llvm-project/clang/Lex/PPExpressions.cpp

354 lines
11 KiB
C++

//===--- PPExpressions.cpp - Preprocessor Expression Evaluation -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Preprocessor::EvaluateDirectiveExpression method.
//
//===----------------------------------------------------------------------===//
//
// FIXME: implement testing for asserts.
// FIXME: Parse integer constants correctly. Reject 123.0, etc.
// FIXME: Track signed/unsigned correctly.
// FIXME: Track and report integer overflow correctly.
//
//===----------------------------------------------------------------------===//
#include "clang/Lex/Preprocessor.h"
#include "clang/Basic/TokenKinds.h"
#include "clang/Basic/Diagnostic.h"
using namespace llvm;
using namespace clang;
/// EvaluateDirectiveExpression - Evaluate an integer constant expression that
/// may occur after a #if or #elif directive. Sets Result to the result of
/// the expression. Returns false normally, true if lexing must be aborted.
///
/// MinPrec is the minimum precedence that this range of the expression is
/// allowed to include.
bool Preprocessor::EvaluateDirectiveExpression() {
// Peek ahead one token.
LexerToken Tok;
Lex(Tok);
int ResVal = 0;
if (EvaluateValue(ResVal, Tok) ||
EvaluateDirectiveSubExpr(ResVal, 1, Tok)) {
// Skip the rest of the macro line.
if (Tok.getKind() != tok::eom)
DiscardUntilEndOfDirective();
return false;
}
// If we aren't at the tok::eom token, something bad happened, like an extra
// ')' token.
if (Tok.getKind() != tok::eom) {
Diag(Tok, diag::err_pp_expected_eol);
DiscardUntilEndOfDirective();
}
return ResVal != 0;
}
/// EvaluateValue - Evaluate the token PeekTok (and any others needed) and
/// return the computed value in Result. Return true if there was an error
/// parsing.
bool Preprocessor::EvaluateValue(int &Result, LexerToken &PeekTok) {
Result = 0;
// If this token's spelling is a pp-identifier, check to see if it is
// 'defined' or if it is a macro. Note that we check here because many
// keywords are pp-identifiers, so we can't check the kind.
if (const IdentifierTokenInfo *II = PeekTok.getIdentifierInfo()) {
// If this identifier isn't 'defined' and it wasn't macro expanded, it turns
// into a simple 0.
if (strcmp(II->getName(), "defined")) {
Result = 0;
Lex(PeekTok);
return false;
}
// Handle "defined X" and "defined(X)".
assert(!DisableMacroExpansion &&
"How could macro exp already be disabled?");
// Turn off macro expansion.
DisableMacroExpansion = true;
// Get the next token.
Lex(PeekTok);
// Two options, it can either be a pp-identifier or a (.
bool InParens = false;
if (PeekTok.getKind() == tok::l_paren) {
// Found a paren, remember we saw it and skip it.
InParens = true;
Lex(PeekTok);
}
// If we don't have a pp-identifier now, this is an error.
if ((II = PeekTok.getIdentifierInfo()) == 0) {
DisableMacroExpansion = false;
Diag(PeekTok, diag::err_pp_defined_requires_identifier);
return true;
}
// Otherwise, we got an identifier, is it defined to something?
Result = II->getMacroInfo() != 0;
// Consume identifier.
Lex(PeekTok);
// If we are in parens, ensure we have a trailing ).
if (InParens) {
if (PeekTok.getKind() != tok::r_paren) {
Diag(PeekTok, diag::err_pp_missing_rparen);
return true;
}
// Consume the ).
Lex(PeekTok);
}
DisableMacroExpansion = false;
return false;
}
switch (PeekTok.getKind()) {
default: // Non-value token.
Diag(PeekTok, diag::err_pp_expr_bad_token);
return true;
case tok::eom:
case tok::r_paren:
// If there is no expression, report and exit.
Diag(PeekTok, diag::err_pp_expected_value_in_expr);
return true;
case tok::numeric_constant: {
// FIXME: faster. FIXME: track signs.
std::string Spell = getSpelling(PeekTok);
// FIXME: COMPUTE integer constants CORRECTLY.
Result = atoi(Spell.c_str());
Lex(PeekTok);
return false;
}
case tok::l_paren:
Lex(PeekTok); // Eat the (.
// Parse the value and if there are any binary operators involved, parse
// them.
if (EvaluateValue(Result, PeekTok) ||
EvaluateDirectiveSubExpr(Result, 1, PeekTok))
return true;
if (PeekTok.getKind() != tok::r_paren) {
Diag(PeekTok, diag::err_pp_expected_rparen);
return true;
}
Lex(PeekTok); // Eat the ).
return false;
case tok::plus:
// Unary plus doesn't modify the value.
Lex(PeekTok);
return EvaluateValue(Result, PeekTok);
case tok::minus:
Lex(PeekTok);
if (EvaluateValue(Result, PeekTok)) return true;
Result = -Result;
return false;
case tok::tilde:
Lex(PeekTok);
if (EvaluateValue(Result, PeekTok)) return true;
Result = ~Result;
return false;
case tok::exclaim:
Lex(PeekTok);
if (EvaluateValue(Result, PeekTok)) return true;
Result = !Result;
return false;
// FIXME: Handle #assert
}
}
/// getPrecedence - Return the precedence of the specified binary operator
/// token. This returns:
/// ~0 - Invalid token.
/// 15 - *,/,%
/// 14 - -,+
/// 13 - <<,>>
/// 12 - >=, <=, >, <
/// 11 - ==, !=
/// 10 - <?, >? min, max (GCC extensions)
/// 9 - &
/// 8 - ^
/// 7 - |
/// 6 - &&
/// 5 - ||
/// 4 - ?
/// 3 - :
/// 0 - eom, )
static unsigned getPrecedence(tok::TokenKind Kind) {
switch (Kind) {
default: return ~0U;
case tok::percent:
case tok::slash:
case tok::star: return 15;
case tok::plus:
case tok::minus: return 14;
case tok::lessless:
case tok::greatergreater: return 13;
case tok::lessequal:
case tok::less:
case tok::greaterequal:
case tok::greater: return 12;
case tok::exclaimequal:
case tok::equalequal: return 11;
case tok::lessquestion:
case tok::greaterquestion: return 10;
case tok::amp: return 9;
case tok::caret: return 8;
case tok::pipe: return 7;
case tok::ampamp: return 6;
case tok::pipepipe: return 5;
case tok::question: return 4;
case tok::colon: return 3;
case tok::comma: return 2;
case tok::r_paren: return 0; // Lowest priority, end of expr.
case tok::eom: return 0; // Lowest priority, end of macro.
}
}
/// EvaluateDirectiveSubExpr - Evaluate the subexpression whose first token is
/// PeekTok, and whose precedence is PeekPrec.
bool Preprocessor::EvaluateDirectiveSubExpr(int &LHS, unsigned MinPrec,
LexerToken &PeekTok) {
unsigned PeekPrec = getPrecedence(PeekTok.getKind());
// If this token isn't valid, report the error.
if (PeekPrec == ~0U) {
Diag(PeekTok, diag::err_pp_expr_bad_token);
return true;
}
while (1) {
// If this token has a lower precedence than we are allowed to parse, return
// it so that higher levels of the recursion can parse it.
if (PeekPrec < MinPrec)
return false;
tok::TokenKind Operator = PeekTok.getKind();
// Consume the operator, saving the operator token for error reporting.
LexerToken OpToken = PeekTok;
Lex(PeekTok);
int RHS;
// Parse the RHS of the operator.
if (EvaluateValue(RHS, PeekTok)) return true;
// Remember the precedence of this operator and get the precedence of the
// operator immediately to the right of the RHS.
unsigned ThisPrec = PeekPrec;
PeekPrec = getPrecedence(PeekTok.getKind());
// If this token isn't valid, report the error.
if (PeekPrec == ~0U) {
Diag(PeekTok, diag::err_pp_expr_bad_token);
return true;
}
bool isRightAssoc = Operator == tok::question;
// Get the precedence of the operator to the right of the RHS. If it binds
// more tightly with RHS than we do, evaluate it completely first.
if (ThisPrec < PeekPrec ||
(ThisPrec == PeekPrec && isRightAssoc)) {
if (EvaluateDirectiveSubExpr(RHS, ThisPrec+1, PeekTok))
return true;
PeekPrec = getPrecedence(PeekTok.getKind());
}
assert(PeekPrec <= ThisPrec && "Recursion didn't work!");
switch (Operator) {
default: assert(0 && "Unknown operator token!");
case tok::percent:
if (RHS == 0) {
Diag(OpToken, diag::err_pp_remainder_by_zero);
return true;
}
LHS %= RHS;
break;
case tok::slash:
if (RHS == 0) {
Diag(OpToken, diag::err_pp_division_by_zero);
return true;
}
LHS /= RHS;
break;
case tok::star : LHS *= RHS; break;
case tok::lessless: LHS << RHS; break; // FIXME: shift amt overflow?
case tok::greatergreater: LHS >> RHS; break; // FIXME: signed vs unsigned
case tok::plus : LHS += RHS; break;
case tok::minus: LHS -= RHS; break;
case tok::lessequal: LHS = LHS <= RHS; break;
case tok::less: LHS = LHS < RHS; break;
case tok::greaterequal: LHS = LHS >= RHS; break;
case tok::greater: LHS = LHS > RHS; break;
case tok::exclaimequal: LHS = LHS != RHS; break;
case tok::equalequal: LHS = LHS == RHS; break;
case tok::lessquestion: // Deprecation warning emitted by the lexer.
LHS = std::min(LHS, RHS);
break;
case tok::greaterquestion: // Deprecation warning emitted by the lexer.
LHS = std::max(LHS, RHS);
break;
case tok::amp: LHS &= RHS; break;
case tok::caret: LHS ^= RHS; break;
case tok::pipe: LHS |= RHS; break;
case tok::ampamp: LHS = LHS && RHS; break;
case tok::pipepipe: LHS = LHS || RHS; break;
case tok::comma:
Diag(OpToken, diag::ext_pp_comma_expr);
LHS = RHS; // LHS = LHS,RHS -> RHS.
break;
case tok::question: {
// Parse the : part of the expression.
if (PeekTok.getKind() != tok::colon) {
Diag(OpToken, diag::err_pp_question_without_colon);
return true;
}
// Consume the :.
Lex(PeekTok);
// Evaluate the value after the :.
int AfterColonVal = 0;
if (EvaluateValue(AfterColonVal, PeekTok)) return true;
// Parse anything after the : RHS that has a higher precedence than ?.
if (EvaluateDirectiveSubExpr(AfterColonVal, ThisPrec+1,
PeekTok))
return true;
// Now that we have the condition, the LHS and the RHS of the :, evaluate.
LHS = LHS ? RHS : AfterColonVal;
// Figure out the precedence of the token after the : part.
PeekPrec = getPrecedence(PeekTok.getKind());
break;
}
case tok::colon:
// Don't allow :'s to float around without being part of ?: exprs.
Diag(OpToken, diag::err_pp_colon_without_question);
return true;
}
}
return false;
}