llvm-project/llvm/lib/Transforms/IPO/Attributor.cpp

530 lines
18 KiB
C++

//===- Attributor.cpp - Module-wide attribute deduction -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements an inter procedural pass that deduces and/or propagating
// attributes. This is done in an abstract interpretation style fixpoint
// iteration. See the Attributor.h file comment and the class descriptions in
// that file for more information.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/Attributor.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
using namespace llvm;
#define DEBUG_TYPE "attributor"
STATISTIC(NumFnWithExactDefinition,
"Number of function with exact definitions");
STATISTIC(NumFnWithoutExactDefinition,
"Number of function without exact definitions");
STATISTIC(NumAttributesTimedOut,
"Number of abstract attributes timed out before fixpoint");
STATISTIC(NumAttributesValidFixpoint,
"Number of abstract attributes in a valid fixpoint state");
STATISTIC(NumAttributesManifested,
"Number of abstract attributes manifested in IR");
// TODO: Determine a good default value.
//
// In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads
// (when run with the first 5 abstract attributes). The results also indicate
// that we never reach 32 iterations but always find a fixpoint sooner.
//
// This will become more evolved once we perform two interleaved fixpoint
// iterations: bottom-up and top-down.
static cl::opt<unsigned>
MaxFixpointIterations("attributor-max-iterations", cl::Hidden,
cl::desc("Maximal number of fixpoint iterations."),
cl::init(32));
static cl::opt<bool> DisableAttributor(
"attributor-disable", cl::Hidden,
cl::desc("Disable the attributor inter-procedural deduction pass."),
cl::init(false));
static cl::opt<bool> VerifyAttributor(
"attributor-verify", cl::Hidden,
cl::desc("Verify the Attributor deduction and "
"manifestation of attributes -- may issue false-positive errors"),
cl::init(false));
/// Logic operators for the change status enum class.
///
///{
ChangeStatus llvm::operator|(ChangeStatus l, ChangeStatus r) {
return l == ChangeStatus::CHANGED ? l : r;
}
ChangeStatus llvm::operator&(ChangeStatus l, ChangeStatus r) {
return l == ChangeStatus::UNCHANGED ? l : r;
}
///}
/// Helper to adjust the statistics.
static void bookkeeping(AbstractAttribute::ManifestPosition MP,
const Attribute &Attr) {
if (!AreStatisticsEnabled())
return;
if (!Attr.isEnumAttribute())
return;
//switch (Attr.getKindAsEnum()) {
//default:
// return;
//}
}
/// Helper to identify the correct offset into an attribute list.
static unsigned getAttrIndex(AbstractAttribute::ManifestPosition MP,
unsigned ArgNo = 0) {
switch (MP) {
case AbstractAttribute::MP_ARGUMENT:
case AbstractAttribute::MP_CALL_SITE_ARGUMENT:
return ArgNo + AttributeList::FirstArgIndex;
case AbstractAttribute::MP_FUNCTION:
return AttributeList::FunctionIndex;
case AbstractAttribute::MP_RETURNED:
return AttributeList::ReturnIndex;
}
llvm_unreachable("Unknown manifest position!");
}
/// Return true if \p New is equal or worse than \p Old.
static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) {
if (!Old.isIntAttribute())
return true;
return Old.getValueAsInt() >= New.getValueAsInt();
}
/// Return true if the information provided by \p Attr was added to the
/// attribute list \p Attrs. This is only the case if it was not already present
/// in \p Attrs at the position describe by \p MP and \p ArgNo.
static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr,
AttributeList &Attrs,
AbstractAttribute::ManifestPosition MP,
unsigned ArgNo = 0) {
unsigned AttrIdx = getAttrIndex(MP, ArgNo);
if (Attr.isEnumAttribute()) {
Attribute::AttrKind Kind = Attr.getKindAsEnum();
if (Attrs.hasAttribute(AttrIdx, Kind))
if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
return false;
Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
return true;
}
if (Attr.isStringAttribute()) {
StringRef Kind = Attr.getKindAsString();
if (Attrs.hasAttribute(AttrIdx, Kind))
if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
return false;
Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
return true;
}
llvm_unreachable("Expected enum or string attribute!");
}
ChangeStatus AbstractAttribute::update(Attributor &A) {
ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
if (getState().isAtFixpoint())
return HasChanged;
LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n");
HasChanged = updateImpl(A);
LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged << " " << *this
<< "\n");
return HasChanged;
}
ChangeStatus AbstractAttribute::manifest(Attributor &A) {
assert(getState().isValidState() &&
"Attempted to manifest an invalid state!");
assert(getAssociatedValue() &&
"Attempted to manifest an attribute without associated value!");
ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
SmallVector<Attribute, 4> DeducedAttrs;
getDeducedAttributes(DeducedAttrs);
Function &ScopeFn = getAnchorScope();
LLVMContext &Ctx = ScopeFn.getContext();
ManifestPosition MP = getManifestPosition();
AttributeList Attrs;
SmallVector<unsigned, 4> ArgNos;
// In the following some generic code that will manifest attributes in
// DeducedAttrs if they improve the current IR. Due to the different
// annotation positions we use the underlying AttributeList interface.
// Note that MP_CALL_SITE_ARGUMENT can annotate multiple locations.
switch (MP) {
case MP_ARGUMENT:
ArgNos.push_back(cast<Argument>(getAssociatedValue())->getArgNo());
Attrs = ScopeFn.getAttributes();
break;
case MP_FUNCTION:
case MP_RETURNED:
ArgNos.push_back(0);
Attrs = ScopeFn.getAttributes();
break;
case MP_CALL_SITE_ARGUMENT: {
CallSite CS(&getAnchoredValue());
for (unsigned u = 0, e = CS.getNumArgOperands(); u != e; u++)
if (CS.getArgOperand(u) == getAssociatedValue())
ArgNos.push_back(u);
Attrs = CS.getAttributes();
}
}
for (const Attribute &Attr : DeducedAttrs) {
for (unsigned ArgNo : ArgNos) {
if (!addIfNotExistent(Ctx, Attr, Attrs, MP, ArgNo))
continue;
HasChanged = ChangeStatus::CHANGED;
bookkeeping(MP, Attr);
}
}
if (HasChanged == ChangeStatus::UNCHANGED)
return HasChanged;
switch (MP) {
case MP_ARGUMENT:
case MP_FUNCTION:
case MP_RETURNED:
ScopeFn.setAttributes(Attrs);
break;
case MP_CALL_SITE_ARGUMENT:
CallSite(&getAnchoredValue()).setAttributes(Attrs);
}
return HasChanged;
}
Function &AbstractAttribute::getAnchorScope() {
Value &V = getAnchoredValue();
if (isa<Function>(V))
return cast<Function>(V);
if (isa<Argument>(V))
return *cast<Argument>(V).getParent();
if (isa<Instruction>(V))
return *cast<Instruction>(V).getFunction();
llvm_unreachable("No scope for anchored value found!");
}
const Function &AbstractAttribute::getAnchorScope() const {
return const_cast<AbstractAttribute *>(this)->getAnchorScope();
}
/// ----------------------------------------------------------------------------
/// Attributor
/// ----------------------------------------------------------------------------
ChangeStatus Attributor::run() {
// Initialize all abstract attributes.
for (AbstractAttribute *AA : AllAbstractAttributes)
AA->initialize(*this);
LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized "
<< AllAbstractAttributes.size()
<< " abstract attributes.\n");
// Now that all abstract attributes are collected and initialized we start the
// abstract analysis.
unsigned IterationCounter = 1;
SmallVector<AbstractAttribute *, 64> ChangedAAs;
SetVector<AbstractAttribute *> Worklist;
Worklist.insert(AllAbstractAttributes.begin(), AllAbstractAttributes.end());
do {
LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounter
<< ", Worklist size: " << Worklist.size() << "\n");
// Add all abstract attributes that are potentially dependent on one that
// changed to the work list.
for (AbstractAttribute *ChangedAA : ChangedAAs) {
auto &QuerriedAAs = QueryMap[ChangedAA];
Worklist.insert(QuerriedAAs.begin(), QuerriedAAs.end());
}
// Reset the changed set.
ChangedAAs.clear();
// Update all abstract attribute in the work list and record the ones that
// changed.
for (AbstractAttribute *AA : Worklist)
if (AA->update(*this) == ChangeStatus::CHANGED)
ChangedAAs.push_back(AA);
// Reset the work list and repopulate with the changed abstract attributes.
// Note that dependent ones are added above.
Worklist.clear();
Worklist.insert(ChangedAAs.begin(), ChangedAAs.end());
} while (!Worklist.empty() && ++IterationCounter < MaxFixpointIterations);
LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: "
<< IterationCounter << "/" << MaxFixpointIterations
<< " iterations\n");
bool FinishedAtFixpoint = Worklist.empty();
// Reset abstract arguments not settled in a sound fixpoint by now. This
// happens when we stopped the fixpoint iteration early. Note that only the
// ones marked as "changed" *and* the ones transitively depending on them
// need to be reverted to a pessimistic state. Others might not be in a
// fixpoint state but we can use the optimistic results for them anyway.
SmallPtrSet<AbstractAttribute *, 32> Visited;
for (unsigned u = 0; u < ChangedAAs.size(); u++) {
AbstractAttribute *ChangedAA = ChangedAAs[u];
if (!Visited.insert(ChangedAA).second)
continue;
AbstractState &State = ChangedAA->getState();
if (!State.isAtFixpoint()) {
State.indicatePessimisticFixpoint();
NumAttributesTimedOut++;
}
auto &QuerriedAAs = QueryMap[ChangedAA];
ChangedAAs.append(QuerriedAAs.begin(), QuerriedAAs.end());
}
LLVM_DEBUG({
if (!Visited.empty())
dbgs() << "\n[Attributor] Finalized " << Visited.size()
<< " abstract attributes.\n";
});
unsigned NumManifested = 0;
unsigned NumAtFixpoint = 0;
ChangeStatus ManifestChange = ChangeStatus::UNCHANGED;
for (AbstractAttribute *AA : AllAbstractAttributes) {
AbstractState &State = AA->getState();
// If there is not already a fixpoint reached, we can now take the
// optimistic state. This is correct because we enforced a pessimistic one
// on abstract attributes that were transitively dependent on a changed one
// already above.
if (!State.isAtFixpoint())
State.indicateOptimisticFixpoint();
// If the state is invalid, we do not try to manifest it.
if (!State.isValidState())
continue;
// Manifest the state and record if we changed the IR.
ChangeStatus LocalChange = AA->manifest(*this);
ManifestChange = ManifestChange | LocalChange;
NumAtFixpoint++;
NumManifested += (LocalChange == ChangeStatus::CHANGED);
}
(void)NumManifested;
(void)NumAtFixpoint;
LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifested
<< " arguments while " << NumAtFixpoint
<< " were in a valid fixpoint state\n");
// If verification is requested, we finished this run at a fixpoint, and the
// IR was changed, we re-run the whole fixpoint analysis, starting at
// re-initialization of the arguments. This re-run should not result in an IR
// change. Though, the (virtual) state of attributes at the end of the re-run
// might be more optimistic than the known state or the IR state if the better
// state cannot be manifested.
if (VerifyAttributor && FinishedAtFixpoint &&
ManifestChange == ChangeStatus::CHANGED) {
VerifyAttributor = false;
ChangeStatus VerifyStatus = run();
if (VerifyStatus != ChangeStatus::UNCHANGED)
llvm_unreachable(
"Attributor verification failed, re-run did result in an IR change "
"even after a fixpoint was reached in the original run. (False "
"positives possible!)");
VerifyAttributor = true;
}
NumAttributesManifested += NumManifested;
NumAttributesValidFixpoint += NumAtFixpoint;
return ManifestChange;
}
void Attributor::identifyDefaultAbstractAttributes(
Function &F, InformationCache &InfoCache,
DenseSet</* Attribute::AttrKind */ unsigned> *Whitelist) {
// Walk all instructions to find more attribute opportunities and also
// interesting instructions that might be queried by abstract attributes
// during their initialization or update.
auto &ReadOrWriteInsts = InfoCache.FuncRWInstsMap[&F];
auto &InstOpcodeMap = InfoCache.FuncInstOpcodeMap[&F];
for (Instruction &I : instructions(&F)) {
bool IsInterestingOpcode = false;
// To allow easy access to all instructions in a function with a given
// opcode we store them in the InfoCache. As not all opcodes are interesting
// to concrete attributes we only cache the ones that are as identified in
// the following switch.
// Note: There are no concrete attributes now so this is initially empty.
//switch (I.getOpcode()) {
//default:
// break;
//}
if (IsInterestingOpcode)
InstOpcodeMap[I.getOpcode()].push_back(&I);
if (I.mayReadOrWriteMemory())
ReadOrWriteInsts.push_back(&I);
}
}
/// Helpers to ease debugging through output streams and print calls.
///
///{
raw_ostream &llvm::operator<<(raw_ostream &OS, ChangeStatus S) {
return OS << (S == ChangeStatus::CHANGED ? "changed" : "unchanged");
}
raw_ostream &llvm::operator<<(raw_ostream &OS,
AbstractAttribute::ManifestPosition AP) {
switch (AP) {
case AbstractAttribute::MP_ARGUMENT:
return OS << "arg";
case AbstractAttribute::MP_CALL_SITE_ARGUMENT:
return OS << "cs_arg";
case AbstractAttribute::MP_FUNCTION:
return OS << "fn";
case AbstractAttribute::MP_RETURNED:
return OS << "fn_ret";
}
llvm_unreachable("Unknown attribute position!");
}
raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractState &S) {
return OS << (!S.isValidState() ? "top" : (S.isAtFixpoint() ? "fix" : ""));
}
raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractAttribute &AA) {
AA.print(OS);
return OS;
}
void AbstractAttribute::print(raw_ostream &OS) const {
OS << "[" << getManifestPosition() << "][" << getAsStr() << "]["
<< AnchoredVal.getName() << "]";
}
///}
/// ----------------------------------------------------------------------------
/// Pass (Manager) Boilerplate
/// ----------------------------------------------------------------------------
static bool runAttributorOnModule(Module &M) {
if (DisableAttributor)
return false;
LLVM_DEBUG(dbgs() << "[Attributor] Run on module with " << M.size()
<< " functions.\n");
// Create an Attributor and initially empty information cache that is filled
// while we identify default attribute opportunities.
Attributor A;
InformationCache InfoCache;
for (Function &F : M) {
// TODO: Not all attributes require an exact definition. Find a way to
// enable deduction for some but not all attributes in case the
// definition might be changed at runtime, see also
// http://lists.llvm.org/pipermail/llvm-dev/2018-February/121275.html.
// TODO: We could always determine abstract attributes and if sufficient
// information was found we could duplicate the functions that do not
// have an exact definition.
if (!F.hasExactDefinition()) {
NumFnWithoutExactDefinition++;
continue;
}
// For now we ignore naked and optnone functions.
if (F.hasFnAttribute(Attribute::Naked) ||
F.hasFnAttribute(Attribute::OptimizeNone))
continue;
NumFnWithExactDefinition++;
// Populate the Attributor with abstract attribute opportunities in the
// function and the information cache with IR information.
A.identifyDefaultAbstractAttributes(F, InfoCache);
}
return A.run() == ChangeStatus::CHANGED;
}
PreservedAnalyses AttributorPass::run(Module &M, ModuleAnalysisManager &AM) {
if (runAttributorOnModule(M)) {
// FIXME: Think about passes we will preserve and add them here.
return PreservedAnalyses::none();
}
return PreservedAnalyses::all();
}
namespace {
struct AttributorLegacyPass : public ModulePass {
static char ID;
AttributorLegacyPass() : ModulePass(ID) {
initializeAttributorLegacyPassPass(*PassRegistry::getPassRegistry());
}
bool runOnModule(Module &M) override {
if (skipModule(M))
return false;
return runAttributorOnModule(M);
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
// FIXME: Think about passes we will preserve and add them here.
AU.setPreservesCFG();
}
};
} // end anonymous namespace
Pass *llvm::createAttributorLegacyPass() { return new AttributorLegacyPass(); }
char AttributorLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(AttributorLegacyPass, "attributor",
"Deduce and propagate attributes", false, false)
INITIALIZE_PASS_END(AttributorLegacyPass, "attributor",
"Deduce and propagate attributes", false, false)