llvm-project/llvm/lib/Target/RISCV/RISCVInstrInfoVPseudos.td

1517 lines
60 KiB
TableGen

//===-- RISCVInstrInfoVPseudos.td - RISC-V 'V' Pseudos -----*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// This file contains the required infrastructure to support code generation
/// for the standard 'V' (Vector) extension, version 0.9. This version is still
/// experimental as the 'V' extension hasn't been ratified yet.
///
/// This file is included from RISCVInstrInfoV.td
///
//===----------------------------------------------------------------------===//
// X0 has special meaning for vsetvl/vsetvli.
// rd | rs1 | AVL value | Effect on vl
//--------------------------------------------------------------
// !X0 | X0 | VLMAX | Set vl to VLMAX
// X0 | X0 | Value in vl | Keep current vl, just change vtype.
def NoX0 : SDNodeXForm<undef,
[{
auto *C = dyn_cast<ConstantSDNode>(N);
if (C && C->isNullValue()) {
SDLoc DL(N);
return SDValue(CurDAG->getMachineNode(RISCV::ADDI, DL, Subtarget->getXLenVT(),
CurDAG->getRegister(RISCV::X0, Subtarget->getXLenVT()),
CurDAG->getTargetConstant(0, DL, Subtarget->getXLenVT())), 0);
}
return SDValue(N, 0);
}]>;
//===----------------------------------------------------------------------===//
// Utilities.
//===----------------------------------------------------------------------===//
// This class describes information associated to the LMUL.
class LMULInfo<int lmul, VReg regclass, VReg wregclass, string mx> {
bits<3> value = lmul; // This is encoded as the vlmul field of vtype.
VReg vrclass = regclass;
VReg wvrclass = wregclass;
string MX = mx;
}
// Associate LMUL with tablegen records of register classes.
def V_M1 : LMULInfo<0b000, VR, VRM2, "M1">;
def V_M2 : LMULInfo<0b001, VRM2, VRM4, "M2">;
def V_M4 : LMULInfo<0b010, VRM4, VRM8, "M4">;
def V_M8 : LMULInfo<0b011, VRM8, VR, "M8">;
def V_MF8 : LMULInfo<0b101, VR, VR, "MF8">;
def V_MF4 : LMULInfo<0b110, VR, VR, "MF4">;
def V_MF2 : LMULInfo<0b111, VR, VR, "MF2">;
// Used to iterate over all possible LMULs.
def MxList {
list<LMULInfo> m = [V_MF8, V_MF4, V_MF2, V_M1, V_M2, V_M4, V_M8];
}
class shift_amount<int num> {
int val = !if(!eq(num, 1), 0, !add(1, shift_amount<!srl(num, 1)>.val));
}
// Output pattern for X0 used to represent VLMAX in the pseudo instructions.
def VLMax : OutPatFrag<(ops), (XLenVT X0)>;
// List of EEW.
defvar EEWList = [8, 16, 32, 64];
// We only model FPR32 for V instructions in RISCVInstrInfoV.td.
// FP16/FP32/FP64 registers are alias each other. Convert FPR16 and FPR64
// to FPR32 for V instructions is enough.
class ToFPR32<ValueType type, DAGOperand operand, string name> {
dag ret = !cond(!eq(!cast<string>(operand), !cast<string>(FPR64)):
(EXTRACT_SUBREG !dag(type, [FPR64], [name]), sub_32),
!eq(!cast<string>(operand), !cast<string>(FPR16)):
(SUBREG_TO_REG (i16 -1), !dag(type, [FPR16], [name]), sub_16),
!eq(1, 1):
!dag(type, [operand], [name]));
}
//===----------------------------------------------------------------------===//
// Vector register and vector group type information.
//===----------------------------------------------------------------------===//
class VTypeInfo<ValueType Vec, ValueType Mas, int Sew, VReg Reg, LMULInfo M,
ValueType Scal = XLenVT, RegisterClass ScalarReg = GPR>
{
ValueType Vector = Vec;
ValueType Mask = Mas;
int SEW = Sew;
VReg RegClass = Reg;
LMULInfo LMul = M;
ValueType Scalar = Scal;
RegisterClass ScalarRegClass = ScalarReg;
}
class GroupVTypeInfo<ValueType Vec, ValueType VecM1, ValueType Mas, int Sew,
VReg Reg, LMULInfo M, ValueType Scal = XLenVT,
RegisterClass ScalarReg = GPR>
: VTypeInfo<Vec, Mas, Sew, Reg, M, Scal, ScalarReg>
{
ValueType VectorM1 = VecM1;
}
defset list<VTypeInfo> AllVectors = {
defset list<VTypeInfo> AllIntegerVectors = {
def VI8MF8: VTypeInfo<vint8mf8_t, vbool64_t, 8, VR, V_MF8>;
def VI8MF4: VTypeInfo<vint8mf4_t, vbool32_t, 8, VR, V_MF4>;
def VI8MF2: VTypeInfo<vint8mf2_t, vbool16_t, 8, VR, V_MF2>;
def VI8M1: VTypeInfo<vint8m1_t, vbool8_t, 8, VR, V_M1>;
def VI16MF4: VTypeInfo<vint16mf4_t, vbool64_t, 16, VR, V_MF4>;
def VI16MF2: VTypeInfo<vint16mf2_t, vbool32_t, 16, VR, V_MF2>;
def VI16M1: VTypeInfo<vint16m1_t, vbool16_t, 16, VR, V_M1>;
def VI32MF2: VTypeInfo<vint32mf2_t, vbool64_t, 32, VR, V_MF2>;
def VI32M1: VTypeInfo<vint32m1_t, vbool32_t, 32, VR, V_M1>;
def VI64M1: VTypeInfo<vint64m1_t, vbool64_t, 64, VR, V_M1>;
def VI8M2: GroupVTypeInfo<vint8m2_t, vint8m1_t, vbool4_t, 8, VRM2, V_M2>;
def VI8M4: GroupVTypeInfo<vint8m4_t, vint8m1_t, vbool2_t, 8, VRM4, V_M4>;
def VI8M8: GroupVTypeInfo<vint8m8_t, vint8m1_t, vbool1_t, 8, VRM8, V_M8>;
def VI16M2: GroupVTypeInfo<vint16m2_t,vint16m1_t,vbool8_t, 16,VRM2, V_M2>;
def VI16M4: GroupVTypeInfo<vint16m4_t,vint16m1_t,vbool4_t, 16,VRM4, V_M4>;
def VI16M8: GroupVTypeInfo<vint16m8_t,vint16m1_t,vbool2_t, 16,VRM8, V_M8>;
def VI32M2: GroupVTypeInfo<vint32m2_t,vint32m1_t,vbool16_t,32,VRM2, V_M2>;
def VI32M4: GroupVTypeInfo<vint32m4_t,vint32m1_t,vbool8_t, 32,VRM4, V_M4>;
def VI32M8: GroupVTypeInfo<vint32m8_t,vint32m1_t,vbool4_t, 32,VRM8, V_M8>;
def VI64M2: GroupVTypeInfo<vint64m2_t,vint64m1_t,vbool32_t,64,VRM2, V_M2>;
def VI64M4: GroupVTypeInfo<vint64m4_t,vint64m1_t,vbool16_t,64,VRM4, V_M4>;
def VI64M8: GroupVTypeInfo<vint64m8_t,vint64m1_t,vbool8_t, 64,VRM8, V_M8>;
}
defset list<VTypeInfo> AllFloatVectors = {
defset list<VTypeInfo> NoGroupFloatVectors = {
def VF16MF4: VTypeInfo<vfloat16mf4_t, vbool64_t, 16, VR, V_MF4, f16, FPR16>;
def VF16MF2: VTypeInfo<vfloat16mf2_t, vbool32_t, 16, VR, V_MF2, f16, FPR16>;
def VF16M1: VTypeInfo<vfloat16m1_t, vbool16_t, 16, VR, V_M1, f16, FPR16>;
def VF32MF2: VTypeInfo<vfloat32mf2_t,vbool64_t, 32, VR, V_MF2, f32, FPR32>;
def VF32M1: VTypeInfo<vfloat32m1_t, vbool32_t, 32, VR, V_M1, f32, FPR32>;
def VF64M1: VTypeInfo<vfloat64m1_t, vbool64_t, 64, VR, V_M1, f64, FPR64>;
}
defset list<GroupVTypeInfo> GroupFloatVectors = {
def VF16M2: GroupVTypeInfo<vfloat16m2_t, vfloat16m1_t, vbool8_t, 16,
VRM2, V_M2, f16, FPR16>;
def VF16M4: GroupVTypeInfo<vfloat16m4_t, vfloat16m1_t, vbool4_t, 16,
VRM4, V_M4, f16, FPR16>;
def VF16M8: GroupVTypeInfo<vfloat16m8_t, vfloat16m1_t, vbool2_t, 16,
VRM8, V_M8, f16, FPR16>;
def VF32M2: GroupVTypeInfo<vfloat32m2_t, vfloat32m1_t, vbool16_t, 32,
VRM2, V_M2, f32, FPR32>;
def VF32M4: GroupVTypeInfo<vfloat32m4_t, vfloat32m1_t, vbool8_t, 32,
VRM4, V_M4, f32, FPR32>;
def VF32M8: GroupVTypeInfo<vfloat32m8_t, vfloat32m1_t, vbool4_t, 32,
VRM8, V_M8, f32, FPR32>;
def VF64M2: GroupVTypeInfo<vfloat64m2_t, vfloat64m1_t, vbool32_t, 64,
VRM2, V_M2, f64, FPR64>;
def VF64M4: GroupVTypeInfo<vfloat64m4_t, vfloat64m1_t, vbool16_t, 64,
VRM4, V_M4, f64, FPR64>;
def VF64M8: GroupVTypeInfo<vfloat64m8_t, vfloat64m1_t, vbool8_t, 64,
VRM8, V_M8, f64, FPR64>;
}
}
}
class VTypeInfoToWide<VTypeInfo vti, VTypeInfo wti>
{
VTypeInfo Vti = vti;
VTypeInfo Wti = wti;
}
defset list<VTypeInfoToWide> AllWidenableIntVectors = {
def : VTypeInfoToWide<VI8MF8, VI16MF4>;
def : VTypeInfoToWide<VI8MF4, VI16MF2>;
def : VTypeInfoToWide<VI8MF2, VI16M1>;
def : VTypeInfoToWide<VI8M1, VI16M2>;
def : VTypeInfoToWide<VI8M2, VI16M4>;
def : VTypeInfoToWide<VI8M4, VI16M8>;
def : VTypeInfoToWide<VI16MF4, VI32MF2>;
def : VTypeInfoToWide<VI16MF2, VI32M1>;
def : VTypeInfoToWide<VI16M1, VI32M2>;
def : VTypeInfoToWide<VI16M2, VI32M4>;
def : VTypeInfoToWide<VI16M4, VI32M8>;
def : VTypeInfoToWide<VI32MF2, VI64M1>;
def : VTypeInfoToWide<VI32M1, VI64M2>;
def : VTypeInfoToWide<VI32M2, VI64M4>;
def : VTypeInfoToWide<VI32M4, VI64M8>;
}
// This class holds the record of the RISCVVPseudoTable below.
// This represents the information we need in codegen for each pseudo.
// The definition should be consistent with `struct PseudoInfo` in
// RISCVBaseInfo.h.
class CONST8b<bits<8> val> {
bits<8> V = val;
}
def InvalidIndex : CONST8b<0x80>;
class RISCVVPseudo {
Pseudo Pseudo = !cast<Pseudo>(NAME); // Used as a key.
Instruction BaseInstr;
bits<8> VLIndex = InvalidIndex.V;
bits<8> SEWIndex = InvalidIndex.V;
bits<8> MergeOpIndex = InvalidIndex.V;
bits<3> VLMul;
bit HasDummyMask = 0;
}
// The actual table.
def RISCVVPseudosTable : GenericTable {
let FilterClass = "RISCVVPseudo";
let CppTypeName = "PseudoInfo";
let Fields = [ "Pseudo", "BaseInstr", "VLIndex", "SEWIndex", "MergeOpIndex",
"VLMul", "HasDummyMask" ];
let PrimaryKey = [ "Pseudo" ];
let PrimaryKeyName = "getPseudoInfo";
}
def RISCVVIntrinsicsTable : GenericTable {
let FilterClass = "RISCVVIntrinsic";
let CppTypeName = "RISCVVIntrinsicInfo";
let Fields = ["IntrinsicID", "ExtendOperand"];
let PrimaryKey = ["IntrinsicID"];
let PrimaryKeyName = "getRISCVVIntrinsicInfo";
}
//===----------------------------------------------------------------------===//
// Helpers to define the different pseudo instructions.
//===----------------------------------------------------------------------===//
class PseudoToVInst<string PseudoInst> {
string VInst = !subst("_M8", "",
!subst("_M4", "",
!subst("_M2", "",
!subst("_M1", "",
!subst("_MF2", "",
!subst("_MF4", "",
!subst("_MF8", "",
!subst("_MASK", "",
!subst("Pseudo", "", PseudoInst)))))))));
}
// The destination vector register group for a masked vector instruction cannot
// overlap the source mask register (v0), unless the destination vector register
// is being written with a mask value (e.g., comparisons) or the scalar result
// of a reduction.
class GetVRegNoV0<VReg VRegClass> {
VReg R = !cond(!eq(VRegClass, VR) : VRNoV0,
!eq(VRegClass, VRM2) : VRM2NoV0,
!eq(VRegClass, VRM4) : VRM4NoV0,
!eq(VRegClass, VRM8) : VRM8NoV0,
!eq(1, 1) : VRegClass);
}
// Join strings in list using separator and ignoring empty elements
class Join<list<string> strings, string separator> {
string ret = !foldl(!head(strings), !tail(strings), a, b,
!cond(
!and(!empty(a), !empty(b)) : "",
!empty(a) : b,
!empty(b) : a,
1 : a#separator#b));
}
class VPseudo<Instruction instr, LMULInfo m, dag outs, dag ins> :
Pseudo<outs, ins, []>, RISCVVPseudo {
let BaseInstr = instr;
let VLMul = m.value;
}
class VPseudoUSLoadNoMask<VReg RetClass>:
Pseudo<(outs RetClass:$rd),
(ins GPR:$rs1, GPR:$vl, ixlenimm:$sew),[]>,
RISCVVPseudo {
let mayLoad = 1;
let mayStore = 0;
let hasSideEffects = 0;
let usesCustomInserter = 1;
let Uses = [VL, VTYPE];
let VLIndex = 2;
let SEWIndex = 3;
let HasDummyMask = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoUSLoadMask<VReg RetClass>:
Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
(ins GetVRegNoV0<RetClass>.R:$merge,
GPR:$rs1,
VMaskOp:$vm, GPR:$vl, ixlenimm:$sew),[]>,
RISCVVPseudo {
let mayLoad = 1;
let mayStore = 0;
let hasSideEffects = 0;
let usesCustomInserter = 1;
let Constraints = "$rd = $merge";
let Uses = [VL, VTYPE];
let VLIndex = 4;
let SEWIndex = 5;
let MergeOpIndex = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoSLoadNoMask<VReg RetClass>:
Pseudo<(outs RetClass:$rd),
(ins GPR:$rs1, GPR:$rs2, GPR:$vl, ixlenimm:$sew),[]>,
RISCVVPseudo {
let mayLoad = 1;
let mayStore = 0;
let hasSideEffects = 0;
let usesCustomInserter = 1;
let Uses = [VL, VTYPE];
let VLIndex = 3;
let SEWIndex = 4;
let HasDummyMask = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoSLoadMask<VReg RetClass>:
Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
(ins GetVRegNoV0<RetClass>.R:$merge,
GPR:$rs1, GPR:$rs2,
VMaskOp:$vm, GPR:$vl, ixlenimm:$sew),[]>,
RISCVVPseudo {
let mayLoad = 1;
let mayStore = 0;
let hasSideEffects = 0;
let usesCustomInserter = 1;
let Constraints = "$rd = $merge";
let Uses = [VL, VTYPE];
let VLIndex = 5;
let SEWIndex = 6;
let MergeOpIndex = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoUSStoreNoMask<VReg StClass>:
Pseudo<(outs),
(ins StClass:$rd, GPR:$rs1, GPR:$vl, ixlenimm:$sew),[]>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 1;
let hasSideEffects = 0;
let usesCustomInserter = 1;
let Uses = [VL, VTYPE];
let VLIndex = 2;
let SEWIndex = 3;
let HasDummyMask = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoUSStoreMask<VReg StClass>:
Pseudo<(outs),
(ins StClass:$rd, GPR:$rs1, VMaskOp:$vm, GPR:$vl, ixlenimm:$sew),[]>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 1;
let hasSideEffects = 0;
let usesCustomInserter = 1;
let Uses = [VL, VTYPE];
let VLIndex = 3;
let SEWIndex = 4;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoSStoreNoMask<VReg StClass>:
Pseudo<(outs),
(ins StClass:$rd, GPR:$rs1, GPR:$rs2, GPR:$vl, ixlenimm:$sew),[]>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 1;
let hasSideEffects = 0;
let usesCustomInserter = 1;
let Uses = [VL, VTYPE];
let VLIndex = 3;
let SEWIndex = 4;
let HasDummyMask = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoSStoreMask<VReg StClass>:
Pseudo<(outs),
(ins StClass:$rd, GPR:$rs1, GPR:$rs2, VMaskOp:$vm, GPR:$vl, ixlenimm:$sew),[]>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 1;
let hasSideEffects = 0;
let usesCustomInserter = 1;
let Uses = [VL, VTYPE];
let VLIndex = 4;
let SEWIndex = 5;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
// Unary instruction that is never masked so HasDummyMask=0.
class VPseudoUnaryNoDummyMask<VReg RetClass,
DAGOperand Op2Class> :
Pseudo<(outs RetClass:$rd),
(ins Op2Class:$rs1, GPR:$vl, ixlenimm:$sew), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let usesCustomInserter = 1;
let Uses = [VL, VTYPE];
let VLIndex = 2;
let SEWIndex = 3;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoBinaryNoMask<VReg RetClass,
VReg Op1Class,
DAGOperand Op2Class,
string Constraint> :
Pseudo<(outs RetClass:$rd),
(ins Op1Class:$rs2, Op2Class:$rs1, GPR:$vl, ixlenimm:$sew), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let usesCustomInserter = 1;
let Constraints = Constraint;
let Uses = [VL, VTYPE];
let VLIndex = 3;
let SEWIndex = 4;
let HasDummyMask = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoBinaryMask<VReg RetClass,
VReg Op1Class,
DAGOperand Op2Class,
string Constraint> :
Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
(ins GetVRegNoV0<RetClass>.R:$merge,
Op1Class:$rs2, Op2Class:$rs1,
VMaskOp:$vm, GPR:$vl, ixlenimm:$sew), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let usesCustomInserter = 1;
let Constraints = Join<[Constraint, "$rd = $merge"], ",">.ret;
let Uses = [VL, VTYPE];
let VLIndex = 5;
let SEWIndex = 6;
let MergeOpIndex = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoBinaryCarryIn<VReg RetClass,
VReg Op1Class,
DAGOperand Op2Class,
LMULInfo MInfo,
bit CarryIn,
string Constraint> :
Pseudo<(outs RetClass:$rd),
!if(!eq(CarryIn, 1),
(ins Op1Class:$rs2, Op2Class:$rs1, VMV0:$carry, GPR:$vl,
ixlenimm:$sew),
(ins Op1Class:$rs2, Op2Class:$rs1, GPR:$vl, ixlenimm:$sew)), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let usesCustomInserter = 1;
let Constraints = Constraint;
let Uses = [VL, VTYPE];
let VLIndex = !if(!eq(CarryIn, 1), 4, 3);
let SEWIndex = !if(!eq(CarryIn, 1), 5, 4);
let MergeOpIndex = InvalidIndex.V;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
let VLMul = MInfo.value;
}
multiclass VPseudoUSLoad {
foreach lmul = MxList.m in {
defvar LInfo = lmul.MX;
defvar vreg = lmul.vrclass;
let VLMul = lmul.value in {
def "_V_" # LInfo : VPseudoUSLoadNoMask<vreg>;
def "_V_" # LInfo # "_MASK" : VPseudoUSLoadMask<vreg>;
}
}
}
multiclass VPseudoSLoad {
foreach lmul = MxList.m in {
defvar LInfo = lmul.MX;
defvar vreg = lmul.vrclass;
let VLMul = lmul.value in {
def "_V_" # LInfo : VPseudoSLoadNoMask<vreg>;
def "_V_" # LInfo # "_MASK" : VPseudoSLoadMask<vreg>;
}
}
}
multiclass VPseudoUSStore {
foreach lmul = MxList.m in {
defvar LInfo = lmul.MX;
defvar vreg = lmul.vrclass;
let VLMul = lmul.value in {
def "_V_" # LInfo : VPseudoUSStoreNoMask<vreg>;
def "_V_" # LInfo # "_MASK" : VPseudoUSStoreMask<vreg>;
}
}
}
multiclass VPseudoSStore {
foreach lmul = MxList.m in {
defvar LInfo = lmul.MX;
defvar vreg = lmul.vrclass;
let VLMul = lmul.value in {
def "_V_" # LInfo : VPseudoSStoreNoMask<vreg>;
def "_V_" # LInfo # "_MASK" : VPseudoSStoreMask<vreg>;
}
}
}
multiclass VPseudoBinary<VReg RetClass,
VReg Op1Class,
DAGOperand Op2Class,
LMULInfo MInfo,
string Constraint = ""> {
let VLMul = MInfo.value in {
def "_" # MInfo.MX : VPseudoBinaryNoMask<RetClass, Op1Class, Op2Class,
Constraint>;
def "_" # MInfo.MX # "_MASK" : VPseudoBinaryMask<RetClass, Op1Class, Op2Class,
Constraint>;
}
}
multiclass VPseudoBinaryV_VV {
foreach m = MxList.m in
defm _VV : VPseudoBinary<m.vrclass, m.vrclass, m.vrclass, m>;
}
multiclass VPseudoBinaryV_VX<bit IsFloat> {
foreach m = MxList.m in
defm !if(!eq(IsFloat, 0), "_VX", "_VF") : VPseudoBinary<m.vrclass, m.vrclass,
!if(!eq(IsFloat, 0), GPR, FPR32), m>;
}
multiclass VPseudoBinaryV_VI<Operand ImmType = simm5> {
foreach m = MxList.m in
defm _VI : VPseudoBinary<m.vrclass, m.vrclass, ImmType, m>;
}
// We use earlyclobber here due to
// * The destination EEW is smaller than the source EEW and the overlap is
// in the lowest-numbered part of the source register group is legal.
// Otherwise, it is illegal.
// * The destination EEW is greater than the source EEW, the source EMUL is
// at least 1, and the overlap is in the highest-numbered part of the
// destination register group is legal. Otherwise, it is illegal.
multiclass VPseudoBinaryW_VV {
foreach m = MxList.m[0-5] in
defm _VV : VPseudoBinary<m.wvrclass, m.vrclass, m.vrclass, m,
"@earlyclobber $rd">;
}
multiclass VPseudoBinaryW_VX {
foreach m = MxList.m[0-5] in
defm _VX : VPseudoBinary<m.wvrclass, m.vrclass, GPR, m,
"@earlyclobber $rd">;
}
multiclass VPseudoBinaryW_WV {
foreach m = MxList.m[0-5] in
defm _WV : VPseudoBinary<m.wvrclass, m.wvrclass, m.vrclass, m,
"@earlyclobber $rd">;
}
multiclass VPseudoBinaryW_WX {
foreach m = MxList.m[0-5] in
defm _WX : VPseudoBinary<m.wvrclass, m.wvrclass, GPR, m,
"@earlyclobber $rd">;
}
multiclass VPseudoBinaryV_WV {
foreach m = MxList.m[0-5] in
defm _WV : VPseudoBinary<m.vrclass, m.wvrclass, m.vrclass, m,
"@earlyclobber $rd">;
}
multiclass VPseudoBinaryV_WX {
foreach m = MxList.m[0-5] in
defm _WX : VPseudoBinary<m.vrclass, m.wvrclass, GPR, m,
"@earlyclobber $rd">;
}
multiclass VPseudoBinaryV_WI {
foreach m = MxList.m[0-5] in
defm _WI : VPseudoBinary<m.vrclass, m.wvrclass, uimm5, m,
"@earlyclobber $rd">;
}
// For vadc and vsbc, the instruction encoding is reserved if the destination
// vector register is v0.
// For vadc and vsbc, CarryIn == 1 and CarryOut == 0
multiclass VPseudoBinaryV_VM<bit CarryOut = 0, bit CarryIn = 1,
string Constraint = ""> {
foreach m = MxList.m in
def "_VV" # !if(!eq(CarryIn, 1), "M", "") # "_" # m.MX :
VPseudoBinaryCarryIn<!if(!eq(CarryOut, 1), VR,
!if(!and(!eq(CarryIn, 1), !eq(CarryOut, 0)),
GetVRegNoV0<m.vrclass>.R, m.vrclass)),
m.vrclass, m.vrclass, m, CarryIn, Constraint>;
}
multiclass VPseudoBinaryV_XM<bit CarryOut = 0, bit CarryIn = 1,
string Constraint = ""> {
foreach m = MxList.m in
def "_VX" # !if(!eq(CarryIn, 1), "M", "") # "_" # m.MX :
VPseudoBinaryCarryIn<!if(!eq(CarryOut, 1), VR,
!if(!and(!eq(CarryIn, 1), !eq(CarryOut, 0)),
GetVRegNoV0<m.vrclass>.R, m.vrclass)),
m.vrclass, GPR, m, CarryIn, Constraint>;
}
multiclass VPseudoBinaryV_IM<bit CarryOut = 0, bit CarryIn = 1,
string Constraint = ""> {
foreach m = MxList.m in
def "_VI" # !if(!eq(CarryIn, 1), "M", "") # "_" # m.MX :
VPseudoBinaryCarryIn<!if(!eq(CarryOut, 1), VR,
!if(!and(!eq(CarryIn, 1), !eq(CarryOut, 0)),
GetVRegNoV0<m.vrclass>.R, m.vrclass)),
m.vrclass, simm5, m, CarryIn, Constraint>;
}
multiclass VPseudoUnaryV_V_X_I_NoDummyMask {
foreach m = MxList.m in {
let VLMul = m.value in {
def "_V_" # m.MX : VPseudoUnaryNoDummyMask<m.vrclass, m.vrclass>;
def "_X_" # m.MX : VPseudoUnaryNoDummyMask<m.vrclass, GPR>;
def "_I_" # m.MX : VPseudoUnaryNoDummyMask<m.vrclass, simm5>;
}
}
}
multiclass VPseudoBinaryV_VV_VX_VI<Operand ImmType = simm5> {
defm "" : VPseudoBinaryV_VV;
defm "" : VPseudoBinaryV_VX</*IsFloat=*/0>;
defm "" : VPseudoBinaryV_VI<ImmType>;
}
multiclass VPseudoBinaryV_VV_VX<bit IsFloat = 0> {
defm "" : VPseudoBinaryV_VV;
defm "" : VPseudoBinaryV_VX<IsFloat>;
}
multiclass VPseudoBinaryV_VX_VI<Operand ImmType = simm5> {
defm "" : VPseudoBinaryV_VX</*IsFloat=*/0>;
defm "" : VPseudoBinaryV_VI<ImmType>;
}
multiclass VPseudoBinaryW_VV_VX {
defm "" : VPseudoBinaryW_VV;
defm "" : VPseudoBinaryW_VX;
}
multiclass VPseudoBinaryW_WV_WX {
defm "" : VPseudoBinaryW_WV;
defm "" : VPseudoBinaryW_WX;
}
multiclass VPseudoBinaryV_VM_XM_IM {
defm "" : VPseudoBinaryV_VM;
defm "" : VPseudoBinaryV_XM;
defm "" : VPseudoBinaryV_IM;
}
multiclass VPseudoBinaryV_VM_XM {
defm "" : VPseudoBinaryV_VM;
defm "" : VPseudoBinaryV_XM;
}
multiclass VPseudoBinaryM_VM_XM_IM<string Constraint> {
defm "" : VPseudoBinaryV_VM</*CarryOut=*/1, /*CarryIn=*/1, Constraint>;
defm "" : VPseudoBinaryV_XM</*CarryOut=*/1, /*CarryIn=*/1, Constraint>;
defm "" : VPseudoBinaryV_IM</*CarryOut=*/1, /*CarryIn=*/1, Constraint>;
}
multiclass VPseudoBinaryM_VM_XM<string Constraint> {
defm "" : VPseudoBinaryV_VM</*CarryOut=*/1, /*CarryIn=*/1, Constraint>;
defm "" : VPseudoBinaryV_XM</*CarryOut=*/1, /*CarryIn=*/1, Constraint>;
}
multiclass VPseudoBinaryM_V_X_I<string Constraint> {
defm "" : VPseudoBinaryV_VM</*CarryOut=*/1, /*CarryIn=*/0, Constraint>;
defm "" : VPseudoBinaryV_XM</*CarryOut=*/1, /*CarryIn=*/0, Constraint>;
defm "" : VPseudoBinaryV_IM</*CarryOut=*/1, /*CarryIn=*/0, Constraint>;
}
multiclass VPseudoBinaryM_V_X<string Constraint> {
defm "" : VPseudoBinaryV_VM</*CarryOut=*/1, /*CarryIn=*/0, Constraint>;
defm "" : VPseudoBinaryV_XM</*CarryOut=*/1, /*CarryIn=*/0, Constraint>;
}
multiclass VPseudoBinaryV_WV_WX_WI {
defm "" : VPseudoBinaryV_WV;
defm "" : VPseudoBinaryV_WX;
defm "" : VPseudoBinaryV_WI;
}
//===----------------------------------------------------------------------===//
// Helpers to define the SDNode patterns.
//===----------------------------------------------------------------------===//
multiclass VPatUSLoadStoreSDNode<LLVMType type,
LLVMType mask_type,
int sew,
LMULInfo vlmul,
RegisterClass reg_rs1,
VReg reg_class>
{
defvar load_instr = !cast<Instruction>("PseudoVLE"#sew#"_V_"#vlmul.MX);
defvar store_instr = !cast<Instruction>("PseudoVSE"#sew#"_V_"#vlmul.MX);
// Load
def : Pat<(type (load reg_rs1:$rs1)),
(load_instr reg_rs1:$rs1, VLMax, sew)>;
// Store
def : Pat<(store type:$rs2, reg_rs1:$rs1),
(store_instr reg_class:$rs2, reg_rs1:$rs1, VLMax, sew)>;
}
multiclass VPatUSLoadStoreSDNodes<RegisterClass reg_rs1> {
foreach vti = AllVectors in
defm "" : VPatUSLoadStoreSDNode<vti.Vector, vti.Mask, vti.SEW, vti.LMul,
reg_rs1, vti.RegClass>;
}
class VPatBinarySDNode<SDNode vop,
string instruction_name,
ValueType result_type,
ValueType op_type,
ValueType mask_type,
int sew,
LMULInfo vlmul,
VReg RetClass,
VReg op_reg_class> :
Pat<(result_type (vop
(op_type op_reg_class:$rs1),
(op_type op_reg_class:$rs2))),
(!cast<Instruction>(instruction_name#"_VV_"# vlmul.MX)
op_reg_class:$rs1,
op_reg_class:$rs2,
VLMax, sew)>;
multiclass VPatBinarySDNode<SDNode vop, string instruction_name>
{
foreach vti = AllIntegerVectors in
def : VPatBinarySDNode<vop, instruction_name,
vti.Vector, vti.Vector, vti.Mask, vti.SEW,
vti.LMul, vti.RegClass, vti.RegClass>;
}
//===----------------------------------------------------------------------===//
// Helpers to define the intrinsic patterns.
//===----------------------------------------------------------------------===//
class VPatBinaryNoMask<string intrinsic_name,
string inst,
string kind,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
int sew,
LMULInfo vlmul,
VReg op1_reg_class,
DAGOperand op2_kind> :
Pat<(result_type (!cast<Intrinsic>(intrinsic_name)
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
(XLenVT GPR:$vl))),
(!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX)
(op1_type op1_reg_class:$rs1),
ToFPR32<op2_type, op2_kind, "rs2">.ret,
(NoX0 GPR:$vl), sew)>;
class VPatBinaryMask<string intrinsic_name,
string inst,
string kind,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
ValueType mask_type,
int sew,
LMULInfo vlmul,
VReg result_reg_class,
VReg op1_reg_class,
DAGOperand op2_kind> :
Pat<(result_type (!cast<Intrinsic>(intrinsic_name#"_mask")
(result_type result_reg_class:$merge),
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
(mask_type V0),
(XLenVT GPR:$vl))),
(!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX#"_MASK")
(result_type result_reg_class:$merge),
(op1_type op1_reg_class:$rs1),
ToFPR32<op2_type, op2_kind, "rs2">.ret,
(mask_type V0), (NoX0 GPR:$vl), sew)>;
multiclass VPatUSLoad<string intrinsic,
string inst,
LLVMType type,
LLVMType mask_type,
int sew,
LMULInfo vlmul,
VReg reg_class>
{
defvar Intr = !cast<Intrinsic>(intrinsic);
defvar Pseudo = !cast<Instruction>(inst#"_V_"#vlmul.MX);
def : Pat<(type (Intr GPR:$rs1, GPR:$vl)),
(Pseudo $rs1, (NoX0 GPR:$vl), sew)>;
defvar IntrMask = !cast<Intrinsic>(intrinsic # "_mask");
defvar PseudoMask = !cast<Instruction>(inst#"_V_"#vlmul.MX#"_MASK");
def : Pat<(type (IntrMask (type GetVRegNoV0<reg_class>.R:$merge),
GPR:$rs1, (mask_type V0), GPR:$vl)),
(PseudoMask $merge,
$rs1, (mask_type V0), (NoX0 GPR:$vl), sew)>;
}
multiclass VPatSLoad<string intrinsic,
string inst,
LLVMType type,
LLVMType mask_type,
int sew,
LMULInfo vlmul,
VReg reg_class>
{
defvar Intr = !cast<Intrinsic>(intrinsic);
defvar Pseudo = !cast<Instruction>(inst#"_V_"#vlmul.MX);
def : Pat<(type (Intr GPR:$rs1, GPR:$rs2, GPR:$vl)),
(Pseudo $rs1, $rs2, (NoX0 GPR:$vl), sew)>;
defvar IntrMask = !cast<Intrinsic>(intrinsic # "_mask");
defvar PseudoMask = !cast<Instruction>(inst#"_V_"#vlmul.MX#"_MASK");
def : Pat<(type (IntrMask (type GetVRegNoV0<reg_class>.R:$merge),
GPR:$rs1, GPR:$rs2, (mask_type V0), GPR:$vl)),
(PseudoMask $merge,
$rs1, $rs2, (mask_type V0), (NoX0 GPR:$vl), sew)>;
}
multiclass VPatUSStore<string intrinsic,
string inst,
LLVMType type,
LLVMType mask_type,
int sew,
LMULInfo vlmul,
VReg reg_class>
{
defvar Intr = !cast<Intrinsic>(intrinsic);
defvar Pseudo = !cast<Instruction>(inst#"_V_"#vlmul.MX);
def : Pat<(Intr (type reg_class:$rs3), GPR:$rs1, GPR:$vl),
(Pseudo $rs3, $rs1, (NoX0 GPR:$vl), sew)>;
defvar IntrMask = !cast<Intrinsic>(intrinsic # "_mask");
defvar PseudoMask = !cast<Instruction>(inst#"_V_"#vlmul.MX#"_MASK");
def : Pat<(IntrMask (type reg_class:$rs3), GPR:$rs1, (mask_type V0), GPR:$vl),
(PseudoMask $rs3, $rs1, (mask_type V0), (NoX0 GPR:$vl), sew)>;
}
multiclass VPatSStore<string intrinsic,
string inst,
LLVMType type,
LLVMType mask_type,
int sew,
LMULInfo vlmul,
VReg reg_class>
{
defvar Intr = !cast<Intrinsic>(intrinsic);
defvar Pseudo = !cast<Instruction>(inst#"_V_"#vlmul.MX);
def : Pat<(Intr (type reg_class:$rs3), GPR:$rs1, GPR:$rs2, GPR:$vl),
(Pseudo $rs3, $rs1, $rs2, (NoX0 GPR:$vl), sew)>;
defvar IntrMask = !cast<Intrinsic>(intrinsic # "_mask");
defvar PseudoMask = !cast<Instruction>(inst#"_V_"#vlmul.MX#"_MASK");
def : Pat<(IntrMask (type reg_class:$rs3), GPR:$rs1, GPR:$rs2, (mask_type V0), GPR:$vl),
(PseudoMask $rs3, $rs1, $rs2, (mask_type V0), (NoX0 GPR:$vl), sew)>;
}
multiclass VPatBinary<string intrinsic,
string inst,
string kind,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
ValueType mask_type,
int sew,
LMULInfo vlmul,
VReg result_reg_class,
VReg op1_reg_class,
DAGOperand op2_kind>
{
def : VPatBinaryNoMask<intrinsic, inst, kind, result_type, op1_type, op2_type,
sew, vlmul, op1_reg_class, op2_kind>;
def : VPatBinaryMask<intrinsic, inst, kind, result_type, op1_type, op2_type,
mask_type, sew, vlmul, result_reg_class, op1_reg_class,
op2_kind>;
}
multiclass VPatBinaryCarryIn<string intrinsic,
string inst,
string kind,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
ValueType mask_type,
int sew,
LMULInfo vlmul,
VReg op1_reg_class,
DAGOperand op2_kind>
{
def : Pat<(result_type (!cast<Intrinsic>(intrinsic)
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
(mask_type V0),
(XLenVT GPR:$vl))),
(!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX)
(op1_type op1_reg_class:$rs1),
ToFPR32<op2_type, op2_kind, "rs2">.ret,
(mask_type V0), (NoX0 GPR:$vl), sew)>;
}
multiclass VPatBinaryMaskOut<string intrinsic,
string inst,
string kind,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
int sew,
LMULInfo vlmul,
VReg op1_reg_class,
DAGOperand op2_kind>
{
def : Pat<(result_type (!cast<Intrinsic>(intrinsic)
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
(XLenVT GPR:$vl))),
(!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX)
(op1_type op1_reg_class:$rs1),
ToFPR32<op2_type, op2_kind, "rs2">.ret,
(NoX0 GPR:$vl), sew)>;
}
multiclass VPatBinaryV_VV<string intrinsic, string instruction,
list<VTypeInfo> vtilist> {
foreach vti = vtilist in
defm : VPatBinary<intrinsic, instruction, "VV",
vti.Vector, vti.Vector, vti.Vector, vti.Mask,
vti.SEW, vti.LMul, vti.RegClass,
vti.RegClass, vti.RegClass>;
}
multiclass VPatBinaryV_VX<string intrinsic, string instruction,
list<VTypeInfo> vtilist> {
foreach vti = vtilist in
defm : VPatBinary<intrinsic, instruction,
!if(!eq(vti.Scalar, XLenVT), "VX", "VF"),
vti.Vector, vti.Vector, vti.Scalar, vti.Mask,
vti.SEW, vti.LMul, vti.RegClass,
vti.RegClass, vti.ScalarRegClass>;
}
multiclass VPatBinaryV_VI<string intrinsic, string instruction,
list<VTypeInfo> vtilist, Operand imm_type> {
foreach vti = vtilist in
defm : VPatBinary<intrinsic, instruction, "VI",
vti.Vector, vti.Vector, XLenVT, vti.Mask,
vti.SEW, vti.LMul, vti.RegClass,
vti.RegClass, imm_type>;
}
multiclass VPatBinaryW_VV<string intrinsic, string instruction> {
foreach VtiToWti = AllWidenableIntVectors in {
defvar Vti = VtiToWti.Vti;
defvar Wti = VtiToWti.Wti;
defm : VPatBinary<intrinsic, instruction, "VV",
Wti.Vector, Vti.Vector, Vti.Vector, Vti.Mask,
Vti.SEW, Vti.LMul, Wti.RegClass,
Vti.RegClass, Vti.RegClass>;
}
}
multiclass VPatBinaryW_VX<string intrinsic, string instruction> {
foreach VtiToWti = AllWidenableIntVectors in {
defvar Vti = VtiToWti.Vti;
defvar Wti = VtiToWti.Wti;
defm : VPatBinary<intrinsic, instruction, "VX",
Wti.Vector, Vti.Vector, XLenVT, Vti.Mask,
Vti.SEW, Vti.LMul, Wti.RegClass,
Vti.RegClass, GPR>;
}
}
multiclass VPatBinaryW_WV<string intrinsic, string instruction> {
foreach VtiToWti = AllWidenableIntVectors in {
defvar Vti = VtiToWti.Vti;
defvar Wti = VtiToWti.Wti;
defm : VPatBinary<intrinsic, instruction, "WV",
Wti.Vector, Wti.Vector, Vti.Vector, Vti.Mask,
Vti.SEW, Vti.LMul, Wti.RegClass,
Wti.RegClass, Vti.RegClass>;
}
}
multiclass VPatBinaryW_WX<string intrinsic, string instruction> {
foreach VtiToWti = AllWidenableIntVectors in {
defvar Vti = VtiToWti.Vti;
defvar Wti = VtiToWti.Wti;
defm : VPatBinary<intrinsic, instruction, "WX",
Wti.Vector, Wti.Vector, XLenVT, Vti.Mask,
Vti.SEW, Vti.LMul, Wti.RegClass,
Wti.RegClass, GPR>;
}
}
multiclass VPatBinaryV_WV<string intrinsic, string instruction> {
foreach VtiToWti = AllWidenableIntVectors in {
defvar Vti = VtiToWti.Vti;
defvar Wti = VtiToWti.Wti;
defm : VPatBinary<intrinsic, instruction, "WV",
Vti.Vector, Wti.Vector, Vti.Vector, Vti.Mask,
Vti.SEW, Vti.LMul, Vti.RegClass,
Wti.RegClass, Vti.RegClass>;
}
}
multiclass VPatBinaryV_WX<string intrinsic, string instruction> {
foreach VtiToWti = AllWidenableIntVectors in {
defvar Vti = VtiToWti.Vti;
defvar Wti = VtiToWti.Wti;
defm : VPatBinary<intrinsic, instruction, "WX",
Vti.Vector, Wti.Vector, XLenVT, Vti.Mask,
Vti.SEW, Vti.LMul, Vti.RegClass,
Wti.RegClass, GPR>;
}
}
multiclass VPatBinaryV_WI<string intrinsic, string instruction> {
foreach VtiToWti = AllWidenableIntVectors in {
defvar Vti = VtiToWti.Vti;
defvar Wti = VtiToWti.Wti;
defm : VPatBinary<intrinsic, instruction, "WI",
Vti.Vector, Wti.Vector, XLenVT, Vti.Mask,
Vti.SEW, Vti.LMul, Vti.RegClass,
Wti.RegClass, uimm5>;
}
}
multiclass VPatBinaryV_VM<string intrinsic, string instruction,
bit CarryOut = 0> {
foreach vti = AllIntegerVectors in
defm : VPatBinaryCarryIn<intrinsic, instruction, "VVM",
!if(!eq(CarryOut, 1), vti.Mask, vti.Vector),
vti.Vector, vti.Vector, vti.Mask,
vti.SEW, vti.LMul,
vti.RegClass, vti.RegClass>;
}
multiclass VPatBinaryV_XM<string intrinsic, string instruction,
bit CarryOut = 0> {
foreach vti = AllIntegerVectors in
defm : VPatBinaryCarryIn<intrinsic, instruction, "VXM",
!if(!eq(CarryOut, 1), vti.Mask, vti.Vector),
vti.Vector, XLenVT, vti.Mask,
vti.SEW, vti.LMul,
vti.RegClass, GPR>;
}
multiclass VPatBinaryV_IM<string intrinsic, string instruction,
bit CarryOut = 0> {
foreach vti = AllIntegerVectors in
defm : VPatBinaryCarryIn<intrinsic, instruction, "VIM",
!if(!eq(CarryOut, 1), vti.Mask, vti.Vector),
vti.Vector, XLenVT, vti.Mask,
vti.SEW, vti.LMul,
vti.RegClass, simm5>;
}
multiclass VPatBinaryV_V<string intrinsic, string instruction> {
foreach vti = AllIntegerVectors in
defm : VPatBinaryMaskOut<intrinsic, instruction, "VV",
vti.Mask, vti.Vector, vti.Vector,
vti.SEW, vti.LMul,
vti.RegClass, vti.RegClass>;
}
multiclass VPatBinaryV_X<string intrinsic, string instruction> {
foreach vti = AllIntegerVectors in
defm : VPatBinaryMaskOut<intrinsic, instruction, "VX",
vti.Mask, vti.Vector, XLenVT,
vti.SEW, vti.LMul,
vti.RegClass, GPR>;
}
multiclass VPatBinaryV_I<string intrinsic, string instruction> {
foreach vti = AllIntegerVectors in
defm : VPatBinaryMaskOut<intrinsic, instruction, "VI",
vti.Mask, vti.Vector, XLenVT,
vti.SEW, vti.LMul,
vti.RegClass, simm5>;
}
multiclass VPatBinaryV_VV_VX_VI<string intrinsic, string instruction,
list<VTypeInfo> vtilist, Operand ImmType = simm5>
{
defm "" : VPatBinaryV_VV<intrinsic, instruction, vtilist>;
defm "" : VPatBinaryV_VX<intrinsic, instruction, vtilist>;
defm "" : VPatBinaryV_VI<intrinsic, instruction, vtilist, ImmType>;
}
multiclass VPatBinaryV_VV_VX<string intrinsic, string instruction,
list<VTypeInfo> vtilist>
{
defm "" : VPatBinaryV_VV<intrinsic, instruction, vtilist>;
defm "" : VPatBinaryV_VX<intrinsic, instruction, vtilist>;
}
multiclass VPatBinaryV_VX_VI<string intrinsic, string instruction,
list<VTypeInfo> vtilist>
{
defm "" : VPatBinaryV_VX<intrinsic, instruction, vtilist>;
defm "" : VPatBinaryV_VI<intrinsic, instruction, vtilist, simm5>;
}
multiclass VPatBinaryW_VV_VX<string intrinsic, string instruction>
{
defm "" : VPatBinaryW_VV<intrinsic, instruction>;
defm "" : VPatBinaryW_VX<intrinsic, instruction>;
}
multiclass VPatBinaryW_WV_WX<string intrinsic, string instruction>
{
defm "" : VPatBinaryW_WV<intrinsic, instruction>;
defm "" : VPatBinaryW_WX<intrinsic, instruction>;
}
multiclass VPatBinaryV_WV_WX_WI<string intrinsic, string instruction>
{
defm "" : VPatBinaryV_WV<intrinsic, instruction>;
defm "" : VPatBinaryV_WX<intrinsic, instruction>;
defm "" : VPatBinaryV_WI<intrinsic, instruction>;
}
multiclass VPatBinaryV_VM_XM_IM<string intrinsic, string instruction>
{
defm "" : VPatBinaryV_VM<intrinsic, instruction>;
defm "" : VPatBinaryV_XM<intrinsic, instruction>;
defm "" : VPatBinaryV_IM<intrinsic, instruction>;
}
multiclass VPatBinaryM_VM_XM_IM<string intrinsic, string instruction>
{
defm "" : VPatBinaryV_VM<intrinsic, instruction, /*CarryOut=*/1>;
defm "" : VPatBinaryV_XM<intrinsic, instruction, /*CarryOut=*/1>;
defm "" : VPatBinaryV_IM<intrinsic, instruction, /*CarryOut=*/1>;
}
multiclass VPatBinaryM_V_X_I<string intrinsic, string instruction>
{
defm "" : VPatBinaryV_V<intrinsic, instruction>;
defm "" : VPatBinaryV_X<intrinsic, instruction>;
defm "" : VPatBinaryV_I<intrinsic, instruction>;
}
multiclass VPatBinaryV_VM_XM<string intrinsic, string instruction>
{
defm "" : VPatBinaryV_VM<intrinsic, instruction>;
defm "" : VPatBinaryV_XM<intrinsic, instruction>;
}
multiclass VPatBinaryM_VM_XM<string intrinsic, string instruction>
{
defm "" : VPatBinaryV_VM<intrinsic, instruction, /*CarryOut=*/1>;
defm "" : VPatBinaryV_XM<intrinsic, instruction, /*CarryOut=*/1>;
}
multiclass VPatBinaryM_V_X<string intrinsic, string instruction>
{
defm "" : VPatBinaryV_V<intrinsic, instruction>;
defm "" : VPatBinaryV_X<intrinsic, instruction>;
}
//===----------------------------------------------------------------------===//
// Pseudo instructions and patterns.
//===----------------------------------------------------------------------===//
let Predicates = [HasStdExtV] in {
//===----------------------------------------------------------------------===//
// Pseudo Instructions for CodeGen
//===----------------------------------------------------------------------===//
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in {
def PseudoVMV1R_V : VPseudo<VMV1R_V, V_M1, (outs VR:$vd), (ins VR:$vs2)>;
def PseudoVMV2R_V : VPseudo<VMV2R_V, V_M2, (outs VRM2:$vd), (ins VRM2:$vs2)>;
def PseudoVMV4R_V : VPseudo<VMV4R_V, V_M4, (outs VRM4:$vd), (ins VRM4:$vs2)>;
def PseudoVMV8R_V : VPseudo<VMV8R_V, V_M8, (outs VRM8:$vd), (ins VRM8:$vs2)>;
}
//===----------------------------------------------------------------------===//
// 6. Configuration-Setting Instructions
//===----------------------------------------------------------------------===//
// Pseudos.
let hasSideEffects = 1, mayLoad = 0, mayStore = 0, Defs = [VL, VTYPE] in {
def PseudoVSETVLI : Pseudo<(outs GPR:$rd), (ins GPR:$rs1, VTypeIOp:$vtypei), []>;
}
//===----------------------------------------------------------------------===//
// 7. Vector Loads and Stores
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// 7.4 Vector Unit-Stride Instructions
//===----------------------------------------------------------------------===//
// Pseudos Unit-Stride Loads and Stores
foreach eew = EEWList in {
defm PseudoVLE # eew : VPseudoUSLoad;
defm PseudoVSE # eew : VPseudoUSStore;
}
//===----------------------------------------------------------------------===//
// 7.5 Vector Strided Instructions
//===----------------------------------------------------------------------===//
// Vector Strided Loads and Stores
foreach eew = EEWList in {
defm PseudoVLSE # eew : VPseudoSLoad;
defm PseudoVSSE # eew : VPseudoSStore;
}
//===----------------------------------------------------------------------===//
// Pseudo Instructions
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// 12. Vector Integer Arithmetic Instructions
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// 12.1. Vector Single-Width Integer Add and Subtract
//===----------------------------------------------------------------------===//
defm PseudoVADD : VPseudoBinaryV_VV_VX_VI;
defm PseudoVSUB : VPseudoBinaryV_VV_VX;
defm PseudoVRSUB : VPseudoBinaryV_VX_VI;
//===----------------------------------------------------------------------===//
// 12.2. Vector Widening Integer Add/Subtract
//===----------------------------------------------------------------------===//
defm PseudoVWADDU : VPseudoBinaryW_VV_VX;
defm PseudoVWSUBU : VPseudoBinaryW_VV_VX;
defm PseudoVWADD : VPseudoBinaryW_VV_VX;
defm PseudoVWSUB : VPseudoBinaryW_VV_VX;
defm PseudoVWADDU : VPseudoBinaryW_WV_WX;
defm PseudoVWSUBU : VPseudoBinaryW_WV_WX;
defm PseudoVWADD : VPseudoBinaryW_WV_WX;
defm PseudoVWSUB : VPseudoBinaryW_WV_WX;
//===----------------------------------------------------------------------===//
// 12.4. Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions
//===----------------------------------------------------------------------===//
defm PseudoVADC : VPseudoBinaryV_VM_XM_IM;
defm PseudoVMADC : VPseudoBinaryM_VM_XM_IM<"@earlyclobber $rd">;
defm PseudoVMADC : VPseudoBinaryM_V_X_I<"@earlyclobber $rd">;
defm PseudoVSBC : VPseudoBinaryV_VM_XM;
defm PseudoVMSBC : VPseudoBinaryM_VM_XM<"@earlyclobber $rd">;
defm PseudoVMSBC : VPseudoBinaryM_V_X<"@earlyclobber $rd">;
//===----------------------------------------------------------------------===//
// 12.6. Vector Single-Width Bit Shift Instructions
//===----------------------------------------------------------------------===//
defm PseudoVSLL : VPseudoBinaryV_VV_VX_VI<uimm5>;
defm PseudoVSRL : VPseudoBinaryV_VV_VX_VI<uimm5>;
defm PseudoVSRA : VPseudoBinaryV_VV_VX_VI<uimm5>;
//===----------------------------------------------------------------------===//
// 12.7. Vector Narrowing Integer Right Shift Instructions
//===----------------------------------------------------------------------===//
defm PseudoVNSRL : VPseudoBinaryV_WV_WX_WI;
defm PseudoVNSRA : VPseudoBinaryV_WV_WX_WI;
//===----------------------------------------------------------------------===//
// 12.9. Vector Integer Min/Max Instructions
//===----------------------------------------------------------------------===//
defm PseudoVMINU : VPseudoBinaryV_VV_VX;
defm PseudoVMIN : VPseudoBinaryV_VV_VX;
defm PseudoVMAXU : VPseudoBinaryV_VV_VX;
defm PseudoVMAX : VPseudoBinaryV_VV_VX;
//===----------------------------------------------------------------------===//
// 12.10. Vector Single-Width Integer Multiply Instructions
//===----------------------------------------------------------------------===//
defm PseudoVMUL : VPseudoBinaryV_VV_VX;
defm PseudoVMULH : VPseudoBinaryV_VV_VX;
defm PseudoVMULHU : VPseudoBinaryV_VV_VX;
defm PseudoVMULHSU : VPseudoBinaryV_VV_VX;
//===----------------------------------------------------------------------===//
// 12.11. Vector Integer Divide Instructions
//===----------------------------------------------------------------------===//
defm PseudoVDIVU : VPseudoBinaryV_VV_VX;
defm PseudoVDIV : VPseudoBinaryV_VV_VX;
defm PseudoVREMU : VPseudoBinaryV_VV_VX;
defm PseudoVREM : VPseudoBinaryV_VV_VX;
//===----------------------------------------------------------------------===//
// 12.12. Vector Widening Integer Multiply Instructions
//===----------------------------------------------------------------------===//
defm PseudoVWMUL : VPseudoBinaryW_VV_VX;
defm PseudoVWMULU : VPseudoBinaryW_VV_VX;
defm PseudoVWMULSU : VPseudoBinaryW_VV_VX;
//===----------------------------------------------------------------------===//
// 12.17. Vector Integer Move Instructions
//===----------------------------------------------------------------------===//
defm PseudoVMV_V : VPseudoUnaryV_V_X_I_NoDummyMask;
//===----------------------------------------------------------------------===//
// 13.1. Vector Single-Width Saturating Add and Subtract
//===----------------------------------------------------------------------===//
let Defs = [VXSAT], hasSideEffects = 1 in {
defm PseudoVSADDU : VPseudoBinaryV_VV_VX_VI;
defm PseudoVSADD : VPseudoBinaryV_VV_VX_VI;
defm PseudoVSSUBU : VPseudoBinaryV_VV_VX;
defm PseudoVSSUB : VPseudoBinaryV_VV_VX;
}
} // Predicates = [HasStdExtV]
let Predicates = [HasStdExtV, HasStdExtF] in {
//===----------------------------------------------------------------------===//
// 14.2. Vector Single-Width Floating-Point Add/Subtract Instructions
//===----------------------------------------------------------------------===//
defm PseudoVFADD : VPseudoBinaryV_VV_VX</*IsFloat=*/1>;
defm PseudoVFSUB : VPseudoBinaryV_VV_VX</*IsFloat=*/1>;
defm PseudoVFRSUB : VPseudoBinaryV_VX</*IsFloat=*/1>;
} // Predicates = [HasStdExtV, HasStdExtF]
//===----------------------------------------------------------------------===//
// Patterns.
//===----------------------------------------------------------------------===//
let Predicates = [HasStdExtV] in {
// Whole-register vector patterns.
// 7.4. Vector Unit-Stride Instructions
defm "" : VPatUSLoadStoreSDNodes<GPR>;
defm "" : VPatUSLoadStoreSDNodes<AddrFI>;
// 12.1. Vector Single-Width Integer Add and Subtract
defm "" : VPatBinarySDNode<add, "PseudoVADD">;
//===----------------------------------------------------------------------===//
// 7. Vector Loads and Stores
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// 7.4 Vector Unit-Stride Instructions
//===----------------------------------------------------------------------===//
foreach vti = AllVectors in
{
defm : VPatUSLoad<"int_riscv_vle",
"PseudoVLE" # vti.SEW,
vti.Vector, vti.Mask, vti.SEW, vti.LMul, vti.RegClass>;
defm : VPatUSStore<"int_riscv_vse",
"PseudoVSE" # vti.SEW,
vti.Vector, vti.Mask, vti.SEW, vti.LMul, vti.RegClass>;
}
//===----------------------------------------------------------------------===//
// 7.5 Vector Strided Instructions
//===----------------------------------------------------------------------===//
foreach vti = AllVectors in
{
defm : VPatSLoad<"int_riscv_vlse",
"PseudoVLSE" # vti.SEW,
vti.Vector, vti.Mask, vti.SEW, vti.LMul, vti.RegClass>;
defm : VPatSStore<"int_riscv_vsse",
"PseudoVSSE" # vti.SEW,
vti.Vector, vti.Mask, vti.SEW, vti.LMul, vti.RegClass>;
}
//===----------------------------------------------------------------------===//
// 12. Vector Integer Arithmetic Instructions
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// 12.1. Vector Single-Width Integer Add and Subtract
//===----------------------------------------------------------------------===//
defm "" : VPatBinaryV_VV_VX_VI<"int_riscv_vadd", "PseudoVADD", AllIntegerVectors>;
defm "" : VPatBinaryV_VV_VX<"int_riscv_vsub", "PseudoVSUB", AllIntegerVectors>;
defm "" : VPatBinaryV_VX_VI<"int_riscv_vrsub", "PseudoVRSUB", AllIntegerVectors>;
//===----------------------------------------------------------------------===//
// 12.2. Vector Widening Integer Add/Subtract
//===----------------------------------------------------------------------===//
defm "" : VPatBinaryW_VV_VX<"int_riscv_vwaddu", "PseudoVWADDU">;
defm "" : VPatBinaryW_VV_VX<"int_riscv_vwsubu", "PseudoVWSUBU">;
defm "" : VPatBinaryW_VV_VX<"int_riscv_vwadd", "PseudoVWADD">;
defm "" : VPatBinaryW_VV_VX<"int_riscv_vwsub", "PseudoVWSUB">;
defm "" : VPatBinaryW_WV_WX<"int_riscv_vwaddu_w", "PseudoVWADDU">;
defm "" : VPatBinaryW_WV_WX<"int_riscv_vwsubu_w", "PseudoVWSUBU">;
defm "" : VPatBinaryW_WV_WX<"int_riscv_vwadd_w", "PseudoVWADD">;
defm "" : VPatBinaryW_WV_WX<"int_riscv_vwsub_w", "PseudoVWSUB">;
//===----------------------------------------------------------------------===//
// 12.4. Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions
//===----------------------------------------------------------------------===//
defm "" : VPatBinaryV_VM_XM_IM<"int_riscv_vadc", "PseudoVADC">;
defm "" : VPatBinaryM_VM_XM_IM<"int_riscv_vmadc_carry_in", "PseudoVMADC">;
defm "" : VPatBinaryM_V_X_I<"int_riscv_vmadc", "PseudoVMADC">;
defm "" : VPatBinaryV_VM_XM<"int_riscv_vsbc", "PseudoVSBC">;
defm "" : VPatBinaryM_VM_XM<"int_riscv_vmsbc_borrow_in", "PseudoVMSBC">;
defm "" : VPatBinaryM_V_X<"int_riscv_vmsbc", "PseudoVMSBC">;
//===----------------------------------------------------------------------===//
// 12.6. Vector Single-Width Bit Shift Instructions
//===----------------------------------------------------------------------===//
defm "" : VPatBinaryV_VV_VX_VI<"int_riscv_vsll", "PseudoVSLL", AllIntegerVectors,
uimm5>;
defm "" : VPatBinaryV_VV_VX_VI<"int_riscv_vsrl", "PseudoVSRL", AllIntegerVectors,
uimm5>;
defm "" : VPatBinaryV_VV_VX_VI<"int_riscv_vsra", "PseudoVSRA", AllIntegerVectors,
uimm5>;
//===----------------------------------------------------------------------===//
// 12.7. Vector Narrowing Integer Right Shift Instructions
//===----------------------------------------------------------------------===//
defm "" : VPatBinaryV_WV_WX_WI<"int_riscv_vnsrl", "PseudoVNSRL">;
defm "" : VPatBinaryV_WV_WX_WI<"int_riscv_vnsra", "PseudoVNSRA">;
//===----------------------------------------------------------------------===//
// 12.9. Vector Integer Min/Max Instructions
//===----------------------------------------------------------------------===//
defm "" : VPatBinaryV_VV_VX<"int_riscv_vminu", "PseudoVMINU", AllIntegerVectors>;
defm "" : VPatBinaryV_VV_VX<"int_riscv_vmin", "PseudoVMIN", AllIntegerVectors>;
defm "" : VPatBinaryV_VV_VX<"int_riscv_vmaxu", "PseudoVMAXU", AllIntegerVectors>;
defm "" : VPatBinaryV_VV_VX<"int_riscv_vmax", "PseudoVMAX", AllIntegerVectors>;
//===----------------------------------------------------------------------===//
// 12.10. Vector Single-Width Integer Multiply Instructions
//===----------------------------------------------------------------------===//
defm "" : VPatBinaryV_VV_VX<"int_riscv_vmul", "PseudoVMUL", AllIntegerVectors>;
defm "" : VPatBinaryV_VV_VX<"int_riscv_vmulh", "PseudoVMULH", AllIntegerVectors>;
defm "" : VPatBinaryV_VV_VX<"int_riscv_vmulhu", "PseudoVMULHU", AllIntegerVectors>;
defm "" : VPatBinaryV_VV_VX<"int_riscv_vmulhsu", "PseudoVMULHSU", AllIntegerVectors>;
//===----------------------------------------------------------------------===//
// 12.11. Vector Integer Divide Instructions
//===----------------------------------------------------------------------===//
defm "" : VPatBinaryV_VV_VX<"int_riscv_vdivu", "PseudoVDIVU", AllIntegerVectors>;
defm "" : VPatBinaryV_VV_VX<"int_riscv_vdiv", "PseudoVDIV", AllIntegerVectors>;
defm "" : VPatBinaryV_VV_VX<"int_riscv_vremu", "PseudoVREMU", AllIntegerVectors>;
defm "" : VPatBinaryV_VV_VX<"int_riscv_vrem", "PseudoVREM", AllIntegerVectors>;
//===----------------------------------------------------------------------===//
// 12.12. Vector Widening Integer Multiply Instructions
//===----------------------------------------------------------------------===//
defm "" : VPatBinaryW_VV_VX<"int_riscv_vwmul", "PseudoVWMUL">;
defm "" : VPatBinaryW_VV_VX<"int_riscv_vwmulu", "PseudoVWMULU">;
defm "" : VPatBinaryW_VV_VX<"int_riscv_vwmulsu", "PseudoVWMULSU">;
//===----------------------------------------------------------------------===//
// 12.17. Vector Integer Move Instructions
//===----------------------------------------------------------------------===//
foreach vti = AllVectors in {
def : Pat<(vti.Vector (int_riscv_vmv_v_v (vti.Vector vti.RegClass:$rs1),
GPR:$vl)),
(!cast<Instruction>("PseudoVMV_V_V_"#vti.LMul.MX)
$rs1, (NoX0 GPR:$vl), vti.SEW)>;
}
foreach vti = AllIntegerVectors in {
def : Pat<(vti.Vector (int_riscv_vmv_v_x GPR:$rs2, GPR:$vl)),
(!cast<Instruction>("PseudoVMV_V_X_"#vti.LMul.MX)
$rs2, (NoX0 GPR:$vl), vti.SEW)>;
def : Pat<(vti.Vector (int_riscv_vmv_v_x simm5:$imm5, GPR:$vl)),
(!cast<Instruction>("PseudoVMV_V_I_"#vti.LMul.MX)
simm5:$imm5, (NoX0 GPR:$vl), vti.SEW)>;
}
//===----------------------------------------------------------------------===//
// 13.1. Vector Single-Width Saturating Add and Subtract
//===----------------------------------------------------------------------===//
defm "" : VPatBinaryV_VV_VX_VI<"int_riscv_vsaddu", "PseudoVSADDU", AllIntegerVectors>;
defm "" : VPatBinaryV_VV_VX_VI<"int_riscv_vsadd", "PseudoVSADD", AllIntegerVectors>;
defm "" : VPatBinaryV_VV_VX<"int_riscv_vssubu", "PseudoVSSUBU", AllIntegerVectors>;
defm "" : VPatBinaryV_VV_VX<"int_riscv_vssub", "PseudoVSSUB", AllIntegerVectors>;
} // Predicates = [HasStdExtV]
let Predicates = [HasStdExtV, HasStdExtF] in {
//===----------------------------------------------------------------------===//
// 14.2. Vector Single-Width Floating-Point Add/Subtract Instructions
//===----------------------------------------------------------------------===//
defm "" : VPatBinaryV_VV_VX<"int_riscv_vfadd", "PseudoVFADD", AllFloatVectors>;
defm "" : VPatBinaryV_VV_VX<"int_riscv_vfsub", "PseudoVFSUB", AllFloatVectors>;
defm "" : VPatBinaryV_VX<"int_riscv_vfrsub", "PseudoVFRSUB", AllFloatVectors>;
} // Predicates = [HasStdExtV, HasStdExtF]