llvm-project/llvm/lib/Support/Timer.cpp

397 lines
12 KiB
C++

//===-- Timer.cpp - Interval Timing Support -------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file Interval Timing implementation.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/Timer.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/YAMLTraits.h"
using namespace llvm;
// This ugly hack is brought to you courtesy of constructor/destructor ordering
// being unspecified by C++. Basically the problem is that a Statistic object
// gets destroyed, which ends up calling 'GetLibSupportInfoOutputFile()'
// (below), which calls this function. LibSupportInfoOutputFilename used to be
// a global variable, but sometimes it would get destroyed before the Statistic,
// causing havoc to ensue. We "fix" this by creating the string the first time
// it is needed and never destroying it.
static ManagedStatic<std::string> LibSupportInfoOutputFilename;
static std::string &getLibSupportInfoOutputFilename() {
return *LibSupportInfoOutputFilename;
}
static ManagedStatic<sys::SmartMutex<true> > TimerLock;
namespace {
static cl::opt<bool>
TrackSpace("track-memory", cl::desc("Enable -time-passes memory "
"tracking (this may be slow)"),
cl::Hidden);
static cl::opt<std::string, true>
InfoOutputFilename("info-output-file", cl::value_desc("filename"),
cl::desc("File to append -stats and -timer output to"),
cl::Hidden, cl::location(getLibSupportInfoOutputFilename()));
}
std::unique_ptr<raw_fd_ostream> llvm::CreateInfoOutputFile() {
const std::string &OutputFilename = getLibSupportInfoOutputFilename();
if (OutputFilename.empty())
return llvm::make_unique<raw_fd_ostream>(2, false); // stderr.
if (OutputFilename == "-")
return llvm::make_unique<raw_fd_ostream>(1, false); // stdout.
// Append mode is used because the info output file is opened and closed
// each time -stats or -time-passes wants to print output to it. To
// compensate for this, the test-suite Makefiles have code to delete the
// info output file before running commands which write to it.
std::error_code EC;
auto Result = llvm::make_unique<raw_fd_ostream>(
OutputFilename, EC, sys::fs::F_Append | sys::fs::F_Text);
if (!EC)
return Result;
errs() << "Error opening info-output-file '"
<< OutputFilename << " for appending!\n";
return llvm::make_unique<raw_fd_ostream>(2, false); // stderr.
}
namespace {
struct CreateDefaultTimerGroup {
static void *call() {
return new TimerGroup("misc", "Miscellaneous Ungrouped Timers");
}
};
} // namespace
static ManagedStatic<TimerGroup, CreateDefaultTimerGroup> DefaultTimerGroup;
static TimerGroup *getDefaultTimerGroup() { return &*DefaultTimerGroup; }
//===----------------------------------------------------------------------===//
// Timer Implementation
//===----------------------------------------------------------------------===//
void Timer::init(StringRef Name, StringRef Description) {
init(Name, Description, *getDefaultTimerGroup());
}
void Timer::init(StringRef Name, StringRef Description, TimerGroup &tg) {
assert(!TG && "Timer already initialized");
this->Name.assign(Name.begin(), Name.end());
this->Description.assign(Description.begin(), Description.end());
Running = Triggered = false;
TG = &tg;
TG->addTimer(*this);
}
Timer::~Timer() {
if (!TG) return; // Never initialized, or already cleared.
TG->removeTimer(*this);
}
static inline size_t getMemUsage() {
if (!TrackSpace) return 0;
return sys::Process::GetMallocUsage();
}
TimeRecord TimeRecord::getCurrentTime(bool Start) {
using Seconds = std::chrono::duration<double, std::ratio<1>>;
TimeRecord Result;
sys::TimePoint<> now;
std::chrono::nanoseconds user, sys;
if (Start) {
Result.MemUsed = getMemUsage();
sys::Process::GetTimeUsage(now, user, sys);
} else {
sys::Process::GetTimeUsage(now, user, sys);
Result.MemUsed = getMemUsage();
}
Result.WallTime = Seconds(now.time_since_epoch()).count();
Result.UserTime = Seconds(user).count();
Result.SystemTime = Seconds(sys).count();
return Result;
}
void Timer::startTimer() {
assert(!Running && "Cannot start a running timer");
Running = Triggered = true;
StartTime = TimeRecord::getCurrentTime(true);
}
void Timer::stopTimer() {
assert(Running && "Cannot stop a paused timer");
Running = false;
Time += TimeRecord::getCurrentTime(false);
Time -= StartTime;
}
void Timer::clear() {
Running = Triggered = false;
Time = StartTime = TimeRecord();
}
static void printVal(double Val, double Total, raw_ostream &OS) {
if (Total < 1e-7) // Avoid dividing by zero.
OS << " ----- ";
else
OS << format(" %7.4f (%5.1f%%)", Val, Val*100/Total);
}
void TimeRecord::print(const TimeRecord &Total, raw_ostream &OS) const {
if (Total.getUserTime())
printVal(getUserTime(), Total.getUserTime(), OS);
if (Total.getSystemTime())
printVal(getSystemTime(), Total.getSystemTime(), OS);
if (Total.getProcessTime())
printVal(getProcessTime(), Total.getProcessTime(), OS);
printVal(getWallTime(), Total.getWallTime(), OS);
OS << " ";
if (Total.getMemUsed())
OS << format("%9" PRId64 " ", (int64_t)getMemUsed());
}
//===----------------------------------------------------------------------===//
// NamedRegionTimer Implementation
//===----------------------------------------------------------------------===//
namespace {
typedef StringMap<Timer> Name2TimerMap;
class Name2PairMap {
StringMap<std::pair<TimerGroup*, Name2TimerMap> > Map;
public:
~Name2PairMap() {
for (StringMap<std::pair<TimerGroup*, Name2TimerMap> >::iterator
I = Map.begin(), E = Map.end(); I != E; ++I)
delete I->second.first;
}
Timer &get(StringRef Name, StringRef Description, StringRef GroupName,
StringRef GroupDescription) {
sys::SmartScopedLock<true> L(*TimerLock);
std::pair<TimerGroup*, Name2TimerMap> &GroupEntry = Map[GroupName];
if (!GroupEntry.first)
GroupEntry.first = new TimerGroup(GroupName, GroupDescription);
Timer &T = GroupEntry.second[Name];
if (!T.isInitialized())
T.init(Name, Description, *GroupEntry.first);
return T;
}
};
}
static ManagedStatic<Name2PairMap> NamedGroupedTimers;
NamedRegionTimer::NamedRegionTimer(StringRef Name, StringRef Description,
StringRef GroupName,
StringRef GroupDescription, bool Enabled)
: TimeRegion(!Enabled ? nullptr
: &NamedGroupedTimers->get(Name, Description, GroupName,
GroupDescription)) {}
//===----------------------------------------------------------------------===//
// TimerGroup Implementation
//===----------------------------------------------------------------------===//
/// This is the global list of TimerGroups, maintained by the TimerGroup
/// ctor/dtor and is protected by the TimerLock lock.
static TimerGroup *TimerGroupList = nullptr;
TimerGroup::TimerGroup(StringRef Name, StringRef Description)
: Name(Name.begin(), Name.end()),
Description(Description.begin(), Description.end()) {
// Add the group to TimerGroupList.
sys::SmartScopedLock<true> L(*TimerLock);
if (TimerGroupList)
TimerGroupList->Prev = &Next;
Next = TimerGroupList;
Prev = &TimerGroupList;
TimerGroupList = this;
}
TimerGroup::~TimerGroup() {
// If the timer group is destroyed before the timers it owns, accumulate and
// print the timing data.
while (FirstTimer)
removeTimer(*FirstTimer);
// Remove the group from the TimerGroupList.
sys::SmartScopedLock<true> L(*TimerLock);
*Prev = Next;
if (Next)
Next->Prev = Prev;
}
void TimerGroup::removeTimer(Timer &T) {
sys::SmartScopedLock<true> L(*TimerLock);
// If the timer was started, move its data to TimersToPrint.
if (T.hasTriggered())
TimersToPrint.emplace_back(T.Time, T.Name, T.Description);
T.TG = nullptr;
// Unlink the timer from our list.
*T.Prev = T.Next;
if (T.Next)
T.Next->Prev = T.Prev;
// Print the report when all timers in this group are destroyed if some of
// them were started.
if (FirstTimer || TimersToPrint.empty())
return;
std::unique_ptr<raw_ostream> OutStream = CreateInfoOutputFile();
PrintQueuedTimers(*OutStream);
}
void TimerGroup::addTimer(Timer &T) {
sys::SmartScopedLock<true> L(*TimerLock);
// Add the timer to our list.
if (FirstTimer)
FirstTimer->Prev = &T.Next;
T.Next = FirstTimer;
T.Prev = &FirstTimer;
FirstTimer = &T;
}
void TimerGroup::PrintQueuedTimers(raw_ostream &OS) {
// Sort the timers in descending order by amount of time taken.
std::sort(TimersToPrint.begin(), TimersToPrint.end());
TimeRecord Total;
for (const PrintRecord &Record : TimersToPrint)
Total += Record.Time;
// Print out timing header.
OS << "===" << std::string(73, '-') << "===\n";
// Figure out how many spaces to indent TimerGroup name.
unsigned Padding = (80-Description.length())/2;
if (Padding > 80) Padding = 0; // Don't allow "negative" numbers
OS.indent(Padding) << Description << '\n';
OS << "===" << std::string(73, '-') << "===\n";
// If this is not an collection of ungrouped times, print the total time.
// Ungrouped timers don't really make sense to add up. We still print the
// TOTAL line to make the percentages make sense.
if (this != getDefaultTimerGroup())
OS << format(" Total Execution Time: %5.4f seconds (%5.4f wall clock)\n",
Total.getProcessTime(), Total.getWallTime());
OS << '\n';
if (Total.getUserTime())
OS << " ---User Time---";
if (Total.getSystemTime())
OS << " --System Time--";
if (Total.getProcessTime())
OS << " --User+System--";
OS << " ---Wall Time---";
if (Total.getMemUsed())
OS << " ---Mem---";
OS << " --- Name ---\n";
// Loop through all of the timing data, printing it out.
for (const PrintRecord &Record : make_range(TimersToPrint.rbegin(),
TimersToPrint.rend())) {
Record.Time.print(Total, OS);
OS << Record.Description << '\n';
}
Total.print(Total, OS);
OS << "Total\n\n";
OS.flush();
TimersToPrint.clear();
}
void TimerGroup::prepareToPrintList() {
// See if any of our timers were started, if so add them to TimersToPrint and
// reset them.
for (Timer *T = FirstTimer; T; T = T->Next) {
if (!T->hasTriggered()) continue;
TimersToPrint.emplace_back(T->Time, T->Name, T->Description);
// Clear out the time.
T->clear();
}
}
void TimerGroup::print(raw_ostream &OS) {
sys::SmartScopedLock<true> L(*TimerLock);
prepareToPrintList();
// If any timers were started, print the group.
if (!TimersToPrint.empty())
PrintQueuedTimers(OS);
}
void TimerGroup::printAll(raw_ostream &OS) {
sys::SmartScopedLock<true> L(*TimerLock);
for (TimerGroup *TG = TimerGroupList; TG; TG = TG->Next)
TG->print(OS);
}
void TimerGroup::printJSONValue(raw_ostream &OS, const PrintRecord &R,
const char *suffix, double Value) {
assert(!yaml::needsQuotes(Name) && "TimerGroup name needs no quotes");
assert(!yaml::needsQuotes(R.Name) && "Timer name needs no quotes");
OS << "\t\"time." << Name << '.' << R.Name << suffix << "\": " << Value;
}
const char *TimerGroup::printJSONValues(raw_ostream &OS, const char *delim) {
prepareToPrintList();
for (const PrintRecord &R : TimersToPrint) {
OS << delim;
delim = ",\n";
const TimeRecord &T = R.Time;
printJSONValue(OS, R, ".wall", T.getWallTime());
OS << delim;
printJSONValue(OS, R, ".user", T.getUserTime());
OS << delim;
printJSONValue(OS, R, ".sys", T.getSystemTime());
}
TimersToPrint.clear();
return delim;
}
const char *TimerGroup::printAllJSONValues(raw_ostream &OS, const char *delim) {
sys::SmartScopedLock<true> L(*TimerLock);
for (TimerGroup *TG = TimerGroupList; TG; TG = TG->Next)
delim = TG->printJSONValues(OS, delim);
return delim;
}
void TimerGroup::ConstructTimerLists() {
(void)*NamedGroupedTimers;
}