forked from OSchip/llvm-project
270 lines
8.8 KiB
C++
270 lines
8.8 KiB
C++
//===- CallGraphSort.cpp --------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// Implementation of Call-Chain Clustering from: Optimizing Function Placement
|
|
/// for Large-Scale Data-Center Applications
|
|
/// https://research.fb.com/wp-content/uploads/2017/01/cgo2017-hfsort-final1.pdf
|
|
///
|
|
/// The goal of this algorithm is to improve runtime performance of the final
|
|
/// executable by arranging code sections such that page table and i-cache
|
|
/// misses are minimized.
|
|
///
|
|
/// Definitions:
|
|
/// * Cluster
|
|
/// * An ordered list of input sections which are laid out as a unit. At the
|
|
/// beginning of the algorithm each input section has its own cluster and
|
|
/// the weight of the cluster is the sum of the weight of all incoming
|
|
/// edges.
|
|
/// * Call-Chain Clustering (C³) Heuristic
|
|
/// * Defines when and how clusters are combined. Pick the highest weighted
|
|
/// input section then add it to its most likely predecessor if it wouldn't
|
|
/// penalize it too much.
|
|
/// * Density
|
|
/// * The weight of the cluster divided by the size of the cluster. This is a
|
|
/// proxy for the amount of execution time spent per byte of the cluster.
|
|
///
|
|
/// It does so given a call graph profile by the following:
|
|
/// * Build a weighted call graph from the call graph profile
|
|
/// * Sort input sections by weight
|
|
/// * For each input section starting with the highest weight
|
|
/// * Find its most likely predecessor cluster
|
|
/// * Check if the combined cluster would be too large, or would have too low
|
|
/// a density.
|
|
/// * If not, then combine the clusters.
|
|
/// * Sort non-empty clusters by density
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CallGraphSort.h"
|
|
#include "OutputSections.h"
|
|
#include "SymbolTable.h"
|
|
#include "Symbols.h"
|
|
|
|
#include <numeric>
|
|
|
|
using namespace llvm;
|
|
using namespace lld;
|
|
using namespace lld::elf;
|
|
|
|
namespace {
|
|
struct Edge {
|
|
int from;
|
|
uint64_t weight;
|
|
};
|
|
|
|
struct Cluster {
|
|
Cluster(int sec, size_t s) : next(sec), prev(sec), size(s) {}
|
|
|
|
double getDensity() const {
|
|
if (size == 0)
|
|
return 0;
|
|
return double(weight) / double(size);
|
|
}
|
|
|
|
int next;
|
|
int prev;
|
|
uint64_t size;
|
|
uint64_t weight = 0;
|
|
uint64_t initialWeight = 0;
|
|
Edge bestPred = {-1, 0};
|
|
};
|
|
|
|
class CallGraphSort {
|
|
public:
|
|
CallGraphSort();
|
|
|
|
DenseMap<const InputSectionBase *, int> run();
|
|
|
|
private:
|
|
std::vector<Cluster> clusters;
|
|
std::vector<const InputSectionBase *> sections;
|
|
};
|
|
|
|
// Maximum amount the combined cluster density can be worse than the original
|
|
// cluster to consider merging.
|
|
constexpr int MAX_DENSITY_DEGRADATION = 8;
|
|
|
|
// Maximum cluster size in bytes.
|
|
constexpr uint64_t MAX_CLUSTER_SIZE = 1024 * 1024;
|
|
} // end anonymous namespace
|
|
|
|
using SectionPair =
|
|
std::pair<const InputSectionBase *, const InputSectionBase *>;
|
|
|
|
// Take the edge list in Config->CallGraphProfile, resolve symbol names to
|
|
// Symbols, and generate a graph between InputSections with the provided
|
|
// weights.
|
|
CallGraphSort::CallGraphSort() {
|
|
MapVector<SectionPair, uint64_t> &profile = config->callGraphProfile;
|
|
DenseMap<const InputSectionBase *, int> secToCluster;
|
|
|
|
auto getOrCreateNode = [&](const InputSectionBase *isec) -> int {
|
|
auto res = secToCluster.try_emplace(isec, clusters.size());
|
|
if (res.second) {
|
|
sections.push_back(isec);
|
|
clusters.emplace_back(clusters.size(), isec->getSize());
|
|
}
|
|
return res.first->second;
|
|
};
|
|
|
|
// Create the graph.
|
|
for (std::pair<SectionPair, uint64_t> &c : profile) {
|
|
const auto *fromSB = cast<InputSectionBase>(c.first.first->repl);
|
|
const auto *toSB = cast<InputSectionBase>(c.first.second->repl);
|
|
uint64_t weight = c.second;
|
|
|
|
// Ignore edges between input sections belonging to different output
|
|
// sections. This is done because otherwise we would end up with clusters
|
|
// containing input sections that can't actually be placed adjacently in the
|
|
// output. This messes with the cluster size and density calculations. We
|
|
// would also end up moving input sections in other output sections without
|
|
// moving them closer to what calls them.
|
|
if (fromSB->getOutputSection() != toSB->getOutputSection())
|
|
continue;
|
|
|
|
int from = getOrCreateNode(fromSB);
|
|
int to = getOrCreateNode(toSB);
|
|
|
|
clusters[to].weight += weight;
|
|
|
|
if (from == to)
|
|
continue;
|
|
|
|
// Remember the best edge.
|
|
Cluster &toC = clusters[to];
|
|
if (toC.bestPred.from == -1 || toC.bestPred.weight < weight) {
|
|
toC.bestPred.from = from;
|
|
toC.bestPred.weight = weight;
|
|
}
|
|
}
|
|
for (Cluster &c : clusters)
|
|
c.initialWeight = c.weight;
|
|
}
|
|
|
|
// It's bad to merge clusters which would degrade the density too much.
|
|
static bool isNewDensityBad(Cluster &a, Cluster &b) {
|
|
double newDensity = double(a.weight + b.weight) / double(a.size + b.size);
|
|
return newDensity < a.getDensity() / MAX_DENSITY_DEGRADATION;
|
|
}
|
|
|
|
// Find the leader of V's belonged cluster (represented as an equivalence
|
|
// class). We apply union-find path-halving technique (simple to implement) in
|
|
// the meantime as it decreases depths and the time complexity.
|
|
static int getLeader(std::vector<int> &leaders, int v) {
|
|
while (leaders[v] != v) {
|
|
leaders[v] = leaders[leaders[v]];
|
|
v = leaders[v];
|
|
}
|
|
return v;
|
|
}
|
|
|
|
static void mergeClusters(std::vector<Cluster> &cs, Cluster &into, int intoIdx,
|
|
Cluster &from, int fromIdx) {
|
|
int tail1 = into.prev, tail2 = from.prev;
|
|
into.prev = tail2;
|
|
cs[tail2].next = intoIdx;
|
|
from.prev = tail1;
|
|
cs[tail1].next = fromIdx;
|
|
into.size += from.size;
|
|
into.weight += from.weight;
|
|
from.size = 0;
|
|
from.weight = 0;
|
|
}
|
|
|
|
// Group InputSections into clusters using the Call-Chain Clustering heuristic
|
|
// then sort the clusters by density.
|
|
DenseMap<const InputSectionBase *, int> CallGraphSort::run() {
|
|
std::vector<int> sorted(clusters.size());
|
|
std::vector<int> leaders(clusters.size());
|
|
|
|
std::iota(leaders.begin(), leaders.end(), 0);
|
|
std::iota(sorted.begin(), sorted.end(), 0);
|
|
llvm::stable_sort(sorted, [&](int a, int b) {
|
|
return clusters[a].getDensity() > clusters[b].getDensity();
|
|
});
|
|
|
|
for (int l : sorted) {
|
|
// The cluster index is the same as the index of its leader here because
|
|
// clusters[L] has not been merged into another cluster yet.
|
|
Cluster &c = clusters[l];
|
|
|
|
// Don't consider merging if the edge is unlikely.
|
|
if (c.bestPred.from == -1 || c.bestPred.weight * 10 <= c.initialWeight)
|
|
continue;
|
|
|
|
int predL = getLeader(leaders, c.bestPred.from);
|
|
if (l == predL)
|
|
continue;
|
|
|
|
Cluster *predC = &clusters[predL];
|
|
if (c.size + predC->size > MAX_CLUSTER_SIZE)
|
|
continue;
|
|
|
|
if (isNewDensityBad(*predC, c))
|
|
continue;
|
|
|
|
leaders[l] = predL;
|
|
mergeClusters(clusters, *predC, predL, c, l);
|
|
}
|
|
|
|
// Sort remaining non-empty clusters by density.
|
|
sorted.clear();
|
|
for (int i = 0, e = (int)clusters.size(); i != e; ++i)
|
|
if (clusters[i].size > 0)
|
|
sorted.push_back(i);
|
|
llvm::stable_sort(sorted, [&](int a, int b) {
|
|
return clusters[a].getDensity() > clusters[b].getDensity();
|
|
});
|
|
|
|
DenseMap<const InputSectionBase *, int> orderMap;
|
|
int curOrder = 1;
|
|
for (int leader : sorted) {
|
|
for (int i = leader;;) {
|
|
orderMap[sections[i]] = curOrder++;
|
|
i = clusters[i].next;
|
|
if (i == leader)
|
|
break;
|
|
}
|
|
}
|
|
if (!config->printSymbolOrder.empty()) {
|
|
std::error_code ec;
|
|
raw_fd_ostream os(config->printSymbolOrder, ec, sys::fs::OF_None);
|
|
if (ec) {
|
|
error("cannot open " + config->printSymbolOrder + ": " + ec.message());
|
|
return orderMap;
|
|
}
|
|
|
|
// Print the symbols ordered by C3, in the order of increasing curOrder
|
|
// Instead of sorting all the orderMap, just repeat the loops above.
|
|
for (int leader : sorted)
|
|
for (int i = leader;;) {
|
|
// Search all the symbols in the file of the section
|
|
// and find out a Defined symbol with name that is within the section.
|
|
for (Symbol *sym : sections[i]->file->getSymbols())
|
|
if (!sym->isSection()) // Filter out section-type symbols here.
|
|
if (auto *d = dyn_cast<Defined>(sym))
|
|
if (sections[i] == d->section)
|
|
os << sym->getName() << "\n";
|
|
i = clusters[i].next;
|
|
if (i == leader)
|
|
break;
|
|
}
|
|
}
|
|
|
|
return orderMap;
|
|
}
|
|
|
|
// Sort sections by the profile data provided by -callgraph-profile-file
|
|
//
|
|
// This first builds a call graph based on the profile data then merges sections
|
|
// according to the C³ heuristic. All clusters are then sorted by a density
|
|
// metric to further improve locality.
|
|
DenseMap<const InputSectionBase *, int> elf::computeCallGraphProfileOrder() {
|
|
return CallGraphSort().run();
|
|
}
|