Iter;
for (Iter I = Tokens.begin(), E = Tokens.end(); I != E; ++I)
Expanded += PP.getSpelling(*I); // Not an identifier.
return llvm::StringRef(Expanded).trim().str();
}
// Get the expansion for a macro instance, given the information
// provided by PPCallbacks.
std::string getExpandedString(clang::Preprocessor &PP,
llvm::StringRef MacroName,
const clang::MacroInfo *MI,
const clang::MacroArgs *Args) {
std::string Expanded;
// Walk over the macro Tokens.
typedef clang::MacroInfo::tokens_iterator Iter;
for (Iter I = MI->tokens_begin(), E = MI->tokens_end(); I != E; ++I) {
clang::IdentifierInfo *II = I->getIdentifierInfo();
int ArgNo = (II && Args ? MI->getArgumentNum(II) : -1);
if (ArgNo == -1) {
// This isn't an argument, just add it.
if (II == nullptr)
Expanded += PP.getSpelling((*I)); // Not an identifier.
else {
// Token is for an identifier.
std::string Name = II->getName().str();
// Check for nexted macro references.
clang::MacroInfo *MacroInfo = PP.getMacroInfo(II);
if (MacroInfo)
Expanded += getMacroExpandedString(PP, Name, MacroInfo, nullptr);
else
Expanded += Name;
}
continue;
}
// We get here if it's a function-style macro with arguments.
const clang::Token *ResultArgToks;
const clang::Token *ArgTok = Args->getUnexpArgument(ArgNo);
if (Args->ArgNeedsPreexpansion(ArgTok, PP))
ResultArgToks = &(const_cast<clang::MacroArgs *>(Args))
->getPreExpArgument(ArgNo, MI, PP)[0];
else
ResultArgToks = ArgTok; // Use non-preexpanded Tokens.
// If the arg token didn't expand into anything, ignore it.
if (ResultArgToks->is(clang::tok::eof))
continue;
unsigned NumToks = clang::MacroArgs::getArgLength(ResultArgToks);
// Append the resulting argument expansions.
for (unsigned ArgumentIndex = 0; ArgumentIndex < NumToks; ++ArgumentIndex) {
const clang::Token &AT = ResultArgToks[ArgumentIndex];
clang::IdentifierInfo *II = AT.getIdentifierInfo();
if (II == nullptr)
Expanded += PP.getSpelling(AT); // Not an identifier.
else {
// It's an identifier. Check for further expansion.
std::string Name = II->getName().str();
clang::MacroInfo *MacroInfo = PP.getMacroInfo(II);
if (MacroInfo)
Expanded += getMacroExpandedString(PP, Name, MacroInfo, nullptr);
else
Expanded += Name;
}
}
}
return Expanded;
}
// ConditionValueKind strings.
const char *
ConditionValueKindStrings[] = {
"(not evaluated)", "false", "true"
};
bool operator<(const StringHandle &H1, const StringHandle &H2) {
const char *S1 = (H1 ? *H1 : "");
const char *S2 = (H2 ? *H2 : "");
int Diff = strcmp(S1, S2);
return Diff < 0;
}
bool operator>(const StringHandle &H1, const StringHandle &H2) {
const char *S1 = (H1 ? *H1 : "");
const char *S2 = (H2 ? *H2 : "");
int Diff = strcmp(S1, S2);
return Diff > 0;
}
// Preprocessor item key.
//
// This class represents a location in a source file, for use
// as a key representing a unique name/file/line/column quadruplet,
// which in this case is used to identify a macro expansion instance,
// but could be used for other things as well.
// The file is a header file handle, the line is a line number,
// and the column is a column number.
class PPItemKey {
public:
PPItemKey(clang::Preprocessor &PP, StringHandle Name, HeaderHandle File,
clang::SourceLocation Loc)
: Name(Name), File(File) {
getSourceLocationLineAndColumn(PP, Loc, Line, Column);
}
PPItemKey(StringHandle Name, HeaderHandle File, int Line, int Column)
: Name(Name), File(File), Line(Line), Column(Column) {}
PPItemKey(const PPItemKey &Other)
: Name(Other.Name), File(Other.File), Line(Other.Line),
Column(Other.Column) {}
PPItemKey() : File(HeaderHandleInvalid), Line(0), Column(0) {}
bool operator==(const PPItemKey &Other) const {
if (Name != Other.Name)
return false;
if (File != Other.File)
return false;
if (Line != Other.Line)
return false;
return Column == Other.Column;
}
bool operator<(const PPItemKey &Other) const {
if (Name < Other.Name)
return true;
else if (Name > Other.Name)
return false;
if (File < Other.File)
return true;
else if (File > Other.File)
return false;
if (Line < Other.Line)
return true;
else if (Line > Other.Line)
return false;
return Column < Other.Column;
}
StringHandle Name;
HeaderHandle File;
int Line;
int Column;
};
// Header inclusion path.
class HeaderInclusionPath {
public:
HeaderInclusionPath(std::vector<HeaderHandle> HeaderInclusionPath)
: Path(HeaderInclusionPath) {}
HeaderInclusionPath(const HeaderInclusionPath &Other) : Path(Other.Path) {}
HeaderInclusionPath() {}
std::vector<HeaderHandle> Path;
};
// Macro expansion instance.
//
// This class represents an instance of a macro expansion with a
// unique value. It also stores the unique header inclusion paths
// for use in telling the user the nested include path to the header.
class MacroExpansionInstance {
public:
MacroExpansionInstance(StringHandle MacroExpanded,
PPItemKey &DefinitionLocation,
StringHandle DefinitionSourceLine,
InclusionPathHandle H)
: MacroExpanded(MacroExpanded), DefinitionLocation(DefinitionLocation),
DefinitionSourceLine(DefinitionSourceLine) {
InclusionPathHandles.push_back(H);
}
MacroExpansionInstance() {}
// Check for the presence of a header inclusion path handle entry.
// Return false if not found.
bool haveInclusionPathHandle(InclusionPathHandle H) {
for (std::vector<InclusionPathHandle>::iterator
I = InclusionPathHandles.begin(),
E = InclusionPathHandles.end();
I != E; ++I) {
if (*I == H)
return true;
}
return InclusionPathHandleInvalid;
}
// Add a new header inclusion path entry, if not already present.
void addInclusionPathHandle(InclusionPathHandle H) {
if (!haveInclusionPathHandle(H))
InclusionPathHandles.push_back(H);
}
// A string representing the macro instance after preprocessing.
StringHandle MacroExpanded;
// A file/line/column triplet representing the macro definition location.
PPItemKey DefinitionLocation;
// A place to save the macro definition line string.
StringHandle DefinitionSourceLine;
// The header inclusion path handles for all the instances.
std::vector<InclusionPathHandle> InclusionPathHandles;
};
// Macro expansion instance tracker.
//
// This class represents one macro expansion, keyed by a PPItemKey.
// It stores a string representing the macro reference in the source,
// and a list of ConditionalExpansionInstances objects representing
// the unique values the condition expands to in instances of the header.
class MacroExpansionTracker {
public:
MacroExpansionTracker(StringHandle MacroUnexpanded,
StringHandle MacroExpanded,
StringHandle InstanceSourceLine,
PPItemKey &DefinitionLocation,
StringHandle DefinitionSourceLine,
InclusionPathHandle InclusionPathHandle)
: MacroUnexpanded(MacroUnexpanded),
InstanceSourceLine(InstanceSourceLine) {
addMacroExpansionInstance(MacroExpanded, DefinitionLocation,
DefinitionSourceLine, InclusionPathHandle);
}
MacroExpansionTracker() {}
// Find a matching macro expansion instance.
MacroExpansionInstance *
findMacroExpansionInstance(StringHandle MacroExpanded,
PPItemKey &DefinitionLocation) {
for (std::vector<MacroExpansionInstance>::iterator
I = MacroExpansionInstances.begin(),
E = MacroExpansionInstances.end();
I != E; ++I) {
if ((I->MacroExpanded == MacroExpanded) &&
(I->DefinitionLocation == DefinitionLocation)) {
return &*I; // Found.
}
}
return nullptr; // Not found.
}
// Add a macro expansion instance.
void addMacroExpansionInstance(StringHandle MacroExpanded,
PPItemKey &DefinitionLocation,
StringHandle DefinitionSourceLine,
InclusionPathHandle InclusionPathHandle) {
MacroExpansionInstances.push_back(
MacroExpansionInstance(MacroExpanded, DefinitionLocation,
DefinitionSourceLine, InclusionPathHandle));
}
// Return true if there is a mismatch.
bool hasMismatch() { return MacroExpansionInstances.size() > 1; }
// A string representing the macro instance without expansion.
StringHandle MacroUnexpanded;
// A place to save the macro instance source line string.
StringHandle InstanceSourceLine;
// The macro expansion instances.
// If all instances of the macro expansion expand to the same value,
// This vector will only have one instance.
std::vector<MacroExpansionInstance> MacroExpansionInstances;
};
// Conditional expansion instance.
//
// This class represents an instance of a condition exoression result
// with a unique value. It also stores the unique header inclusion paths
// for use in telling the user the nested include path to the header.
class ConditionalExpansionInstance {
public:
ConditionalExpansionInstance(clang::PPCallbacks::ConditionValueKind ConditionValue, InclusionPathHandle H)
: ConditionValue(ConditionValue) {
InclusionPathHandles.push_back(H);
}
ConditionalExpansionInstance() {}
// Check for the presence of a header inclusion path handle entry.
// Return false if not found.
bool haveInclusionPathHandle(InclusionPathHandle H) {
for (std::vector<InclusionPathHandle>::iterator
I = InclusionPathHandles.begin(),
E = InclusionPathHandles.end();
I != E; ++I) {
if (*I == H)
return true;
}
return InclusionPathHandleInvalid;
}
// Add a new header inclusion path entry, if not already present.
void addInclusionPathHandle(InclusionPathHandle H) {
if (!haveInclusionPathHandle(H))
InclusionPathHandles.push_back(H);
}
// A flag representing the evaluated condition value.
clang::PPCallbacks::ConditionValueKind ConditionValue;
// The header inclusion path handles for all the instances.
std::vector<InclusionPathHandle> InclusionPathHandles;
};
// Conditional directive instance tracker.
//
// This class represents one conditional directive, keyed by a PPItemKey.
// It stores a string representing the macro reference in the source,
// and a list of ConditionExpansionInstance objects representing
// the unique value the condition expression expands to in instances of
// the header.
class ConditionalTracker {
public:
ConditionalTracker(clang::tok::PPKeywordKind DirectiveKind,
clang::PPCallbacks::ConditionValueKind ConditionValue,
StringHandle ConditionUnexpanded,
InclusionPathHandle InclusionPathHandle)
: DirectiveKind(DirectiveKind), ConditionUnexpanded(ConditionUnexpanded) {
addConditionalExpansionInstance(ConditionValue, InclusionPathHandle);
}
ConditionalTracker() {}
// Find a matching condition expansion instance.
ConditionalExpansionInstance *
findConditionalExpansionInstance(clang::PPCallbacks::ConditionValueKind ConditionValue) {
for (std::vector<ConditionalExpansionInstance>::iterator
I = ConditionalExpansionInstances.begin(),
E = ConditionalExpansionInstances.end();
I != E; ++I) {
if (I->ConditionValue == ConditionValue) {
return &*I; // Found.
}
}
return nullptr; // Not found.
}
// Add a conditional expansion instance.
void
addConditionalExpansionInstance(clang::PPCallbacks::ConditionValueKind ConditionValue,
InclusionPathHandle InclusionPathHandle) {
ConditionalExpansionInstances.push_back(
ConditionalExpansionInstance(ConditionValue, InclusionPathHandle));
}
// Return true if there is a mismatch.
bool hasMismatch() { return ConditionalExpansionInstances.size() > 1; }
// The kind of directive.
clang::tok::PPKeywordKind DirectiveKind;
// A string representing the macro instance without expansion.
StringHandle ConditionUnexpanded;
// The condition expansion instances.
// If all instances of the conditional expression expand to the same value,
// This vector will only have one instance.
std::vector<ConditionalExpansionInstance> ConditionalExpansionInstances;
};
// Preprocessor callbacks for modularize.
//
// This class derives from the Clang PPCallbacks class to track preprocessor
// actions, such as changing files and handling preprocessor directives and
// macro expansions. It has to figure out when a new header file is entered
// and left, as the provided handler is not particularly clear about it.
class PreprocessorCallbacks : public clang::PPCallbacks {
public:
PreprocessorCallbacks(PreprocessorTrackerImpl &ppTracker,
clang::Preprocessor &PP, llvm::StringRef rootHeaderFile)
: PPTracker(ppTracker), PP(PP), RootHeaderFile(rootHeaderFile) {}
~PreprocessorCallbacks() {}
// Overridden handlers.
void InclusionDirective(clang::SourceLocation HashLoc,
const clang::Token &IncludeTok,
llvm::StringRef FileName, bool IsAngled,
clang::CharSourceRange FilenameRange,
const clang::FileEntry *File,
llvm::StringRef SearchPath,
llvm::StringRef RelativePath,
const clang::Module *Imported);
void FileChanged(clang::SourceLocation Loc,
clang::PPCallbacks::FileChangeReason Reason,
clang::SrcMgr::CharacteristicKind FileType,
clang::FileID PrevFID = clang::FileID());
void MacroExpands(const clang::Token &MacroNameTok,
const clang::MacroDirective *MD, clang::SourceRange Range,
const clang::MacroArgs *Args);
void Defined(const clang::Token &MacroNameTok,
const clang::MacroDirective *MD, clang::SourceRange Range);
void If(clang::SourceLocation Loc, clang::SourceRange ConditionRange,
clang::PPCallbacks::ConditionValueKind ConditionResult);
void Elif(clang::SourceLocation Loc, clang::SourceRange ConditionRange,
clang::PPCallbacks::ConditionValueKind ConditionResult, clang::SourceLocation IfLoc);
void Ifdef(clang::SourceLocation Loc, const clang::Token &MacroNameTok,
const clang::MacroDirective *MD);
void Ifndef(clang::SourceLocation Loc, const clang::Token &MacroNameTok,
const clang::MacroDirective *MD);
private:
PreprocessorTrackerImpl &PPTracker;
clang::Preprocessor &PP;
std::string RootHeaderFile;
};
// Preprocessor macro expansion item map types.
typedef std::map<PPItemKey, MacroExpansionTracker> MacroExpansionMap;
typedef std::map<PPItemKey, MacroExpansionTracker>::iterator
MacroExpansionMapIter;
// Preprocessor conditional expansion item map types.
typedef std::map<PPItemKey, ConditionalTracker> ConditionalExpansionMap;
typedef std::map<PPItemKey, ConditionalTracker>::iterator
ConditionalExpansionMapIter;
// Preprocessor tracker for modularize.
//
// This class stores information about all the headers processed in the
// course of running modularize.
class PreprocessorTrackerImpl : public PreprocessorTracker {
public:
PreprocessorTrackerImpl()
: CurrentInclusionPathHandle(InclusionPathHandleInvalid),
InNestedHeader(false) {}
~PreprocessorTrackerImpl() {}
// Handle entering a preprocessing session.
void handlePreprocessorEntry(clang::Preprocessor &PP,
llvm::StringRef rootHeaderFile) {
HeadersInThisCompile.clear();
assert((HeaderStack.size() == 0) && "Header stack should be empty.");
pushHeaderHandle(addHeader(rootHeaderFile));
PP.addPPCallbacks(new PreprocessorCallbacks(*this, PP, rootHeaderFile));
}
// Handle exiting a preprocessing session.
void handlePreprocessorExit() { HeaderStack.clear(); }
// Handle include directive.
// This function is called every time an include directive is seen by the
// preprocessor, for the purpose of later checking for 'extern "" {}' or
// "namespace {}" blocks containing #include directives.
void handleIncludeDirective(llvm::StringRef DirectivePath, int DirectiveLine,
int DirectiveColumn, llvm::StringRef TargetPath) {
HeaderHandle CurrentHeaderHandle = findHeaderHandle(DirectivePath);
StringHandle IncludeHeaderHandle = addString(TargetPath);
for (std::vector<PPItemKey>::const_iterator I = IncludeDirectives.begin(),
E = IncludeDirectives.end();
I != E; ++I) {
// If we already have an entry for this directive, return now.
if ((I->File == CurrentHeaderHandle) && (I->Line == DirectiveLine))
return;
}
PPItemKey IncludeDirectiveItem(IncludeHeaderHandle, CurrentHeaderHandle,
DirectiveLine, DirectiveColumn);
IncludeDirectives.push_back(IncludeDirectiveItem);
}
// Check for include directives within the given source line range.
// Report errors if any found. Returns true if no include directives
// found in block.
bool checkForIncludesInBlock(clang::Preprocessor &PP,
clang::SourceRange BlockSourceRange,
const char *BlockIdentifierMessage,
llvm::raw_ostream &OS) {
clang::SourceLocation BlockStartLoc = BlockSourceRange.getBegin();
clang::SourceLocation BlockEndLoc = BlockSourceRange.getEnd();
// Use block location to get FileID of both the include directive
// and block statement.
clang::FileID FileID = PP.getSourceManager().getFileID(BlockStartLoc);
std::string SourcePath = getSourceLocationFile(PP, BlockStartLoc);
HeaderHandle SourceHandle = findHeaderHandle(SourcePath);
int BlockStartLine, BlockStartColumn, BlockEndLine, BlockEndColumn;
bool returnValue = true;
getSourceLocationLineAndColumn(PP, BlockStartLoc, BlockStartLine,
BlockStartColumn);
getSourceLocationLineAndColumn(PP, BlockEndLoc, BlockEndLine,
BlockEndColumn);
for (std::vector<PPItemKey>::const_iterator I = IncludeDirectives.begin(),
E = IncludeDirectives.end();
I != E; ++I) {
// If we find an entry within the block, report an error.
if ((I->File == SourceHandle) && (I->Line >= BlockStartLine) &&
(I->Line < BlockEndLine)) {
returnValue = false;
OS << SourcePath << ":" << I->Line << ":" << I->Column << ":\n";
OS << getSourceLine(PP, FileID, I->Line) << "\n";
if (I->Column > 0)
OS << std::string(I->Column - 1, ' ') << "^\n";
OS << "error: Include directive within " << BlockIdentifierMessage
<< ".\n";
OS << SourcePath << ":" << BlockStartLine << ":" << BlockStartColumn
<< ":\n";
OS << getSourceLine(PP, BlockStartLoc) << "\n";
if (BlockStartColumn > 0)
OS << std::string(BlockStartColumn - 1, ' ') << "^\n";
OS << "The \"" << BlockIdentifierMessage << "\" block is here.\n";
}
}
return returnValue;
}
// Handle entering a header source file.
void handleHeaderEntry(clang::Preprocessor &PP, llvm::StringRef HeaderPath) {
// Ignore <built-in> and <command-line> to reduce message clutter.
if (HeaderPath.startswith("<"))
return;
HeaderHandle H = addHeader(HeaderPath);
if (H != getCurrentHeaderHandle())
pushHeaderHandle(H);
// Check for nested header.
if (!InNestedHeader)
InNestedHeader = !HeadersInThisCompile.insert(H);
}
// Handle exiting a header source file.
void handleHeaderExit(llvm::StringRef HeaderPath) {
// Ignore <built-in> and <command-line> to reduce message clutter.
if (HeaderPath.startswith("<"))
return;
HeaderHandle H = findHeaderHandle(HeaderPath);
if (isHeaderHandleInStack(H)) {
while ((H != getCurrentHeaderHandle()) && (HeaderStack.size() != 0))
popHeaderHandle();
}
InNestedHeader = false;
}
// Lookup/add string.
StringHandle addString(llvm::StringRef Str) { return Strings.intern(Str); }
// Get the handle of a header file entry.
// Return HeaderHandleInvalid if not found.
HeaderHandle findHeaderHandle(llvm::StringRef HeaderPath) const {
std::string CanonicalPath(HeaderPath);
std::replace(CanonicalPath.begin(), CanonicalPath.end(), '\\', '/');
HeaderHandle H = 0;
for (std::vector<StringHandle>::const_iterator I = HeaderPaths.begin(),
E = HeaderPaths.end();
I != E; ++I, ++H) {
if (**I == CanonicalPath)
return H;
}
return HeaderHandleInvalid;
}
// Add a new header file entry, or return existing handle.
// Return the header handle.
HeaderHandle addHeader(llvm::StringRef HeaderPath) {
std::string CanonicalPath(HeaderPath);
std::replace(CanonicalPath.begin(), CanonicalPath.end(), '\\', '/');
HeaderHandle H = findHeaderHandle(CanonicalPath);
if (H == HeaderHandleInvalid) {
H = HeaderPaths.size();
HeaderPaths.push_back(addString(CanonicalPath));
}
return H;
}
// Return a header file path string given its handle.
StringHandle getHeaderFilePath(HeaderHandle H) const {
if ((H >= 0) && (H < (HeaderHandle)HeaderPaths.size()))
return HeaderPaths[H];
return StringHandle();
}
// Returns a handle to the inclusion path.
InclusionPathHandle pushHeaderHandle(HeaderHandle H) {
HeaderStack.push_back(H);
return CurrentInclusionPathHandle = addInclusionPathHandle(HeaderStack);
}
// Pops the last header handle from the stack;
void popHeaderHandle() {
// assert((HeaderStack.size() != 0) && "Header stack already empty.");
if (HeaderStack.size() != 0) {
HeaderStack.pop_back();
CurrentInclusionPathHandle = addInclusionPathHandle(HeaderStack);
}
}
// Get the top handle on the header stack.
HeaderHandle getCurrentHeaderHandle() const {
if (HeaderStack.size() != 0)
return HeaderStack.back();
return HeaderHandleInvalid;
}
// Check for presence of header handle in the header stack.
bool isHeaderHandleInStack(HeaderHandle H) const {
for (std::vector<HeaderHandle>::const_iterator I = HeaderStack.begin(),
E = HeaderStack.end();
I != E; ++I) {
if (*I == H)
return true;
}
return false;
}
// Get the handle of a header inclusion path entry.
// Return InclusionPathHandleInvalid if not found.
InclusionPathHandle
findInclusionPathHandle(const std::vector<HeaderHandle> &Path) const {
InclusionPathHandle H = 0;
for (std::vector<HeaderInclusionPath>::const_iterator
I = InclusionPaths.begin(),
E = InclusionPaths.end();
I != E; ++I, ++H) {
if (I->Path == Path)
return H;
}
return HeaderHandleInvalid;
}
// Add a new header inclusion path entry, or return existing handle.
// Return the header inclusion path entry handle.
InclusionPathHandle
addInclusionPathHandle(const std::vector<HeaderHandle> &Path) {
InclusionPathHandle H = findInclusionPathHandle(Path);
if (H == HeaderHandleInvalid) {
H = InclusionPaths.size();
InclusionPaths.push_back(HeaderInclusionPath(Path));
}
return H;
}
// Return the current inclusion path handle.
InclusionPathHandle getCurrentInclusionPathHandle() const {
return CurrentInclusionPathHandle;
}
// Return an inclusion path given its handle.
const std::vector<HeaderHandle> &
getInclusionPath(InclusionPathHandle H) const {
if ((H >= 0) && (H <= (InclusionPathHandle)InclusionPaths.size()))
return InclusionPaths[H].Path;
static std::vector<HeaderHandle> Empty;
return Empty;
}
// Add a macro expansion instance.
void addMacroExpansionInstance(clang::Preprocessor &PP, HeaderHandle H,
clang::SourceLocation InstanceLoc,
clang::SourceLocation DefinitionLoc,
clang::IdentifierInfo *II,
llvm::StringRef MacroUnexpanded,
llvm::StringRef MacroExpanded,
InclusionPathHandle InclusionPathHandle) {
if (InNestedHeader)
return;
StringHandle MacroName = addString(II->getName());
PPItemKey InstanceKey(PP, MacroName, H, InstanceLoc);
PPItemKey DefinitionKey(PP, MacroName, H, DefinitionLoc);
MacroExpansionMapIter I = MacroExpansions.find(InstanceKey);
// If existing instance of expansion not found, add one.
if (I == MacroExpansions.end()) {
std::string InstanceSourceLine =
getSourceLocationString(PP, InstanceLoc) + ":\n" +
getSourceLine(PP, InstanceLoc) + "\n";
std::string DefinitionSourceLine =
getSourceLocationString(PP, DefinitionLoc) + ":\n" +
getSourceLine(PP, DefinitionLoc) + "\n";
MacroExpansions[InstanceKey] = MacroExpansionTracker(
addString(MacroUnexpanded), addString(MacroExpanded),
addString(InstanceSourceLine), DefinitionKey,
addString(DefinitionSourceLine), InclusionPathHandle);
} else {
// We've seen the macro before. Get its tracker.
MacroExpansionTracker &CondTracker = I->second;
// Look up an existing instance value for the macro.
MacroExpansionInstance *MacroInfo =
CondTracker.findMacroExpansionInstance(addString(MacroExpanded),
DefinitionKey);
// If found, just add the inclusion path to the instance.
if (MacroInfo)
MacroInfo->addInclusionPathHandle(InclusionPathHandle);
else {
// Otherwise add a new instance with the unique value.
std::string DefinitionSourceLine =
getSourceLocationString(PP, DefinitionLoc) + ":\n" +
getSourceLine(PP, DefinitionLoc) + "\n";
CondTracker.addMacroExpansionInstance(
addString(MacroExpanded), DefinitionKey,
addString(DefinitionSourceLine), InclusionPathHandle);
}
}
}
// Add a conditional expansion instance.
void
addConditionalExpansionInstance(clang::Preprocessor &PP, HeaderHandle H,
clang::SourceLocation InstanceLoc,
clang::tok::PPKeywordKind DirectiveKind,
clang::PPCallbacks::ConditionValueKind ConditionValue,
llvm::StringRef ConditionUnexpanded,
InclusionPathHandle InclusionPathHandle) {
// Ignore header guards, assuming the header guard is the only conditional.
if (InNestedHeader)
return;
StringHandle ConditionUnexpandedHandle(addString(ConditionUnexpanded));
PPItemKey InstanceKey(PP, ConditionUnexpandedHandle, H, InstanceLoc);
ConditionalExpansionMapIter I = ConditionalExpansions.find(InstanceKey);
// If existing instance of condition not found, add one.
if (I == ConditionalExpansions.end()) {
std::string InstanceSourceLine =
getSourceLocationString(PP, InstanceLoc) + ":\n" +
getSourceLine(PP, InstanceLoc) + "\n";
ConditionalExpansions[InstanceKey] =
ConditionalTracker(DirectiveKind, ConditionValue,
ConditionUnexpandedHandle, InclusionPathHandle);
} else {
// We've seen the conditional before. Get its tracker.
ConditionalTracker &CondTracker = I->second;
// Look up an existing instance value for the condition.
ConditionalExpansionInstance *MacroInfo =
CondTracker.findConditionalExpansionInstance(ConditionValue);
// If found, just add the inclusion path to the instance.
if (MacroInfo)
MacroInfo->addInclusionPathHandle(InclusionPathHandle);
else {
// Otherwise add a new instance with the unique value.
CondTracker.addConditionalExpansionInstance(ConditionValue,
InclusionPathHandle);
}
}
}
// Report on inconsistent macro instances.
// Returns true if any mismatches.
bool reportInconsistentMacros(llvm::raw_ostream &OS) {
bool ReturnValue = false;
// Walk all the macro expansion trackers in the map.
for (MacroExpansionMapIter I = MacroExpansions.begin(),
E = MacroExpansions.end();
I != E; ++I) {
const PPItemKey &ItemKey = I->first;
MacroExpansionTracker &MacroExpTracker = I->second;
// If no mismatch (only one instance value) continue.
if (!MacroExpTracker.hasMismatch())
continue;
// Tell caller we found one or more errors.
ReturnValue = true;
// Start the error message.
OS << *MacroExpTracker.InstanceSourceLine;
if (ItemKey.Column > 0)
OS << std::string(ItemKey.Column - 1, ' ') << "^\n";
OS << "error: Macro instance '" << *MacroExpTracker.MacroUnexpanded
<< "' has different values in this header, depending on how it was "
"included.\n";
// Walk all the instances.
for (std::vector<MacroExpansionInstance>::iterator
IMT = MacroExpTracker.MacroExpansionInstances.begin(),
EMT = MacroExpTracker.MacroExpansionInstances.end();
IMT != EMT; ++IMT) {
MacroExpansionInstance &MacroInfo = *IMT;
OS << " '" << *MacroExpTracker.MacroUnexpanded << "' expanded to: '"
<< *MacroInfo.MacroExpanded
<< "' with respect to these inclusion paths:\n";
// Walk all the inclusion path hierarchies.
for (std::vector<InclusionPathHandle>::iterator
IIP = MacroInfo.InclusionPathHandles.begin(),
EIP = MacroInfo.InclusionPathHandles.end();
IIP != EIP; ++IIP) {
const std::vector<HeaderHandle> &ip = getInclusionPath(*IIP);
int Count = (int)ip.size();
for (int Index = 0; Index < Count; ++Index) {
HeaderHandle H = ip[Index];
OS << std::string((Index * 2) + 4, ' ') << *getHeaderFilePath(H)
<< "\n";
}
}
// For a macro that wasn't defined, we flag it by using the
// instance location.
// If there is a definition...
if (MacroInfo.DefinitionLocation.Line != ItemKey.Line) {
OS << *MacroInfo.DefinitionSourceLine;
if (MacroInfo.DefinitionLocation.Column > 0)
OS << std::string(MacroInfo.DefinitionLocation.Column - 1, ' ')
<< "^\n";
OS << "Macro defined here.\n";
} else
OS << "(no macro definition)"
<< "\n";
}
}
return ReturnValue;
}
// Report on inconsistent conditional instances.
// Returns true if any mismatches.
bool reportInconsistentConditionals(llvm::raw_ostream &OS) {
bool ReturnValue = false;
// Walk all the conditional trackers in the map.
for (ConditionalExpansionMapIter I = ConditionalExpansions.begin(),
E = ConditionalExpansions.end();
I != E; ++I) {
const PPItemKey &ItemKey = I->first;
ConditionalTracker &CondTracker = I->second;
if (!CondTracker.hasMismatch())
continue;
// Tell caller we found one or more errors.
ReturnValue = true;
// Start the error message.
OS << *HeaderPaths[ItemKey.File] << ":" << ItemKey.Line << ":"
<< ItemKey.Column << "\n";
OS << "#" << getDirectiveSpelling(CondTracker.DirectiveKind) << " "
<< *CondTracker.ConditionUnexpanded << "\n";
OS << "^\n";
OS << "error: Conditional expression instance '"
<< *CondTracker.ConditionUnexpanded
<< "' has different values in this header, depending on how it was "
"included.\n";
// Walk all the instances.
for (std::vector<ConditionalExpansionInstance>::iterator
IMT = CondTracker.ConditionalExpansionInstances.begin(),
EMT = CondTracker.ConditionalExpansionInstances.end();
IMT != EMT; ++IMT) {
ConditionalExpansionInstance &MacroInfo = *IMT;
OS << " '" << *CondTracker.ConditionUnexpanded << "' expanded to: '"
<< ConditionValueKindStrings[MacroInfo.ConditionValue]
<< "' with respect to these inclusion paths:\n";
// Walk all the inclusion path hierarchies.
for (std::vector<InclusionPathHandle>::iterator
IIP = MacroInfo.InclusionPathHandles.begin(),
EIP = MacroInfo.InclusionPathHandles.end();
IIP != EIP; ++IIP) {
const std::vector<HeaderHandle> &ip = getInclusionPath(*IIP);
int Count = (int)ip.size();
for (int Index = 0; Index < Count; ++Index) {
HeaderHandle H = ip[Index];
OS << std::string((Index * 2) + 4, ' ') << *getHeaderFilePath(H)
<< "\n";
}
}
}
}
return ReturnValue;
}
// Get directive spelling.
static const char *getDirectiveSpelling(clang::tok::PPKeywordKind kind) {
switch (kind) {
case clang::tok::pp_if:
return "if";
case clang::tok::pp_elif:
return "elif";
case clang::tok::pp_ifdef:
return "ifdef";
case clang::tok::pp_ifndef:
return "ifndef";
default:
return "(unknown)";
}
}
private:
llvm::StringPool Strings;
std::vector<StringHandle> HeaderPaths;
std::vector<HeaderHandle> HeaderStack;
std::vector<HeaderInclusionPath> InclusionPaths;
InclusionPathHandle CurrentInclusionPathHandle;
llvm::SmallSet<HeaderHandle, 128> HeadersInThisCompile;
std::vector<PPItemKey> IncludeDirectives;
MacroExpansionMap MacroExpansions;
ConditionalExpansionMap ConditionalExpansions;
bool InNestedHeader;
};
// PreprocessorTracker functions.
// PreprocessorTracker desctructor.
PreprocessorTracker::~PreprocessorTracker() {}
// Create instance of PreprocessorTracker.
PreprocessorTracker *PreprocessorTracker::create() {
return new PreprocessorTrackerImpl();
}
// Preprocessor callbacks for modularize.
// Handle include directive.
void PreprocessorCallbacks::InclusionDirective(
clang::SourceLocation HashLoc, const clang::Token &IncludeTok,
llvm::StringRef FileName, bool IsAngled,
clang::CharSourceRange FilenameRange, const clang::FileEntry *File,
llvm::StringRef SearchPath, llvm::StringRef RelativePath,
const clang::Module *Imported) {
int DirectiveLine, DirectiveColumn;
std::string HeaderPath = getSourceLocationFile(PP, HashLoc);
getSourceLocationLineAndColumn(PP, HashLoc, DirectiveLine, DirectiveColumn);
PPTracker.handleIncludeDirective(HeaderPath, DirectiveLine, DirectiveColumn,
FileName);
}
// Handle file entry/exit.
void PreprocessorCallbacks::FileChanged(
clang::SourceLocation Loc, clang::PPCallbacks::FileChangeReason Reason,
clang::SrcMgr::CharacteristicKind FileType, clang::FileID PrevFID) {
switch (Reason) {
case EnterFile:
PPTracker.handleHeaderEntry(PP, getSourceLocationFile(PP, Loc));
break;
case ExitFile: {
const clang::FileEntry *F =
PP.getSourceManager().getFileEntryForID(PrevFID);
if (F)
PPTracker.handleHeaderExit(F->getName());
} break;
case SystemHeaderPragma:
case RenameFile:
break;
}
}
// Handle macro expansion.
void PreprocessorCallbacks::MacroExpands(const clang::Token &MacroNameTok,
const clang::MacroDirective *MD,
clang::SourceRange Range,
const clang::MacroArgs *Args) {
clang::SourceLocation Loc = Range.getBegin();
// Ignore macro argument expansions.
if (!Loc.isFileID())
return;
clang::IdentifierInfo *II = MacroNameTok.getIdentifierInfo();
const clang::MacroInfo *MI = PP.getMacroInfo(II);
std::string MacroName = II->getName().str();
std::string Unexpanded(getMacroUnexpandedString(Range, PP, MacroName, MI));
std::string Expanded(getMacroExpandedString(PP, MacroName, MI, Args));
PPTracker.addMacroExpansionInstance(
PP, PPTracker.getCurrentHeaderHandle(), Loc, MI->getDefinitionLoc(), II,
Unexpanded, Expanded, PPTracker.getCurrentInclusionPathHandle());
}
void PreprocessorCallbacks::Defined(const clang::Token &MacroNameTok,
const clang::MacroDirective *MD,
clang::SourceRange Range) {
clang::SourceLocation Loc(Range.getBegin());
clang::IdentifierInfo *II = MacroNameTok.getIdentifierInfo();
const clang::MacroInfo *MI = PP.getMacroInfo(II);
std::string MacroName = II->getName().str();
std::string Unexpanded(getSourceString(PP, Range));
PPTracker.addMacroExpansionInstance(
PP, PPTracker.getCurrentHeaderHandle(), Loc,
(MI ? MI->getDefinitionLoc() : Loc), II, Unexpanded,
(MI ? "true" : "false"), PPTracker.getCurrentInclusionPathHandle());
}
void PreprocessorCallbacks::If(clang::SourceLocation Loc,
clang::SourceRange ConditionRange,
clang::PPCallbacks::ConditionValueKind ConditionResult) {
std::string Unexpanded(getSourceString(PP, ConditionRange));
PPTracker.addConditionalExpansionInstance(
PP, PPTracker.getCurrentHeaderHandle(), Loc, clang::tok::pp_if,
ConditionResult, Unexpanded, PPTracker.getCurrentInclusionPathHandle());
}
void PreprocessorCallbacks::Elif(clang::SourceLocation Loc,
clang::SourceRange ConditionRange,
clang::PPCallbacks::ConditionValueKind ConditionResult,
clang::SourceLocation IfLoc) {
std::string Unexpanded(getSourceString(PP, ConditionRange));
PPTracker.addConditionalExpansionInstance(
PP, PPTracker.getCurrentHeaderHandle(), Loc, clang::tok::pp_elif,
ConditionResult, Unexpanded, PPTracker.getCurrentInclusionPathHandle());
}
void PreprocessorCallbacks::Ifdef(clang::SourceLocation Loc,
const clang::Token &MacroNameTok,
const clang::MacroDirective *MD) {
clang::PPCallbacks::ConditionValueKind IsDefined =
(MD ? clang::PPCallbacks::CVK_True : clang::PPCallbacks::CVK_False );
PPTracker.addConditionalExpansionInstance(
PP, PPTracker.getCurrentHeaderHandle(), Loc, clang::tok::pp_ifdef,
IsDefined, PP.getSpelling(MacroNameTok),
PPTracker.getCurrentInclusionPathHandle());
}
void PreprocessorCallbacks::Ifndef(clang::SourceLocation Loc,
const clang::Token &MacroNameTok,
const clang::MacroDirective *MD) {
clang::PPCallbacks::ConditionValueKind IsNotDefined =
(!MD ? clang::PPCallbacks::CVK_True : clang::PPCallbacks::CVK_False );
PPTracker.addConditionalExpansionInstance(
PP, PPTracker.getCurrentHeaderHandle(), Loc, clang::tok::pp_ifndef,
IsNotDefined, PP.getSpelling(MacroNameTok),
PPTracker.getCurrentInclusionPathHandle());
}
} // end namespace Modularize