forked from OSchip/llvm-project
217 lines
7.1 KiB
ReStructuredText
217 lines
7.1 KiB
ReStructuredText
================
|
|
MemorySanitizer
|
|
================
|
|
|
|
.. contents::
|
|
:local:
|
|
|
|
Introduction
|
|
============
|
|
|
|
MemorySanitizer is a detector of uninitialized reads. It consists of a
|
|
compiler instrumentation module and a run-time library.
|
|
|
|
Typical slowdown introduced by MemorySanitizer is **3x**.
|
|
|
|
How to build
|
|
============
|
|
|
|
Follow the `clang build instructions <../get_started.html>`_. CMake
|
|
build is supported.
|
|
|
|
Usage
|
|
=====
|
|
|
|
Simply compile and link your program with ``-fsanitize=memory`` flag.
|
|
The MemorySanitizer run-time library should be linked to the final
|
|
executable, so make sure to use ``clang`` (not ``ld``) for the final
|
|
link step. When linking shared libraries, the MemorySanitizer run-time
|
|
is not linked, so ``-Wl,-z,defs`` may cause link errors (don't use it
|
|
with MemorySanitizer). To get a reasonable performance add ``-O1`` or
|
|
higher. To get meaninful stack traces in error messages add
|
|
``-fno-omit-frame-pointer``. To get perfect stack traces you may need
|
|
to disable inlining (just use ``-O1``) and tail call elimination
|
|
(``-fno-optimize-sibling-calls``).
|
|
|
|
.. code-block:: console
|
|
|
|
% cat umr.cc
|
|
#include <stdio.h>
|
|
|
|
int main(int argc, char** argv) {
|
|
int* a = new int[10];
|
|
a[5] = 0;
|
|
if (a[argc])
|
|
printf("xx\n");
|
|
return 0;
|
|
}
|
|
|
|
% clang -fsanitize=memory -fno-omit-frame-pointer -g -O2 umr.cc
|
|
|
|
If a bug is detected, the program will print an error message to
|
|
stderr and exit with a non-zero exit code. Currently, MemorySanitizer
|
|
does not symbolize its output by default, so you may need to use a
|
|
separate script to symbolize the result offline (this will be fixed in
|
|
future).
|
|
|
|
.. code-block:: console
|
|
|
|
% ./a.out
|
|
WARNING: MemorySanitizer: use-of-uninitialized-value
|
|
#0 0x7f45944b418a in main umr.cc:6
|
|
#1 0x7f45938b676c in __libc_start_main libc-start.c:226
|
|
|
|
By default, MemorySanitizer exits on the first detected error.
|
|
|
|
``__has_feature(memory_sanitizer)``
|
|
------------------------------------
|
|
|
|
In some cases one may need to execute different code depending on
|
|
whether MemorySanitizer is enabled. :ref:`\_\_has\_feature
|
|
<langext-__has_feature-__has_extension>` can be used for this purpose.
|
|
|
|
.. code-block:: c
|
|
|
|
#if defined(__has_feature)
|
|
# if __has_feature(memory_sanitizer)
|
|
// code that builds only under MemorySanitizer
|
|
# endif
|
|
#endif
|
|
|
|
``__attribute__((no_sanitize_memory))``
|
|
-----------------------------------------------
|
|
|
|
Some code should not be checked by MemorySanitizer.
|
|
One may use the function attribute
|
|
:ref:`no_sanitize_memory <langext-memory_sanitizer>`
|
|
to disable uninitialized checks in a particular function.
|
|
MemorySanitizer may still instrument such functions to avoid false positives.
|
|
This attribute may not be
|
|
supported by other compilers, so we suggest to use it together with
|
|
``__has_feature(memory_sanitizer)``.
|
|
|
|
Blacklist
|
|
---------
|
|
|
|
MemorySanitizer supports ``src`` and ``fun`` entity types in
|
|
:doc:`SanitizerSpecialCaseList`, that can be used to relax MemorySanitizer
|
|
checks for certain source files and functions. All "Use of uninitialized value"
|
|
warnings will be suppressed and all values loaded from memory will be
|
|
considered fully initialized.
|
|
|
|
Report symbolization
|
|
====================
|
|
|
|
MemorySanitizer uses an external symbolizer to print files and line numbers in
|
|
reports. Make sure that ``llvm-symbolizer`` binary is in ``PATH``,
|
|
or set environment variable ``MSAN_SYMBOLIZER_PATH`` to point to it.
|
|
|
|
Origin Tracking
|
|
===============
|
|
|
|
MemorySanitizer can track origins of unitialized values, similar to
|
|
Valgrind's --track-origins option. This feature is enabled by
|
|
``-fsanitize-memory-track-origins`` Clang option. With the code from
|
|
the example above,
|
|
|
|
.. code-block:: console
|
|
|
|
% clang -fsanitize=memory -fsanitize-memory-track-origins -fno-omit-frame-pointer -g -O2 umr.cc
|
|
% ./a.out
|
|
WARNING: MemorySanitizer: use-of-uninitialized-value
|
|
#0 0x7f7893912f0b in main umr2.cc:6
|
|
#1 0x7f789249b76c in __libc_start_main libc-start.c:226
|
|
|
|
Uninitialized value was created by a heap allocation
|
|
#0 0x7f7893901cbd in operator new[](unsigned long) msan_new_delete.cc:44
|
|
#1 0x7f7893912e06 in main umr2.cc:4
|
|
|
|
Origin tracking has proved to be very useful for debugging MemorySanitizer
|
|
reports. It slows down program execution by a factor of 1.5x-2x on top
|
|
of the usual MemorySanitizer slowdown.
|
|
|
|
MemorySanitizer can provide even more information with
|
|
``-fsanitize-memory-track-origins=2`` flag. In this mode reports
|
|
include information about intermediate stores the uninitialized value went
|
|
through.
|
|
|
|
.. code-block:: console
|
|
|
|
% cat umr2.cc
|
|
#include <stdio.h>
|
|
|
|
int main(int argc, char** argv) {
|
|
int* a = new int[10];
|
|
a[5] = 0;
|
|
volatile int b = a[argc];
|
|
if (b)
|
|
printf("xx\n");
|
|
return 0;
|
|
}
|
|
|
|
% clang -fsanitize=memory -fsanitize-memory-track-origins=2 -fno-omit-frame-pointer -g -O2 umr2.cc
|
|
% ./a.out
|
|
WARNING: MemorySanitizer: use-of-uninitialized-value
|
|
#0 0x7f7893912f0b in main umr2.cc:7
|
|
#1 0x7f789249b76c in __libc_start_main libc-start.c:226
|
|
|
|
Uninitialized value was stored to memory at
|
|
#0 0x7f78938b5c25 in __msan_chain_origin msan.cc:484
|
|
#1 0x7f7893912ecd in main umr2.cc:6
|
|
|
|
Uninitialized value was created by a heap allocation
|
|
#0 0x7f7893901cbd in operator new[](unsigned long) msan_new_delete.cc:44
|
|
#1 0x7f7893912e06 in main umr2.cc:4
|
|
|
|
|
|
Handling external code
|
|
============================
|
|
|
|
MemorySanitizer requires that all program code is instrumented. This
|
|
also includes any libraries that the program depends on, even libc.
|
|
Failing to achieve this may result in false reports.
|
|
|
|
Full MemorySanitizer instrumentation is very difficult to achieve. To
|
|
make it easier, MemorySanitizer runtime library includes 70+
|
|
interceptors for the most common libc functions. They make it possible
|
|
to run MemorySanitizer-instrumented programs linked with
|
|
uninstrumented libc. For example, the authors were able to bootstrap
|
|
MemorySanitizer-instrumented Clang compiler by linking it with
|
|
self-built instrumented libc++ (as a replacement for libstdc++).
|
|
|
|
Supported Platforms
|
|
===================
|
|
|
|
MemorySanitizer is supported on
|
|
|
|
* Linux x86\_64 (tested on Ubuntu 12.04);
|
|
|
|
Limitations
|
|
===========
|
|
|
|
* MemorySanitizer uses 2x more real memory than a native run, 3x with
|
|
origin tracking.
|
|
* MemorySanitizer maps (but not reserves) 64 Terabytes of virtual
|
|
address space. This means that tools like ``ulimit`` may not work as
|
|
usually expected.
|
|
* Static linking is not supported.
|
|
* Non-position-independent executables are not supported. Therefore, the
|
|
``fsanitize=memory`` flag will cause Clang to act as though the ``-fPIE``
|
|
flag had been supplied if compiling without ``-fPIC``, and as though the
|
|
``-pie`` flag had been supplied if linking an executable.
|
|
* Depending on the version of Linux kernel, running without ASLR may
|
|
be not supported. Note that GDB disables ASLR by default. To debug
|
|
instrumented programs, use "set disable-randomization off".
|
|
|
|
Current Status
|
|
==============
|
|
|
|
MemorySanitizer is an experimental tool. It is known to work on large
|
|
real-world programs, like Clang/LLVM itself.
|
|
|
|
More Information
|
|
================
|
|
|
|
`http://code.google.com/p/memory-sanitizer <http://code.google.com/p/memory-sanitizer/>`_
|
|
|